Stem Cell Therapy Market by Treatment Mode & Therapeutic Applications – 2020 – Video
By Dr. Matthew Watson
Stem Cell Therapy Market by Treatment Mode Therapeutic Applications - 2020
[196 Slides Report] Stem Cell Therapy Market report categories the Global market by Therapeutic Applications (CNS, CVS, Musculoskeletal, Wound Healing, GIT, Eye, Immune System), Treatment...
By: James Evans
View post:
Stem Cell Therapy Market by Treatment Mode & Therapeutic Applications - 2020 - Video
New stem cell methods may help brain injuries
By Dr. Matthew Watson
A NEW method of helping bone marrow stem cells "mature" is pushing science closer to being able to treat brain injuries by creating specific cells capable of repairing damaged areas.
By modifying the surface of these cells and ensuring the proper environment, these otherwise easy-to-obtain marrow cells could drive brain regeneration.
Although this is only a small step forward, the hope is that these techniques could one day help treat those who have suffered brain damage, including those resulting from a stroke.
Nationally, there are 420,000 Australians living with the effects of stroke in Australia.
There are about 50,000 new and recurrent strokes each year, about 29,000 of those in Queensland and New South Wales.
National Stroke Foundation spokeswoman Professor Richard Linley said the research had the potential to help stroke patients, but was clearly in the very early stages of development.
Queensland University of Technology researcher Rachel Okolicsanyi said while the capability of these marrow stem cells has been understood for some time, this research into influencing how they mature could create techniques to convert them into brain or neural cells.
Ms Okolicsanyi, with supervisors Dr Larisa Haupt and Professor Lyn Griffiths , will now attempt to nail down a technique that will deliver routine results.
Ms Okolicsanyi's work was published in the journal Developmental Biology.
Continue reading here:
New stem cell methods may help brain injuries
stem cell therapy-treatment for adhd by dr alok sharma, mumbai, india – Video
By Dr. Matthew Watson
stem cell therapy-treatment for adhd by dr alok sharma, mumbai, india
improvement seen in just 5 days after stem cell therapy treatment for Global Developmental Delay with Attention Deficit Hyperactivity Disorder predominantly Hyperactivity Disorder by dr alok...
By: Neurogen Brain and Spine Institute
More here:
stem cell therapy-treatment for adhd by dr alok sharma, mumbai, india - Video
Artificial blood made from human stem cells could plug the donations hole
By Dr. Matthew Watson
"It's a tiny wee finger prick test," says senior nurse Patsy Scouse to calm the nervous first-time donor having his hemoglobin levels tested at a blood donation centre in Edinburgh.
The Scottish National Blood Transfusion Service receives donations from about four percent of the UK's population. Currently, stocks are stable, although the service is always trying to recruit new donors.
The collection may take place in a clinical environment, the nurse says, but the clinic "wants this experience, especially for first-time donors, to be really positive so they can go out and feel they've done a really good thing."
But the service is also working on potential new technologies to secure blood supplies in the future, including "artificial blood."
Mass-produced and clean
Mark Turner, medical director of the Blood Transfusion Service, is looking into how blood could be synthesized in the future.
"We've known for some time that it's possible to produce red blood cells from so called adult stem cells, but you can't produce large amounts of blood in that way because of the restrictive capacity of those cells to proliferate," he explains. What scientists can do, he adds, is to derive pluripotent stem cells - stem cell lines - either from embryos or from adult tissue.
These cells are processed in the laboratory to produce larger numbers of cells, Turner told DW.
"It may be possible in due course to manufacture blood on a very large scale, but we're a very long way from that at the present time," he says. "At the moment, our focus is on trying to achieve production of red blood cells which are of the right kind of quality and safety, that they would be fit for human trials."
From the lab to clinical trials
See more here:
Artificial blood made from human stem cells could plug the donations hole
Columbia University team grows human cartilage from stem cells
By Dr. Matthew Watson
Perched on the end of the scientists green glove, the tiny oblong-shaped object looks like a small jewel. It is in fact artificially-grown human cartilage, developed from human stem cells in the laboratory for the first time.
Cartilage, which protects the bone ends in joints, does not have blood vessels or nerves and does not heal over time if damaged.
Scientists at Columbia University in New York took cells from adult bone marrow and developed them into cartilage as robust as the natural human tissue.
We do have technology. We do understand underlying principles. But we are not ready to go into patients. There is a lot of pre-clinical work that will need to be done to make this happen, said Gordana Vunjak-Novakovic, Professor of Biomedical Engineering at Columbia University, who led the study.
Until now, scientists have made cartilage from young animal cells but the resulting tissue was often weak.
In the new study stem cells were condensed via a process that imitates how the body produces the tissue naturally.
The research team now plans to test the cartilage grown from stem cells to examine its long-term effects.
Follow this link:
Columbia University team grows human cartilage from stem cells
(2006-06) David Steenblock – Umbilical Cord Stem Cell Therapy – Video
By Dr. Matthew Watson
(2006-06) David Steenblock - Umbilical Cord Stem Cell Therapy
David Steenblock Umbilical cord stem cell therapy 2006-06-15 Visit the Silicon Valley Health Institute (aka Smart Life Forum) at http://www.svhi.com Silicon Valley Health Institute Smart...
By: Silicon Valley Health Institute
Read this article:
(2006-06) David Steenblock - Umbilical Cord Stem Cell Therapy - Video
Bright Idea: Scientists Use Laser Lights to Regrow Teeth
By Dr. Matthew Watson
Scientists have a new way to repair teeth, and they say their concept - using laser light to entice the body's own stem cells into action - may offer enormous promise beyond just dentistry in the field of regenerative medicine.
The researchers used a low-power laser to coax dental stem cells to form dentin, the hard tissue similar to bone that makes up most of a tooth, demonstrating the process in studies involving rats and mice and using human cells in a laboratory.
They did not regenerate an entire tooth in part because the enamel part was too tricky. But merely getting dentin to grow could help alleviate the need for root canal treatment, the painful procedure to remove dead or dying nerve tissue and bacteria from inside a tooth, they said.
"I'm a dentist by training. So I think it has potential for great impact in clinical dentistry," researcher Praveen Arany of the National Institute of Dental and Craniofacial Research, part of the U.S. National Institutes of Health, said on Friday.
Arany expressed hope that human clinical trials could get approval in the near future.
"Our treatment modality does not introduce anything new to the body, and lasers are routinely used in medicine and dentistry, so the barriers to clinical translation are low," added Harvard University bioengineering professor David Mooney.
"It would be a substantial advance in the field if we can regenerate teeth rather than replace them." Using existing regeneration methods, scientists must take stem cells from the body, manipulate them in a lab and put them back into the body.
This new technique more simply stimulates action in stem cells that are already in place. Scientists had long noticed that low-level laser therapy can stimulate biological processes like rejuvenating skin and stimulating hair growth but were not sure of the mechanisms.
Arany noted the importance of finding the right laser dose, saying: "Too low doesn't work and too high causes damage."
First published May 30 2014, 2:24 PM
Follow this link:
Bright Idea: Scientists Use Laser Lights to Regrow Teeth
Global Stem Cells Group to Hold Intensive, Two-day Training Course on Stem Cell Harvesting, Isolation and Re …
By Dr. Matthew Watson
Miami, FL (PRWEB) May 31, 2014
Global Stem Cells Group, its subsidiary Stem Cell Training, Inc. and Bioheart, Inc. have announced plans to conduct a two-day, hands-on intensive stem cell training course at the Servet CordnVida Clinic Sept. 27 and 28 in Santiago, Chile. The Adipose Derived Harvesting, Isolation and Re-integration Training Course, will follow the Global Stem Cells Group First International Symposium on Stem Cells and Regenerative Medicine at the Santiago InterContinental Hotel Sept. 26, 2014.
Global Stem Cells Group and the Servet CordnVida Stem Cell Bank Clinic of Chile are co-organizing the symposium, designed to initiate a dialogue between researchers and practitioners and share the expertise of some of the worlds leading experts on stem cell research and therapies.
Servet CordnVida is a private umbilical cord blood bank that harvests and stores the hematopoietic-rich blood stem cells found in all newborns umbilical cords after birth. The hematopoietic tissue is responsible for the renewal of all components of the blood (hematopoiesis) and has the ability to regenerate bone marrow and restore depressed immune systems.
Umbilical (UCB) stem cells offer a wealth of therapeutic potential because they are up to 10 times more concentrated than bone marrow stem cells. In addition, UCB cells have a generous proliferative capacity with therapeutic potential that is very similar to embryonic stem cells, without the ethical debate associated with embryonic stem cell research and use.
UCB cells are the purest adult stem cells available, coming from newborns who have not been exposed to disease or external damage. Many parents today are utilizing cord banks like Servet CordnVida to store their newborns UCB cells safely for future medicinal use if the need arises.
Global Stem Cells Group and Servet CordnVida represent a growing global community of committed stem cell researchers, practitioners and investors whose enthusiasm is a direct result of the hundreds of diseases and injuries that stem cell therapies are curing every day. Global Stem Cell Groups First International Symposium on Stem Cell Research and Regenerative Medicine will host experts from the U.S., Mexico, Greece, Hong Kong and other regions around the globe who will speak on the future of regenerative medicine and share experiences in their field of specialty. The Global Stem Cells Group is hoping the symposium will open lines of communication and cooperation, explore new and exciting techniques in stem cell therapies, and create an environment of education and learning.
For more information on the symposium and the lineup of guests and speakers already confirmed, visit the First International Stem Cells and Regenerative Medicine website, email bnovas(at)regenestem(dot)com, or call 305-224-1858.
To learn more Global Stem Cells Group, visit http://www.stemcellsgroup.com, email bnovas(at)regenestem(dot)com, or call 305-224-1858.
About Global Stem Cells Group:
Follow this link:
Global Stem Cells Group to Hold Intensive, Two-day Training Course on Stem Cell Harvesting, Isolation and Re ...
Drive held to save El Paso boy and other children in need of donations
By Dr. Matthew Watson
By: Stephanie Guadian EL PASO, Texas - Inaki Arruti is an El Paso boy battling leukemia and a shortage of blood and bone marrow donations from the Hispanic community. I recently shared his story with KFOX 14 viewers.
The story hit home for Janet Chavarria. She is an employee at Western Technical College and Inaki's cousin.
After being inspired by our story to take action, she and the school organized a two-day Be the Match blood and bone marrow drive. Those who agreed to register simply swabbed their cheeks. The DNA will be compared to patients for a possible match.
It's not just Inaki. There are more children out there you know that have this. There are more people that have this. So, if we are not helping out Inaki, there might be someone else. But hopefully, there will be a match, said Janet Chavarria.
According to Be the Match, a national marrow donor program, Hispanics have only a 72 percent chance of finding a donor, compared with 93 percent for white patients. Anita Gonzales is a Be the Match employee working in El Paso.
We are blessed with another country right next to us. But everything they blow into the air. Unfortunately, it comes into El Paso and we breathe it. It's in the particles in the air, the ground that we walk on, the food that we eat. So, anyone can get leukemia. It's not inherited, said Gonzales.
Today -- the most common way of collecting stem cells is done by filtering them from a person's blood. The procedure is considered painless and similar to donating blood. The donation could one day save of the life of someone like Inaki.
Nearly 300 people signed up to be potential matches at the two day blood and bone marrow drive at Western Technical College. If you would like to find out how you can sign up to be a donor, check outbethematch.org
Follow this link:
Drive held to save El Paso boy and other children in need of donations
Store-A-Tooth Dental Stem Cell Banking Announces Appointment of Experienced Representative in Manhattan/Westchester …
By Dr. Matthew Watson
Littleton, MA (PRWEB) May 28, 2014
Provia Labs StoreATooth, a leader in dental stem cell preservation, today announced the appointment of Jill Rubin as a new territory sales manager covering all of Manhattan and Westchester County. Jill brings over 20 years of experience in the field of Oral and Reconstructive Dentistry and will be a strong advocate in educating the New York dental professional community about the benefits of stem cell banking. Jill will be responsible for providing education, training and staff support to dental practices who offer Store-ATooth to patients. She will also be very active in the community, educating families and other medical/healthcare professionals on stem cell preservation.
Jill joins Store-A-Tooth after over 20 years experience in clinical marketing and education and holds a degree in Medical Sociology and is a member of the Million Dollar Sales Club.
According to Howard Greenman, CEO of Store-A-Tooth, Jills expertise and knowledge of clinical and surgical advanced techniques in therapeutic and surgical dentistry will prove to be a valuable asset to the Manhattan/Westchester County community as she will be instrumental in helping many families make an informed decision to preserve their childrens dental stem cells for future use.
Stem cells are present in healthy teeth, and can easily be collected as a child loses baby teeth, or from teeth being pulled for orthodontia or wisdom teeth extractions. Dental stem cell banking gives families the opportunity to store their childs stem cells long after birth for potential use in future therapies for conditions such as type 1 diabetes, spinal cord injuries, stroke, heart attack and neurological disorders such as Parkinsons and Alzheimers.
###
About Provia Laboratories, LLC Provia Laboratories, LLC (http://www.provialabs.com) is a health services company specializing in high quality biobanking (the collection, transport, processing, and cryogenic storage of biological specimens). Its dental stem cell banking service, Store-A-ToothTM, gives parents the option to store stem cells today to protect their childrens health tomorrow. Store-A-Tooth preserves precious stem cells from baby and wisdom teeth that would otherwise be discarded, so parents can be prepared for advances in stem cell therapies that someday may help treat conditions such as type 1 diabetes, spinal cord injury, heart attack, stroke, and neurological disorders like Parkinsons and Alzheimers.
For more information about Store-A-Tooth dental stem cell banking, please call 1-877-867-5753 or visit us at http://www.store-a-tooth.com or Like Store-A-Tooth at http://www.facebook.com/storeatooth.
Visit http://www.facebook.com/storeatoothfindacure to learn more about their Stem Cells for a Cure initiative to support diabetes research.
Go here to read the rest:
Store-A-Tooth Dental Stem Cell Banking Announces Appointment of Experienced Representative in Manhattan/Westchester ...
Cosmetic essentials for flawless you
By Dr. Matthew Watson
New Delhi, May 24 (IANS) It's that time of the year again when the sun shines the brightest only to take your skin's shine away! How about trying some different ways to get flawless skin?
Sangeeta Amladi, head medical services with Kaya Skin Clinic, shares tips that will help one look radiant during summer.
* Say goodbye to pigmentation and uneven skin tone with skin lightening miracles. This skincare treatment is designed to reduce tan and visibly lighten your skin, leaving it fresh and glowing.
* Sun is known to cause skin damage, including wrinkles and aging skin disorders. Some beauty brands are hence using a new miracle ingredient stem cell in anti-aging creams. Stem cells have a remarkable potential to not only repair the body internally and rejuvenate the skin cells but it also slow skin aging. This new technology is a breakthrough solution to flaunt an ageless beautiful skin.
* With the increased level of pollution, there is a growing need for detoxifying the skin. Detox mask contains active blend of antioxidants which exfoliates and deep clean the pores without over-drying the skin. This gentle treatment helps detoxify, hydrate, and rejuvenate skin thus giving it a natural glow.
* Dare to go backless this summer with 'Back' beauty! Pamper your back with a microdermabrasion therapy (a light cosmetic procedure) to sport that spotless and smooth back. This therapy cleanses, polishes and moisturizes the highly ignored skin on our back. It removes the layer of dead skin to reveal a radiant and attractive back
* With the sun soaking all the moisture from your skin, only drinking water is not sufficient to keep it moisturized. Moisturizer with ceramides is another new age product that helps maintain the skin's lipid balance. There are also some studies that have shown that these ceramide induced moisturizers treat eczema as well. A ceremide induced moisturizer is definitely an answer to pamper dry skin
Excerpt from:
Cosmetic essentials for flawless you
Stem Cells Market By Application (Regenerative Medicine), By Technology (Acquisition, Sub-Culture), By Product (Adult …
By Dr. Matthew Watson
San Francisco, California (PRWEB) May 22, 2014
The global market for stem cells is expected to reach USD 170.15 billion by 2020, according to a new study by Grand View Research, Inc. Growing prevalence of chronic diseases such as cardiovascular and liver disease, diabetes and cancer coupled with the presence of high unmet medical needs in these disease segments is expected to drive market growth during the forecast period. Moreover, increasing government support pertaining to funding R&D initiatives and the growing demand for medical tourism and stem cell banking services is expected to boost the demand for stem cells over the next six years. The future of this market is expected to be driven by opportunities such as the growing global prevalence of neurodegenerative diseases, increasing demand for contract research outsourcing services and the substitution of animal tissues by stem cells in the
The stem cells technology market was valued at USD 12.88 billion in 2013 and is expected to grow at a CAGR of over 12.0% during the forecast period. This market was dominated by the cell acquisitions technology segment in terms of share in 2013 owing to the fact that this technology serves as the foremost step to process involving stem cells culture. The global stem cell acquisition technology market is expected to reach USD 10.88 billion by 2020, growing at a CAGR of over 14.0% over the next six years.
The report Stem Cells Market Analysis By Product (Adult Stem Cells, Human Embryonic Cells, Pluripotent Stem Cells), By Application (Regenerative Medicine, Drug Discovery and Development) And Segment Forecasts To 2020, is available now to Grand View Research customers at http://www.grandviewresearch.com/industry-analysis/stem-cells-market
Request Free Sample of this Report @ http://www.grandviewresearch.com/industry-analysis/stem-cells-market/request
Further key findings from the study suggest:
Browse All Biotechnology Market Reports @ http://www.grandviewresearch.com/industry/biotechnology
For the purpose of this study, Grand View Research has segmented the global stem cells market on the basis of product, application, technology and region:
Latest Reports Published By Grand View Research:
Global Polymethyl Methacrylate (PMMA) Market Expected to Reach USD 10.87 Billion by 2020 (https://www.grandviewresearch.com/industry-analysis/polymethyl-methacrylate-pmma-industry)
Whiplash headaches 11 months after stem cell therapy by Dr Harry Adelson – Video
By Dr. Matthew Watson
Whiplash headaches 11 months after stem cell therapy by Dr Harry Adelson
Neil discusses his outcome 11 months after his stem cell therapy by Dr Harry Adelson for the treatment of his post-whiplash headache syndrome http://www.docereclini...
By: Harry Adelson, N.D.
Go here to read the rest:
Whiplash headaches 11 months after stem cell therapy by Dr Harry Adelson - Video
First test of pluripotent stem cell therapy in monkeys is a success
By Dr. Matthew Watson
PUBLIC RELEASE DATE:
15-May-2014
Contact: Mary Beth O'Leary moleary@cell.com 617-397-2802 Cell Press
Researchers have shown for the first time in an animal that is more closely related to humans that it is possible to make new bone from stem-cell-like induced pluripotent stem cells (iPSCs) made from an individual animal's own skin cells. The study in monkeys reported in the Cell Press journal Cell Reports on May 15th also shows that there is some risk that those iPSCs could seed tumors, but that unfortunate outcome appears to be less likely than studies in immune-compromised mice would suggest.
"We have been able to design an animal model for testing of pluripotent stem cell therapies using the rhesus macaque, a small monkey that is readily available and has been validated as being closely related physiologically to humans," said Cynthia Dunbar of the National Heart, Lung, and Blood Institute. "We have used this model to demonstrate that tumor formation of a type called a 'teratoma' from undifferentiated autologous iPSCs does occur; however, tumor formation is very slow and requires large numbers of iPSCs given under very hospitable conditions. We have also shown that new bone can be produced from autologous iPSCs, as a model for their possible clinical application."
Autologous refers to the fact that the iPSCs capable of producing any tissue typein this case bonewere derived from the very individual that later received them. That means that use of these cells in tissue repair would not require long-term or possibly toxic immune suppression drugs to prevent rejection.
The researchers first used a standard recipe to reprogram skin cells taken from rhesus macaques. They then coaxed those cells to form first pluripotent stem cells and then cells that have the potential to act more specifically as bone progenitors. Those progenitor cells were then seeded onto ceramic scaffolds that are already in use by reconstructive surgeons attempting to fill in or rebuild bone. And, it worked; the monkeys grew new bone.
Importantly, the researchers report that no teratoma structures developed in monkeys that had received the bone "stem cells." In other experiments, undifferentiated iPSCs did form teratomas in a dose-dependent manner.
The researchers say that therapies based on this approach could be particularly beneficial for people with large congenital bone defects or other traumatic injuries. Although bone replacement is an unlikely "first in human" use for stem cell therapies given that the condition it treats is not life threatening, the findings in a primate are an essential step on the path toward regenerative clinical medicine.
"A large animal preclinical model for the development of pluripotent or other high-risk/high-reward generative cell therapies is absolutely required to address issues of tissue integration or homing, risk of tumor formation, and immunogenicity," Dunbar said. "The testing of human-derived cells in vitro or in profoundly immunodeficient mice simply cannot model these crucial preclinical safety and efficiency issues."
Read the rest here:
First test of pluripotent stem cell therapy in monkeys is a success
Stem Cells to The Rescue: Repairing The Hearts
By Dr. Matthew Watson
FRESNO, Calif. (KFSN) --
"Grace is what's carried me through this," Minch told Ivanhoe.
Ten years ago, at just 49, the choir singer and her husband were told she would need a quadruple bypass.
"Now we are at the point where my heart is severely damaged and nothing is really helping," Minch said.
Doctors said a heart transplant was her only option, but she'll soon find out if she'll be accepted into a new trial that could use her own stem cells to help repair the once thought irreversible damage, "or even create new blood vessels within areas of the heart that have been damaged," Jon George, MD, Interventional Cardiologist, Temple University School of Medicine, told Ivanhoe.
First, stem cells are taken from a patient's bone marrow. Then using a special catheter and 3D mapping tool, the cells are injected directly into the damaged tissue.
"We have results from animal data that show blood vessels regrow in the patients that actually get stem cell therapy," Dr. George said.
It's a possible answer to Debbie's prayers.
Temple University Hospital is currently pre-screening patients for the trial. For more information, call 215-707-5340.
------
Read the original here:
Stem Cells to The Rescue: Repairing The Hearts
Stem Cells Make Heart Disease-on-a-Chip
By Dr. Matthew Watson
Harvard scientists have merged stem cell and organ-on-a-chip technologies to grow, for the first time, functioning human heart tissue carrying an inherited cardiovascular disease. The research appears to be a big step forward for personalized medicine because it is working proof that a chunk of tissue containing a patient's specific genetic disorder can be replicated in the laboratory.
The work, published in May 2014 in Nature Medicine, is the result of a collaborative effort bringing together scientists from the Harvard Stem Cell Institute, the Wyss Institute for Biologically Inspired Engineering, Boston Children's Hospital, the Harvard School of Engineering and Applied Sciences, and Harvard Medical School. It combines the organs-on-chips expertise of Kevin Kit Parker, PhD, and stem cell and clinical insights by William Pu, MD.
A release from Harvard explains that using their interdisciplinary approach, the investigators modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.
The researchers took skin cells from two Barth syndrome patients, and manipulated the cells to become stem cells that carried these patients' TAZ mutations. Instead of using the stem cells to generate single heart cells in a dish, the cells were grown on chips lined with human extracellular matrix proteins that mimic their natural environment, tricking the cells into joining together as they would if they were forming a diseased human heart. The engineered diseased tissue contracted very weakly, as would the heart muscle seen in Barth syndrome patients. The investigators then used genome editinga technique pioneered by Harvard collaborator George Church, PhDto mutate TAZ in normal cells, confirming that this mutation is sufficient to cause weak contraction in the engineered tissue. On the other hand, delivering the TAZ gene product to diseased tissue in the laboratory corrected the contractile defect, creating the first tissue-based model of correction of a genetic heart disease. The release quotes Parker as saying, "You don't really understand the meaning of a single cell's genetic mutation until you build a huge chunk of organ and see how it functions or doesn't function. In the case of the cells grown out of patients with Barth syndrome, we saw much weaker contractions and irregular tissue assembly. Being able to model the disease from a single cell all the way up to heart tissue, I think that's a big advance."
Furthermore, the scientists discovered that the TAZ mutation works in such a way to disrupt the normal activity of mitochondria, often called the power plants of the cell for their role in making energy. However, the mutation didn't seem to affect overall energy supply of the cells. In what could be a newly identified function for mitochondria, the researchers describe a direct link between mitochondrial function and a heart cell's ability to build itself in a way that allows it to contract. "The TAZ mutation makes Barth syndrome cells produce an excess amount of reactive oxygen species or ROSa normal byproduct of cellular metabolism released by mitochondriawhich had not been recognized as an important part of this disease," said Pu, who cares for patients with the disorder. "We showed that, at least in the laboratory, if you quench the excessive ROS production then you can restore contractile function," Pu added. "Now, whether that can be achieved in an animal model or a patient is a different story, but if that could be done, it would suggest a new therapeutic angle." His team is now trying to translate this finding by doing ROS therapy and gene replacement therapy in animal models of Barth syndrome to see if anything could potentially help human patients. At the same time, the scientists are using their human 'heart disease-on-a-chip' as a testing platform for drugs that are potentially under trial or already approved that might be useful to treat the disorder.
"We tried to thread multiple needles at once and it certainly paid off," Parker said. "I feel that the technology that we've got arms industry and university-based researchers with the tools they need to go after this disease." Both Parker and Pu, who first talked about collaborating at a 2012 Stockholm conference, credit their partnership and scientific consilience for the success of this research. Parker asserted that the 'organs-on-chips' technology that has been a flagship of his lab only worked so fast and well because of the high quality of Pu's patient-derived cardiac cells. "When we first got those cells down on the chip, Megan, one of the joint first authors, texted me 'this is working,'" he recalled. "We thought we'd have a much harder fight." "When I'm asked what's unique about being at Harvard, I always bring up this story," Pu said. "The diverse set of people and cutting-edge technology available at Harvard certainly made this study possible." The researchers also involved in this work include: Joint first authors Gang Wang, MD, of Boston Children's Hospital, and Megan McCain, PhD, who earned her degree at the Harvard School of Engineering and Applied Sciences and is now an assistant professor at the University of Southern California. Amy Roberts, MD, of Boston Children's Hospital, and Richard Kelley, MD, PhD, at the Kennedy Krieger Institute provided patient data and samples, and Frdric Vaz, PhD, and his team at the Academic Medical Center in the Netherlands conducted additional analyses. Technical protocols were shared by Kenneth Chien, MD, PhD, at the Karolinska Institutet.
Kevin Kit Parker, PhD, is the Tarr Family Professor of Bioengineering and Applied Physics in Harvard's School of Engineering and Applied Sciences, a Core Faculty member of the Wyss Institute for Biologically Inspired Engineering, and a Principal Faculty member of the Harvard Stem Cell Institute. William Pu, MD, is an Associate Professor at Harvard Medical School, a member of the Department of Cardiology at Boston Children's Hospital, and an Affiliated Faculty member of the Harvard Stem Cell Institute. George Church, PhD, is a Professor of Genetics at Harvard Medical School and a Core Faculty member of the Wyss Institute of Biologically Inspired Engineering. The work was supported by the Barth Syndrome Foundation, Boston Children's Hospital, the National Institutes of Health, and charitable donations from Edward Marram, Karen Carpenter, and Gail Federici Smith.
New Stem Cell Research Points to Early Indicators of Schizophrenia
By Dr. Matthew Watson
Contact Information
Available for logged-in reporters only
Newswise LA JOLLAUsing new stem cell technology, scientists at the Salk Institute have shown that neurons generated from the skin cells of people with schizophrenia behave strangely in early developmental stages, providing a hint as to ways to detect and potentially treat the disease early.
The findings of the study, published online in April's Molecular Psychiatry, support the theory that the neurological dysfunction that eventually causes schizophrenia may begin in the brains of babies still in the womb.
"This study aims to investigate the earliest detectable changes in the brain that lead to schizophrenia," says Fred H. Gage, Salk professor of genetics. "We were surprised at how early in the developmental process that defects in neural function could be detected."
Currently, over 1.1 percent of the world's population has schizophrenia, with an estimated three million cases in the United States alone. The economic cost is high: in 2002, Americans spent nearly $63 billion on treatment and managing disability. The emotional cost is higher still: 10 percent of those with schizophrenia are driven to commit suicide by the burden of coping with the disease.
Although schizophrenia is a devastating disease, scientists still know very little about its underlying causes, and it is still unknown which cells in the brain are affected and how. Previously, scientists had only been able to study schizophrenia by examining the brains of patients after death, but age, stress, medication or drug abuse had often altered or damaged the brains of these patients, making it difficult to pinpoint the disease's origins.
The Salk scientists were able to avoid this hurdle by using stem cell technologies. They took skin cells from patients, coaxed the cells to revert back to an earlier stem cell form and then prompted them to grow into very early-stage neurons (dubbed neural progenitor cells or NPCs). These NPCs are similar to the cells in the brain of a developing fetus.
The researchers generated NPCs from the skin cells of four patients with schizophrenia and six people without the disease. They tested the cells in two types of assays: in one test, they looked at how far the cells moved and interacted with particular surfaces; in the other test, they looked at stress in the cells by imaging mitochondria, which are tiny organelles that generate energy for the cells.
On both tests, the Salk team found that NPCs from people with schizophrenia differed in significant ways from those taken from unaffected people.
See more here:
New Stem Cell Research Points to Early Indicators of Schizophrenia
Low back disc pain 3 months after stem cell therapy by Dr Harry Adelson – Video
By Dr. Matthew Watson
Low back disc pain 3 months after stem cell therapy by Dr Harry Adelson
Brian discusses his results from the bone marrow stem cell injection into his lumbar discs performed by Dr Harry Adelson http://www.docereclinics.com.
By: Harry Adelson, N.D.
More:
Low back disc pain 3 months after stem cell therapy by Dr Harry Adelson - Video
Study urges caution in stem cell clinical trials for heart attack patients
By Dr. Matthew Watson
PUBLIC RELEASE DATE:
7-May-2014
Contact: Nick Miller nicholas.miller@cchmc.org 513-803-6035 Cincinnati Children's Hospital Medical Center
CINCINNATI A new study in Nature challenges research data that form the scientific basis of clinical trials in which heart attack patients are injected with stem cells to try and regenerate damaged heart tissue.
Researchers at Cincinnati Children's Hospital Medical Center and the Howard Hughes Medical Institute (HHMI), report May 7 that cardiac stem cells used in ongoing clinical trials which express a protein marker called c-kit do not regenerate contractile heart muscle cells at high enough rates to justify their use for treatment.
Including collaboration from researchers at Cedars-Sinai Heart Institute in Los Angeles and the University of Minnesota's Lillehei Heart Institute, the study uncovers new evidence in what has become a contentious debate in the field of cardiac regeneration, according to Jeffery Molkentin, PhD, study principal investigator and a cardiovascular molecular biologist and HHMI investigator at the Cincinnati Children's Heart Institute.
"Our data suggest any potential benefit from injecting c-kit-positive cells into the hearts of patients is not because they generate new contractile cells called cardiomyocytes," Molkentin said. "Caution is warranted in further clinical testing of this method until the mechanisms in play here are better defined or we are able to dramatically enhance the potential of these cells to generate cardiomyocytes."
Numerous heart attack patients have already been treated with c-kit-positive stem cells that are removed from healthy regions of a damaged heart then processed in a laboratory, Molkentin explained. After processing, the cells are then injected into these patients' hearts. The experimental treatment is based largely on preclinical studies in rats and mice suggesting that c-kit-positive stem cells completely regenerate myocardial cells and heart muscle. Thousands of patients have also previously undergone a similar procedure for their hearts but with bone marrow stem cells.
Molkentin and his colleagues report those previous preclinical studies in rodents do not reflect what really occurs within the heart after injury, where internal regenerative capacity is almost non-existent. Molkentin also said that combined data from multiple clinical trials testing this type of treatment show most patients experienced a roughly 3-5 percent improvement in heart ejection fraction a measurement of how forcefully the heart pumps blood. Data in the current Nature study suggest this small benefit may come from the ability of c-kit-positive stem cells in heart to cause the growth of capillaries, which improves circulation within the organ, but not by generating new cardiomyocytes.
"What we show in our study is that c-kit-positive stem cells from the heart like to make endothelial cells that form capillaries. But in their natural environment in the heart, these c-kit positive cells do not like to make cardiomyocytes," Molkentin said. "They will produce cardiomyocytes, but at rates so low roughly one in every 3,000 cells it becomes meaningless."
More here:
Study urges caution in stem cell clinical trials for heart attack patients
New infertility treatment could grow sperm from skin cells
By Dr. Matthew Watson
A study has found that it is possible to convert skin cells into the male germ cells, which are responsible for sperm production in the testes, using an established technique for creating embryonic stem cells using a form of genetic engineering.
The researchers showed that stem cells derived from human skin become active germ cells when transplanted into the testes of mice even when the man suffers from a genetic condition where he lacks functioning germ cells in his own testes.
Creating sperm-producing human cells in laboratory mice will allow scientists to study in more detail the complex sequence of events during the development if the male reproductive tissue, and to understand how these developmental changes can go awry in infertile men.
Our results are the first to offer an experimental model to study sperm development. Therefore, there is potential for applications [such as] cell-based therapies in the clinic, for example, for the generation of higher quality and numbers of sperm in a dish, said Renee Reijo Pera of Montana State University.
It might even be possible to transplant stem cell-derived germ cells directly into the testes of men with problems producing sperm, said Professor Reijo Pera, who led the study published in the journal Cell Reports. However, she emphasised that further research will be needed before clinical trials can be allowed on humans.
Although the mice had functioning human male germ cells, they did not produce human sperm, Dr Reijo Pera said. There is an evolutionary block that means that when germ cells from one species are transferred to another, there is not full spermatogenesis, unless the species are very closely related, she explained.
About one in a hundred men suffer from azoospermia, where they fail to produce measurable quantities of sperm in the semen. The condition is responsible for about 20 per cent of cases of male infertility, which itself accounts for about half of the 10-15 per cent of couples who have difficulty conceiving naturally.
The study involved creating induced pluripotent stem cells by adding key genes to the skin cells of five men three with a form of azoospermia caused by a genetic mutation on the Y chromosome and two with normal fertility. The resulting stem cells were implanted into the testes of laboratory mice where they developed normally into germ cells.
The scientists found that even the stem cells derived from the infertile men were capable to developing into human male germ cells in the mouse testes. However, the stem cells of the men with the Y chromosome mutation produced about 100 times less germ cells than the men with normal fertility, Professor Reijo Pera said.
Studying why this is the case will help us to understand where the problems are for these men and hopefully find ways to overcome them, Professor Reijo Pera said.
See the article here:
New infertility treatment could grow sperm from skin cells