Will Gene Editing Allow Us to Rid the World of Diseases? – Healthline
By Sykes24Tracey
Scientists recently used a gene-editing tool to fix a mutation in a human embryo. Around the world, researchers are chasing cures for other genetic diseases.
Now that the gene-editing genie is out of the bottle, what would you wish for first?
Babies with perfect eyes, over-the-top intelligence, and a touch of movie star charisma?
Or a world free of disease not just for your family, but for every family in the world?
Based on recent events, many scientists are working toward the latter.
Earlier this month, scientists from the Oregon Health & Science University used a gene editing tool to correct a disease-causing mutation in an embryo.
The technique, known as CRISPR-Cas9, fixed the mutation in the embryos nuclear DNA that causes hypertrophic cardiomyopathy, a common heart condition that can lead to heart failure or cardiac death.
This is the first time that this gene-editing tool has been tested on clinical-quality human eggs.
Had one of these embryos been implanted into a womans uterus and allowed to fully develop, the baby would have been free of the disease-causing variation of the gene.
This type of beneficial change would also have been passed down to future generations.
None of the embryos in this study were implanted or allowed to develop. But the success of the experiment offers a glimpse at the potential of CRISPR-Cas9.
Still, will we ever be able to gene-edit our world free of disease?
According to the Genetic Disease Foundation, there are more than 6,000 human genetic disorders.
Scientists could theoretically use CRISPR-Cas9 to correct any of these diseases in an embryo.
To do this, they would need an appropriate piece of RNA to target corresponding stretches of genetic material.
The Cas9 enzyme cuts DNA at that spot, which allows scientists to delete, repair, or replace a specific gene.
Some genetic diseases, though, may be easier to treat with this method than others.
Most people are focusing, at least initially, on diseases where there really is only one gene involved or a limited number of genes and theyre really well understood, Megan Hochstrasser, PhD, science communications manager at the Innovative Genomics Institute in California, told Healthline.
Diseases caused by a mutation in a single gene include sickle cell disease, cystic fibrosis, and Tay-Sachs disease. These affect millions of people worldwide.
These types of diseases, though, are far outnumbered by diseases like cardiovascular disease, diabetes, and cancer, which kill millions of people across the globe each year.
Genetics along with environmental factors also contribute to obesity, mental illness, and Alzheimers disease, although scientists are still working on understanding exactly how.
Right now, most CRISPR-Cas9 research focuses on simpler diseases.
There are a lot of things that have to be worked out with the technology for it to get to the place where we could ever apply it to one of those polygenic diseases, where multiple genes contribute or one gene has multiple effects, said Hochstrasser.
Although designer babies gain a lot of media attention, much CRISPR-Cas9 research is focused elsewhere.
Most people who are working on this are not working in human embryos, said Hochstrasser. Theyre trying to figure out how we can develop treatments for people that already have diseases.
These types of treatments would benefit children and adults who are already living with a genetic disease, as well as people who develop cancer.
This approach may also help the 25 million to 30 million Americans who have one of the more than 6,800 rare diseases.
Gene editing is a really powerful option for people with rare disease, said Hochstrasser. You could theoretically do a phase I clinical trial with all the people in the world that have a certain [rare] condition and cure them all if it worked.
Rare diseases affect fewer than 200,000 people in the United States at any given time, which means there is less incentive for pharmaceutical companies to develop treatments.
These less-common diseases include cystic fibrosis, Huntingtons disease, muscular dystrophies, and certain types of cancer.
Last year researchers at the University of California Berkeley made progress in developing an ex vivo therapy where you take cells out of a person, modify them, and put them back into the body.
This treatment was for sickle cell disease. In this condition, a genetic mutation causes hemoglobin molecules to stick together, which deforms red blood cells. This can lead to blockages in the blood vessels, anemia, pain, and organ failure.
Researchers used CRISPR-Cas9 to genetically engineer stem cells to fix the sickle cell disease mutation. They then injected these cells into mice.
The stem cells migrated to the bone marrow and developed into healthy red blood cells. Four months later, these cells could still be found in the mices blood.
This is not a cure for the disease, because the body would continue to make red blood cells that have the sickle cell disease mutation.
But researchers think that if enough healthy stem cells take root in the bone marrow, it could reduce the severity of disease symptoms.
More work is needed before researchers can test this treatment in people.
A group of Chinese researchers used a similar technique last year to treat people with an aggressive form of lung cancer the first clinical trial of its kind.
In this trial, researchers modified patients immune cells to disable a gene that is involved in stopping the cells immune response.
Researchers hope that, once injected into the body, the genetically edited immune cells will mount a stronger attack against the cancer cells.
These types of therapies might also work for other blood diseases, cancers, or immune problems.
But certain diseases will be more challenging to treat this way.
If you have a disorder of the brain, for example, you cant remove someones brain, do gene editing and then put it back in, said Hochstrasser. So we have to figure out how to get these reagents to the places they need to be in the body.
Not every human disease is caused by mutations in our genome.
Vector-borne diseases like malaria, yellow fever, dengue fever, and sleeping sickness kill more than 1 million people worldwide each year.
Many of these diseases are transmitted by mosquitoes, but also by ticks, flies, fleas, and freshwater snails.
Scientists are working on ways to use gene editing to reduce the toll of these diseases on the health of people around the world.
We could potentially get rid of malaria by engineering mosquitoes that cant transmit the parasite that causes malaria, said Hochstrasser. We could do this using the CRISPR-Cas9 technique to push this trait through the entire mosquito population very quickly.
Researchers are also using CRISPR-Cas9 to create designer foods.
DuPont recently used gene editing to produce a new variety of waxy corn that contains higher amounts of starch, which has uses in food and industry.
Modified crops may also help reduce deaths due to malnutrition, which is responsible for nearly half of all deaths worldwide in children under 5.
Scientists could potentially use CRISPR-Cas9 to create new varieties of food that are pest-resistant, drought-resistant, or contain more micronutrients.
One benefit of CRISPR-Cas9, compared to traditional plant breeding methods, is that it allows scientists to insert a single gene from a related wild plant into a domesticated variety, without other unwanted traits.
Gene editing in agriculture may also move more quickly than research in people because there is no need for years of lab, animal, and human clinical trials.
Even though plants grow pretty slowly, said Hochstrasser, it really is quicker to get [genetically engineered plants] out into the world than doing a clinical trial in people.
Safety and ethical concerns
CRISPR-Cas9 is a powerful tool, but it also raises several concerns.
Theres a lot of discussion right now about how best to detect so-called off-target effects, said Hochstrasser. This is what happens when the [Cas9] protein cuts somewhere similar to where you want it to cut.
Off-target cuts could lead to unexpected genetic problems that cause an embryo to die. An edit in the wrong gene could also create an entirely new genetic disease that would be passed onto future generations.
Even using CRISPR-Cas9 to modify mosquitoes and other insects raises safety concerns like what happens when you make large-scale changes to an ecosystem or a trait in a population that gets out of control.
There are also many ethical issues that come with modifying human embryos.
So will CRISPR-Cas9 help rid the world of disease?
Theres no doubt that it will make a sizeable dent in many diseases, but its unlikely to cure all of them any time soon.
We already have tools for avoiding genetic diseases like early genetic screening of fetuses and embryos but these are not universally used.
We still dont avoid tons of genetic diseases, because a lot of people dont know that they harbor mutations that can be inherited, said Hochstrasser.
Some genetic mutations also happen spontaneously. This is the case with many cancers that result from environmental factors such as UV rays, tobacco smoke, and certain chemicals.
People also make choices that increase their risk of heart disease, stroke, obesity, and diabetes.
So unless scientists can use CRISPR-Cas9 to find treatments for these lifestyle diseases or genetically engineer people to stop smoking and start biking to work these diseases will linger in human society.
Things like that are always going to need to be treated, said Hochstrasser. I dont think its realistic to think we would ever prevent every disease from happening in a human.
Continue reading here:
Will Gene Editing Allow Us to Rid the World of Diseases? - Healthline
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to ... - November 15th, 2024
- Hematopoietic Stem Cells and Their Niche in Bone Marrow - November 15th, 2024
- Bone Marrow Transplant Program - Overview - Mayo Clinic - November 15th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to Cadavers - WIRED - November 15th, 2024
- More stem cells for sickle cell gene therapy readied with motixafortide - Sickle Cell Disease News - November 15th, 2024
- Skull bone marrow expands throughout life and remains healthy during aging, researchers discover - Medical Xpress - November 15th, 2024
- Adult skull bone marrow is an expanding and resilient haematopoietic reservoir - Nature.com - November 15th, 2024
- Evaluation of standard fludarabine dosing and corresponding exposures in infants and young children undergoing hematopoietic cell transplantation -... - November 15th, 2024
- Stem cells grown in space show super powers but theres a catch - Study Finds - November 15th, 2024
- Getting a Stem Cell or Bone Marrow Transplant - October 21st, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 21st, 2024
- 1.5 Lakh Indians Register To Save Lives: Join the Mission To Fight Blood Cancer - The Better India - October 21st, 2024
- How Stem Cell and Bone Marrow Transplants Are Used to Treat Cancer - October 13th, 2024
- Stem Cell (Bone Marrow) Transplants - MD Anderson Cancer Center - October 13th, 2024
- Donating Bone Marrow and Stem Cells: The Process and What To Expect - October 13th, 2024
- What to expect as a stem cell or bone marrow donor - October 13th, 2024
- Structural organization of the bone marrow and its role in ... - October 13th, 2024
- Stem cell donor from down the road saved my life after global search - BBC.com - September 23rd, 2024
- Awaiting the call: family hopes to find blood stem cell donor - Claremont Courier - September 23rd, 2024
- Michigan woman one of first in world to successfully receive bone marrow from deceased donor - WDIV ClickOnDetroit - September 23rd, 2024
- Next-generation stem cell transplant: Revolutionizing a lifesaving cancer therapy - The Business Journals - September 23rd, 2024
- Sophie's life was saved by a stranger. Some in her position have an 'unfair' disadvantage - SBS News - September 23rd, 2024
- What Are Leukemia and Lymphoma and How Are They Treated? - LVHN News - September 23rd, 2024
- Giralt on MDS Transplant Timing and Candidacy - Targeted Oncology - September 14th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 14th, 2024
- A practical guide to therapeutic drug monitoring in busulfan: recommendations from the Pharmacist Committee of the European Society for Blood and... - September 14th, 2024
- ISU researcher blown away by blood cell replication discovery - Radio Iowa - September 14th, 2024
- Pausing biological clock could give boost to lab-produced blood stem cells - Phys.org - September 14th, 2024
- 9-year-old gets successful bone marrow transplant - The Times of India - September 14th, 2024
- Dr. Crandall: Stem Cell Treatment Heals the Heart - Newsmax - September 3rd, 2024
- Orion Corporation: Managers’ transactions – Hao Pan - August 19th, 2024
- BioCorRx Reports Business Update for the Second Quarter of 2024 - August 19th, 2024
- Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern, Eliminates... - August 19th, 2024
- Aligos Therapeutics Announces Reverse Stock Split - August 19th, 2024
- Lumos Pharma to Participate in H.C. Wainwright 26th Annual Global Investment Conference - August 19th, 2024
- Protect Pharmaceutical Corp. (PRTT) Announces New CEO and New Director; Moves to Finalize the Karinca Logistics Merger - August 19th, 2024
- OKYO Pharma Participates in H.C. Wainwright 4th Annual Ophthalmology Virtual Conference - August 19th, 2024
- CORRECTION – Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern,... - August 19th, 2024
- NurExone Biologic Achieves Key Milestone in Support of Robust Exosome Manufacturing Process - August 19th, 2024
- Silexion Therapeutics Ltd. and Moringa Acquisition Corp Announce Closing of their Business Combination - August 19th, 2024
- Vericel Announces FDA Approval of NexoBrid for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- Codexis Publishes FY2023 Sustainability Disclosures - August 19th, 2024
- MediWound Announces U.S. Food and Drug Administration Approval of NexoBrid® for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- First Successful Paediatric Allogeneic Bone Marrow Transplant In Bengaluru; Know All About The Procedure - Onlymyhealth - August 4th, 2024
- Is Stem Cell Transplant Often The Only Treatment Option For Blood Cancer Patients? Why So? - News18 - June 2nd, 2024
- This Swedish startup wants to reduce the cost, and controversy, around stem cell production - TechCrunch - March 10th, 2024
- Bone Marrow Transplantation | Johns Hopkins Medicine - December 20th, 2023
- Mansour bin Zayed witnesses inauguration of ADSCC Bone Marrow Transplant & Cellular Therapy Congress 2023 - ZAWYA - November 26th, 2023
- ADSCC Bone Marrow Transplant and Cellular Therapy Congress 2023 to take place in Abu Dhabi - ZAWYA - November 18th, 2023
- Orchard Therapeutics Reports First Quarter 2023 Financial Results and Announces Initiation of Rolling Submission for Biologics License Application of... - May 16th, 2023
- Family of 7-month-old in need of bone marrow transplant hosting donor registration event - CBS Pittsburgh - May 8th, 2023
- Anika Continues to Expand Addressable Market for Tactoset Injectable Bone Substitute with Additional 510(k) Clearance from FDA - Marketscreener.com - April 5th, 2023
- MorphoSys Completes Enrollment of Phase 3 MANIFEST-2 Study of Pelabresib in Myelofibrosis with Topline Results Expected by End of 2023 -... - April 5th, 2023
- VOR BIOPHARMA INC. Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-K) - Marketscreener.com - March 25th, 2023
- BioRestorative Therapies to Seek FDA Approval to Expand the Clinical Application of BRTX-100 - Marketscreener.com - March 17th, 2023
- BioSenic delivers a new post-hoc analysis of its Phase III JTA-004 trial on knee osteo-arthritis with positive action on the most severely affected... - March 17th, 2023
- JASPER THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 9th, 2023
- For a range of unmet medical needs, India offers a fantastic opportunity to push cell and gene therapies: B .. - ETHealthWorld - March 9th, 2023
- NGM BIOPHARMACEUTICALS INC Management's Discussion and Analysis of Financial Condition and Results of Operations. (form 10-K) - Marketscreener.com - March 1st, 2023
- Bone health: Tips to keep your bones healthy - Mayo Clinic - January 27th, 2023
- Bone marrow drive held for military wife with cancer - January 27th, 2023
- Bone cancer - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Bone | Definition, Anatomy, & Composition | Britannica - January 19th, 2023
- Bone Definition & Meaning - Merriam-Webster - January 19th, 2023
- What Is Bone? | NIH Osteoporosis and Related Bone Diseases National ... - January 19th, 2023
- Anatomy of the Bone | Johns Hopkins Medicine - January 19th, 2023
- Bone Health: Is Eating Meat Healthy For Your Bones? - January 19th, 2023
- Bone Keeper | Deepwoken Wiki | Fandom - January 19th, 2023
- With blood and plasma donations in short supply, uniting communities to give the gift of life - Toronto Star - January 3rd, 2023
- Side Effects of a Bone Marrow Transplant (Stem Cell Transplant) - December 25th, 2022
- 28-year-old cancer patient at Nebraska Medicine advocates for diversity in bone marrow registry - KMTV 3 News Now Omaha - December 17th, 2022
- Stem Cell Technologies and Applications Market Report 2022-2032 - Yahoo Finance - December 9th, 2022
- Fred Hutch at ASH: Global insights on AML outcomes, COVID-19 and cancer, CD19 CAR T-cell therapy updates, latest on precision oncology and more -... - December 9th, 2022
- Types of Stem Cell and Bone Marrow Transplants - American Cancer Society - December 1st, 2022
- Getting a Stem Cell or Bone Marrow Transplant - American Cancer Society - December 1st, 2022
- Woman, 41, With Bubbles In Her Urine Dismissed By Doctors. Turns Out To Have The Blood Cancer Multiple Myeloma. - SurvivorNet - December 1st, 2022
- Stem cell and bone marrow transplants - Cancer Research UK - November 22nd, 2022
- Donating Bone Marrow Experience | Be The Match - November 22nd, 2022
- Learn How to Donate Bone Marrow | Be The Match - October 29th, 2022
- Stem Cell Transplantation Program - DanaFarber Cancer Institute - October 29th, 2022