A not-so-simple twist of fate: Nobel awarded for stem cell reprogramming
By JoanneRUSSELL25
Yamanaka and Gurdon
Two sets of experiments, performed 40 years apart, have been recognized with today's Nobel Prize in Physiology or Medicine. Cambridge University's John Gurdon won for showing that adult cells contain all the genetic information necessary to create every tissue in the body. That work set the stage for Shinya Yamanaka, who demonstrated that a relatively simple process could convert adult cells into embryonic stem cells. That development is already opening new avenues of research, and it holds the promise of new ways to repair tissues damaged by injury or disease.
As an embryo develops from a single fertilized egg, its cells become increasingly specialized. Although the initial cells can form any tissue in the body, groups of them adopt specific fates. A cell might first commit to being a neuron, after which it may be further limited to the roles required in the spinal cord, before finally specializing in the activities needed to control muscles. What doesn't seem to happen, however, is for the cell to switch developmental tracksdeveloping as, for example, a liver cell.
The apparent permanence of these fate decisions left most researchers thinking that they were in fact permanentthat the genomes of the cells undergo irreversible changes. At least in the case of immune cells, that seemed to be true: as part of generating the ability to recognize a diverse array of threats, B and T cells delete large stretches of their DNA and irreversibly commit themselves to recognizing a single threat.
But it's not true of all cells. John Gurdon performed key experiments back in the 1960s that showed how most cells maintain their general capacity to develop in any direction, although it took decades for the significance of his work to be fully appreciated. Using the eggs of a frog, Gurdon carefully removed the nucleus, which contains its genome. He then transferred in the nucleus of a specialized cell from an adult frog. If the general perception turned out to be correct, the DNA from that cell should have been permanently committed to its fate (in this case, intestine). Instead, Gurdon was able to get the hybrid cell to develop into a tadpole and, eventually, a healthy adult.
These results clearly demonstrated that adult cells contain all the genomic ingredients to make every cell in an organism. But it took time to develop the technology that took advantage of the fact. A key step in that development was honored by the Nobel Committee in 2007: the development of embryonic stem cells derived from mice. These cells, derived from early embryos, could divide indefinitely in culture without adopting any particular fate, but given the right chemical nudges, could form any type of adult cell. If injected into an early embryo, they would go on to contribute to every tissueincluding the germ cells, which allowed these cells to go from a culture dish to future generations of mice.
This work led to the controversial development of human embryonic stem cells. But it also allowed people to ask what makes an embryonic stem cell distinct. Over time, scientists created a list of a few dozen genes that were consistently active in stem cells of various types. Some of these would undoubtedly be a consequence of the cells' stem-cell-ness. But others would be responsible for putting the cells there in the first place.
Shinya Yamanaka, an MD who says he got into research because he wasn't any good at surgery, decided to find out which of this list of genes was likely to be in control. Starting with about 20 known regulatory genes on the list, he inserted groups of them into adult cells, seeing which sets could turn them into a stem cell. By process of elimination, he gradually whittled that list down to just four genes. Inserting them into an adult cell would force it to get rid of any specializations and go on to adopt a stem cell fate. Once that was done, the cells could then be induced to form any type of adult cell in culture, or be injected into an embryo and contribute to an adult.
Stem cell work in general has raised the prospect that we could repair injured or damaged tissue with newly generated cells that are just as specialized as the ones they are replacing. But Yamanaka's work has turned that prospect into a vision of on-demand tissues, generated with a simple lab procedure, and a perfect genetic match for their recipient. The cells produced with the procedure he pioneered don't seem to be an exact match for cells derived from embryos, but it appears that they may be close enough that the difference doesn't matter.
It might be hard to imagine that research could take 40 years to come to fruition. But it's widely accepted that Gurdon's work fostered a change in perspective that was necessary for people to even start thinking about the studies that eventually led to stem cell manipulations. A year ago, I spoke to Martin Evans, who was a co-winner of the 2007 prize for stem cells, and he was already describing a long line of developments that led from Gurton through his own work and that of others, and that eventually culminated in Yamanaka's experiments. Two years ago, Gurdon and Yamanaka were honored with a Lasker Prize, which often precedes Nobel status.
View post:
A not-so-simple twist of fate: Nobel awarded for stem cell reprogramming
- Bone marrow mesenchymal stem cells modulate miR-202-3p to suppress neuronal apoptosis following spinal cord injury through autophagy activation via... - December 9th, 2024
- Stem Cells Reveal Secret to Beneficial Proteins for mRNA Therapy - An Interview with Neuroscientist Prof. Dr. Antal Ngrdi - Szegedi Tudomnyegyetem - December 9th, 2024
- Much-anticipated human trial aiming to repair spinal cord damage about to begin - ABC News - October 21st, 2024
- The Science Of Health: Are Spinal Cord Injuries Irreversible? Know Science Advances That Can Cure Them In The Future - ABP Live - October 16th, 2023
- Evaluating the Growth Prospects of the Global Nerve Repair & Regeneration Market at a CAGR of 6.5% | Emergen - EIN News - April 21st, 2023
- Regenerative Therapies Market is Set to Grow at a CAGR of 8.7% by 2033, Propelled by Advancements in - EIN News - March 17th, 2023
- Kadimastem Submits IND Application to the FDA for its Phase IIa Clinical Trial with AstroRx for the Treatment of ALS - Marketscreener.com - February 21st, 2023
- My Back Is All F*cked Up 55-Year-Old Joe Rogan Curses at Worst Jiu-Jitsu for Painful Health Condition - EssentiallySports - February 21st, 2023
- Brain and Spinal Cord Tumors: Hope Through Research - January 3rd, 2023
- 14.3 The Brain and Spinal Cord Anatomy & Physiology - January 3rd, 2023
- Stem Cell Therapy for Spinal Cord Injury - PubMed - January 3rd, 2023
- Spinal cord injury - Diagnosis and treatment - Mayo Clinic - December 25th, 2022
- Spinal Cord Injury: Hope Through Research | National Institute of ... - December 1st, 2022
- Stem cell controversy - Wikipedia - October 13th, 2022
- Stem Cells Australia | Australian research, stem cell treatments and ... - October 13th, 2022
- The eye and stem cells: the path to treating blindness - October 13th, 2022
- World's first stem cell treatment for spina bifida delivered during fetal surgery - UC Davis Health - October 13th, 2022
- Fighting One Disease or Condition per Day - Daily Kos - October 13th, 2022
- UPDATE: NurExone Signs Letter of Intent with Nanometrix for Its Exosome and Cargo Molecular Profiling AI-Driven Technology - Yahoo Finance - October 13th, 2022
- Global Cell Therapy Market Report (2022 to 2028) - Featuring Thermo Fisher Scientific, MaxCyte, Danaher and Avantor Among Others -... - October 13th, 2022
- Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS... - October 13th, 2022
- Physiology, Spinal Cord - StatPearls - NCBI Bookshelf - October 5th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 ... - October 5th, 2022
- Revolutionary Jab that Could Repair Spinal Cord Injuries Developed by Scientists - Good News Network - October 5th, 2022
- How the 'Love Hormone' Oxytocin May Help Heal Heart Muscles - Healthline - October 5th, 2022
- Unlocking the Mysteries of Brain Regeneration Groundbreaking Study Offers New Insight - SciTechDaily - October 5th, 2022
- In Conversation: How to understand chronic pain - Medical News Today - October 5th, 2022
- New drug could cure aggressive brain cancer stopping tumours in their tracks... - The US Sun - September 27th, 2022
- Rehabilitating spinal cord injury and stroke with graphene and gaming - Nanowerk - September 19th, 2022
- Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] - BioSpace - September 19th, 2022
- Axolotls can regenerate their brains - Big Think - September 19th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 Clinical Study of Umbilical Cord-Derived Mesenchymal Stem Cells for the... - September 11th, 2022
- Spinal Muscular Atrophy: Causes and importance of early diagnosis for proactive management - Firstpost - September 11th, 2022
- Increasing Road Accidents and Fall Injuries among Aged Population Primarily Driving Need for Orthopedic Navigation Systems: Fact.MR Analysis - Yahoo... - September 3rd, 2022
- Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products - Newswise - August 10th, 2022
- Curious kids: what is inside teeth? - The Conversation - August 10th, 2022
- Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration... - August 2nd, 2022
- How the Regenerative Properties of Glioblastoma Can Be Terminated - Gilmore Health News - August 2nd, 2022
- New TSXV listing looks to address the $3B spinal cord injury treatment market (NRX.V) - FXStreet - July 25th, 2022
- Human iPSC co-culture model to investigate the interaction between microglia and motor neurons | Scientific Reports - Nature.com - July 25th, 2022
- Negligence in treatment of diseases like glioblastoma can be fatal, seminar told - The News International - July 25th, 2022
- What lab-grown cerebral organoids are revealing about the brain - New Scientist - July 25th, 2022
- Innovative Therapies, Care Equity Highlight 2022 ASCO Annual Meeting - Targeted Oncology - July 16th, 2022
- Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% - Digital Journal - July 16th, 2022
- Stem Cell Therapy Market Is Expected To Reach USD 455.61 Billion By 2027 At A CAGR Of 16 percent By Forecast 2027 Says Maximize Market Research (MMR)... - June 30th, 2022
- This startup wants you to have a personal stem cell stash - Freethink - June 30th, 2022
- Parents of 12-Year-Old Boy Praying for a Miracle, Appealing UK Judge's Decision to Remove Life Support - CBN.com - June 30th, 2022
- The end of Roe v. Wade affects more than just abortion - Vox.com - June 30th, 2022
- Horizon Therapeutics plc Submits Regulatory Filing for UPLIZNA (inebilizumab) in Brazil - Business Wire - June 20th, 2022
- Effect of Electrical Stimulation on Spinal Cord Injury: In Vitro and In Vivo Analysis - Newswise - June 11th, 2022
- First-of-its-Kind Stem Cell and Gene Therapy Highlighted at Annual Stem Cell Meeting - Newswise - June 11th, 2022
- UK Judge to Decide if 12-Year-Old Will Be Removed from Life Support, Parents Beg for More Time to Heal - CBN.com - June 11th, 2022
- 'This is my life, and I'll try anything to save it': Woman with MS raising funds for treatment - The Brandon Sun - May 29th, 2022
- Racing Thoughts: Quadriplegic Man Drives Race Car With His Brain - Newsy - May 29th, 2022
- Physical therapy for vertigo: Exercises, benefits, and more - Medical News Today - May 29th, 2022
- Researchers find new function performed by almost half of brain cells - Medical News Today - May 13th, 2022
- Texas Family Fights to Access $2.1 Million Treatment for Baby - NBC 5 Dallas-Fort Worth - May 13th, 2022
- Severe COVID-19 may cause cognitive deficits equivalent to 20 years of aging - Medical News Today - May 13th, 2022
- Stem Cell Magic: 5 Promising Treatments For Major Medical Conditions - Study Finds - April 29th, 2022
- Neural Stem Cell Therapy For Spinal Cord Injury To Tap Into The Potential Of Stem Cells - Optic Flux - April 15th, 2022
- Still Blooming: Sams mission to raise money for spinal cord injury research - 7NEWS - April 15th, 2022
- Lineage and Cancer Research UK Announce Completion of Patient Enrollment in Phase 1 Clinical Study of VAC2 for the Treatment of Non-small Cell Lung... - April 15th, 2022
- Lineage Announces Pipeline Expansion to Include Auditory Neuronal Cell Therapy for Treatment of Hearing Loss - Galveston County Daily News - March 22nd, 2022
- COVID-19: Even mild to moderate infection may cause brain anomalies - Medical News Today - March 22nd, 2022
- Scots mum with MS says 50k treatment abroad is 'last hope' of halting disease - Daily Record - January 18th, 2022
- Mending the gap: U of T's Molly Shoichet joins team developing new treatments for spinal cord injuries - News@UofT - January 18th, 2022
- Spinal Cord Injury Information Page | National Institute ... - January 3rd, 2022
- Dancing molecules successfully repair severe spinal cord ... - January 3rd, 2022
- Best 2021 Medical Breakthroughs And Treatments to Beat Cancer, Alzheimer's, Diabetes & More - Good News Network - January 3rd, 2022
- Global Regenerative Medicine Market is Expected to Reach USD 57.08 Billion by 2027, Growing at a CAGR of 11.27% Over the Forecast Period. -... - December 23rd, 2021
- Scientists unravel a gene function that helps the genesis of neurons - Research Matters - December 23rd, 2021
- The 10 Most Compelling Research Stories of 2021 PharmaLive - PharmaLive - December 23rd, 2021
- 2021: The year in review | YaleNews - Yale News - December 23rd, 2021
- Polymyositis Pipeline to Progress with New and Emerging Drugs for Treatment, Analyzes DelveInsight - GlobeNewswire - December 10th, 2021
- Cell and Gene Therapy Market to reach US$ 47,095.2 Mn by end of 2028, Says Coherent Market Insights - PRNewswire - November 22nd, 2021
- From asthma to cancer to infertility, the new treatments, jabs and meds making us healthier... - The Sun - November 22nd, 2021
- Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen... - November 8th, 2021
- Akiko Nishiyama Explains the Many Strengths of a Degree in Physiology and Neurobiology - UConn Today - UConn Today - October 28th, 2021
- Team finds way to enhance stem cell therapy for CNS injuries - BioPharma-Reporter.com - October 28th, 2021
- 'Rogue' antibodies found in brains of teens with delusions and paranoia after COVID-19 - Livescience.com - October 28th, 2021