SMART researchers receive Intra-CREATE grant for personalized medicine and cell therapy – MIT News
By daniellenierenberg
Researchers from Critical Analytics for Manufacturing Personalized-Medicine (CAMP), an interdisciplinary research group at Singapore-MIT Alliance for Research and Technology (SMART), MITs research enterprise in Singapore, have been awarded Intra-CREATE grants from the National Research Foundation (NRF) Singapore to help support research on retinal biometrics for glaucoma progression and neural cell implantation therapy for spinal cord injuries. The grants are part of the NRFs initiative to bring together researchers from Campus for Research Excellence And Technological Enterprise (CREATE) partner institutions, in order to achieve greater impact from collaborative research efforts.
SMART CAMP was formed in 2019 to focus on ways to produce living cells as medicine delivered to humans to treat a range of illnesses and medical conditions, including tissue degenerative diseases, cancer, and autoimmune disorders.
Singapores well-established biopharmaceutical ecosystem brings with it a thriving research ecosystem that is supported by skilled talents and strong manufacturing capabilities. We are excited to collaborate with our partners in Singapore, bringing together an interdisciplinary group of experts from MIT and Singapore, for new research areas at SMART. In addition to our existing research on our three flagship projects, we hope to develop breakthroughs in manufacturing other cell therapy platforms that will enable better medical treatments and outcomes for society, says Krystyn Van Vliet, co-lead principal investigator at SMART CAMP, professor of materials science and engineering, and associate provost at MIT.
Understanding glaucoma progression for better-targeted treatments
Hosted by SMART CAMP, the first research project, Retinal Analytics via Machine learning aiding Physics (RAMP), brings together an interdisciplinary group of ophthalmologists, data scientists, and optical scientists from SMART, Singapore Eye Research Institute (SERI), Agency for Science, Technology and Research (A*STAR), Duke-NUS Medical School, MIT, and National University of Singapore (NUS). The team will seek to establish first principles-founded and statistically confident models of glaucoma progression in patients. Through retinal biomechanics, the models will enable rapid and reliable forecast of the rate and trajectory of glaucoma progression, leading to better-targeted treatments.
Glaucoma, an eye condition often caused by stress-induced damage over time at the optic nerve head, accounts for 5.1 million of the estimated 38 million blind in the world and 40 percent of blindness in Singapore. Currently, health practitioners face challenges forecasting glaucoma progression and its treatment strategies due to the lack of research and technology that accurately establish the relationship between its properties, such as the elasticity of the retina and optic nerve heads, blood flow, intraocular pressure and, ultimately, damage to the optic nerve head.
The research is co-led by George Barbastathis, principal investigator at SMART CAMP and professor of mechanical engineering at MIT, and Aung Tin, executive director at SERI and professor at the Department of Ophthalmology at NUS. The team includes CAMP principal investigators Nicholas Fang, also a professor of mechanical engineering at MIT; Lisa Tucker-Kellogg, assistant professor with the Cancer and Stem Biology program at Duke-NUS; and Hanry Yu, professor of physiology with the Yong Loo Lin School of Medicine, NUS and CAMPs co-lead principal investigator.
We look forward to leveraging the ideas fostered in SMART CAMP to build data analytics and optical imaging capabilities for this pressing medical challenge of glaucoma prediction, says Barbastathis.
Cell transplantation to treat irreparable spinal cord injury
Engineering Scaffold-Mediated Neural Cell Therapy for Spinal Cord Injury Treatment (ScaNCellS), the second research project, gathers an interdisciplinary group of engineers, cell biologists, and clinician scientists from SMART, Nanyang Technological University (NTU), NUS, IMCB A*STAR, A*STAR, French National Centre for Scientific Research (CNRS), the University of Cambridge, and MIT. The team will seek to design a combined scaffold and neural cell implantation therapy for spinal cord injury treatment that is safe, efficacious, and reproducible, paving the way forward for similar neural cell therapies for other neurological disorders. The project, an intersection of engineering and health, will achieve its goals through an enhanced biological understanding of the regeneration process of nerve tissue and optimized engineering methods to prepare cells and biomaterials for treatment.
Spinal cord injury (SCI), affecting between 250,000 and 500,000 people yearly, is expected to incur higher societal costs as compared to other common conditions such as dementia, multiple sclerosis, and cerebral palsy. SCI can lead to temporary or permanent changes in spinal cord function, including numbness or paralysis. Currently, even with the best possible treatment, the injury generally results in some incurable impairment.
The research is co-led by Chew Sing Yian, principal investigator at SMART CAMP and associate professor of the School of Chemical and Biomedical Engineering and Lee Kong Chian School of Medicine at NTU, and Laurent David, professor at University of Lyon (France) and leader of the Polymers for Life Sciences group at CNRS Polymer Engineering Laboratory. The team includes CAMP principal investigators Ai Ye from Singapore University of Technology and Design; Jongyoon Han and Zhao Xuanhe, both professors at MIT; as well as Shi-Yan Ng and Jonathan Loh from Institute of Molecular and Cell Biology, A*STAR.
Chew says, Our earlier SMART and NTU scientific collaborations on progenitor cells in the central nervous system are now being extended to cell therapy translation. This helps us address SCI in a new way, and connect to the methods of quality analysis for cells developed in SMART CAMP.
Cell therapy, one of the fastest-growing areas of research, will provide patients with access to more options that will prevent and treat illnesses, some of which are currently incurable. Glaucoma and spinal cord injuries affect many. Our research will seek to plug current gaps and deliver valuable impact to cell therapy research and medical treatments for both conditions. With a good foundation to work on, we will be able to pave the way for future exciting research for further breakthroughs that will benefit the health-care industry and society, says Hanry Yu, co-lead principal investigator at SMART CAMP, professor of physiology with the Yong Loo Lin School of Medicine, NUS, and group leader of the Institute of Bioengineering and Nanotechnology at A*STAR.
The grants for both projects will commence on Oct. 1, with RAMP expected to run until Sept. 30, 2022, and ScaNCellS expected to run until Sept. 30, 2023.
SMART was. established by the MIT in partnership with the NRF in 2007. SMART is the first entity in the CREATE developed by NRF. SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both Singapore and MIT. SMART currently comprises an Innovation Centre and five interdisciplinary research groups (IRGs): Antimicrobial Resistance, CAMP, Disruptive and Sustainable Technologies for Agricultural Precision, Future Urban Mobility, and Low Energy Electronic Systems.
CAMP is a SMART IRG launched in June 2019. It focuses on better ways to produce living cells as medicine, or cellular therapies, to provide more patients access to promising and approved therapies. The investigators at CAMP address two key bottlenecks facing the production of a range of potential cell therapies: critical quality attributes (CQA) and process analytic technologies (PAT). Leveraging deep collaborations within Singapore and MIT in the United States, CAMP invents and demonstrates CQA/PAT capabilities from stem to immune cells. Its work addresses ailments ranging from cancer to tissue degeneration, targeting adherent and suspended cells, with and without genetic engineering.
CAMP is the R&D core of a comprehensive national effort on cell therapy manufacturing in Singapore.
View post:
SMART researchers receive Intra-CREATE grant for personalized medicine and cell therapy - MIT News
- Much-anticipated human trial aiming to repair spinal cord damage about to begin - ABC News - October 21st, 2024
- The Science Of Health: Are Spinal Cord Injuries Irreversible? Know Science Advances That Can Cure Them In The Future - ABP Live - October 16th, 2023
- Evaluating the Growth Prospects of the Global Nerve Repair & Regeneration Market at a CAGR of 6.5% | Emergen - EIN News - April 21st, 2023
- Regenerative Therapies Market is Set to Grow at a CAGR of 8.7% by 2033, Propelled by Advancements in - EIN News - March 17th, 2023
- Kadimastem Submits IND Application to the FDA for its Phase IIa Clinical Trial with AstroRx for the Treatment of ALS - Marketscreener.com - February 21st, 2023
- My Back Is All F*cked Up 55-Year-Old Joe Rogan Curses at Worst Jiu-Jitsu for Painful Health Condition - EssentiallySports - February 21st, 2023
- Brain and Spinal Cord Tumors: Hope Through Research - January 3rd, 2023
- 14.3 The Brain and Spinal Cord Anatomy & Physiology - January 3rd, 2023
- Stem Cell Therapy for Spinal Cord Injury - PubMed - January 3rd, 2023
- Spinal cord injury - Diagnosis and treatment - Mayo Clinic - December 25th, 2022
- Spinal Cord Injury: Hope Through Research | National Institute of ... - December 1st, 2022
- Stem cell controversy - Wikipedia - October 13th, 2022
- Stem Cells Australia | Australian research, stem cell treatments and ... - October 13th, 2022
- The eye and stem cells: the path to treating blindness - October 13th, 2022
- World's first stem cell treatment for spina bifida delivered during fetal surgery - UC Davis Health - October 13th, 2022
- Fighting One Disease or Condition per Day - Daily Kos - October 13th, 2022
- UPDATE: NurExone Signs Letter of Intent with Nanometrix for Its Exosome and Cargo Molecular Profiling AI-Driven Technology - Yahoo Finance - October 13th, 2022
- Global Cell Therapy Market Report (2022 to 2028) - Featuring Thermo Fisher Scientific, MaxCyte, Danaher and Avantor Among Others -... - October 13th, 2022
- Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS... - October 13th, 2022
- Physiology, Spinal Cord - StatPearls - NCBI Bookshelf - October 5th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 ... - October 5th, 2022
- Revolutionary Jab that Could Repair Spinal Cord Injuries Developed by Scientists - Good News Network - October 5th, 2022
- How the 'Love Hormone' Oxytocin May Help Heal Heart Muscles - Healthline - October 5th, 2022
- Unlocking the Mysteries of Brain Regeneration Groundbreaking Study Offers New Insight - SciTechDaily - October 5th, 2022
- In Conversation: How to understand chronic pain - Medical News Today - October 5th, 2022
- New drug could cure aggressive brain cancer stopping tumours in their tracks... - The US Sun - September 27th, 2022
- Rehabilitating spinal cord injury and stroke with graphene and gaming - Nanowerk - September 19th, 2022
- Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] - BioSpace - September 19th, 2022
- Axolotls can regenerate their brains - Big Think - September 19th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 Clinical Study of Umbilical Cord-Derived Mesenchymal Stem Cells for the... - September 11th, 2022
- Spinal Muscular Atrophy: Causes and importance of early diagnosis for proactive management - Firstpost - September 11th, 2022
- Increasing Road Accidents and Fall Injuries among Aged Population Primarily Driving Need for Orthopedic Navigation Systems: Fact.MR Analysis - Yahoo... - September 3rd, 2022
- Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products - Newswise - August 10th, 2022
- Curious kids: what is inside teeth? - The Conversation - August 10th, 2022
- Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration... - August 2nd, 2022
- How the Regenerative Properties of Glioblastoma Can Be Terminated - Gilmore Health News - August 2nd, 2022
- New TSXV listing looks to address the $3B spinal cord injury treatment market (NRX.V) - FXStreet - July 25th, 2022
- Human iPSC co-culture model to investigate the interaction between microglia and motor neurons | Scientific Reports - Nature.com - July 25th, 2022
- Negligence in treatment of diseases like glioblastoma can be fatal, seminar told - The News International - July 25th, 2022
- What lab-grown cerebral organoids are revealing about the brain - New Scientist - July 25th, 2022
- Innovative Therapies, Care Equity Highlight 2022 ASCO Annual Meeting - Targeted Oncology - July 16th, 2022
- Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% - Digital Journal - July 16th, 2022
- Stem Cell Therapy Market Is Expected To Reach USD 455.61 Billion By 2027 At A CAGR Of 16 percent By Forecast 2027 Says Maximize Market Research (MMR)... - June 30th, 2022
- This startup wants you to have a personal stem cell stash - Freethink - June 30th, 2022
- Parents of 12-Year-Old Boy Praying for a Miracle, Appealing UK Judge's Decision to Remove Life Support - CBN.com - June 30th, 2022
- The end of Roe v. Wade affects more than just abortion - Vox.com - June 30th, 2022
- Horizon Therapeutics plc Submits Regulatory Filing for UPLIZNA (inebilizumab) in Brazil - Business Wire - June 20th, 2022
- Effect of Electrical Stimulation on Spinal Cord Injury: In Vitro and In Vivo Analysis - Newswise - June 11th, 2022
- First-of-its-Kind Stem Cell and Gene Therapy Highlighted at Annual Stem Cell Meeting - Newswise - June 11th, 2022
- UK Judge to Decide if 12-Year-Old Will Be Removed from Life Support, Parents Beg for More Time to Heal - CBN.com - June 11th, 2022
- 'This is my life, and I'll try anything to save it': Woman with MS raising funds for treatment - The Brandon Sun - May 29th, 2022
- Racing Thoughts: Quadriplegic Man Drives Race Car With His Brain - Newsy - May 29th, 2022
- Physical therapy for vertigo: Exercises, benefits, and more - Medical News Today - May 29th, 2022
- Researchers find new function performed by almost half of brain cells - Medical News Today - May 13th, 2022
- Texas Family Fights to Access $2.1 Million Treatment for Baby - NBC 5 Dallas-Fort Worth - May 13th, 2022
- Severe COVID-19 may cause cognitive deficits equivalent to 20 years of aging - Medical News Today - May 13th, 2022
- Stem Cell Magic: 5 Promising Treatments For Major Medical Conditions - Study Finds - April 29th, 2022
- Neural Stem Cell Therapy For Spinal Cord Injury To Tap Into The Potential Of Stem Cells - Optic Flux - April 15th, 2022
- Still Blooming: Sams mission to raise money for spinal cord injury research - 7NEWS - April 15th, 2022
- Lineage and Cancer Research UK Announce Completion of Patient Enrollment in Phase 1 Clinical Study of VAC2 for the Treatment of Non-small Cell Lung... - April 15th, 2022
- Lineage Announces Pipeline Expansion to Include Auditory Neuronal Cell Therapy for Treatment of Hearing Loss - Galveston County Daily News - March 22nd, 2022
- COVID-19: Even mild to moderate infection may cause brain anomalies - Medical News Today - March 22nd, 2022
- Scots mum with MS says 50k treatment abroad is 'last hope' of halting disease - Daily Record - January 18th, 2022
- Mending the gap: U of T's Molly Shoichet joins team developing new treatments for spinal cord injuries - News@UofT - January 18th, 2022
- Spinal Cord Injury Information Page | National Institute ... - January 3rd, 2022
- Dancing molecules successfully repair severe spinal cord ... - January 3rd, 2022
- Best 2021 Medical Breakthroughs And Treatments to Beat Cancer, Alzheimer's, Diabetes & More - Good News Network - January 3rd, 2022
- Global Regenerative Medicine Market is Expected to Reach USD 57.08 Billion by 2027, Growing at a CAGR of 11.27% Over the Forecast Period. -... - December 23rd, 2021
- Scientists unravel a gene function that helps the genesis of neurons - Research Matters - December 23rd, 2021
- The 10 Most Compelling Research Stories of 2021 PharmaLive - PharmaLive - December 23rd, 2021
- 2021: The year in review | YaleNews - Yale News - December 23rd, 2021
- Polymyositis Pipeline to Progress with New and Emerging Drugs for Treatment, Analyzes DelveInsight - GlobeNewswire - December 10th, 2021
- Cell and Gene Therapy Market to reach US$ 47,095.2 Mn by end of 2028, Says Coherent Market Insights - PRNewswire - November 22nd, 2021
- From asthma to cancer to infertility, the new treatments, jabs and meds making us healthier... - The Sun - November 22nd, 2021
- Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen... - November 8th, 2021
- Akiko Nishiyama Explains the Many Strengths of a Degree in Physiology and Neurobiology - UConn Today - UConn Today - October 28th, 2021
- Team finds way to enhance stem cell therapy for CNS injuries - BioPharma-Reporter.com - October 28th, 2021
- 'Rogue' antibodies found in brains of teens with delusions and paranoia after COVID-19 - Livescience.com - October 28th, 2021
- Traumatic Spinal Cord Injury: An Overview of ... - October 16th, 2021
- Role of Stem Cells in Treatment of Neurological Disorder - October 16th, 2021