Stem cells and the heartthe road ahead – Science Magazine
By daniellenierenberg
Heart disease is the primary cause of death worldwide, principally because the heart has minimal ability to regenerate muscle tissue. Myocardial infarction (heart attack) caused by coronary artery disease leads to heart muscle loss and replacement with scar tissue, and the heart's pumping ability is permanently reduced. Breakthroughs in stem cell biology in the 1990s and 2000s led to the hypothesis that heart muscle cells (cardiomyocytes) could be regenerated by transplanting stem cells or their derivatives. It has been 18 years since the first clinical trials of stem cell therapy for heart repair were initiated (1), mostly using adult cells. Although cell therapy is feasible and largely safe, randomized, controlled trials in patients show little consistent benefit from any of the treatments with adult-derived cells (2). In the meantime, pluripotent stem cells have produced bona fide heart muscle regeneration in animal studies and are emerging as leading candidates for human heart regeneration.
In retrospect, the lack of efficacy in these adult cell trials might have been predicted. The most common cell type delivered has been bone marrow mononuclear cells, but other transplanted cell types include bone marrow mesenchymal stromal cells and skeletal muscle myoblasts, and a few studies have used putative progenitors isolated from the adult heart itself. Although each of these adult cell types was originally postulated to differentiate directly into cardiomyocytes, none of them actually do. Indeed, with the exception of skeletal muscle myoblasts, none of these cell types survive more than a few days in the injured heart (see the figure). Unfortunately, the studies using bone marrow and adult resident cardiac progenitor cells were based on a large body of fraudulent work (3), which has led to the retraction of >30 publications. This has left clinical investigators wondering whether their trials should continue, given the lack of scientific foundation and the low but measurable risk of bleeding, stroke, and infection.
Additionally, investigators have struggled to explain the beneficial effects of adult cell therapy in preclinical animal models. Because none of these injected cell types survive and engraft in meaningful numbers or directly generate new myocardium, the mechanism has always been somewhat mysterious. Most research has focused on paracrine-mediated activation of endogenous repair mechanisms or preventing additional death of cardiomyocytes. Multiple protein factors, exosomes (small extracellular vesicles), and microRNAs have been proposed as the paracrine effectors, and an acute immunomodulatory effect has recently been suggested to underlie the benefits of adult cell therapy (4). Regardless, if cell engraftment or survival is not required, the durability of the therapy and need for actual cells versus their paracrine effectors is unclear.
Of particular importance to clinical translation is whether cell therapy is additive to optimal medical therapy. This remains unclear because almost all preclinical studies do not use standard medical treatment for myocardial infarction. Given the uncertainties about efficacy and concerns over the veracity of much of the underlying data, whether agencies should continue funding clinical trials using adult cells to treat heart disease should be assessed. Perhaps it is time for proponents of adult cardiac cell therapy to reconsider the approach.
Pluripotent stem cells (PSCs) include embryonic stem cells (ESCs) and their reprogrammed cousins, induced pluripotent stem cells (iPSCs). In contrast to adult cells, PSCs can divide indefinitely and differentiate into virtually every cell type in the human body, including cardiomyocytes. These remarkable attributes also make ESCs and iPSCs more challenging to control. Through painstaking development, cell expansion and differentiation protocols have advanced such that batches of 1 billion to 10 billion pharmaceutical-grade cardiomyocytes, at >90% purity, can be generated.
Preclinical studies indicate that PSC-cardiomyocytes can remuscularize infarcted regions of the heart (see the figure). The new myocardium persists for at least 3 months (the longest time studied), and physiological studies indicate that it beats in synchrony with host myocardium. The new myocardium results in substantial improvement in cardiac function in multiple animal models, including nonhuman primates (5). Although the mechanism of action is still under study, there is evidence that these cells directly support the heart's pumping function, in addition to providing paracrine factors. These findings are in line with the original hope for stem cell therapyto regenerate lost tissue and restore organ function. Additional effects, such as mechanically buttressing the injured heart wall, may also contribute.
Breakthroughs in cancer immunotherapy have led to the adoption of cell therapies using patient-derived (autologous) T cells that are genetically modified to express chimeric antigen receptors (CARs) that recognize cancer cell antigens. CAR T cells are the first U.S. Food and Drug Administration (FDA)approved, gene-modified cellular pharmaceutical (6). The clinical and commercial success of autologous CAR T cell transplant to treat B cell malignancies has opened doors for other complex cell therapies, including PSC derivatives. There is now a regulatory path to the clinic, private-sector funding is attracted to this field, and clinical investigators in other areas are encouraged to embrace this technology. Indeed, the first transplants of human ESC-derived cardiac progenitors, surgically delivered as a patch onto the heart's surface, have been carried out (7). In the coming years, multiple attempts to use PSC-derived cardiomyocytes to repair the human heart are likely.
What might the first human trials look like? These studies will probably employ an allogeneic (non-self), off-the-shelf, cryopreserved cell product. Although the discovery of iPSCs raised hopes for widespread use of autologous stem cell therapies, the current technology and regulatory requirements likely make this approach too costly for something as common as heart disease, although this could change as technology and regulations evolve. Given that it would take at least 6 months to generate a therapeutic dose of iPSC-derived cardiomyocytes, such cells could only be applied to patients whose infarcts are in the chronic phase where scarring (fibrosis) and ventricular remodeling are complete. Preclinical data indicate that chronic infarcts benefit less from cardiomyocyte transplantation than do those with active wound-healing processes.
Adult cells from bone marrow or the adult heart secrete beneficial paracrine factors but do not engraft in the infarcted heart. Pluripotent stem cells give rise to cardiomyocytes that engraft long term in animal models, beat in synchrony with the heart, and secrete beneficial paracrine factors. Long-term cardiomyocyte engraftment partially regenerates injured heart, which is hypothesized to bring clinical benefits.
The need for allogeneic cells raises the question of how to prevent immune rejection, both from innate immune responses in the acute phase of transplantation or from adaptive immune responses that develop more slowly through the detection of non-self antigens presented by major histocompatibility complexes (MHCs). A current strategy is the collection of iPSCs from patients who have homozygous MHC loci, which results in exponentially more MHC matches with the general population. However, studies in macaque monkeys suggest that MHC matching will be insufficient. In a macaque model of brain injury, immunosuppression was required to prevent rejection of MHC-matched iPSC-derived neurons (8). Similarly, MHC matching reduced the immunogenicity of iPSC-derived cardiomyocytes transplanted subcutaneously or into the hearts of rhesus macaques, but immunosuppressive drugs were still required to prevent rejection (9).
Numerous immune gene editing approaches have been proposed to circumvent rejection, including preventing MHC class I and II molecule expression, overexpressing immunomodulatory cell-surface factors, such CD47 and human leukocyte antigen E (HLA-E) and HLA-G (two human MHC molecules that promote maternal-fetal immune tolerance), or engineering cells to produce immunosuppressants such as programmed cell death ligand 1 (PDL1) and cytotoxic T lymphocyteassociated antigen 4 (CTLA4) (10). These approaches singly or in combination seem to reduce adaptive immune responses in vitro and in mouse models. Overexpressing HLA-G or CD47 also blunts the innate natural killer cellmediated response that results from deleting MHC class I genes (11). However, these manipulations are not without theoretical risks. It could be difficult to clear viral infections from an immunostealthy patch of tissue, and possible tumors resulting from engraftment of PSCs might be difficult to clear immunologically.
Ventricular arrhythmias have emerged as the major toxicity of cardiomyocyte cell therapy. Initial studies in small animals showed no arrhythmic complications (probably because their heart rates are too fast), but in large animals with human-like heart rates, arrhythmias were consistently observed (5, 12). Stereotypically, these arrhythmias arise a few days after transplantation, peak within a few weeks, and subside after 4 to 6 weeks. The arrhythmias were well tolerated in macaques (5) but were lethal in a subset of pigs (12). Electrophysiological studies indicate that these arrhythmias originate in graft regions from a source that behaves like an ectopic pacemaker. Understanding the mechanism of these arrhythmias and developing solutions are major areas of research. There is particular interest in the hypothesis that the immaturity of PSC-cardiomyocytes contributes to these arrhythmias, and that their maturation in situ caused arrhythmias to subside.
A successful therapy for heart regeneration also requires understanding the host side of the equation. PSC-derived cardiomyocytes engraft despite transplantation into injured myocardium that is ischemic with poor blood flow. Although vessels eventually grow in from the host tissue, normal perfusion is not restored. Achieving a robust arterial input will be key to restoring function, which may require cotransplanting other cell populations or tissue engineering approaches (13, 14). Most PSC-mediated cardiac cell therapy studies have been performed in the subacute window, equivalent to 2 to 4 weeks after myocardial infarction in humans. At this point, there has been insufficient time for a substantial fibrotic response. Fibrosis has multiple deleterious features, including mechanically stiffening the tissue and creating zones of electrical insulation that can cause arrhythmias. Extending this therapy to other clinical situations, such as chronic heart failure, will require additional approaches that address the preexisting fibrosis. Cell therapy may again provide an answer because CAR T cells targeted to cardiac fibroblasts reduced fibrosis (15).
Developing a human cardiomyocyte therapy for heart regeneration will push the limits of cell manufacturing. Each patient will likely require a dose of 1 billion to 10 billion cells. Given the widespread nature of ischemic heart disease, 105 to 106 patients a year are likely to need treatment, which translates to 1014 to 1016 cardiomyocytes per year. Growing cells at this scale will require introduction of next generation bioreactors, development of lower-cost media, construction of large-scale cryopreservation and banking systems, and establishment of a robust supply chain compatible with clinical-grade manufacturing practices.
Beyond PSC-cardiomyocytes, other promising approaches include reactivating cardiomyocyte division and reprogramming fibroblasts to form new cardiomyocytes. However, these approaches are at an earlier stage of development, and currently, PSC-derived cardiomyocyte therapy is the only approach that results in large and lasting new muscle grafts. The hurdles to this treatment are known, and likely addressable, thus multiple clinical trials are anticipated.
Acknowledgments: C.E.M. and W.R.M. are scientific founders of and equity holders in Sana Biotechnology. C.E.M. is an employee of Sana Biotechnology. W.R.M. is a consultant for Sana Biotechnology. C.E.M. and W.R.M. hold issued and pending patents in the field of stem cell and regenerative biology.
View post:
Stem cells and the heartthe road ahead - Science Magazine
- You are the match. How UNC student honored her late grandfather with life-saving effort - Raleigh News & Observer - November 29th, 2024
- scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes... - November 29th, 2024
- Atlanta pilot with an aggressive cancer finds lifesaving help from a stranger and a simple test - The Atlanta Journal Constitution - November 29th, 2024
- Researchers have brought the promise of stem cell therapies closer to reality - The Week - November 29th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to ... - November 15th, 2024
- Hematopoietic Stem Cells and Their Niche in Bone Marrow - November 15th, 2024
- Bone Marrow Transplant Program - Overview - Mayo Clinic - November 15th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to Cadavers - WIRED - November 15th, 2024
- More stem cells for sickle cell gene therapy readied with motixafortide - Sickle Cell Disease News - November 15th, 2024
- Skull bone marrow expands throughout life and remains healthy during aging, researchers discover - Medical Xpress - November 15th, 2024
- Adult skull bone marrow is an expanding and resilient haematopoietic reservoir - Nature.com - November 15th, 2024
- Evaluation of standard fludarabine dosing and corresponding exposures in infants and young children undergoing hematopoietic cell transplantation -... - November 15th, 2024
- Stem cells grown in space show super powers but theres a catch - Study Finds - November 15th, 2024
- Getting a Stem Cell or Bone Marrow Transplant - October 21st, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 21st, 2024
- 1.5 Lakh Indians Register To Save Lives: Join the Mission To Fight Blood Cancer - The Better India - October 21st, 2024
- How Stem Cell and Bone Marrow Transplants Are Used to Treat Cancer - October 13th, 2024
- Stem Cell (Bone Marrow) Transplants - MD Anderson Cancer Center - October 13th, 2024
- Donating Bone Marrow and Stem Cells: The Process and What To Expect - October 13th, 2024
- What to expect as a stem cell or bone marrow donor - October 13th, 2024
- Structural organization of the bone marrow and its role in ... - October 13th, 2024
- Stem cell donor from down the road saved my life after global search - BBC.com - September 23rd, 2024
- Awaiting the call: family hopes to find blood stem cell donor - Claremont Courier - September 23rd, 2024
- Michigan woman one of first in world to successfully receive bone marrow from deceased donor - WDIV ClickOnDetroit - September 23rd, 2024
- Next-generation stem cell transplant: Revolutionizing a lifesaving cancer therapy - The Business Journals - September 23rd, 2024
- Sophie's life was saved by a stranger. Some in her position have an 'unfair' disadvantage - SBS News - September 23rd, 2024
- What Are Leukemia and Lymphoma and How Are They Treated? - LVHN News - September 23rd, 2024
- Giralt on MDS Transplant Timing and Candidacy - Targeted Oncology - September 14th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 14th, 2024
- A practical guide to therapeutic drug monitoring in busulfan: recommendations from the Pharmacist Committee of the European Society for Blood and... - September 14th, 2024
- ISU researcher blown away by blood cell replication discovery - Radio Iowa - September 14th, 2024
- Pausing biological clock could give boost to lab-produced blood stem cells - Phys.org - September 14th, 2024
- 9-year-old gets successful bone marrow transplant - The Times of India - September 14th, 2024
- Dr. Crandall: Stem Cell Treatment Heals the Heart - Newsmax - September 3rd, 2024
- Orion Corporation: Managers’ transactions – Hao Pan - August 19th, 2024
- BioCorRx Reports Business Update for the Second Quarter of 2024 - August 19th, 2024
- Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern, Eliminates... - August 19th, 2024
- Aligos Therapeutics Announces Reverse Stock Split - August 19th, 2024
- Lumos Pharma to Participate in H.C. Wainwright 26th Annual Global Investment Conference - August 19th, 2024
- Protect Pharmaceutical Corp. (PRTT) Announces New CEO and New Director; Moves to Finalize the Karinca Logistics Merger - August 19th, 2024
- OKYO Pharma Participates in H.C. Wainwright 4th Annual Ophthalmology Virtual Conference - August 19th, 2024
- CORRECTION – Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern,... - August 19th, 2024
- NurExone Biologic Achieves Key Milestone in Support of Robust Exosome Manufacturing Process - August 19th, 2024
- Silexion Therapeutics Ltd. and Moringa Acquisition Corp Announce Closing of their Business Combination - August 19th, 2024
- Vericel Announces FDA Approval of NexoBrid for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- Codexis Publishes FY2023 Sustainability Disclosures - August 19th, 2024
- MediWound Announces U.S. Food and Drug Administration Approval of NexoBrid® for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- First Successful Paediatric Allogeneic Bone Marrow Transplant In Bengaluru; Know All About The Procedure - Onlymyhealth - August 4th, 2024
- Is Stem Cell Transplant Often The Only Treatment Option For Blood Cancer Patients? Why So? - News18 - June 2nd, 2024
- This Swedish startup wants to reduce the cost, and controversy, around stem cell production - TechCrunch - March 10th, 2024
- Bone Marrow Transplantation | Johns Hopkins Medicine - December 20th, 2023
- Mansour bin Zayed witnesses inauguration of ADSCC Bone Marrow Transplant & Cellular Therapy Congress 2023 - ZAWYA - November 26th, 2023
- ADSCC Bone Marrow Transplant and Cellular Therapy Congress 2023 to take place in Abu Dhabi - ZAWYA - November 18th, 2023
- Orchard Therapeutics Reports First Quarter 2023 Financial Results and Announces Initiation of Rolling Submission for Biologics License Application of... - May 16th, 2023
- Family of 7-month-old in need of bone marrow transplant hosting donor registration event - CBS Pittsburgh - May 8th, 2023
- Anika Continues to Expand Addressable Market for Tactoset Injectable Bone Substitute with Additional 510(k) Clearance from FDA - Marketscreener.com - April 5th, 2023
- MorphoSys Completes Enrollment of Phase 3 MANIFEST-2 Study of Pelabresib in Myelofibrosis with Topline Results Expected by End of 2023 -... - April 5th, 2023
- VOR BIOPHARMA INC. Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-K) - Marketscreener.com - March 25th, 2023
- BioRestorative Therapies to Seek FDA Approval to Expand the Clinical Application of BRTX-100 - Marketscreener.com - March 17th, 2023
- BioSenic delivers a new post-hoc analysis of its Phase III JTA-004 trial on knee osteo-arthritis with positive action on the most severely affected... - March 17th, 2023
- JASPER THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 9th, 2023
- For a range of unmet medical needs, India offers a fantastic opportunity to push cell and gene therapies: B .. - ETHealthWorld - March 9th, 2023
- NGM BIOPHARMACEUTICALS INC Management's Discussion and Analysis of Financial Condition and Results of Operations. (form 10-K) - Marketscreener.com - March 1st, 2023
- Bone health: Tips to keep your bones healthy - Mayo Clinic - January 27th, 2023
- Bone marrow drive held for military wife with cancer - January 27th, 2023
- Bone cancer - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Bone | Definition, Anatomy, & Composition | Britannica - January 19th, 2023
- Bone Definition & Meaning - Merriam-Webster - January 19th, 2023
- What Is Bone? | NIH Osteoporosis and Related Bone Diseases National ... - January 19th, 2023
- Anatomy of the Bone | Johns Hopkins Medicine - January 19th, 2023
- Bone Health: Is Eating Meat Healthy For Your Bones? - January 19th, 2023
- Bone Keeper | Deepwoken Wiki | Fandom - January 19th, 2023
- With blood and plasma donations in short supply, uniting communities to give the gift of life - Toronto Star - January 3rd, 2023
- Side Effects of a Bone Marrow Transplant (Stem Cell Transplant) - December 25th, 2022
- 28-year-old cancer patient at Nebraska Medicine advocates for diversity in bone marrow registry - KMTV 3 News Now Omaha - December 17th, 2022
- Stem Cell Technologies and Applications Market Report 2022-2032 - Yahoo Finance - December 9th, 2022
- Fred Hutch at ASH: Global insights on AML outcomes, COVID-19 and cancer, CD19 CAR T-cell therapy updates, latest on precision oncology and more -... - December 9th, 2022
- Types of Stem Cell and Bone Marrow Transplants - American Cancer Society - December 1st, 2022
- Getting a Stem Cell or Bone Marrow Transplant - American Cancer Society - December 1st, 2022
- Woman, 41, With Bubbles In Her Urine Dismissed By Doctors. Turns Out To Have The Blood Cancer Multiple Myeloma. - SurvivorNet - December 1st, 2022