Page 212«..1020..211212213214..220230..»

$5B initiative proposed for stem cell research

By Dr. Matthew Watson

Supporters of Californias multibillion-dollar stem cell program plan to ask for $5 billion more to bring the fruits of research to patients.

Robert Klein, a leader of the 2004 initiative campaign that established the program, said Thursday hes going to be talking with California voters about the proposal. If the public seems receptive, backers will work to get an initiative on the 2016 ballot to extend funding for the California Institute for Regenerative Medicine

Klein outlined the proposal Thursday at UC San Diego Moores Cancer Center, during a symposium on how to speed research to patient care.

Since cancer cells and stem cells share some underlying characteristics, CIRM has funded research into those similarities, including the work of Moores Cancer Center researchers David Cheresh and Catriona Jamieson.

Klein said supporters, including researchers, patients and patient advocates need to educate the public about the benefits of funding stem cell research, and the results to date. A former chairman of CIRM, Klein is no longer formally affiliated with the agency but continues to support its work.

No stem cell treatments funded by CIRM have been approved, but patients have benefited in other ways. CIRM-funded research into cancer stem cells led to a clinical trial of a drug that caused remission of a bone marrow cancer in Sandra Dillon, a patient of Jamiesons. Moreover, California has vaulted into prominence in regenerative medicine, and the field has also provided a new growth engine for the states large biotech industry.

Though CIRM has been praised for advancing quality research, it has been criticized for being slow to fund commercialization by life science companies.

In addition, CIRM has been criticized for a lack of transparency and conflicts of interest in how it awards grants. The agency revamped its policies last year to forbid members of its governing oversight committee from voting on proposals to fund research at their own institutions.

California voters set aside $3 billion in bond money for CIRM in 2004 under Proposition 71. The money is expected to run out around 2017, so Klein and other supporters have been preparing to go back to the public. The amount paid back will be $6 billion, including interest over the life of the bonds, Klein noted. So the $5 billion for CIRM would require a $10 billion bond measure.

Can it be done again? Klein asked. If we continue to have the extraordinary results the scientists and research institutes are presenting, as well as the biotech sector.

Read more here:
$5B initiative proposed for stem cell research

To Read More: $5B initiative proposed for stem cell research
categoriaSkin Stem Cells commentoComments Off on $5B initiative proposed for stem cell research | dataFebruary 21st, 2014
Read All

Mountain Ridge Animal Hospital and Pain Management Center of Lafayette, Colorado Helps Local Shepherd Manage the Pain …

By Dr. Matthew Watson

Poway, California (PRWEB) February 20, 2014

Four-and-a-half year old Dakota, a German Shepherd from Colorado, is managing the pain from osteoarthritis with the help of stem cell therapy thanks to Mountain Ridge Animal Hospital and Pain Management Center of Lafayette. Dakotas positive results showed almost immediately, and just a few months post stem cell therapy using Vet-Stem, Inc. services, he is doing activities that he has not done for years.

Dakota was diagnosed with hip dysplasia at just three years old, and in less than two years time his owners felt his quality of life had significantly started to deteriorate. Robert Landry, DVM at Mountain Ridge Animal Hospital and Pain Management Center has been doing regenerative cell therapy with Vet-Stem for six years, treating various types of orthopedic issues and arthritis in small animals, and determined Dakota was a good candidate for the procedure.

Dr. Landry began Dakotas procedure on a Tuesday in October by collecting a small sample of fat called the falciform fat pad, which was sent overnight to Vet-Stems lab in San Diego, California. Received the next morning, the lab processed Dakotas fat and created injectable doses of his own stem cells to be overnighted back to Dr. Landry. Thursday Dakota received his hip injections and recovery began.

Dakotas results were almost immediate, Dakotas owners expressed, He moves around with ease now and can even go up and down the stairs. Last week he jumped into the back of my SUV, which he hasn't done in years. Before the stem cell therapy Dakota never wagged his tail, and now he doesnt stop! His quality of life is so much better and he seems truly happier.

Dr. Landry and the team at Mountain Ridge Animal Hospital and Pain Management Center specialize in companion animal health care, striving to provide the highest quality in Veterinary health care and customer service. Some of their specialties are pain management, surgery, and regenerative medicine. By understanding and valuing the special role that pets play in a family Dr. Landry and team are genuine advocates for each pet's health and care.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine, visit http://www.vet-stem.com or call 858-748-2004.

See more here:
Mountain Ridge Animal Hospital and Pain Management Center of Lafayette, Colorado Helps Local Shepherd Manage the Pain ...

To Read More: Mountain Ridge Animal Hospital and Pain Management Center of Lafayette, Colorado Helps Local Shepherd Manage the Pain …
categoriaUncategorized commentoComments Off on Mountain Ridge Animal Hospital and Pain Management Center of Lafayette, Colorado Helps Local Shepherd Manage the Pain … | dataFebruary 20th, 2014
Read All

Cowboys coach seeks marrow match for daughter

By Dr. Matthew Watson

by GEORGE RIBA

WFAA Sports

Posted on February 18, 2014 at 12:41 PM

DALLAS -- Malena Brownwas hoping for a match onValentines Day weekend, butnot the kind of match you expect.

The 15-year-old daughter of Dallas Cowboys running backs coach Gary Brown is looking for an "angel donor" whose bone marrow stem cells will match hers and help her overcome what's known as CML, or chronic myeloid leukemia.

Well, its kind of scary knowing that there wasn't a match for me, but we're doing a bone marrow drive now and hopefully find somebody that matches me, Malena said.

Neither one of Malena's siblings is a match, and trying to find one has become a challenge.

The No. 1 challenge has been trying to find a match based on her ancestry, and she being biracial, has been extra difficult because the registry is under-represented with African-American and other multiracial people, said Kim Brown, Malenas mother.

We've had nothing but people trying to help us in any way they can, said father Gary Brown. When you know your daughter is going through something hard, and there are other people out there that care as much as you do and want to help her as much as you do.

To add your name to the national registry, all you do is a simple swab test, add it to a booklet, and send it in.

Read the rest here:
Cowboys coach seeks marrow match for daughter

To Read More: Cowboys coach seeks marrow match for daughter
categoriaBone Marrow Stem Cells commentoComments Off on Cowboys coach seeks marrow match for daughter | dataFebruary 18th, 2014
Read All

Over 5,000 Cubans receive stem cell treatment: Expert

By Dr. Matthew Watson

Sunday, February 16, 20144:07:29 PM(IST)

Havana, Feb 16 (IANS): More than 5,000 patients have received stem cell treatment in Cuba since its procedure was introduced in 2004, a medical expert said.

Porfirio Hernandez, researcher and vice director at the Hematology and Immunology Institute in Cuba, said the stem cell treatment method has been implemented in 13 of the 15 provinces in Cuba.

As a widely acknowledged pioneer of this practice, Hernandez said that more than 60 percent of patients receiving the treatment had suffered from severe ischemia at lower limbs and other blood vessel related ailments, reported Xinhua.

The therapy has also been used to reduce the sufferings of patients with severe orthopedic and cardiac problems, Hernandez added.

Stem cells are capable of self-renewing, regenerating tissues damaged by diverse disease, traumas, and ageing, and stimulating the creation of new blood vessels.

Please note that under 66A of the IT Act, sending offensive or menacing messages through electronic communication service and sending false messages to cheat, mislead or deceive people or to cause annoyance to them is punishable. It is obligatory on Daijiworld to provide the IP address and other details of senders of such comments, to the authority concerned upon request.

Hence, sending offensive comments using daijiworld will be purely at your own risk, and in no way will Daijiworld.com be held responsible.

See the article here:
Over 5,000 Cubans receive stem cell treatment: Expert

To Read More: Over 5,000 Cubans receive stem cell treatment: Expert
categoriaCardiac Stem Cells commentoComments Off on Over 5,000 Cubans receive stem cell treatment: Expert | dataFebruary 16th, 2014
Read All

Brokaw cancer is treatable, but not curable

By Dr. Matthew Watson

Related Content

DAYTON, Ohio (WDTN) Longtime NBC News anchor Tom Brokaw announced Tuesday that he has cancer, but doctors say his chances of beating it are good.

Brokaw has multiple myeloma, a cancer affecting blood cells in the bone marrow.

A cancer or leukemia starts with the white cell count called plasma cells overpopulating. It can cause destruction of the bone, said Dr. Burhan Yanes, Miami Valley Hospital.

Normally, healthy bone would show solid in an x-ray. A bone damaged by multiple myeloma is spongy, with holes.

Then they could break. Thats the problem, you can break a bone, break your back and be paralyzed.

The disorder can also cause severe anemia and kidney damage.

There is no cure, but treatment, Dr. Yanes says, can extend life for a decade or more.

The standard treatment for anyone younger, less than age 65, we do chemo induction and after that we do high dose chemo and stem cell transplant.

The aggressive transplant for an older person like the 74 year old Tom Brokaw is risky.

See more here:
Brokaw cancer is treatable, but not curable

To Read More: Brokaw cancer is treatable, but not curable
categoriaBone Marrow Stem Cells commentoComments Off on Brokaw cancer is treatable, but not curable | dataFebruary 13th, 2014
Read All

Scientists discover pre-leukemic stem cell at root of cancer

By Dr. Matthew Watson

;

Dr. John Dick, a senior scientist at Princess Margaret Cancer Centre in Toronto, is shown in a handout photo.

TORONTO Canadian researchers have discovered a pre-leukemic stem cell that may be at the root of acute myeloid leukemia and also be the bad actor that evades chemotherapy and triggers a relapse in patients who have gone into remission.

Acute myeloid leukemia, or AML, is a rapidly progressing cancer of the blood and bone marrow that affects myeloid cells, which normally develop into mature red and white blood cells and platelets.

Leukemia develops when blood stem cells in the bone marrow make abnormal blood cells, which over time crowd out normal blood cells, affecting their ability to function as they should.

READ MORE:Could this new therapy kill cancer? Canadian doc thinks so

In a paper published online Wednesday in the journal Nature, researchers led by John Dick of Princess Margaret Cancer Centre in Toronto report on the discovery of a pre-leukemic stem cell the forerunner to leukemia stem cells that give rise to the disease.

A leukemia stem cell can lie dormant and theyre the ones that will sustain the growth of the leukemia, Dick said in an interview. The pre-leukemic guys are basically the ancestors that are on their way to becoming leukemia and becoming leukemic stem cells.

Dicks lab was the first to identify the existence of leukemia stem cells, in 1994, followed by the discovery of colon cancer stem cells in 2007.

Teasing out pre-leukemic stem cells from the blood of AML patients based on samples taken at diagnosis, after chemotherapy-induced remission, and then following recurrence advances the understanding of the genetic changes a normal cell has to go through before it turns into AML.

More here:
Scientists discover pre-leukemic stem cell at root of cancer

To Read More: Scientists discover pre-leukemic stem cell at root of cancer
categoriaBone Marrow Stem Cells commentoComments Off on Scientists discover pre-leukemic stem cell at root of cancer | dataFebruary 13th, 2014
Read All

Ground Breaking New Website REGENX, provides credible and up to date information on Stem Cell research straight from …

By Dr. Matthew Watson

Manchester UK (PRWEB UK) 10 February 2014

RegenX Content The content posted on RegenX is generated through Dr. Stephen Richardson and a number of other stem cell experts in a collaborative effort between Brickhouse Publications and the University of Manchester. Dr. Richardson's 10 years of experience working with adult stem cells, coupled with the expertise of top-notch scientists, provides website visitors with the most current research information. The website is designed for people of all ages to read and comprehend, making it truly accessible to all.

In order to break down the complex concepts about stem cells and regenerative medicine, the website was designed with many visuals to aid in understanding. For those who learn best through reading text, there are many articles and informational bits. In addition, there are also many short animations, including a spoof news video, to help the general public understand the science behind research.

As far as the different topics are concerned, RegenX presents visitors with a wide range of information, building up from the simple to the complex. Some information simply shares the basics around stem cell and regenerative medicine research, while other pieces delve into more technical details. There are even informational pieces available that discuss the ethics around stem cell research, specifically. There is even a stem cell quiz on the website so readers can take to see where they stand on their understanding of the research and use.

Out in the general public, there is not very much accurate information shared about stem cell and regenerative medicine research. The media does not help as it often mis-portrays the benefits. Most often, the mis-portrayals lie in the legality and morality of the issue. Unfortunately, the misunderstood issues surrounding stem cell research can be huge roadblocks for those trying to advance the science around it.

Educational Outreach In order to address some of the misunderstandings about stem cell research, RegenX provides teacher packs that complement the site. These packets can be used in schools, colleges, and universities, to help educate the public. The classroom activities presented are usually animated or in video format, making it more engaging and easy to understand. In addition to helping students learn, the videos also help classroom teachers who are lacking the information to build some background knowledge. The teacher packets also include debate and discussion topics for students to process the information.

Included in the teacher packets from RegenX are interviews with stem cell research experts. Their information is research-based as they all work at the University of Manchester. In addition to discussing stem cell and regenerative medicine, the experts also share information about the jobs and the research currently conducted at the University. They even talk about their careers and what they needed to do in order to earn the privilege of conducting such research.

Funding The RegenX website is funded with monies from the Biotechnology and Biological Sciences Research Council (BBSRC) and the University of Manchester. Their reason for funding the project was to offer unbiased, scientifically accurate information for people from a variety of backgrounds. Their intended audience is not purely scientists, but also children and adults of all ages from all walks of life.

Staying Updated In order to keep people updated in a fast-changing field, the website has Facebook and Twitter pages to complement it. These social media networks allow RegenX to relay a great deal of updated information in a quick way. They are also able to reach a larger population of readers at any time of the day to keep them posted as well.

Making sure that people are getting the most updated information as quickly as possible is one way to build a community, which was the initial goal of Dr. Stephen Richardson. He wanted to make sure that there was a community of individuals who have slight or intense interest in stem cell and regenerative medicine research. It is also healthy to generate debate around the latest information in the field.

Here is the original post:
Ground Breaking New Website REGENX, provides credible and up to date information on Stem Cell research straight from ...

To Read More: Ground Breaking New Website REGENX, provides credible and up to date information on Stem Cell research straight from …
categoriaUncategorized commentoComments Off on Ground Breaking New Website REGENX, provides credible and up to date information on Stem Cell research straight from … | dataFebruary 11th, 2014
Read All

Stem cell therapy – Age reversal1 – Cristal Jan 2014 – Video

By Dr. Matthew Watson


Stem cell therapy - Age reversal1 - Cristal Jan 2014
http://a1stemcells.com/ Cristal, 70 years old. 1 Year after our 1st Age reversal study with stem cells (12 ESC injections in 12 months) For more info: http:/...

By: A1 Stem Cells

Follow this link:
Stem cell therapy - Age reversal1 - Cristal Jan 2014 - Video

To Read More: Stem cell therapy – Age reversal1 – Cristal Jan 2014 – Video
categoriaUncategorized commentoComments Off on Stem cell therapy – Age reversal1 – Cristal Jan 2014 – Video | dataFebruary 10th, 2014
Read All

US researchers offer diabetes cure hope

By Dr. Matthew Watson

US researchers offer diabetes cure hope

Friday, February 07, 2014

A diabetes cure could be in sight after scientists transformed ordinary skin cells into pancreatic cells producing insulin.

By John von Radowitz

At the end of the process they created immature precursors to pancreatic beta cells, the bodys insulin factory.

When these cells were injected into mice genetically engineered to mimic symptoms of diabetes, the animals blood sugar levels returned to normal.

The US research is a major step forward in the hunt for a stem cell solution to Type 1 diabetes, caused by the bodys own immune system attacking and destroying insulin-making beta cells.

Type 1 diabetes is distinct from the much more common Type 2 version of the disease.

Type 1 diabetes usually strikes in childhood and dooms sufferers to a lifetime of self-administered insulin injections, without which their blood sugar would reach lethal levels.

Earlier attempts at using stem cells to replenish lost pancreatic beta cells have been largely disappointing.

See more here:
US researchers offer diabetes cure hope

To Read More: US researchers offer diabetes cure hope
categoriaSkin Stem Cells commentoComments Off on US researchers offer diabetes cure hope | dataFebruary 7th, 2014
Read All

Scientists reprogram skin cells into insulin-producing pancreas cells

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

6-Feb-2014

Contact: Anne Holden anne.holden@gladstone.ucsf.edu 415-734-2534 Gladstone Institutes

SAN FRANCISCO, CAFebruary 6, 2014A cure for type 1 diabetes has long eluded even the top experts. Not because they do not know what must be donebut because the tools did not exist to do it. But now scientists at the Gladstone Institutes, harnessing the power of regenerative medicine, have developed a technique in animal models that could replenish the very cells destroyed by the disease. The team's findings, published online today in the journal Cell Stem Cell, are an important step towards freeing an entire generation of patients from the life-long injections that characterize this devastating disease.

Type 1 diabetes, which usually manifests during childhood, is caused by the destruction of -cells, a type of cell that normally resides in the pancreas and produces a hormone called insulin. Without insulin, the body's organs have difficulty absorbing sugars, such as glucose, from the blood. Once a death sentence, the disease can now be managed with regular glucose monitoring and insulin injections. A more permanent solution, however, would be to replace the missing -cells. But these cells are hard to come by, so researchers have looked towards stem cell technology as a way to make them.

"The power of regenerative medicine is that it can potentially provide an unlimited source of functional, insulin-producing -cells that can then be transplanted into the patient," said Dr. Ding, who is also a professor at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "But previous attempts to produce large quantities of healthy -cellsand to develop a workable delivery systemhave not been entirely successful. So we took a somewhat different approach."

One of the major challenges to generating large quantities of -cells is that these cells have limited regenerative ability; once they mature it's difficult to make more. So the team decided to go one step backwards in the life cycle of the cell.

The team first collected skin cells, called fibroblasts, from laboratory mice. Then, by treating the fibroblasts with a unique 'cocktail' of molecules and reprogramming factors, they transformed the cells into endoderm-like cells. Endoderm cells are a type of cell found in the early embryo, and which eventually mature into the body's major organsincluding the pancreas.

"Using another chemical cocktail, we then transformed these endoderm-like cells into cells that mimicked early pancreas-like cells, which we called PPLC's," said Gladstone Postdoctoral Scholar Ke Li, PhD, the paper's lead author. "Our initial goal was to see whether we could coax these PPLC's to mature into cells that, like -cells, respond to the correct chemical signals andmost importantlysecrete insulin. And our initial experiments, performed in a petri dish, revealed that they did."

The research team then wanted to see whether the same would occur in live animal models. So they transplanted PPLC's into mice modified to have hyperglycemia (high glucose levels), a key indicator of diabetes.

Read more here:
Scientists reprogram skin cells into insulin-producing pancreas cells

To Read More: Scientists reprogram skin cells into insulin-producing pancreas cells
categoriaSkin Stem Cells commentoComments Off on Scientists reprogram skin cells into insulin-producing pancreas cells | dataFebruary 6th, 2014
Read All

Innovative technique creates large skin flaps for full-face resurfacing

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

5-Feb-2014

Contact: Connie Hughes Connie.Hughes@wolterskluwer.com 646-674-6348 Wolters Kluwer Health

Philadelphia, Pa. (February 4, 2014) - Patients with massive burns causing complete loss of the facial skin pose a difficult challenge for reconstructive surgeons. Now a group of surgeons in China have developed an innovative technique for creating a one-piece skin flap large enough to perform full-face resurfacing, reports The Journal of Craniofacial Surgery, published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.

Dr. QingFeng Li and colleagues of Shanghai Jiao Tong University School of Medicine describe their approach to creating "monoblock" flaps for use in extensive face skin resurfacing. In their successful experience with five severely disfigured patients, the full-face tissue flap "provides universally matched skin and near-normal facial contour."

New Technique Grows One-Piece Skin Flaps for Full-Face Resurfacing

Complete destruction of the facial skin and underlying (subcutaneous) tissues presents "the most challenging dilemma" in facial reconstructive surgery. Multiple skin flaps and grafts are needed to provide complete coverage, creating a "patchwork" appearance. Standard skin grafts are also too bulky to provide good reconstruction of the delicate features and expressive movement of the normal facial skin.

To meet these challenges, Dr. Li and colleagues have developed a new technique for creating a single, large skin flap appropriate for use in full-face resurfacing. Their approach starts with "prefabrication" of a flap of the patient's own skin, harvested from another part of the body. The skin flap, along with its carefully preserved blood supply, is allowed to grow for some weeks in a "pocket" created under the patient's skin of the patient's upper chest.

Tissue expandersballoon-like devices gradually filled with saline solutionare used to enlarge the skin flap over time. While skin expansion is a standard technique for creation of skin flaps, Dr. Li and his team used an "overexpansion" approach to create very large flaps of relatively thin skinideal for use in the facial area. In some cases, when the skin flap was growing too thin, stem cells derived from the patients' own bone marrow were used as an aid to tissue expansion.

Using this technique, Dr. Li and colleagues were able to create very large skin flapsup to 30 30 cmfor use in full-face resurfacing. In the new article, they describe their use of their prefabrication/overexpansion technique in five patients with complete loss of the facial skin, caused by flame or chemical burns. All patients had previously undergone facial reconstruction, but were left with severe deformity and limited facial movement.

Visit link:
Innovative technique creates large skin flaps for full-face resurfacing

To Read More: Innovative technique creates large skin flaps for full-face resurfacing
categoriaSkin Stem Cells commentoComments Off on Innovative technique creates large skin flaps for full-face resurfacing | dataFebruary 6th, 2014
Read All

Engineered Cardiac Tissue Developed to Study the Human Heart

By Dr. Matthew Watson

Contact Information

Available for logged-in reporters only

Newswise When it comes to finding cures for heart disease, scientists at Icahn School of Medicine at Mount Sinai are working to their own beat. They may have developed a tissue model for the human heart that can bridge the gap between animal models and human clinical trial patients.

Mount Sinai researchers generated their engineered cardiac tissue from human embryonic stem cells with the resulting muscle having remarkable similarities to native heart muscle, including the ability to beat and contract like the human heart. This research breakthrough study was highlighted as the cover story of the February 2014 issue of The FASEB Journal.

"We hope that our human engineered cardiac tissues will serve as a platform for developing reliable models of the human heart for routine laboratory use," said lead researcher Kevin D. Costa, PhD, Associate Professor of Cardiology and Director of the Cardiovascular Cell and Tissue Engineering Laboratory at the Cardiovascular Research Center of Icahn School of Medicine at Mount Sinai.

"This could help accelerate and revolutionize cardiology research by improving the ability to efficiently discover, design, develop, and deliver new therapies for the treatment of heart disease, and by providing more efficient screening tools to identify and prevent cardiac side effects, ultimately leading to safer and more effective treatments for patients suffering from heart disease," says Dr. Costa.

The international team of researchers led by Mount Sinai created human engineered cardiac tissue, known as hECTs, within a custom bioreactor device designed to exercise the tissue and measure its contractile force throughout the culture process. Within 7-10 days, the human cardiac cells self-assembled into a three-dimensional tissue strip that beats spontaneously like natural heart muscle, and can survive a month or more for long-term experimental testing. These hECTs displayed contractile activity in a rhythmic pattern of 70 beats per minute on average, similar to the human heart.

In addition, research results show the heart tissue model responds to electrical stimulation and is able to incorporate new genetic information delivered by adenovirus gene therapy. During functional analysis, some of the responses known to occur in the natural adult human heart were also elicited in hECTs through electrical, mechanical, and pharmacological interventions, while some responses of hECTs more closely mimicked the immature or newborn human heart.

"We've come a long way in our understanding of the human heart," said Gerald Weissmann, MD, Editor-in-Chief of The FASEB Journal, "but we still lack an adequate tissue model which can be used to test promising therapies and model deadly diseases. This advance, if it proves successful over time, will beat anything that's currently available."

About the Mount Sinai Health System The Mount Sinai Health System is an integrated health system committed to providing distinguished care, conducting transformative research, and advancing biomedical education. Structured around seven member hospital campuses and a single medical school, the Health System has an extensive ambulatory network and a range of inpatient and outpatient servicesfrom community-based facilities to tertiary and quaternary care.

Read the original here:
Engineered Cardiac Tissue Developed to Study the Human Heart

To Read More: Engineered Cardiac Tissue Developed to Study the Human Heart
categoriaCardiac Stem Cells commentoComments Off on Engineered Cardiac Tissue Developed to Study the Human Heart | dataFebruary 4th, 2014
Read All

EDITORIAL: Stem-cell discovery addresses ethical issues

By Dr. Matthew Watson

Few medical discoveries have held the great promise of stem cells to regenerate nerves, organs and tissue damaged by disease, heredity or injury. Basically, the stem cells could replicate any other cell in the body, offering immense hope that were still anxiously waiting to be realized of curing Alzheimers, making damaged spinal cords whole, treating kidney, liver and lung disease and making damaged hearts whole.

Already subscribe to the Evansville Courier & Press or The Gleaner? Unlimited access to CourierPress.com, TheGleaner.com and the Courier & Press smartphone and tablet apps is included with your subscription. All you need to do is ACTIVATE now!

Activate Now

Want to keep reading? We now offer Premium and Digital Subscriptions. Subscribe now and select how you want to keep up-to-date on local news, reader comments, photos, videos, blogs and more.

Subscribe Now

2014 Evansville Courier & Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

Read more:
EDITORIAL: Stem-cell discovery addresses ethical issues

To Read More: EDITORIAL: Stem-cell discovery addresses ethical issues
categoriaSkin Stem Cells commentoComments Off on EDITORIAL: Stem-cell discovery addresses ethical issues | dataFebruary 4th, 2014
Read All

First Study Tracking Stem Cell Treatments For Children With Spinal Cord Injuries Shows Potential Benefit

By Dr. Matthew Watson

Durham, NC (PRWEB) February 03, 2014

Previous studies have shown that multiple stem cell implantations might assist adults suffering from complete spinal cord injuries (SCI). Now a groundbreaking study released today in STEM CELLS Translational Medicine shows for the first time that children with SCI might benefit, too.

Marcin Majka, Ph.D., and Danuta Jarocha, Ph.D., led the study at Jagiellonian University College of Medicine in Krakow, Poland. "Although it was conducted on a small number of patients carrying a different injury level and type, preliminary results demonstrate the possibility of attaining neurological, motor and sensation and quality-of-life improvement in children with a chronic complete spinal cord injury through multiple bone marrow derived cell (BMNC) implantations. Intravenous implantations of these cells seem to prevent and/or help the healing of pressure ulcers," Dr. Majka said.

The study involved five children, ranging in age from 3 to 7, all of whom were patients at University Childrens Hospital in Krakow. Each had suffered a spinal cord injury at least six months prior to the start of the stem cell program and was showing no signs of improvement from standard treatments. The patients collectively underwent 19 implantation procedures with BM-derived cells, with every treatment cycle followed by an intensive four weeks of rehabilitation.

The children were evaluated over a one to six year period for sensation and motor improvement, muscle stiffness and bladder function. Any improvement in their quality of life was also noted, based on estimated functional recovery. Additionally, the development of neuropathic pain, secondary infections, urinary tract infections or pressure ulcers was tracked.

"Two of the five children receiving the highest number of transplantations demonstrated neurological and quality-of-life improvements," Dr. Jarocha said. "They included a girl who, before the stem cell implantations, had to be tube fed and needed a ventilator to breathe. She is now able to eat and breathe on her own."

The study also demonstrated no long-term side effects from the BMNCs, leading the researchers to conclude that single and multiple BMNCs implantations were safe for pediatric patients as well as adults.

Interestingly, when the scientists compared their study with those done on adults, the results did not suggest an advantage of the younger age. "This is somehow unexpected since the younger age should provide better ability to regenerate. Since the present study was done on a small number of patients, a larger study using the same methodology for pediatric and adult patients allowing a direct comparison should be performed to confirm or contradict the observation. Larger studies with patients segregated according to the type and level of the injury with the same infusion intervals should be performed to obtain more consistent data, too," Dr. Majka added.

"While this studys sample is small, it is the first to report the safety and feasibility of using bone marrow derived cells to treat pediatric patients with complete spinal cord injury," said Anthony Atala, M.D., editor of STEM CELLS Translational Medicine and director of the Wake Forest Institute for Regenerative Medicine. "The treatment resulted in a degree of neurological and quality-of-life improvement in the study participants."

The full article, "Preliminary study of autologous bone marrow nucleated cells transplantation in children with spinal cord injury," can be accessed at http://www.stemcellstm.com.

Read more:
First Study Tracking Stem Cell Treatments For Children With Spinal Cord Injuries Shows Potential Benefit

To Read More: First Study Tracking Stem Cell Treatments For Children With Spinal Cord Injuries Shows Potential Benefit
categoriaUncategorized commentoComments Off on First Study Tracking Stem Cell Treatments For Children With Spinal Cord Injuries Shows Potential Benefit | dataFebruary 4th, 2014
Read All

Stem cell source found in tissue discarded in hip replacements

By Dr. Matthew Watson

Current ratings for: Stem cell source found in tissue discarded in hip replacements

Public / Patient:

0 (0 votes)

Health Professionals:

3 (1 vote)

Tissue that is typically discarded in routine hip replacement operations may offer a rich untapped source of stem cells that could be banked for later use in regenerative medicine, where patients' own cells are used to treat disease or repair failing organs.

This was the implication of a new study led by the University of New South Wales (UNSW) in Australia, published online recently in the journal Stem Cells Translational Medicine.

Study leader Prof. Melissa Knothe Tate and colleagues say, given the tens of thousands of hip replacements performed every year, their findings could have "profound implications" for clinical use.

Currently, to grow new bone or tissue after an infection, injury or the removal of a tumor, if the patient has not preserved stem cells in a cell bank (which is the case for the vast majority of older adults), the stem cells have to come from a donor, or the patient has to undergo surgery to have them harvested from their own bone marrow.

Prof. Knothe Tate explains how their study findings, which now need to be tested clinically, could offer a new source of stem cells for older patients:

Read more:
Stem cell source found in tissue discarded in hip replacements

To Read More: Stem cell source found in tissue discarded in hip replacements
categoriaBone Marrow Stem Cells commentoComments Off on Stem cell source found in tissue discarded in hip replacements | dataJanuary 31st, 2014
Read All

New Weapon Fights Drug-Resistant Tumors

By Dr. Matthew Watson

Contact Information

Available for logged-in reporters only

Newswise Cancer drugs that recruit antibodies from the bodys own immune system to help kill tumors have shown much promise in treating several types of cancer. However, after initial success, the tumors often return.

A new study from MIT reveals a way to combat these recurrent tumors with a drug that makes them more vulnerable to the antibody treatment. This drug, known as cyclophosphamide, is already approved by the Food and Drug Administration (FDA) to treat some cancers.

Antibody drugs work by marking tumor cells for destruction by the bodys immune system, but they have little effect on tumor cells that hide out in the bone marrow. Cyclophosphamide stimulates the immune response in bone marrow, eliminating the reservoir of cancer cells that can produce new tumors after treatment.

Were not talking about the development of a new drug, were talking about the altered use of an existing therapy, says Michael Hemann, the Eisen and Chang Career Development Associate Professor of Biology, a member of MITs Koch Institute for Integrative Cancer Research, and one of the senior authors of the study. We can operate within the context of existing treatment regimens but hopefully achieve drastic improvement in the efficacy of those regimens.

Jianzhu Chen, the Ivan R. Cottrell Professor of Immunology and a member of the Koch Institute, is also a senior author of the paper, which appears in the Jan. 30 issue of the journal Cell. The lead author is former Koch Institute postdoc Christian Pallasch, now at the University of Cologne in Germany.

Finding cancers hiding spots

Antibody-based cancer drugs are designed to bind to proteins found on the surfaces of tumor cells. Once the antibodies flag the tumor cells, immune cells called macrophages destroy them. While many antibody drugs have already been approved to treat human cancers, little is known about the best ways to deploy them, and what drugs might boost their effects, Hemann says.

Antibodies are very species-specific, so for this study, the researchers developed a strain of mice that can develop human lymphomas (cancers of white blood cells) by implanting them with human blood stem cells that are genetically programmed to become cancerous. Because these mice have a human version of cancer, they can be used to test drugs that target human tumor cells.

Read more:
New Weapon Fights Drug-Resistant Tumors

To Read More: New Weapon Fights Drug-Resistant Tumors
categoriaBone Marrow Stem Cells commentoComments Off on New Weapon Fights Drug-Resistant Tumors | dataJanuary 31st, 2014
Read All

Scientists develop an engineered cardiac tissue model to study the human heart

By Dr. Matthew Watson

PUBLIC RELEASE DATE:

30-Jan-2014

Contact: Cody Mooneyhan cmooneyhan@faseb.org 301-634-7104 Federation of American Societies for Experimental Biology

When it comes to finding cures for heart disease scientists are working to their own beat. That's because they may have finally developed a tissue model for the human heart that can bridge the gap between animal models and human patients. These models exist for other organs, but for the heart, this has been elusive. Specifically, the researchers generated the tissue from human embryonic stem cells with the resulting muscle having significant similarities to human heart muscle. This research was published in the February 2014 issue of The FASEB Journal.

"We hope that our human engineered cardiac tissues will serve as a platform for developing reliable models of the human heart for routine laboratory use," said Kevin D. Costa, Ph.D., a researcher involved in the work from the Cardiovascular Cell and Tissue Engineering Laboratory, Cardiovascular Research Center, Icahn School of Medicine at Mt. Sinai, in New York, NY. "This could help revolutionize cardiology research by improving the ability to efficiently discover, design, develop and deliver new therapies for the treatment of heart disease, and by providing more efficient screening tools to identify and prevent cardiac side effects, ultimately leading to safer and more effective treatments for patients suffering from heart disease."

To make this advance, Costa and colleagues cultured human engineered cardiac tissue, or hECTs, for 7-10 days and they self-assembled into a long thin heart muscle strip that pulled on the end-posts and caused them to bend with each heart beat, effectively exercising the tissue throughout the culture process. These hECTs displayed spontaneous contractile activity in a rhythmic pattern of 70 beats per minute on average, similar to the human heart. They also responded to electrical stimulation. During functional analysis, some of the responses known to occur in the natural adult human heart were also elicited in hECTs through electrical and pharmacological interventions, while some paradoxical responses of hECTs more closely mimicked the immature or newborn human heart. They also found that these human engineered heart tissues were able to incorporate new genetic information carried by adenovirus.

"We've come a long way in our understanding of the human heart," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "but we still lack an adequate tissue model which can be used to test promising therapies and model deadly diseases. This advance, if it proves successful over time, will beat anything that's currently available."

###

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). It is among the most cited biology journals worldwide according to the Institute for Scientific Information and has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century.

FASEB is composed of 26 societies with more than 115,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Follow this link:
Scientists develop an engineered cardiac tissue model to study the human heart

To Read More: Scientists develop an engineered cardiac tissue model to study the human heart
categoriaCardiac Stem Cells commentoComments Off on Scientists develop an engineered cardiac tissue model to study the human heart | dataJanuary 30th, 2014
Read All

New stem cell may aid medicine

By Dr. Matthew Watson

Mouse cells exposed to an acidic environment turned into embryonic-like "STAP" cells. These were used to generate an entire fetus.

A simple lab treatment can turn ordinary cells from mice into a new kind of stem cell, according to a surprising study that hints at a new way to grow tissue for treating illnesses like diabetes and Parkinsons disease.

Researchers in Boston and Japan exposed spleen cells from newborn mice to an acidic environment. In lab tests, that made the cells act like embryonic stem cells, showing enough versatility to produce the tissues of a mouse embryo, for example.

Cells from skin, muscle, fat and other tissue of newborn mice went through the same change, which could be triggered by exposing cells to any of a variety of stressful situations, researchers said.

Its very simple to do. I think you could do this actually in a college lab, said Dr. Charles Vacanti of Brigham and Womens Hospital in Boston, an author of two papers published online Wednesday by the journal Nature. They can be found here and here.

If it works in humans, the method could improve upon an existing method of generating artificial embryonic stem cells, called induced pluripotent stem cells. These IPS cells can be made from patients, then turned into the needed cells, reducing the possibility of transplant rejection. Pluripotent is a term for cells that act like embryonic stem cells, which can turn into nearly any tissue of the body, except for placental tissues.

In San Diego, scientists led by The Scripps Research Institutes Jeanne Loring propose to treat Parkinsons disease patients with brain cells generated from their own IPS cells. Because these cells arent taken from human embryos, they dont raise the ethical concerns some have with using embryonic stem cells.

However induced pluripotent stem cells are made by reprogramming ordinary cells with added genes or chemicals, which raises concerns about safety. The new method, in contrast, causes the cell to change its own behavior after researchers have applied an external stress. The actual DNA sequence is unaltered, creating a change that is epigenetic, or taking place outside the genome. Researchers dubbed the new cells STAP cells, for stimulus-triggered acquisition of pluripotency.

This is part of a shift in our view of pluripotency, Loring said by email. Eight years ago we thought that cells were stable -- whatever they are, they stay that way. Now, were thinking in terms of how powerful epigenetics is -- that we can change cell fate without changing their DNA.

Loring said it will take years to apply the new method for human therapy.

Here is the original post:
New stem cell may aid medicine

To Read More: New stem cell may aid medicine
categoriaIPS Cell Therapy commentoComments Off on New stem cell may aid medicine | dataJanuary 30th, 2014
Read All

New breakthrough in stem cell research

By Dr. Matthew Watson

(CNN) We run too hard, we fall down, we're sick - all of this puts stress on the cells in our bodies. But in what's being called a breakthrough in regenerative medicine, researchers have found a way to make stem cells by purposely putting mature cells under stress.

Two new studies published Wednesday in the journal Nature describe a method of taking mature cells from mice and turning them into embryonic-like stem cells, which can be coaxed into becoming any other kind of cell possible. One method effectively boils down to this: Put the cells in an acidic environment.

"I think the process we've described mimics Mother Nature," said Dr. Charles Vacanti, director of the laboratory for Tissue Engineering and Regenerative Medicine at Brigham & Women's Hospital in Boston and senior author on one of the studies. "It's a natural process that cells normally respond to."

Both studies represent a new step in the thriving science of stem cell research, which seeks to develop therapies to repair bodily damage and cure disease by being able to insert cells that can grow into whatever tissues or organs are needed. If you take an organ that's functioning at 10 percent of normal and bring it up to 25 percent functionality, that could greatly reduce the likelihood of fatality in that particular disease, Vacanti said.

This method by Vacanti and his colleagues "is truly the simplest, cheapest, fastest method ever achieved for reprogramming [cells]," said Jeff Karp, associate professor of medicine at the Brigham & Women's Hospital and principal faculty member at the Harvard Stem Cell Institute. He was not involved in the study.

Before the technique described in Nature, the leading candidates for creating stem cells artificially were those derived from embryos and stem cells from adult cells that require the insertion of DNA to become reprogrammable.

Stem cells are created the natural way every time an egg that is fertilized begins to divide. During the first four to five days of cell division, so-called pluripotent stem cells develop. They have the ability to turn into any cell in the body. Removing stem cells from the embryo destroys it, which is why this type of research is controversial.

Researchers have also developed a method of producing embryonic-like stem cells by taking a skin cell from a patient, for example, and adding a few bits of foreign DNA to reprogram the skin cell to become like an embryo and produce pluripotent cells, too. However, these cells are usually used for research because researchers do not want to give patients cells with extra DNA.

The new method does not involve the destruction of embryos or inserting new genetic material into cells, Vacanti said. It also avoids the problem of rejection: The body may reject stem cells that came from other people, but this method uses an individual's own mature cells.

"It was really surprising to see that such a remarkable transformation could be triggered simply by stimuli from outside of the cell," said Haruko Obokata of the Riken Center for Developmental Biology in Japan in a news conference this week.

Read the original post:
New breakthrough in stem cell research

To Read More: New breakthrough in stem cell research
categoriaUncategorized commentoComments Off on New breakthrough in stem cell research | dataJanuary 30th, 2014
Read All

Stem cells in "revolutionary" boost

By Dr. Matthew Watson

PARIS: Scientists on Wednesday reported a simple way to turn animal cells back to a youthful, neutral state, a feat hailed as a "game-changer" in the quest to grow transplant tissue in the lab.

The research, reported in the journal Nature, could be the third great advance in stem cells -- a futuristic field that aims to reverse Alzheimer's, cancer and other crippling or lethal diseases.

The latest breakthrough comes from Japan, as did its predecessor which earned its inventor a Nobel Prize.

The new approach, provided it overcomes safety hurdles, could smash cost and technical barriers in stem-cell research, said independent commentators.

"If it works in man, this could be the game-changer that ultimately makes a wide range of cell therapies available using the patient's own cells as starting material," said Chris Mason, a professor of regenerative medicine at University College London.

"The age of personalised medicine will have arrived."

Stem cells are primitive cells that, as they grow, differentiate into the various specialised cells that make up the different organs -- the brain, the heart, the kidney and so on.

The goal is to create stem cells in the lab and nudge them to grow into these differentiated cells, thus replenishing organs damaged by disease or accident.

One of the obstacles, though, is ensuring that these transplanted cells are not attacked as alien by the body's immune system.

To achieve that, the stem cells would have to carry the patient's own genetic code, to identify them as friendly.

Read the original post:
Stem cells in "revolutionary" boost

To Read More: Stem cells in "revolutionary" boost
categoriaIPS Cell Therapy commentoComments Off on Stem cells in "revolutionary" boost | dataJanuary 29th, 2014
Read All

Page 212«..1020..211212213214..220230..»


Copyright :: 2025