A new kind of chemo – University of California

By daniellenierenberg

Clogging a proteins active site is a straightforward way to take it offline. Thats why the active site is often the first place drug designers look when designing new drugs, Reich explained. However, about eight years ago he decided to investigate compounds that could bind to other sites in an effort to avoid off-target effects.

As the group was investigating DNMT3A, they noticed something peculiar. While most of these epigenetic-related enzymes work on their own, DNMT3A always formed complexes, either with itself or with partner proteins. These complexes can involve more than 60 different partners, and interestingly, they act as homing devices to direct DNMT3A to control particular genes.

Early work in the Reich lab, led by former graduate student Celeste Holz-Schietinger, showed that disrupting the complex through mutations did not interfere with its ability to add chemical markers to the DNA. However, the DNMT3A behaved differently when it was on its own or in a simple pair; it wasnt to stay on the DNA and mark one site after another, which is essential for its normal cellular function.

Around the same time, the New England Journal of Medicine ran a deep dive into the mutations present in leukemia patients. The authors of that study discovered that the most frequent mutations in acute myeloid leukemia patients are in theDNMT3Agene. Surprisingly, Holz-Schietinger had studied the exact same mutations. The team now had a direct link between DNMT3A and the epigenetic changes leading to acute myeloid leukemia.

Reich and his group became interested in identifying drugs that could interfere with the formation of DNMT3A complexes that occur in cancer cells. They obtained a chemical library containing 1,500 previously studied drugs and identified two that disrupt DNMT3A interactions with partner proteins (protein-protein inhibitors, or PPIs).

Whats more, these two drugs do not bind to the proteins active site, so they dont affect the DNMT1 at work in all of the bodys other cells. This selectivity is exactly what I was hoping to discover with the students on this project, Reich said.

These drugs are more than merely a potential breakthrough in leukemia treatment. They are a completely new class of drugs: protein-protein inhibitors that target a part of the enzyme away from its active site. An allosteric PPI has never been done before, at least not for an epigenetic drug target, Reich said. It really put a smile on my face when we got the result.

This achievement is no mean feat. Developing small molecules that disrupt protein-protein interactions has proven challenging, noted lead authorJonathan Sandovalof UC San Francisco, a former doctoral student in Reichs lab. These are the first reported inhibitors of DNMT3A that disrupt protein-protein interactions.

See the original post:
A new kind of chemo - University of California

Related Post


categoriaBone Marrow Stem Cells commentoComments Off on A new kind of chemo – University of California | dataAugust 26th, 2022

About...

This author published 4793 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024