Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials…

By daniellenierenberg

James SL, Theadom A, Ellenbogen RG, Bannick MS, Montjoy-Venning W, Lucchesi LR, et al. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 19902016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):5687.

Article Google Scholar

Flack JA, Sharma KD, Xie JY. Delving into the recent advancements of spinal cord injury treatment: a review of recent progress. Neural Regen Res. 2022;17(2):283.

PubMed Article Google Scholar

Mansoori N, Bansil R, Sinha S. Current status of spinal cord regenerative therapies: a review. Indian J Neurosurg. 2016;5(01):0039.

Article Google Scholar

Ashammakhi N, Kim H-J, Ehsanipour A, Bierman RD, Kaarela O, Xue C, et al. Regenerative therapies for spinal cord injury. Tissue Eng Part B Rev. 2019;25(6):47191.

PubMed PubMed Central Article Google Scholar

Ramer LM, Ramer MS, Bradbury EJ. Restoring function after spinal cord injury: towards clinical translation of experimental strategies. Lancet Neurol. 2014;13(12):124156.

PubMed Article Google Scholar

Courtine G, Sofroniew MV. Spinal cord repair: advances in biology and technology. Nat Med. 2019;25(6):898908.

CAS PubMed Article Google Scholar

Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017;20(5):63747.

CAS PubMed Article Google Scholar

De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol. 2019;21(7):80111.

PubMed Article CAS Google Scholar

Chhabra HS, Sarda K, Jotwani G, Gourie-Devi M, Kaptanoglu E, Charlifue S, et al. Stem cell/cellular interventions in human spinal cord injury: is it time to move from guidelines to regulations and legislations? Literature review and Spinal Cord Society position statement. Eur Spine J. 2019;28(8):183745.

PubMed Article Google Scholar

Shang Z, Wang R, Li D, Chen J, Zhang B, Wang M, et al. Spinal cord injury: a systematic review and network meta-analysis of therapeutic strategies based on 15 types of stem cells in animal models. Front Pharmacol. 2022;13:819861.

PubMed PubMed Central Article Google Scholar

Gabel BC, Curtis EI, Marsala M, Ciacci JD. A review of stem cell therapy for spinal cord injury: large animal models and the frontier in humans. World Neurosurg. 2017;98:43843.

PubMed Article Google Scholar

Tator CH. Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery. 2006;59(5):95787.

PubMed Article Google Scholar

Cote DJ, Bredenoord AL, Smith TR, Ammirati M, Brennum J, Mendez I, et al. Ethical clinical translation of stem cell interventions for neurologic disease. Neurology. 2017;88(3):3228.

PubMed Article Google Scholar

Matsuda R, Yoshikawa M, Kimura H, Ouji Y, Nakase H, Nishimura F, et al. Cotransplantation of mouse embryonic stem cells and bone marrow stromal cells following spinal cord injury suppresses tumor development. Cell Transplant. 2009;18(1):3954.

PubMed Article Google Scholar

Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinsons disease. Proc Natl Acad Sci USA. 2008;105(15):585661.

CAS PubMed PubMed Central Article Google Scholar

Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 2011;144(3):43952.

CAS PubMed PubMed Central Article Google Scholar

Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 2020;7:1-10.

Cyranoski D. Japan to offer fast-track approval path for stem cell therapies. Nat Med. 2013;19(5):510.

CAS PubMed Article Google Scholar

Rosemann A, Vasen F, Bortz G. Global diversification in medicine regulation: insights from regenerative stem cell medicine. Sci Cult (Lond). 2019;28(2):22349.

Article Google Scholar

Tang QR, Xue H, Zhang Q, Guo Y, Xu H, Liu Y, et al. Evaluation of the clinical efficacy of stem cell transplantation in the treatment of spinal cord injury: a systematic review and meta-analysis. Cell Transplant. 2021;30:9636897211067804.

PubMed Article Google Scholar

Liu S, Zhang H, Wang H, Huang J, Yang Y, Li G, et al. A comparative study of different stem cell transplantation for spinal cord injury: a systematic review and network meta-analysis. World Neurosurg. 2022;159:e232e43.

PubMed Article Google Scholar

Moher D, Liberati A, Tetzlaff J, Altman DG, Group* P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):2649.

PubMed Article Google Scholar

Abdelaziz OS, Marie A, Abbas M, Ibrahim M, Gabr H. Feasibility, safety, and efficacy of directly transplanting autologous adult bone marrow stem cells in patients with chronic traumatic dorsal cord injury: a pilot clinical study. Neurosurg Q. 2010;20(3):21626.

Article Google Scholar

Adel N, Gabr H, Hamdy S, Afifi L, Mahmoud H. Stem cell therapy in chronic spinal cord injuries. Egypt J Neurol Psychiat Neurosurg. 2009;46(2):46778.

Google Scholar

Albu S, Kumru H, Coll R, Vives J, Valls M, Benito-Penalva J, et al. Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: a randomized controlled study. Cytotherapy. 2021;23(2):14656.

CAS PubMed Article Google Scholar

Al-Zoubi A, Jafar E, Jamous M, Al-Twal F, Al-Bakheet S, Zalloum M, et al. Transplantation of purified autologous leukapheresis-derived CD34+ and CD133+ stem cells for patients with chronic spinal cord injuries: long-term evaluation of safety and efficacy. Cell Transplant. 2014;23(1_suppl):2534.

Article Google Scholar

Amr SM, Gouda A, Koptan WT, Galal AA, Abdel-Fattah DS, Rashed LA, et al. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: case series of 14 patients. J Spinal Cord Med. 2014;37(1):5471.

PubMed PubMed Central Article Google Scholar

Bhanot Y, Rao S, Ghosh D, Balaraju S, Radhika CR, Kumar KVS. Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg. 2011;25(4):51622.

PubMed Article Google Scholar

Bryukhovetskiy AS, Bryukhovetskiy IS. Effectiveness of repeated transplantations of hematopoietic stem cells in spinal cord injury. World J Transplant. 2015;5(3):110.

PubMed PubMed Central Article Google Scholar

Chen W, Zhang Y, Yang S, Sun J, Qiu H, Hu X, et al. NeuroRegen scaffolds combined with autologous bone marrow mononuclear cells for the repair of acute complete spinal cord injury: a 3-year clinical study. Cell Transplant. 2020;29:0963689720950637.

PubMed Central Google Scholar

Cheng H, Liu X, Hua R, Dai G, Wang X, Gao J, et al. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury. J Transl Med. 2014;12(1):18.

CAS Article Google Scholar

Chernykh E, Stupak V, Muradov G, Sizikov MY, Shevela EY, Leplina OY, et al. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med. 2007;143(4):5437.

CAS PubMed Article Google Scholar

Chhabra H, Sarda K, Arora M, Sharawat R, Singh V, Nanda A, et al. Autologous bone marrow cell transplantation in acute spinal cord injuryan Indian pilot study. Spinal cord. 2016;54(1):5764.

CAS PubMed Article Google Scholar

Curtis E, Martin JR, Gabel B, Sidhu N, Rzesiewicz TK, Mandeville R, et al. A first-in-human, phase I study of neural stem cell transplantation for chronic spinal cord injury. Cell stem cell. 2018;22(6):94150 e6.

CAS PubMed Article Google Scholar

Dai G, Liu X, Zhang Z, Wang X, Li M, Cheng H, et al. Comparative analysis of curative effect of CT-guided stem cell transplantation and open surgical transplantation for sequelae of spinal cord injury. J Transl Med. 2013;11(1):110.

Article Google Scholar

Dai G, Liu X, Zhang Z, Yang Z, Dai Y, Xu R. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Res. 2013;1533:739.

CAS PubMed Article Google Scholar

Deda H, Inci M, Kreki A, Kayhan K, zgn E, stnsoy G, et al. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy. 2008;10(6):56574.

CAS PubMed Article Google Scholar

Deng W-S, Ma K, Liang B, Liu X-Y, Xu H-Y, Zhang J, et al. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen Res. 2020;15(9):1686.

PubMed PubMed Central Article Google Scholar

El-Kheir WA, Gabr H, Awad MR, Ghannam O, Barakat Y, Farghali HA, et al. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients. Cell Transplant. 2014;23(6):72945.

PubMed Article Google Scholar

Geffner L, Santacruz P, Izurieta M, Flor L, Maldonado B, Auad A, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant. 2008;17(12):127793.

CAS PubMed Article Google Scholar

Ghobrial GM, Anderson KD, Dididze M, Martinez-Barrizonte J, Sunn GH, Gant KL, et al. Human neural stem cell transplantation in chronic cervical spinal cord injury: functional outcomes at 12 months in a phase II clinical trial. Neurosurgery. 2017;64(CN_suppl_1):8791.

PubMed Article Google Scholar

Goni VG, Chhabra R, Gupta A, Marwaha N, Dhillon MS, Pebam S, et al. Safety profile, feasibility and early clinical outcome of cotransplantation of olfactory mucosa and bone marrow stem cells in chronic spinal cord injury patients. Asian Spine J. 2014;8(4):484.

PubMed PubMed Central Article Google Scholar

Hammadi AA, Andolina Marino SF. Clinical response of 277 patients with spinal cord injury to stem cell therapy in Iraq. Int J Stem Cells. 2012;5(1):76.

PubMed PubMed Central Article Google Scholar

Hur JW, Cho T-H, Park D-H, Lee J-B, Park J-Y, Chung Y-G. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: a human trial. J Spinal Cord Med. 2016;39(6):65564.

PubMed PubMed Central Article Google Scholar

Jeon SR, Park JH, Lee JH, Kim DY, Kim HS, Sung IY, et al. Treatment of spinal cord injury with bone marrow-derived, cultured autologous mesenchymal stem cells. Tissue Eng Regen Med. 2010;7(3):31622.

Google Scholar

Jiang P-C, Xiong W-P, Wang G, Ma C, Yao W-Q, Kendell SF, et al. A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury. Exp Ther Med. 2013;6(1):1406.

PubMed PubMed Central Article Google Scholar

Kakabadze Z, Kipshidze N, Mardaleishvili K, Chutkerashvili G, Chelishvili I, Harders A, et al. Phase 1 trial of autologous bone marrow stem cell transplantation in patients with spinal cord injury. Stem Cells Int. 2016;2016:6768274.

PubMed PubMed Central Article CAS Google Scholar

Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg. 2012;114(7):9359.

PubMed Article Google Scholar

Kumar AA, Kumar SR, Narayanan R, Arul K, Baskaran M. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant. 2009;7(4):2418.

PubMed Google Scholar

Larocca TF, Macdo CT, de Freitas Souza BS, Andrade-Souza YM, Villarreal CF, Matos AC, et al. Image-guided percutaneous intralesional administration of mesenchymal stromal cells in subjects with chronic complete spinal cord injury: a pilot study. Cytotherapy. 2017;19(10):118996.

PubMed Article Google Scholar

Levi AD, Anderson KD, Okonkwo DO, Park P, Bryce TN, Kurpad SN, et al. Clinical outcomes from a multi-center study of human neural stem cell transplantation in chronic cervical spinal cord injury. J Neurotrauma. 2019;36(6):891902.

See the original post here:
Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials...

Related Post


categoriaIPS Cell Therapy commentoComments Off on Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials… | dataSeptember 11th, 2022

About...

This author published 4819 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024