More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies

By JoanneRUSSELL25

Durham, NC (PRWEB) December 09, 2013

Generating new cardiac muscle from human embryonic stem cells (hESCs) and/or induced pluripotent stem cells (iPSC) could fulfill the demand for therapeutic applications and drug testing. The production of a similar population of these cells remains a major limitation, but in a study just published in STEM CELLS Translational Medicine, researchers now believe they have found a way to do this.

By combining small molecules and growth factors, the international research team led by investigators at the Cardiovascular Research Center at Icahn School of Medicine at Mount Sinai developed a two-step system that caused stem cells to differentiate into ventricular heart muscle cells from hESCs and iPSCs. The process resulted in high efficiency and reproducibility, in a manner that mimicked the developmental steps of normal cardiovascular development.

These chemically induced, ventricular-like cardiomyocytes (termed ciVCMs) exhibited the expected cardiac electrophysiological and calcium handling properties as well as the appropriate heart rate responses, said lead investigator Ioannis Karakikes, Ph.D., of the Stanford University School Of Medicine, Cardiovascular Institute. Other members of the team included scientists from the Icahn School of Medicine at Mount Sinai, New York, and the Stem Cell & Regenerative Medicine Consortium at the University of Hong Kong.

In addition, using an integrated approach involving computational and experimental systems, the researchers demonstrated that using molecules to modulate the Wnt pathway, which passes signals from cell to cell, plays a key role in whether a cell evolves into an atrial or ventricular muscle cell.

The further clarification of the molecular mechanism(s) that underlie this kind of subtype specification is essential to improving our understanding of cardiovascular development. We may be able to regulate the commitment, proliferation and differentiation of pluripotent stem cells into heart muscle cells and then harness them for therapeutic purposes, Dr. Karakikes said.

"Most cases of heart failure are related to a deficiency of heart muscle cells in the lower chambers of the heart, said said Anthony Atala, MD, editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. An efficient, cost-effective and reproducible system for generating ventricular cardiomyocytes would be a valuable resource for cell therapies as well as drug screening.

###

The full article, Small Molecule-Mediated Directed Differentiation of Human Embryonic Stem Cells Toward Ventricular Cardiomyocytes, can be accessed at http://www.stemcellstm.com.

About STEM CELLS Translational Medicine: STEM CELLS TRANSLATIONAL MEDICINE (SCTM), published by AlphaMed Press, is a monthly peer-reviewed publication dedicated to significantly advancing the clinical utilization of stem cell molecular and cellular biology. By bridging stem cell research and clinical trials, SCTM will help move applications of these critical investigations closer to accepted best practices.

Read the rest here:
More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies

Related Post


categoriaCardiac Stem Cells commentoComments Off on More Efficient Way to Grow Heart Muscle from Stem Cells Could Yield New Regenerative Therapies | dataDecember 13th, 2013

About...

This author published 814 posts in this site.
Just for fun

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024