Page 209«..1020..208209210211..220230..»

Valley Foot Surgeons Now Offering Stem Cell Procedures for Achilles Tendonitis and Tears for Pain Relief and Helping …

By Dr. Matthew Watson

Scottsdale, Arizona (PRWEB) May 05, 2014

Top Phoenix and Scottsdale foot and ankle doctors at Valley Foot Surgeons are now offering stem cell procedures for the nonoperative treatment of Achilles tendonitis and tears. The regenerative medicine procedures are typically able to provide exceptional pain relief while allowing patients the ability to avoid surgery. Call (480) 420-3499 for more information and scheduling about the foot and ankle stem cell procedures.

To date, the lead foot and ankle doctor at Valley Foot Surgeons, Dr. Richard Jacoby, has performed close to 100 regenerative medicine procedures. Typically, these are administered for a variety of conditions such as diabetic ulcers, foot and ankle arthritis, plantar fasciitis, and Achilles injuries.

Conditions with the Achilles tendon may include pain due to chronic tendonitis or tears from degeneration. This may occur during a sporting activity, traumatic event, or simply as part of an individual's tendon weakening after taking quinolone antibiotics.

The stem cell procedures are performed as an outpatient, with the injections consisting of amniotic derived stem cells. The material is harvested from consenting donors after scheduled c-section procedures, with no fetal tissue at all being used.

The material is exceptionally rich in stem cells, growth factors, hyaluronic acid, and more. This can dramatically improve pain relief and healing, which is very different from how steroid medications work.

All too often, traditional treatments for Achilles tendonitis and tears fail to provide relief. This may lead to potentially risky surgery, where complications may lead to continued disability.

With the stem cells for Achilles tears and tendonitis, patients go through an outpatient procedure that is low risk and offers the potential for avoiding the risks of surgery while speeding up recovery.

Dr. Jacoby at Valley Foot Surgeons has been a four time Phoenix Top Doc Winner and sees patients out of two offices in the Valley. For the top stem cell treatment for achilles conditions, diabetic wounds, foot and ankle arthritis and more, call (480) 420-3499.

See the original post here:
Valley Foot Surgeons Now Offering Stem Cell Procedures for Achilles Tendonitis and Tears for Pain Relief and Helping ...

To Read More: Valley Foot Surgeons Now Offering Stem Cell Procedures for Achilles Tendonitis and Tears for Pain Relief and Helping …
categoriaUncategorized commentoComments Off on Valley Foot Surgeons Now Offering Stem Cell Procedures for Achilles Tendonitis and Tears for Pain Relief and Helping … | dataMay 5th, 2014
Read All

FDA: No way spas can do stem-cell therapy

By Dr. Matthew Watson

Health authorities on Saturday reissued warnings against health facilities and medical practitioners offering stem-cell therapies or related products, which promise to cure a range of diseases, arrest the aging process or even increase libido.

In an advisory, the Food and Drug Administration stressed that to date not one stem cell or human cells, tissues, and cellular and tissue-based products (HCT/Ps) that applied for registration has been registered by the FDA for compassionate or clinical trial use or for general use.

The use of HCT/Ps without the authorization or permission by the FDA is considered illegal, it said. The agency warned hospitals and health facilities of the provisions of the FDA Act of 2009, which prohibits the manufacture, use, advertisement or sponsorship of unregistered health products.

This warning extends to all unlicensed practitioners from other countries and to tourists who visit the Philippines for leisure and medical needs.

According to FDA acting director general Kenneth Hartigan Go, the FDA recognizes only hematopoietic (pertaining to the formation and development of blood cells) stem-cell transplantation, corneal resurfacing with limbal stem cells and skin regeneration with epidermal stem cells as generally accepted standards of healthcare procedures.

If health institutions are doing these three procedures, they can continue because those are allowed, Go said.

But the efficacy of the use of stem cells for the treatment of other diseases, such as diabetes, cancer and autism, among others, have yet to be proven, he said.

Go noted that while many spa centers and salons are advertising stem-cell therapy treatment and products, none of them have secured the FDAs approval. As of now, we have not accredited any health facility offering stem-cell therapy yet.

Applicants with deficiencies

Read more here:
FDA: No way spas can do stem-cell therapy

To Read More: FDA: No way spas can do stem-cell therapy
categoriaUncategorized commentoComments Off on FDA: No way spas can do stem-cell therapy | dataMay 4th, 2014
Read All

Additional Tickets Released for Stem Cell Institute Public Seminar on Adult Stem Cell Therapy Clinical Trials in New …

By Dr. Matthew Watson

New York, NY (PRWEB) May 02, 2014

Stem Cell Institute is releasing additional tickets for its Adult Stem Cell Therapy Clinical Trials seminar on Saturday, May 17, 2014 in New York City at the New York Hilton Midtown from 1:00 pm to 4:00 pm.

After booking its original meeting room beyond capacity, the Stem Cell Institute has reserved a larger room to accommodate additional attendees. The seminar will now take place in the Beekman Room, 2nd Floor, East Corridor of the New York Hilton Midtown.

Those interested in attending are encouraged to register promptly. Only 75 additional seats are available.

Speakers include:

Neil Riordan PhD Clinical Trials: Umbilical Cord Mesenchymal Stem Cell Therapy for Autism and Spinal Cord Injury

Dr. Riordan is the founder of the Stem Cell Institute and Medistem Panama Inc.

Jorge Paz-Rodriguez MD Stem Cell Therapy for Autoimmune Disease: MS, Rheumatoid Arthritis and Lupus

Dr. Paz is the Medical Director at the Stem Cell Institute. He practiced internal medicine in the United States for over a decade before joining the Stem Cell Institute in Panama.

Special guest speaker:

Read more from the original source:
Additional Tickets Released for Stem Cell Institute Public Seminar on Adult Stem Cell Therapy Clinical Trials in New ...

To Read More: Additional Tickets Released for Stem Cell Institute Public Seminar on Adult Stem Cell Therapy Clinical Trials in New …
categoriaUncategorized commentoComments Off on Additional Tickets Released for Stem Cell Institute Public Seminar on Adult Stem Cell Therapy Clinical Trials in New … | dataMay 3rd, 2014
Read All

Stem cells used to repair animal hearts and human muscle

By Dr. Matthew Watson

Karen Weintraub, Special for USA TODAY 2:49 p.m. EDT April 30, 2014

A study in "Nature" said researchers showed that they could repair damaged hearts by injecting versatile stem cells into macaque monkeys, like this one in Thailand.(Photo: Apichart Weerawong, AP)

Two new studies out today show both the incredible promise of stem cell research and its current limitations.

In one, published in the journal Nature, researchers showed that they could repair damaged hearts by injecting these versatile stem cells into macaque monkeys. Heart disease is the leading cause of death, and if the same process can work in people, it could benefit hundreds of thousands a year.

In the other study, published in Science Translational Medicine, five men were able to regrow leg muscles destroyed by accidents or military service. The researchers, from the University of Pittsburgh, inserted into the men's muscles a "scaffold" of muscle tissue from a pig. Through aggressive physical therapy right after the surgery, the men's own stem cells were encouraged to populate the scaffold and substantially rebuild their leg muscles.

Nothing had been able to help these men before, including multiple surgeries and years of physical therapy, said Stephen Badylak, the study's senior author.

"Frankly, most of these patients have been through hell," he said at a Tuesday news conference.

David Scadden, a physician and co-director of the Harvard Stem Cell Institute, said he was impressed with the rigor and promise of both studies.

It's long been a goal of stem cell research to figure out how to help the body regrow damaged tissue, he said, and both studies mark a significant step toward that goal.

Both studies also showed that stem cells respond to cells around them, he said, with the heart cells learning to beat in sync with the monkey cells and the muscle cells learning to go where they were needed. "Once the cells get to a certain point, it appears they can then follow the lead of their neighbors," he said.

Read the original post:
Stem cells used to repair animal hearts and human muscle

To Read More: Stem cells used to repair animal hearts and human muscle
categoriaCardiac Stem Cells commentoComments Off on Stem cells used to repair animal hearts and human muscle | dataMay 2nd, 2014
Read All

Stem cell injections may take place of heart swaps

By Dr. Matthew Watson

It shows for the first time that we can do regeneration at a scale that the world has never seen before, said Dr Charles Murry, professor of pathology and bioengineering, at the University of Washington.

"Before this study, it was not known if it is possible to produce sufficient numbers of these cells and use them to re-muscularise damaged hearts in a large animal whose heart size and physiology is similar to that of the human heart."

Weve shown that (stem cells) will survive and they will organise to form new heart muscle and they will connect with the surrounding cardiac muscle cells and beat in synchrony.

The green area shows the regenerated heart muscle

Currently heart muscle cannot be repaired and people with severe heart failure must wait for a heart transplant.

In the study the team induced heart attacks, in anesthetised macaque monkeys.

Over the course of two weeks they injected one billion heart muscle cells derived from human embryonic stem cells.

The researchers found that the stem cells infiltrated into the damaged heart tissue, matured, and knitted into muscle fibers, before beginning to beat in rhythm with the macaque heart cells.

After three months, the cells had fully integrated into the heart. On average the transplanted stem cells regenerated 40 percent of the damaged heart tissue and improve the ability of the heart to pump blood.

Although the study has been carried out on macaque monkeys, the researchers at the University of Washington said "the approach should be feasible in humans".

Originally posted here:
Stem cell injections may take place of heart swaps

To Read More: Stem cell injections may take place of heart swaps
categoriaCardiac Stem Cells commentoComments Off on Stem cell injections may take place of heart swaps | dataMay 2nd, 2014
Read All

Protein Discovery Could Boost Efficacy Of Bone Marrow Replacement Treatments

By Dr. Matthew Watson

May 1, 2014

Image Caption: The continuous, necessary production of blood cells, including these red blood cells captured in a scanning micrograph by Thomas Deerinck, is the responsibility of hematopoietic stem cells found in bone marrow. Credit: Thomas Deerinck, UC San Diego

University of California San Diego

Researchers at the University of California, San Diego School of Medicine report that a protein called beta-catenin plays a critical, and previously unappreciated, role in promoting recovery of stricken hematopoietic stem cells after radiation exposure.

The findings, published in the May 1 issue of Genes and Development, provide a new understanding of how radiation impacts cellular and molecular processes, but perhaps more importantly, they suggest new possibilities for improving hematopoietic stem cell regeneration in the bone marrow following cancer radiation treatment.

Ionizing radiation exposure accidental or deliberate can be fatal due to widespread destruction of hematopoietic stem cells, the cells in the bone marrow that give rise to all blood cells. A number of cancer treatments involve irradiating malignancies, essentially destroying all exposed blood cells, followed by transplantation of replacement stem cells to rebuild blood stores. The effectiveness of these treatments depends upon how well the replacement hematopoietic stem cells do their job.

In their new paper, principal investigator Tannishtha Reya, PhD, professor in the department of pharmacology, and colleagues used mouse models to show that radiation exposure triggers activation of a fundamental cellular signaling pathway called Wnt in hematopoietic stem and progenitor cells.

The Wnt pathway and its key mediator, beta catenin, are critical for embryonic development and establishment of the body plan, said Reya. In addition, the Wnt pathway is activated in stem cells from many tissues and is needed for their continued maintenance.

The researchers found that mice deficient in beta-catenin lacked the ability to activate canonical Wnt signaling and suffered from impaired hematopoietic stem cell regeneration and bone marrow recovery after radiation. Specifically, mouse hematopoietic stem cells without beta-catenin could not suppress the production of oxidative stress molecules that damage cell structures. As a result, they could not recover effectively after radiation or chemotherapy.

Our work shows that Wnt signaling is important in the mammalian hematopoietic system, and is critical for recovery from chemotherapy and radiation, Reya said. While these therapies can be life-saving, they take a heavy toll on the hematopoietic system from which the patient may not always recover.

Here is the original post:
Protein Discovery Could Boost Efficacy Of Bone Marrow Replacement Treatments

To Read More: Protein Discovery Could Boost Efficacy Of Bone Marrow Replacement Treatments
categoriaBone Marrow Stem Cells commentoComments Off on Protein Discovery Could Boost Efficacy Of Bone Marrow Replacement Treatments | dataMay 2nd, 2014
Read All

Stem cell therapy regenerates heart muscle damaged from heart attacks in primates

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

30-Apr-2014

Contact: Leila Gray leilag@uw.edu 206-685-0381 University of Washington

Heart cells created from human embryonic stem cells successfully restored damaged heart muscles in monkeys.

The results of the experiment appear in the April 30 advanced online edition of the journal Nature in a paper titled, "Human embryonic-stem cell derived cardiomyocytes regenerate non-human primate hearts."

The findings suggest that the approach should be feasible in humans, the researchers said.

"Before this study, it was not known if it is possible to produce sufficient numbers of these cells and successfully use them to remuscularize damaged hearts in a large animal whose heart size and physiology is similar to that of the human heart," said Dr. Charles Murry, UW professor of pathology and bioengineering, who led the research team that conducted the experiment.

A physician/scientist, Murry directs the UW Center for Cardiovascular Biology and is a UW Medicine pathologist.

Murry said he expected the approach could be ready for clinical trials in humans within four years.

In the study, Murry, along with Dr. Michael Laflamme and other colleagues at the UW Institute for Stem Cell & Regenerative Medicine, experimentally induced controlled myocardial infarctions, a form of heart attack, in anesthetized pigtail macaques.

The rest is here:
Stem cell therapy regenerates heart muscle damaged from heart attacks in primates

To Read More: Stem cell therapy regenerates heart muscle damaged from heart attacks in primates
categoriaCardiac Stem Cells commentoComments Off on Stem cell therapy regenerates heart muscle damaged from heart attacks in primates | dataApril 30th, 2014
Read All

Stem cells aid heart regeneration in salamanders

By Dr. Matthew Watson

23 hours ago Marbled Salamander, Ambystoma opacum. Location: Durham County, North Carolina, United States. Photograph by Patrick Coin, via Wikipedia.

Imagine filling a hole in your heart by regrowing the tissue. While that possibility is still being explored in people, it is a reality in salamanders. A recent discovery that newt hearts can regenerate may pave the way to new therapies in people who need to have damaged tissue replaced with healthy tissue.

Heart disease is the leading cause of deaths in the United States. Preventative measures like healthful diets and lifestyles help ward off heart problems, but if heart damage does occur, sophisticated treatments and surgical procedures often are necessary. Unfortunately, heart damage is typically irreversible, which is why researchers are seeking regenerative therapies that restore a damaged heart to its original capacity.

We have known for hundreds of years that newts and other types of salamanders regenerate limbs. If you cut off a leg or tail, it will grow back within a few weeks. Stanley Sessions, a researcher at Hartwich College in Oneonta, N.Y., wondered if this external phenomenon also took place internally. To find out, he surgically removed a piece of heart in more than two dozen newts.

"To our surprise, if you surgically remove part of the heart, (the creature) will regenerate a new heart within just six weeks or so," Sessions said. "In fact, you can remove up to half of the heart, and it will still regenerate completely!"

Before the research team dove deeper into this finding, Sessions and his three undergraduate students, Grace Mele, Jessica Rodriquez and Kayla Murphy, had to determine how a salamander could even live with a partial heart. It turns out that a clot forms at the surgical site, acting much like the cork in a wine bottle, to prevent the amphibian from bleeding to death.

What is the cork made of? In part, stem cells. Stem cells have unlimited potential for growth and can develop into cells with a specialized fate or function. Embryonic stem cells, for example, can give rise to all of the cells in the body and, thus, have promising potential for therapeutics.

As it turns out, stem cells play an important role in regeneration in newts. "We discovered that at least some of the stem cells for heart regeneration come from the blood, including the clot," Sessions explained.

This finding could have exciting implications for therapies in humans with heart damage. By finding the genes responsible for regeneration in the newt, researchers may be able to identify pathways that are similar in newts and people and could be used to induce regeneration in the human heart. In fact, a clinical trial performed just last year was the first to use stem-cell therapy to regenerate healthy tissue and repair a patient's heart.

Combining advances in medical and surgical technologies with the basic pathways of heart regeneration in newts could lead to better therapies for humans. Sessions posed this hopeful question: "Wouldn't it be great if we could find a way to activate heart stem cells to bioengineer new heart tissue so that we can actually repair damaged hearts in humans?"

See the rest here:
Stem cells aid heart regeneration in salamanders

To Read More: Stem cells aid heart regeneration in salamanders
categoriaCardiac Stem Cells commentoComments Off on Stem cells aid heart regeneration in salamanders | dataApril 30th, 2014
Read All

Columbia Engineers Grow Functional Human Cartilage in Lab

By Dr. Matthew Watson

Contact Information

Available for logged-in reporters only

Newswise New York, NYApril 30, 2014Researchers at Columbia Engineering announced today that they have successfully grown fully functional human cartilage in vitro from human stem cells derived from bone marrow tissue. Their study, which demonstrates new ways to better mimic the enormous complexity of tissue development, regeneration, and disease, is published in the April 28 Early Online edition of Proceedings of the National Academy of Sciences (PNAS).

Weve been ablefor the first timeto generate fully functional human cartilage from mesenchymal stem cells by mimicking in vitro the developmental process of mesenchymal condensation, says Gordana Vunjak-Novakovic, who led the study and is the Mikati Foundation Professor of Biomedical Engineering at Columbia Engineering and professor of medical sciences. This could have clinical impact, as this cartilage can be used to repair a cartilage defect, or in combination with bone in a composite graft grown in lab for more complex tissue reconstruction.

For more than 20 years, researchers have unofficially called cartilage the official tissue of tissue engineering, Vunjak-Novakovic observes. Many groups studied cartilage as an apparently simple tissue: one single cell type, no blood vessels or nerves, a tissue built for bearing loads while protecting bone ends in the joints. While there has been great success in engineering pieces of cartilage using young animal cells, no one has, until now, been able to reproduce these results using adult human stem cells from bone marrow or fat, the most practical stem cell source. Vunjak-Novakovics team succeeded in growing cartilage with physiologic architecture and strength by radically changing the tissue-engineering approach.

The general approach to cartilage tissue engineering has been to place cells into a hydrogel and culture them in the presence of nutrients and growth factors and sometimes also mechanical loading. But using this technique with adult human stem cells has invariably produced mechanically weak cartilage. So Vunjak-Novakovic and her team, who have had a longstanding interest in skeletal tissue engineering, wondered if a method resembling the normal development of the skeleton could lead to a higher quality of cartilage.

Sarindr Bhumiratana, postdoctoral fellow in Vunjak-Novakovics Laboratory for Stem Cells and Tissue Engineering, came up with a new approach: inducing the mesenchymal stem cells to undergo a condensation stage as they do in the body before starting to make cartilage. He discovered that this simple but major departure from how things were usually? being done resulted in a quality of human cartilage not seen before.

Gerard Ateshian, Andrew Walz Professor of Mechanical Engineering, professor of biomedical engineering, and chair of the Department of Mechanical Engineering, and his PhD student, Sevan Oungoulian, helped perform measurements showing that the lubricative property and compressive strengththe two important functional propertiesof the tissue-engineered cartilage approached those of native cartilage. The researchers then used their method to regenerate large pieces of anatomically shaped and mechanically strong cartilage over the bone, and to repair defects in cartilage.

Our whole approach to tissue engineering is biomimetic in nature, which means that our engineering designs are defined by biological principles, Vunjak-Novakovic notes. This approach has been effective in improving the quality of many engineered tissuesfrom bone to heart. Still, we were really surprised to see that our cartilage, grown by mimicking some aspects of biological development, was as strong as normal human cartilage.

The team plans next to test whether the engineered cartilage tissue maintains its structure and long-term function when implanted into a defect.

The rest is here:
Columbia Engineers Grow Functional Human Cartilage in Lab

To Read More: Columbia Engineers Grow Functional Human Cartilage in Lab
categoriaBone Marrow Stem Cells commentoComments Off on Columbia Engineers Grow Functional Human Cartilage in Lab | dataApril 30th, 2014
Read All

Study of stem cell trials links discrepancies in data with reported success of treatment

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

28-Apr-2014

Contact: Franca Davenport f.davenport@imperial.ac.uk 020-759-42198 Imperial College London

New research looking at the success of clinical trials of stem cell therapy shows that trials appear to be more successful in studies where there are more discrepancies in the trial data.

Researchers from Imperial College London conducted a meta-analysis of 49 randomised controlled trials of bone marrow stem cell therapy for heart disease. The study, published today in the British Medical Journal, identified and listed over 600 discrepancies within the trial reports.

Discrepancies were defined as two (or more) reported facts that could not both be accurate because they were logically or mathematically incompatible. For example, one trial reported that it involved 70 patients, who were divided into two groups of 35 and 80.

The researchers found eight trials that each contained over 20 discrepancies.

The researchers found that the discrepancy count in a trial was the most important determinant of the improvement in cardiac function reported by that trial. Trials with fewer and fewer discrepancies showed progressively smaller improvements in cardiac function. The five trials with no discrepancies at all showed an effect size of zero (see bar chart in Notes to Editors).

Previous meta-analyses looking at the results of lots of clinical trials have suggested that on average, bone marrow stem cell therapy has a significant positive effect on improving heart function. However, some trials have shown that it successfully improves heart function whilst others have not. The reasons for this are unclear.

Professor Darrel Francis, one of the study authors from the National Heart and Lung Institute at Imperial College London, said: "Clinical trials involve a huge amount of data and so it is understandable that discrepancies sometimes arise when researchers are presenting their findings. However, our study suggests that these discrepancies can have a significant impact on the overall results. It is a powerful reminder to all of us conducting clinical trials to be careful and vigilant to avoid discrepancies appearing in the work.

See the rest here:
Study of stem cell trials links discrepancies in data with reported success of treatment

To Read More: Study of stem cell trials links discrepancies in data with reported success of treatment
categoriaUncategorized commentoComments Off on Study of stem cell trials links discrepancies in data with reported success of treatment | dataApril 29th, 2014
Read All

Skin layer grown from human stem cells could replace animals in drug and cosmetics testing

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

24-Apr-2014

Contact: Jenny Gimpel jenny.gimpel@kcl.ac.uk 44-020-784-84334 King's College London

An international team led by King's College London and the San Francisco Veteran Affairs Medical Center (SFVAMC) has developed the first lab-grown epidermis the outermost skin layer - with a functional permeability barrier akin to real skin. The new epidermis, grown from human pluripotent stem cells, offers a cost-effective alternative lab model for testing drugs and cosmetics, and could also help to develop new therapies for rare and common skin disorders.

The epidermis, the outermost layer of human skin, forms a protective interface between the body and its external environment, preventing water from escaping and microbes and toxins from entering. Tissue engineers have been unable to grow epidermis with the functional barrier needed for drug testing, and have been further limited in producing an in vitro (lab) model for large-scale drug screening by the number of cells that can be grown from a single skin biopsy sample.

The new study, published in the journal Stem Cell Reports, describes the use of human induced pluripotent stem cells (iPSC) to produce an unlimited supply of pure keratinocytes the predominant cell type in the outermost layer of skin - that closely match keratinocytes generated from human embryonic stem cells (hESC) and primary keratinocytes from skin biopsies. These keratinocytes were then used to manufacture 3D epidermal equivalents in a high-to-low humidity environment to build a functional permeability barrier, which is essential in protecting the body from losing moisture, and preventing the entry of chemicals, toxins and microbes.

A comparison of epidermal equivalents generated from iPSC, hESC and primary human keratinocytes (skin cells) from skin biopsies showed no significant difference in their structural or functional properties compared with the outermost layer of normal human skin.

Dr Theodora Mauro, leader of the SFVAMC team, says: "The ability to obtain an unlimited number of genetically identical units can be used to study a range of conditions where the skin's barrier is defective due to mutations in genes involved in skin barrier formation, such as ichthyosis (dry, flaky skin) or atopic dermatitis. We can use this model to study how the skin barrier develops normally, how the barrier is impaired in different diseases and how we can stimulate its repair and recovery."

Dr Dusko Ilic, leader of the team at King's College London, says: "Our new method can be used to grow much greater quantities of lab-grown human epidermal equivalents, and thus could be scaled up for commercial testing of drugs and cosmetics. Human epidermal equivalents representing different types of skin could also be grown, depending on the source of the stem cells used, and could thus be tailored to study a range of skin conditions and sensitivities in different populations."

###

More:
Skin layer grown from human stem cells could replace animals in drug and cosmetics testing

To Read More: Skin layer grown from human stem cells could replace animals in drug and cosmetics testing
categoriaSkin Stem Cells commentoComments Off on Skin layer grown from human stem cells could replace animals in drug and cosmetics testing | dataApril 24th, 2014
Read All

Improve Skin Dramatically with Stem Cell Serum, "Cell Renewal | Fibroblast Serum", from Sublime Beauty; Will Be …

By Dr. Matthew Watson

St. Petersburg, FL (PRWEB) April 23, 2014

Human Fibroblast Conditioned Media is a revolutionary ingredient that is taking the beauty and anti-aging industries by storm. These stem cells are in the Sublime Beauty "Cell Renewal | Fibroblast Serum."

These non-embryonic stem cells are rich in growth factors. When topically combined with our own skin, studies have shown that our cells are stimulated to create more collagen resulting in younger, firmer and healthier skin.

"The discovery of growth factors was a big deal in science," says Kathy Heshelow, founder of Sublime Beauty, "and plays a part in wound healing, medical applications and now skin care."

The company offers a product paper about the serum and background on its ingredients on its webstore.

The scientific anti-aging serum will be discussed on the Consumer NewsWatch TV program Thursday morning.

"Cell Renewal" is of high purity, produced under the strictest quality controls and use the latest extraction methods to capture the purest cells. This is a top of the line anti-aging treatment.

Use twice daily on cleansed skin before any other serum or cream is applied.

The company offers 25% off the serum at SublimeBeautyShop now with coupon code STEM25.

About Sublime Beauty: Sublime Beauty offers quality anti-aging skincare to "age younger". Products are available at its webstore and Amazon. The company also offers Skin Brushes and organic products.

Continued here:
Improve Skin Dramatically with Stem Cell Serum, "Cell Renewal | Fibroblast Serum", from Sublime Beauty; Will Be ...

To Read More: Improve Skin Dramatically with Stem Cell Serum, "Cell Renewal | Fibroblast Serum", from Sublime Beauty; Will Be …
categoriaSkin Stem Cells commentoComments Off on Improve Skin Dramatically with Stem Cell Serum, "Cell Renewal | Fibroblast Serum", from Sublime Beauty; Will Be … | dataApril 24th, 2014
Read All

Stem Cell Treatment Spinal Cord Injury – ASCI – Asian Stem …

By Dr. Matthew Watson

Stem Cells and Spinal Cord Injury:

Spinal cord injuries are described at various levels of "incomplete", which can vary from having no effect on the patient to a "complete" injury which means a total loss of function.

Treatment of spinal cord injuries starts with restraining the spine and controlling inflammation to prevent further damage. The actual treatment can vary widely depending on the location and extent of the injury. In many cases, spinal cord injuries require substantial physical therapy and rehabilitation, especially if the patient's injury interferes with activities of daily life.

After a spinal cord injury, many of the nerve fibers at the injury site lose their insulating layer of myelin. As a result, the fibers are no longer able to properly transmit signals between the brain and the spinal cord contributing to paralysis. Unfortunately, the spinal cord lacks the ability to restore these lost myelin-forming cells after trauma.

Tissue engineering in the spinal cord involves the implantation of scaffold material to guide cell placement and foster cell development. These scaffolds can also be used to deliver stem cells at the site of injury and maximize their regenerative potential.

When the spinal cord is damagedeither accidentally (car accidents, falls) or as the result of a disease (multiple sclerosis, infections, tumors, severe forms of spinal bifida, etc.)it can result in the loss of sensation and mobility and even in complete paralysis.

Spinal Cord Injury and Stem Cell Treatment

Go here to read the rest:
Stem Cell Treatment Spinal Cord Injury - ASCI - Asian Stem ...

To Read More: Stem Cell Treatment Spinal Cord Injury – ASCI – Asian Stem …
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Treatment Spinal Cord Injury – ASCI – Asian Stem … | dataApril 22nd, 2014
Read All

Stem Cell Therapy || Spinal Cord Injury Treatment || Stem …

By Dr. Matthew Watson

Spinal Cord Injury

Damage to the spinal cord usually results in impairments or loss of muscle movement, muscle control, sensation and body system control.

Presently, post-accident care for spinal cord injury patients focuses on extensive physical therapy, occupational therapy, and other rehabilitation therapies; teaching the injured person how to cope with their disability.

A number of published papers and case studies support the feasibility of treating spinal cord injury with allogeneic human umbilical cord tissue-derived stem cells and autologous bone marrow-derived stem cells.

Feasibility of combination allogeneic stem cell therapy for spinal cord injury: a case report co-authored by Stem Cell Institute Founder Dr. Neil Riordan references many of them. Published improvements include improved ASIA scores, improved bladder and/or bowel function, recovered sexual function, and increased muscle control.

The adult stem cells used to treat spinal cord injuries at the Stem Cell Institute come from two sources: the patients own bone marrow (autologous mesenchymal and CD34+) and human umbilical cord tissue(allogeneic mesenchymal).

A licensed anesthesiologist harvests bone marrow from both hips under light general anesthesia in a hospital operating room. This procedure takes about 1 1/2 2 hours. Before they are administered to the patient, these bone marrow-derived stem cells must pass testing for quality, bacterial contamination (aerobic and anaerobic) and endotoxin.

All donated umbilical cords are screened for viruses and bacteria to International Blood Bank Standards.

Our stem cell treatment protocol for spinal cord injury calls for a total of 16 injections over the course of 4 weeks.

Originally posted here:
Stem Cell Therapy || Spinal Cord Injury Treatment || Stem ...

To Read More: Stem Cell Therapy || Spinal Cord Injury Treatment || Stem …
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Therapy || Spinal Cord Injury Treatment || Stem … | dataApril 22nd, 2014
Read All

The Stem Cell Center at Texas Heart Institute at St. Luke’s

By Dr. Matthew Watson

Welcome

The Stem Cell Center Texas Heart Institute is dedicated to the study of adult stem cells and their role in treating diseases of the heart and the circulatory system. Through numerous clinical and preclinical studies, we have come to realize the potential of stem cells to help patients suffering from cardiovascular disease.We are actively enrolling patients in studies using stem cells for the treatment of heart failure, heart attacks, and peripheral vascular disease.

Whether you are a patient looking for information regarding our research, or a doctor hoping to learn more about stem cell therapy, we welcome you to the Stem Cell Center. Please visit our Clinical Trials page for more information about our current trials.

Emerson C. Perin, MD, PhD, FACC Director, Clinical Research for Cardiovascular Medicine Medical Director, Stem Cell Center McNair Scholar

You may contact us at:

E-mail: stemcell@texasheart.org Toll free: 1-866-924-STEM (7836) Phone: 832-355-9405 Fax: 832-355-9440

We are a network of physicians, scientists, and support staff dedicatedto studying stem cell therapy for treating heart disease. Thegoals of the Network are to complete research studies that will potentially lead to more effective treatments for patients with cardiovasculardisease, and to share knowledge quickly with the healthcare community.

Websitein Spanish (En espaol)

See more here:
The Stem Cell Center at Texas Heart Institute at St. Luke's

To Read More: The Stem Cell Center at Texas Heart Institute at St. Luke’s
categoriaCardiac Stem Cells commentoComments Off on The Stem Cell Center at Texas Heart Institute at St. Luke’s | dataApril 22nd, 2014
Read All

Stanford scientists identify source of most cases of invasive bladder cancer

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

20-Apr-2014

Contact: Krista Conger kristac@stanford.edu 650-725-5371 Stanford University Medical Center

STANFORD, Calif. A single type of cell in the lining of the bladder is responsible for most cases of invasive bladder cancer, according to researchers at the Stanford University School of Medicine.

Their study, conducted in mice, is the first to pinpoint the normal cell type that can give rise to invasive bladder cancers. It's also the first to show that most bladder cancers and their associated precancerous lesions arise from just one cell, and explains why many human bladder cancers recur after therapy.

"We've learned that, at an intermediate stage during cancer progression, a single cancer stem cell and its progeny can quickly and completely replace the entire bladder lining," said Philip Beachy, PhD, professor of biochemistry and of developmental biology. "All of these cells have already taken several steps along the path to becoming an aggressive tumor. Thus, even when invasive carcinomas are successfully removed through surgery, this corrupted lining remains in place and has a high probability of progression."

Although the cancer stem cells, and the precancerous lesions they form in the bladder lining, universally express an important signaling protein called sonic hedgehog, the cells of subsequent invasive cancers invariably do not a critical switch that appears vital for invasion and metastasis. This switch may explain certain confusing aspects of previous studies on the cellular origins of bladder cancer in humans. It also pinpoints a possible weak link in cancer progression that could be targeted by therapies.

"This could be a game changer in terms of therapeutic and diagnostic approaches," said Michael Hsieh, MD, PhD, assistant professor of urology and a co-author of the study. "Until now, it's not been clear whether bladder cancers arise as the result of cancerous mutations in many cells in the bladder lining as the result of ongoing exposure to toxins excreted in the urine, or if it's due instead to a defect in one cell or cell type. If we can better understand how bladder cancers begin and progress, we may be able to target the cancer stem cell, or to find molecular markers to enable earlier diagnosis and disease monitoring."

Beachy is the senior author of the study, which will be published online April 20 in Nature Cell Biology. He is the Ernest and Amelia Gallo Professor in the School of Medicine and a member of the Stanford Cancer Institute and the Stanford Institute for Stem Cell Biology and Regenerative Medicine. He is also a Howard Hughes Medical Institute investigator. Kunyoo Shin, PhD, an instructor at the institute, is the lead author.

Bladder cancer is the fourth most common cancer in men and the ninth most common in women. Smoking is a significant risk factor. There are two main types of the disease: one that invades the muscle around the bladder and metastasizes to other organs, and another that remains confined to the bladder lining. Unlike the more-treatable, noninvasive cancer which comprises about 70 percent of bladder cancers the invasive form is largely incurable. It is expensive and difficult to treat, and the high likelihood of recurrence requires ongoing monitoring after treatment.

The rest is here:
Stanford scientists identify source of most cases of invasive bladder cancer

To Read More: Stanford scientists identify source of most cases of invasive bladder cancer
categoriaUncategorized commentoComments Off on Stanford scientists identify source of most cases of invasive bladder cancer | dataApril 20th, 2014
Read All

Scientists create stem cells from adult skin cells

By Dr. Matthew Watson

A breakthrough in human stem cell research could lead to the treatment of countless diseases, invaluable scientific research and yes, human cloning.

According to a study in the journalCell Stem Cell, scientists have synthesized human embryonic stem cells from the cells of adults, creating two different lines from the skin of two donors.

>> Read more trending stories

Using the nuclear transfermethod,scientists took DNA out of egg cells and replaced it with the donor DNA. The cells were basically reprogrammed, butof the 77 samplesonly two fully developed into cloned stem cells.

Lead researcher Robert Lanza says the 5 percent success rate isn't surprising."Reprogramming is more difficult for adult cells than for fetal [and] infant cells, presumably at least in part because their epigenetic landscape from the pluripotent state,"meaning the cells generally dont' have the right enzymes for change anymore.

The researchers reportedly tweaked a method made famous by the cloning of the sheep Dolly in 1996 and improved by scientists at Oregon Health & Science University just last year.

The nuclear transfermethod is the third discovered way to harvest or create stem cells. In the past, scientists have extracted cells from leftover embryos after in vitro fertilizations,a controversial practice. And in 2006 aJapanese researcher discovered a way to create themby injecting new genes. (ViaAsian Scientist)

Lanza's method could provide easy access to stem cells, opening up new research intodiseases like diabetes, Parkinsons and even leukemia. And according toNPR, the researcher wants to create a virtual library of cells using carefully selected DNA donors.

The implications of a real and viable approach for creating stem cells could be startling, andscientists have been wrestling with the ethical questions since the cloning of Dolly.

An official at Oregon Health & Science Universitythinks studying stemcells is necessary, tellingTime,They have become kind of like cursed cells. But we clearly need to understand more about them.

View post:
Scientists create stem cells from adult skin cells

To Read More: Scientists create stem cells from adult skin cells
categoriaSkin Stem Cells commentoComments Off on Scientists create stem cells from adult skin cells | dataApril 19th, 2014
Read All

Sweet Science Lesson! See How Stem Cell Therapy Works – Video

By Dr. Matthew Watson


Sweet Science Lesson! See How Stem Cell Therapy Works
http://www.innovationsstemcellcenter.com Call: 214.420.7970 Facebook: https://www.facebook.com/innovationsmedical Twitter: https://twitter.com/dallasdrj Inst...

By: dallasdrj

Read more here:
Sweet Science Lesson! See How Stem Cell Therapy Works - Video

To Read More: Sweet Science Lesson! See How Stem Cell Therapy Works – Video
categoriaUncategorized commentoComments Off on Sweet Science Lesson! See How Stem Cell Therapy Works – Video | dataApril 19th, 2014
Read All

Othropedic Surgeon Dr. Propper Speaks about Stem Cell Therapy – PRP – BMAC – Video

By Dr. Matthew Watson


Othropedic Surgeon Dr. Propper Speaks about Stem Cell Therapy - PRP - BMAC
Orthopedic Surgeon Dr. Propper Speaks about the Difference of Stem Cell Injection Therapy PRP - BMAC.

By: Dennis Spoonhour, DC

Read this article:
Othropedic Surgeon Dr. Propper Speaks about Stem Cell Therapy - PRP - BMAC - Video

To Read More: Othropedic Surgeon Dr. Propper Speaks about Stem Cell Therapy – PRP – BMAC – Video
categoriaUncategorized commentoComments Off on Othropedic Surgeon Dr. Propper Speaks about Stem Cell Therapy – PRP – BMAC – Video | dataApril 18th, 2014
Read All

UCI Team Discovers Bone Marrow Stem Cells' Potential In Stroke Recovery

By Dr. Matthew Watson

By Estel Grace Masangkay

Bone marrow stem cells may help in stroke recovery, according to a team of researchers from the University of California, Irvines Sue and Bill Gross Stem Cell Research Center.

Neurologist Dr. Steven Cramer and biomedical engineer Weian Zhao together analyzed 46 studies evaluating the use of a type of multipotent adult stem cells mostly processed from the bone marrow called mesenchymal stromal cells (MSC) in animal models of stroke. Results showed that MSCs were superior to control therapy in 44 out of the 46 studies.

Dr. Cramer said Stroke remains a major cause of disability, and we are encouraged that the preclinical evidence shows [MSCs] efficacy with ischemic stroke. MSCs are of particular interest because they come from bone marrow, which is readily available, and are relatively easy to culture. In addition, they already have demonstrated value when used to treat other human diseases.

The MSCs effect on functional recovery was shown to be robust regardless of other factors such as dosage, time of administration relative to the stroke onset, or administration method. An earlier report focusing on MSC mechanisms of action explained how the cells were attracted to the injury sites and began releasing a wide range of molecules in response to signals emitted by the damaged areas. The molecules in turn stimulate several activities including blood vessel creation for enhanced circulation, protection of vulnerable cells, brain cell growth, and others. The MSCs also fostered an environment conducive to brain repair.

We conclude that MSCs have consistently improved multiple outcome measures, with very large effect sizes, in a high number of animal studies and, therefore, that these findings should be the foundation of further studies on the use of MSCs in the treatment of ischemic stroke in humans, said Dr. Cramer.

The UCI teams analysis appeared in the April 8 issue of Neurology.

See more here:
UCI Team Discovers Bone Marrow Stem Cells' Potential In Stroke Recovery

To Read More: UCI Team Discovers Bone Marrow Stem Cells' Potential In Stroke Recovery
categoriaBone Marrow Stem Cells commentoComments Off on UCI Team Discovers Bone Marrow Stem Cells' Potential In Stroke Recovery | dataApril 15th, 2014
Read All

Page 209«..1020..208209210211..220230..»


Copyright :: 2025