Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment

By LizaAVILA

CAMBRIDGE, Mass., Feb. 21, 2012 (GLOBE NEWSWIRE) -- Pathfinder Cell Therapy, Inc. ("Pathfinder," or "the Company") (OTCQB:PFND.PK - News), a biotechnology company focused on the treatment of diabetes and other diseases characterized by organ-specific cell damage, today presented preliminary data highlighting the potential of the Company's unique cell-based therapy for treating diabetes at the 7th Annual New York Stem Cell Summit. Richard L. Franklin, M.D., Ph.D., Founder, CEO and President of Pathfinder, provided an overview of the Company's Pathfinder Cell ("PC") technology, and presented preclinical evidence demonstrating how treatment with PCs was able to reverse the symptoms of diabetes in two different mouse models.

Pathfinder Cells are a newly identified non-stem cell mammalian cell type that has the ability to stimulate regeneration of damaged tissue without being incorporated into the new tissue. In today's presentation, Dr. Franklin showed how recent experiments performed using a non-obese diabetic (NOD) mouse strain were supportive of earlier data that demonstrated complete reversal of diabetes in mice. The earlier results, which used a drug-induced diabetic mouse model, were published in Rejuvenation Research1. Though preliminary, the recent results are encouraging because the NOD mouse model is widely used and highly regarded as being predictive of human type-1 diabetes.

In three separate experiments using this model, 30-50% of the mice treated with PCs at the onset of diabetes returned to normal blood glucose levels. Of the mice that responded well to treatment, the effects tended to be long lasting, up to two months in some cases after just two doses. These results, which were generated by intravenous injection of PC's derived from rat pancreatic tissue, further demonstrate the remarkable ability of Pathfinder Cells to elicit their positive effect regardless of the organ, or even species, of origin.

"We are very encouraged by these preclinical results using NOD mice. This model is the gold standard for type-1 diabetes and the fact that recent experiments mirror what we've seen in previous models may be highly significant," stated Dr. Franklin. "We have many questions to answer about how PCs act in the body, but we believe, based on previous experiments, that PCs may stimulate regeneration of damaged islet cells that produce insulin. The current NOD mouse data also suggest that PCs may have an effect in modulating the auto-immune process in type 1 diabetes. We continue to conduct experiments aimed at elucidating the optimal dosing and other factors that may be responsible for producing a robust and long-lasting response, as this will be critical as we start to think about how PCs may be used in treating human diabetes."

In his presentation today, Dr. Franklin also provided further insight into the mechanism of action of PCs, based on recent animal experiments. It was observed previously that PCs produce microvesicles, which are known to play a role in intercellular communication, but through mechanisms that are poorly understood. In a recent experiment, Pathfinder was able to isolate these microvesicles from the PCs and treat animals directly with an injection containing microvesicles only. Remarkably, both PC- and microvesicle-treated mice exhibited similar reductions in blood glucose compared to controls using the same drug-induced diabetes mouse model. This suggests, not only that the microvesicles produced by PCs are central to the mechanism of action, but that the microvesicles alone appear to be sufficient to produce the full effect.

Dr. Franklin commented, "If confirmed, this finding could have a significant positive impact on the future of PC-based therapy. Due to the relatively small amount of material contained within the microvesicles, determining the specific factor(s) that are responsible for regenerating damaged tissue could be more straightforward than we first anticipated, bringing us closer to understanding the mechanism of action. There may also be a number of potential manufacturing and storage benefits to using microvesicles versus PCs that will be interesting to explore in parallel as we work to advance this innovative new therapeutic approach closer to human clinical development."

The New York Stem Cell Summit brings together cell therapy company executives, researchers, investors and physicians to explore investment opportunities in cell therapy research and innovation. More information can be found at http://www.stemcellsummit.com.

Presentation details Event: 7th Annual New York Stem Cell Summit Date: Tuesday, February 21, 2012 Place: Bridgewaters New York, 11 Fulton Street, New York, NY Time: 3:35 pm ET

About Pathfinder

Pathfinder is developing a novel cell-based therapy and has generated encouraging preclinical data in models of diabetes, renal disease, myocardial infarction, and critical limb ischemia, a severe form of peripheral vascular disease. Leveraging its internal discovery of Pathfinder Cells ("PCs") Pathfinder is pioneering a new field in regenerative medicine.

PCs are a newly identified mammalian cell type present in very low quantities in a variety of organs, including the kidney, liver, pancreas, lymph nodes, myometrium, bone marrow and blood. Early studies indicate that PCs stimulate regeneration of damaged tissues without the cells themselves being incorporated into the newly generated tissue. Based on testing to date, the cells appear to be "immune privileged," and their effects appear to be independent of the tissue source of PCs. For more information please visit: http://www.pathfindercelltherapy.com.

FORWARD LOOKING STATEMENTS

This press release contains forward-looking statements. You should be aware that our actual results could differ materially from those contained in the forward-looking statements, which are based on management's current expectations and are subject to a number of risks and uncertainties, including, but not limited to, our inability to obtain additional required financing; costs and delays in the development and/or FDA approval, or the failure to obtain such approval, of our product candidates; uncertainties or differences in interpretation in clinical trial results, if any; our inability to maintain or enter into, and the risks resulting from our dependence upon, collaboration or contractual arrangements necessary for the development, manufacture, commercialization, marketing, sales and distribution of any products; competitive factors; our inability to protect our patents or proprietary rights and obtain necessary rights to third party patents and intellectual property to operate our business; our inability to operate our business without infringing the patents and proprietary rights of others; general economic conditions; the failure of any products to gain market acceptance; technological changes; and government regulation. We do not intend to update any of these factors or to publicly announce the results of any revisions to these forward-looking statements.

1Karen Stevenson, Daxin Chen, Alan MacIntyre, Liane M McGlynn, Paul Montague, Rawiya Charif, Murali Subramaniam, W.D. George, Anthony P. Payne, R. Wayne Davies, Anthony Dorling, and Paul G. Shiels. Rejuvenation Research. April 2011, 14(2): 163-171. doi:10.1089/rej.2010.1099

See the original post:
Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment



categoriaUncategorized commentoComments Off on Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment | dataFebruary 21st, 2012

About...

This author published 890 posts in this site.
Just for fun

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024