A changing view of bone marrow cells

By NEVAGiles23

PUBLIC RELEASE DATE:

20-Feb-2014

Contact: Deborah Williams-Hedges debwms@caltech.edu 626-395-3227 California Institute of Technology

In the battle against infection, immune cells are the body's offense and defensesome cells go on the attack while others block invading pathogens. It has long been known that a population of blood stem cells that resides in the bone marrow generates all of these immune cells. But most scientists have believed that blood stem cells participate in battles against infection in a delayed way, replenishing immune cells on the front line only after they become depleted.

Now, using a novel microfluidic technique, researchers at Caltech have shown that these stem cells might be more actively involved, sensing danger signals directly and quickly producing new immune cells to join the fight.

"It has been most people's belief that the bone marrow has the function of making these cells but that the response to infection is something that happens locally, at the infection site," says David Baltimore, president emeritus and the Robert Andrews Millikan Professor of Biology at Caltech. "We've shown that these bone marrow cells themselves are sensitive to infection-related molecules and that they respond very rapidly. So the bone marrow is actually set up to respond to infection."

The study, led by Jimmy Zhao, a graduate student in the UCLA-Caltech Medical Scientist Training Program, will appear in the April 3 issue of the journal Cell Stem Cell.

In the work, the researchers show that blood stem cells have all the components needed to detect an invasion and to mount an inflammatory response. They show, as others have previously, that these cells have on their surface a type of receptor called a toll-like receptor. The researchers then identify an entire internal response pathway that can translate activation of those receptors by infection-related molecules, or danger signals, into the production of cytokines, signaling molecules that can crank up immune-cell production. Interestingly, they show for the first time that the transcription factor NF-B, known to be the central organizer of the immune response to infection, is part of that response pathway.

To examine what happens to a blood stem cell once it is activated by a danger signal, the Baltimore lab teamed up with chemists from the lab of James Heath, the Elizabeth W. Gilloon Professor and professor of chemistry at Caltech. They devised a microfluidic chipprinted in flexible silicon on a glass slide, complete with input and output ports, control valves, and thousands of tiny wellsthat would enable single-cell analysis. At the bottom of each well, they attached DNA molecules in strips and introduced a flow of antibodiespathogen-targeting proteins of the immune systemthat had complementary DNA. They then added the stem cells along with infection-related molecules and incubated the whole sample. Since the antibodies were selected based on their ability to bind to certain cytokines, they specifically captured any of those cytokines released by the cells after activation. When the researchers added a secondary antibody and a dye, the cytokines lit up. "They all light up the same color, but you can tell which is which because you've attached the DNA in an orderly fashion," explains Baltimore. "So you've got both visualization and localization that tells you which molecule was secreted." In this way, they were able to measure, for example, that the cytokine IL-6 was secreted most frequentlyby 21.9 percent of the cells tested.

"The experimental challenges here were significantwe needed to isolate what are actually quite rare cells, and then measure the levels of a dozen secreted proteins from each of those cells," says Heath. "The end result was sort of like putting on a new pair of glasseswe were able to observe functional properties of these stem cells that were totally unexpected."

The rest is here:
A changing view of bone marrow cells

Related Post


categoriaBone Marrow Stem Cells commentoComments Off on A changing view of bone marrow cells | dataFebruary 21st, 2014

About...

This author published 858 posts in this site.
Just for fun

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2025