Page 258«..1020..257258259260..270280..»

Equity Research on Sequenom Inc. and Biogen Idec Inc. — Biotechnology … – MarketWatch (press release)

By Dr. Matthew Watson


Mass High Tech
Equity Research on Sequenom Inc. and Biogen Idec Inc. -- Biotechnology ...
MarketWatch (press release)
NEW YORK, NY, Jul 06, 2012 (MARKETWIRE via COMTEX) -- http://www.ShinesRooms.com has a handpicked team of market professionals with over 100 years of combined investing experience. Today they are providing members comprehensive research on ...
Biogen Idec and Sobi Initiate Global Clinical Trials of Long-Lasting ...EON: Enhanced Online News (press release)

all 31 news articles »

Source:
http://news.google.com/news?q=biotechnology&output=rss

To Read More: Equity Research on Sequenom Inc. and Biogen Idec Inc. — Biotechnology … – MarketWatch (press release)
categoriaUncategorized commentoComments Off on Equity Research on Sequenom Inc. and Biogen Idec Inc. — Biotechnology … – MarketWatch (press release) | dataJuly 8th, 2012
Read All

Nature Biotechnology Publications Showcase Value of PacBio RS in De Novo … – MarketWatch (press release)

By Dr. Matthew Watson


French Tribune
Nature Biotechnology Publications Showcase Value of PacBio RS in De Novo ...
MarketWatch (press release)
MENLO PARK, Calif., Jul 02, 2012 (BUSINESS WIRE) -- Two papers in Nature Biotechnology, both published online on July 1, 2012 highlight the unique value for de novo genome assembly provided by the PacBio(R) RS High Resolution Genetic Analyzer ...
The Return of Finished Genomes: Hybrid Sequencing Strategy Boosts Pacific ...Bio-IT World

all 23 news articles »

Source:
http://news.google.com/news?q=biotechnology&output=rss

To Read More: Nature Biotechnology Publications Showcase Value of PacBio RS in De Novo … – MarketWatch (press release)
categoriaUncategorized commentoComments Off on Nature Biotechnology Publications Showcase Value of PacBio RS in De Novo … – MarketWatch (press release) | dataJuly 8th, 2012
Read All

Why study biotechnology? – Indian Colleges

By Dr. Matthew Watson


Indian Colleges
Why study biotechnology?
Indian Colleges
Why study biotechnology? - Biotechnology affects all human beings as it improves the quality of life. The options in the field are fast expanding... : education & college news, announcement, notifications & updates of Indian Colleges at IndanColleges.com.

Source:
http://news.google.com/news?q=biotechnology&output=rss

To Read More: Why study biotechnology? – Indian Colleges
categoriaUncategorized commentoComments Off on Why study biotechnology? – Indian Colleges | dataJuly 8th, 2012
Read All

Bio-Innovator Saneron CCEL Therapeutics Supports Cryo-Cell International Leadership and Board of Directors in Proxy …

By Dr. Matthew Watson

TAMPA, Fla., July 3, 2012 /PRNewswire/ --On behalf of Saneron CCEL Therapeutics, Inc., President and COO, Nicole Kuzmin-Nichols, MBA, expressed strong support today for the Cryo-Cell International, Inc. (CCEL) current executive management in response to a proxy bid by a former Board member. Cryo-Cell is a major shareholder in Saneron, a Tampa based biotechnology research and development company that was spun out from the University of South Florida to develop cellular therapies for deadly diseases that lack adequate treatment options.

"Saneron has enjoyed a good working relationship with David and Mark Portnoy since they assumed leadership at Cryo-Cell in August 2011, and our board is convinced that their guidance is adding shareholder value," commented Kuzmin-Nichols. "They have shown themselves to be committed partners with Saneron as we continue breaking new ground in cord and menstrual blood stem cell research. Our Small Business Technology Transfer Program (STTR) Phase II efforts are producing real progress towards effective treatments for Alzheimer's disease and stroke and we look forward to continuing our research in concert with Cryo-Cell."

"Our research team is very impressed with Dr. Linda Kelley, Cryo-Cell's new chief scientific officer, who joined the company from Harvard's Dana-Farber Cancer Institute. She will be a valuable collaborator. The Portnoys' ability to attract such top notch talent speaks volumes about their clear vision for the company's future and commitment to keeping it on the leading edge of regenerative medicine," she continued.

"Mark and David Portnoy have made great strides in establishing strong relationships with obstetricians and gynecologists to enhance patient awareness of Cryo-Cell. Our team has worked hand in hand with them to inform physicians about the latest developments in cord blood and cord tissue stem cell research so the physicians understand how important it is to encourage expectant parents to store their cord blood and cord tissue. During the 11 years that Saneron and Cryo-Cell have been associated, this is the first time we've seen Cryo-Cell reach out so assertively to the core physicians who have the ability to create streams of revenue for the company. We couldn't be more pleased to be working with David, Mark and their team as they take the company to the next level. Shareholders would be wise to retain them."

About Saneron CCEL Therapeutics, Inc. Saneron CCEL Therapeutics, Inc. is a biotechnology research and development company focused on neurological and cardiac cell therapy for the early intervention and treatment of several devastating or deadly diseases which lack adequate treatment options. Saneron, a University of South Florida spin-out company, is located at the Tampa Bay Technology Incubator. Saneron is committed to providing readily available, noncontroversial stem cells for cellular therapies and has patented and patent-pending technology relating to its platform technology of umbilical cord blood and Sertoli cells.

http://www.saneron-ccel.com

http://www.cryo-cell.com

Forward-Looking Statement This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements reflect management's current expectations, as of the date of this press release, and involve certain risks and uncertainties. The Company's actual results could differ materially from those anticipated in these forward- looking statements as a result of various factors. The Company's further development is highly dependent on future medical and research developments and market acceptance, which is outside its control.

View original post here:
Bio-Innovator Saneron CCEL Therapeutics Supports Cryo-Cell International Leadership and Board of Directors in Proxy ...

To Read More: Bio-Innovator Saneron CCEL Therapeutics Supports Cryo-Cell International Leadership and Board of Directors in Proxy …
categoriaUncategorized commentoComments Off on Bio-Innovator Saneron CCEL Therapeutics Supports Cryo-Cell International Leadership and Board of Directors in Proxy … | dataJuly 3rd, 2012
Read All

Stem Cell Therapy Shown to be Effective in Treating Liver Cirrhosis

By Dr. Matthew Watson

SHENZHEN, China, July 3, 2012 /PRNewswire-Asia/-- A study conducted by Beike Biotechnology Company (http://www.beikebiotech.com) in conjunction with physicians and researchers at two Chinese hospitals, documents the effectiveness of cord blood-derived stem cells in treating primary biliary cirrhosis (PBC). The study, which was published in the April 2012 issue of the Stem Cell Discovery, was the first of its kind. Researchers noted that additional clinical trials would be required before stem cells can become an accepted therapy for liver cirrhosis.

Prof. Jin-hui Yang, Director of the Department of Hepatology in the 2nd Affiliated Hospital of Kunming Medical College stated, "Given the severity of liver cirrhosis and its related conditions, and the limited number of options available to treat those who suffer from it, this finding represents an important, potentially significant breakthrough."

PBC is a chronic, progressive liver disease that leads eventually to fibrosis and cirrhosis of the liver. It affects 1 in 1,000 women over the age of 40.Approximately one-third of those who suffer from PBC and its related conditions do not respond well to Ursodeoxycholic acid (UDCA) treatment, which is the only currently FDA-approved standard medical treatment for the condition. Many of those patients ultimately require liver transplantation.

Beike Chairman, Dr. Sean Hu, commented, "With a growing body of research that demonstrates the effectiveness of cord blood-derived stem cell therapies in treating a broad range of chronic conditions, this latest study is a milestone in the continuing effort to gain broad acceptance and recognition of regenerative medicine as a mainstream treatment option.We look forward to conducting more comprehensive clinical trials to attempt to validate the positive outcomes we have already observed."

The case study reported in the Stem Cell Discovery involved a 58 year old woman suffering from PBC who developed an incarcerated hernia and uncontrolled hydrothorax after undergoing UDCA treatment.One week after completing two stem cell transplantations with no observed adverse effects, the patient showed improvement in both liver function and in her general condition. She was released from the hospital but continued to receive twice-daily UDCA treatments. Six months after her discharge, doctors observed continued improvements in her liver function and overall condition.

To review the full text of the published study, please visit: http://www.scirp.org/journal/PaperInformation.aspx?paperID=18710. Study authors included physicians and researchers from the 2nd Affiliated Hospital of Kunming Medical College, Beike Biotechnology Company, and the Yunnan Provincial 1st People's Hospital in Kunming, China.

About Beike Biotechnology Company

Shenzhen Beike Biotechnology Co., Ltd. is China's leading biotechnology company focusing on the production of adult stem cells for use in medical therapies. Headquartered in Shenzhen (near Hong Kong) with a flagship regenerative medicine facility at the China Medical City in Jiangsu province, Beike produces a full line of stem cell products derived from umbilical cord, cord blood and autologous bone marrow.

For any questions regarding this release, please call:

Contact Person: T. Gutmann Phone Number: +86-532-6677-6659

Continue reading here:
Stem Cell Therapy Shown to be Effective in Treating Liver Cirrhosis

To Read More: Stem Cell Therapy Shown to be Effective in Treating Liver Cirrhosis
categoriaUncategorized commentoComments Off on Stem Cell Therapy Shown to be Effective in Treating Liver Cirrhosis | dataJuly 3rd, 2012
Read All

SONA: Stem cell therapy, kaya raw makapagpabata ng pangangatawan – Video

By Dr. Matthew Watson

02-07-2012 09:43 State of the Nation is a nightly newscast anchored by award-winning broadcast journalist, Jessica Soho. It airs Mondays to Fridays at 9:00 PM (PHL Time) on GMA News TV Channel 11. For more videos from State of the Nation, visit fthenation.

Continued here:
SONA: Stem cell therapy, kaya raw makapagpabata ng pangangatawan - Video

To Read More: SONA: Stem cell therapy, kaya raw makapagpabata ng pangangatawan – Video
categoriaUncategorized commentoComments Off on SONA: Stem cell therapy, kaya raw makapagpabata ng pangangatawan – Video | dataJuly 3rd, 2012
Read All

Enriched Skim Milk Good for Gout, Study Suggests

By Dr. Matthew Watson

(HealthDay News) -- If you have gout, drinking enriched skim milk may help reduce the frequency of painful flare-ups, new research suggests.

The new study included 120 patients who had experienced at least two flare-ups in the previous four months. They were divided into three treatment groups that consumed either lactose powder, skim milk powder or skim milk powder enriched with glycomacropeptide (GMP) and G600 milk fat extract (G600).

Gout, a common form of arthritis, is caused by uric acid buildup in blood. Often, the big toe is the first place where gout strikes. Previous research has shown a higher risk for gout among people who consume fewer dairy products, and earlier work suggested that GMP and G600 tone down the inflammatory response to gout crystals.

The powders were mixed in roughly 8 ounces of water as a vanilla-flavored shake and consumed once a day. The patients recorded their flare-ups and went to a rheumatology clinic once a month. Read more…

Cardiofy Heart Care Supplement

Source:
http://feeds.feedburner.com/integratedmedicine

To Read More: Enriched Skim Milk Good for Gout, Study Suggests
categoriaIntegrative Medicine commentoComments Off on Enriched Skim Milk Good for Gout, Study Suggests | dataJuly 1st, 2012
Read All

Physicians Answer Questions About Food Biotechnology in IFIC Foundation … – San Francisco Chronicle (press release)

By Dr. Matthew Watson


San Francisco Chronicle (press release)
Physicians Answer Questions About Food Biotechnology in IFIC Foundation ...
San Francisco Chronicle (press release)
“Technology, including food biotechnology, has for many years been an important part of producing safe and affordable food for a growing world population, yet questions about certain aspects of safety and benefits remain,” said IFIC Foundation ...

and more »

Source:
http://news.google.com/news?q=biotechnology&output=rss

To Read More: Physicians Answer Questions About Food Biotechnology in IFIC Foundation … – San Francisco Chronicle (press release)
categoriaUncategorized commentoComments Off on Physicians Answer Questions About Food Biotechnology in IFIC Foundation … – San Francisco Chronicle (press release) | dataJuly 1st, 2012
Read All

Biotechnology Industry Organization conference sets up potential partners … – Boston Globe

By Dr. Matthew Watson


Examiner.com
Biotechnology Industry Organization conference sets up potential partners ...
Boston Globe
Michal Preminger, executive director of Harvard University's Office of Technology Development, has 70 meetings on her BIO International Convention schedule. Christine Menjoz of Sanofi is only meeting with new companies at BIO — just six or seven ...
New Report Finds Biotechnology Companies are Participating in 39% of All ...MarketWatch (press release)
Biotechnology field is hot locally, nationally, and internationallyExaminer.com
Agile Therapeutics to Present at Biotechnology Industry Organization ...SYS-CON Media (press release)
PYMNTS.com
all 202 news articles »

Source:
http://news.google.com/news?q=biotechnology&output=rss

To Read More: Biotechnology Industry Organization conference sets up potential partners … – Boston Globe
categoriaUncategorized commentoComments Off on Biotechnology Industry Organization conference sets up potential partners … – Boston Globe | dataJuly 1st, 2012
Read All

Brain Cells Derived From Skin Cells For Huntington's Research

By Dr. Matthew Watson

Editor's Choice Main Category: Huntingtons Disease Also Included In: Stem Cell Research;Neurology / Neuroscience Article Date: 29 Jun 2012 - 14:00 PDT

Current ratings for: Brain Cells Derived From Skin Cells For Huntington's Research

3 (1 votes)

At present, there is no cure for the disease and no treatments are available. These findings open up the possibility of testing treatments for the deadly disorder in a petri dish.

The study is the work of a Huntington's Disease iPSC Consortium, including researchers from the Johns Hopkins University School of Medicine in Baltimore, Cedars-Sinai Medical Center in Los Angeles and the University of California, Irvine, and six other groups.

Huntington's disease is an inherited, deadly neurodegenerative disorder. The onset of HD generally occurs during midlife, although it can also strike in childhood - as in the patient who donated the material for the cells generated in this study. The disease causes jerky, twitch-like movements, lack of muscle control, psychiatric disorders and dementia, and ultimately death.

Christopher A. Ross, M.D., Ph.D., a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine and one of the lead researchers of the study, explained:

The team are currently testing small molecules for the ability to block HP iPSC degeneration. According to the researchers, these molecules could potentially be developed into new drugs for Huntington's disease.

Furthermore, the teams ability to create "HD in a dish" may also have implications for similar research in other diseases such as Parkinson's and Alzheimer's.

In the study, the team took a skin biopsy from a 7-year-old patient with very early onset of severe HD. In the laboratory of Hongjun Song, Ph.D., a professor at Johns Hopkins' Institute for Cell Engineering, the skin cells were grown in culture and then created into pluripotent stem cells. In addition, a second cell line was created in the same way in Dr. Ross's lab from an individuals without HD.Simultaneously, other HD and control iPS cell lines were generated as part of the NINDS funded HD iPS cell consortium.

Read this article:
Brain Cells Derived From Skin Cells For Huntington's Research

To Read More: Brain Cells Derived From Skin Cells For Huntington's Research
categoriaSkin Stem Cells commentoComments Off on Brain Cells Derived From Skin Cells For Huntington's Research | dataJune 30th, 2012
Read All

Osiris Bolsters its Stem Cell Intellectual Property Estate

By Dr. Matthew Watson

COLUMBIA, Md.--(BUSINESS WIRE)--

Osiris Therapeutics, Inc. (OSIR), announced today the expansion of its intellectual property protection around Prochymal (remestemcel-L). The United States Patent and Trademark Office recently granted Osiris two patents that cover multiple mechanisms of action related to cardiac tissue repair. Additionally, Osiris has enhanced its mesenchymal stem cell (MSC) patent estate with the issuance of patents across Europe and Australia covering stem cells expressing all therapeutically useful levels of cell surface receptors for TNF-alpha, a receptor essential to the cell's ability to counteract inflammation. These patents further support Osiris' considerable intellectual property position, which includes 48 issued U.S. patents around the production, composition, testing and use of the mesenchymal stem cell from both allogeneic and autologous sources.

"These recent additions to Osiris patent estate, combined with the existing broad coverage of our pioneering MSC platform technology, reinforce our industry leading IP portfolio and bolster our dominant position regarding the manufacture and use of mesenchymal stem cells for the treatment of a broad range of diseases, said Chris Alder, Chief Intellectual Property Counsel of Osiris. We have invested significant time and resources building our intellectual property estate, and with the commercialization of Prochymal, we are preparing to take the necessary action to enforce our considerable rights.

Prochymal is now approved in Canada and New Zealand, and is currently available in seven other countries including the United States under an Expanded Access Program. With Prochymal (remestemcel-L) entering commerce, Osiris has initiated the process of identifying entities that may be infringing upon its intellectual property rights and will take appropriate action as necessary.

About Prochymal (remestemcel-L)

Prochymal is the worlds first approved drug with a stem cell as its active ingredient. Developed by Osiris Therapeutics, Prochymal is an intravenous formulation of MSCs, which are derived from the bone marrow of healthy adult donors between the ages of 18 and 30 years. The MSCs are selected from the bone marrow and grown in culture so that up to 10,000 doses of Prochymal can be produced from a single donor. Prochymal is truly an off-the-shelf stem cell product that is stored frozen at the point-of-care and infused through a simple intravenous line without the need to type or immunosuppress the recipient. Prochymal is approved in Canada and New Zealand for the management of acute graft-versus-host disease (GvHD) in children and is available for adults and children in eight countries including the United States, under an Expanded Access Program. Prochymal is currently in a Phase 3 trial for refractory Crohns disease and is also being evaluated in clinical trials for the treatment of myocardial infarction (heart attack) and type 1 diabetes.

About Osiris Therapeutics

Osiris Therapeutics, Inc. is the leading stem cell company, having developed the worlds first approved stem cell drug, Prochymal. The company is focused on developing and marketing products to treat medical conditions in inflammatory, cardiovascular, orthopedic and wound healing markets. In Biosurgery, Osiris currently markets Grafix for burns and chronic wounds, and Ovation for orthopedic applications. Osiris is a fully integrated company with capabilities in research, development, manufacturing and distribution of stem cell products. Osiris has developed an extensive intellectual property portfolio to protect the company's technology, including 48 U.S. and 144 foreign patents.

Osiris, Prochymal, Grafix and Ovation are registered trademarks of Osiris Therapeutics, Inc. More information can be found on the company's website, http://www.Osiris.com. (OSIRG)

Forward-Looking Statements

See original here:
Osiris Bolsters its Stem Cell Intellectual Property Estate

To Read More: Osiris Bolsters its Stem Cell Intellectual Property Estate
categoriaCardiac Stem Cells commentoComments Off on Osiris Bolsters its Stem Cell Intellectual Property Estate | dataJune 29th, 2012
Read All

Skin Cells Create Stem Cells In Huntington Disease Study

By Dr. Matthew Watson

June 29, 2012

Connie K. Ho for redOrbit.com Your Universe Online

In 1993, the autosomal dominant gene mutation responsible for Huntingtons Disease (HD) was discovered. However, no treatments are known to slow its progression. New research may pave the way to better understanding of the disease. Researchers at Johns Hopkins recently announced that they were able to produce stem cells from skin cells from a person who had severe, early-onset form of HD; the cells were then changed into neurons that degenerated like the cells affected by HD.

The research was recently published in the journal Cell Stem Cell. The investigators worked with an international consortium in creating HD in a dish. The group was made up of scientists from Johns Hopkins University School of Medicine, Cedars-Sinai Medical Center, the University of California at Irvine, as well as six other groups. The team looked at many other HD cell lines and control cell lines to verify that the results were consistent and reproducible in other labs. The investigators believe that the findings allow them to better understand and eliminate cells in people in with HD. They hope to study the effects of possible drug treatments on cells that would be otherwise found deep in the brain.

Having these cells will allow us to screen for therapeutics in a way we havent been able to before in Huntingtons disease, remarked lead researcher Dr. Christopher A. Ross, a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine, in a prepared statement. For the first time, we will be able to study how drugs work on human HD neurons and hopefully take those findings directly to the clinic.

The team of researchers is studying small molecules for the ability to block HD iPSC degeneration to see if they can be developed into new drugs for HD. As well, the ability to produce from stem cells the same neurons found in HD may have effects for similar research in other neurodegenerative diseases like Alzheimers and Parkinsons. In the experiment, Ross took a skin biopsy from a patient with very early onset HD. The patient was seven years old at the time, with a severe form of disease and a mutation that caused it. By using cells from a patient who had quickly progressing HD, Ross team were able to mimic HD in a way that could be used by patients who had different forms of HD.

The skin cells were grown in culture and reprogrammed to induce stem cells that were pluripotent. Then, another cell line was created in the same way from someone who didnt have HD. The other HD and control iPS cells were produced as part of the NINDS funded HD iPS cell consortium. Investigators from Johns Hopkins and the other consortium labs changed the cells into typical neurons and then into medium spiny neurons. The process took a total of three months and the scientists found the medium spiny neurons from the HD cells acted how the medium spiny neurons form an HD patient would. The cells demonstrated quick degeneration when cultured in the lab with a basic culture medium that didnt include extensive supporting nutrients. On the other hand, control cell lines didnt demonstrate neuronal degeneration.

These HD cells acted just as we were hoping, says Ross, director of the Baltimore Huntingtons Disease Center. A lot of people said, Youll never be able to get a model in a dish of a human neurodegenerative disease like this. Now, we have them where we can really study and manipulate them, and try to cure them of this horrible disease. The fact that we are able to do this at all still amazes us.

Source: Connie K. Ho for redOrbit.com Your Universe Online

Here is the original post:
Skin Cells Create Stem Cells In Huntington Disease Study

To Read More: Skin Cells Create Stem Cells In Huntington Disease Study
categoriaSkin Stem Cells commentoComments Off on Skin Cells Create Stem Cells In Huntington Disease Study | dataJune 29th, 2012
Read All

Stem cell transplantation into mouse cochlea may impact future hearing loss therapies

By Dr. Matthew Watson

Public release date: 26-Jun-2012 [ | E-mail | Share ]

Contact: David Eve celltransplantation@gmail.com Cell Transplantation Center of Excellence for Aging and Brain Repair

Putnam Valley, NY. (June 26 , 2012) Researchers in Japan who evaluated the risks and efficacy of transplanting two varieties of stem cells into mouse cochlea have concluded that both adult-derived induced pluripotent stem (iPS) cells and mouse embryonic stem (ES) cells demonstrate similar survival and neural differentiation capabilities. However, there is a risk of tumor growth associated with transplanting iPS cells into mouse cochleae. Given the potential for tumorigenesis, they concluded that the source of iPS cells is a critical issue for iPS cell-based therapy.

Their study is published in a recent issue of Cell Transplantation (21:4), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/,

"Hearing loss affects millions of people worldwide," said Dr. Takayuki Nakagawa of the Department of Otolaryngology, Graduate School of Medicine, Kyoto University, Japan. "Recent studies have indicated the potential of stem-cell based approaches for the regeneration of hair cells and associated auditory primary neurons. These structures are essential for hearing and defects result in profound hearing loss and deafness."

The authors noted that embryonic stem cells have previously been identified as promising candidates for transplantation, however they have also been associated with immune rejection and ethics issues. Consequently, this study compared the survival and neural differentiation capabilities of ES and three clones of mouse iPS cells.

"Our study examined using induced pluripotent stem cells generated from the patient source to determine if they offer a promising alternative to ES cells," explained Dr. Nakagawa. "In addition, the potential for tumor risk from iPS cells needed clarification."

Four weeks after transplantation, the researchers found that the majority of cochleae that had been transplanted exhibited the settlement of iPS or ES-derived neurons. However, there was a difference in the number of cells present based on cell lines. They noted that the number of cells able to be transplanted into cochleae is limited because of the cochleae's tiny size. Thus, the number of settled cells is low.

They also noted the formation of a teratoma (encapsulated tumor) in some cochlea after transplantation with one group of iPS cells.

"To our knowledge, this is the first documentation of teratoma formation in cochleae after cell transplantation," said Dr. Nakagawa.

More:
Stem cell transplantation into mouse cochlea may impact future hearing loss therapies

To Read More: Stem cell transplantation into mouse cochlea may impact future hearing loss therapies
categoriaUncategorized commentoComments Off on Stem cell transplantation into mouse cochlea may impact future hearing loss therapies | dataJune 26th, 2012
Read All

Biotechnology Institute Leads Effort to Bring Life Science Education … – Business Wire (press release)

By Dr. Matthew Watson


Business Wire (press release)

Source:
http://news.google.com/news?q=biotechnology&output=rss

To Read More: Biotechnology Institute Leads Effort to Bring Life Science Education … – Business Wire (press release)
categoriaUncategorized commentoComments Off on Biotechnology Institute Leads Effort to Bring Life Science Education … – Business Wire (press release) | dataJune 24th, 2012
Read All

Biotechnology Institute Leads Effort to Bring Life Science Education … – EON: Enhanced Online News (press release)

By Dr. Matthew Watson


EON: Enhanced Online News (press release)
Biotechnology Institute Leads Effort to Bring Life Science Education ...
EON: Enhanced Online News (press release)
The Biotechnology Institute announces today the formation of the nationally coordinated effort of state bioscience organizations.

Source:
http://news.google.com/news?q=biotechnology&output=rss

To Read More: Biotechnology Institute Leads Effort to Bring Life Science Education … – EON: Enhanced Online News (press release)
categoriaUncategorized commentoComments Off on Biotechnology Institute Leads Effort to Bring Life Science Education … – EON: Enhanced Online News (press release) | dataJune 24th, 2012
Read All

Biotechnology revolution unlocks riches – Toronto Star

By Dr. Matthew Watson


Toronto Star
Biotechnology revolution unlocks riches
Toronto Star
The U.S. government spent $3.8 billion on the human genome project but it has helped drive $796 billion in economic activity.
America's biotech future needs political supportKorea Times

all 5 news articles »

Source:
http://news.google.com/news?q=biotechnology&output=rss

To Read More: Biotechnology revolution unlocks riches – Toronto Star
categoriaUncategorized commentoComments Off on Biotechnology revolution unlocks riches – Toronto Star | dataJune 24th, 2012
Read All

Parsing Geron’s Stem Cell Foray: A Nature Journal Commentary

By Dr. Matthew Watson


Why did Geron "fail" in its
much ballyhooed pursuit of the first-ever human embryonic stem cell
therapy?

Christopher Scott, senior
research scholar at Stanford, and Brady Huggett,
business editor of the journal Nature, took a crack at
answering that question in a commentary in the June edition of
Nature.
Following the sudden abandonment last
fall by Geron of its hESC business and the first-ever clinical trial
of an hESC therapy, Scott and Huggett scrutinized the history of the
company. The financial numbers were impressive. They wrote,

"How did Geron’s R&D program
meet such a demise? After all, the company raised more than $583
million through 23 financings, including two venture rounds, and
plowed more than half a billion dollars into R&D (about half of
that into hESC work) through 2010. 

"There are problems with being at
the forefront of unknown territory. Of Geron’s development efforts,
the hESC trial was the most prominent, and fraught. Therapies based
on hESCs were new territory for the US Food and Drug
Administration
(FDA), and it eyed Geron warily. The
investigational new drug application (IND), filed in 2008, was twice
put on clinical hold while more animal data were collected among
fears that nonmalignant tumors would result from stray hESCs that
escaped the purification process. Geron says it spent $45 million on
the application, and at 22,000 pages, it was reportedly the largest
the agency had ever received."

The California stem cell agency also
bet $25 million on the company just a few months before it pulled the
plug. Geron repaid all the CIRM money that it had used up to that point.
Geron suffered from a lack of revenue
despite its vaunted stem cell patent portfolio. Scott and Huggett
reported that Geron received only $69 million from 1992 to 2010 from
collaborations, license and royalties. At the same time losses were
huge – $111 million in 2010.
The Nature article noted all of that
was occurring while other biotech companies – such as Isis
and Alnylam – found ample financial support, revenue and
success.
Scott's and Huggett's directed their
final comment to Advanced Cell Technology, now the only
company in the United States with a clinical trial involving a human
embryonic stem cell therapy.

"Your technology may be
revolutionary, your team may be dedicated and you may believe. But it
does not matter if no one else will stand at your side."

Our take: The California stem cell
agency obviously has learned something from its dealings with Geron.
The company's hESC announcement was an unpleasant surprise, to put it
mildly, coming only about three months after CIRM signed the Geron
loan agreement. Today, however, the agency has embarked on more,
equally risky ventures with other biotech enterprises. Indeed, CIRM
is forging into areas that conventional investment shuns. It is all
part of mission approved by California voters in 2004.
The dream of cures from human embryonic
stem cells or even adult stem cells is alluring. And CIRM is feeling
much justifiable pressure to engage industry more closely. All the
more reason for CIRM's executives and directors to maintain a steely
determination to terminate research programs that are spinning their
wheels and instead pursue efforts that are making significant
progress in commercializing research and attracting other investors.  

Source:
http://californiastemcellreport.blogspot.com/feeds/posts/default?alt=rss

To Read More: Parsing Geron’s Stem Cell Foray: A Nature Journal Commentary
categoriaStem Cell Therapy commentoComments Off on Parsing Geron’s Stem Cell Foray: A Nature Journal Commentary | dataJune 24th, 2012
Read All

The California Stem Cell Agency and an HIV Cure: Pushing for a Clinical Trial in 2014

By Dr. Matthew Watson


The California stem cell agency's
leading efforts to find a cure for HIV – one tied to the famous "Berlin Patient" – received a plug today in a piece in the
state capital's largest circulation newspaper, The Sacramento Bee.

The article by David Lesher focused on
a $14 million CIRM grant to the City of Hope in Los Angeles that also
involves Sangamo BioSciences of Richmond, Ca. The team hopes to
launch a clinical trial by the end of next year.
The Berlin Patient is Timothy Brown,
now of San Francisco, who is the only person in the world known to
have been cured of HIV/AIDs. It came about as a side effect of a
blood transfusion carrying a rare mutation of a gene found almost
entirely among northern Europeans. Lesher, director of governmental
affairs for the Public Policy Institute in Sacramento, wrote,

"The
possibility of curing a global pandemic like AIDS with funding from
the California bond is exactly the kind of exciting potential that
inspired voters to approve Proposition 71
 by
a wide margin. But the HIV research is also a good example of the
challenge facing the state's s
tem cell agency
as it tries to show voters that they made a good investment.
 

None
of the research under way will reach patients until long after the 10
years of funding by the ballot measure runs out. With the HIV
project, researchers hope to be in human trials by 2014, but it is
likely to be at least 10 years before they can show it might work in
humans. And in the case of a stem cell
 cure
for AIDS, it would be many years after that before a treatment is
widely available.”

Jeff
Sheehy
, a prominent AIDS activist and a board member at the 
stem
cell
 agency,
described the effort as "the global home run. That's not in 10
years. … But this could be the beginning of something really
amazing."
Lesher also wrote,

"Nobody
thought stem cells 
might
be used to cure HIV when the bond (funding for the stem cell agency)
passed. Far from the embryonic stem cell 
treatments
that inspired the ballot measure, the HIV research involves a new and
growing integration of stem cell 
and
genetic science."

Indeed,
the ballot initiative that created the $3 billion California stem
cell agency trumpeted its devotion to human embryonic stem cell
research, which had been throttled by the Bush Administration. The
agency has veered away from hESC research, which now amounts
to less than $450 million out of the $1.4 billion in grants approved
since 2004. 

Source:
http://californiastemcellreport.blogspot.com/feeds/posts/default?alt=rss

To Read More: The California Stem Cell Agency and an HIV Cure: Pushing for a Clinical Trial in 2014
categoriaStem Cell Therapy commentoComments Off on The California Stem Cell Agency and an HIV Cure: Pushing for a Clinical Trial in 2014 | dataJune 24th, 2012
Read All

Scientists Can Now Grow Functioning Liver From Stem Cells [Medicine]

By Dr. Matthew Watson

Scientists have promised a lot of regenerative medicine will come from stem cells, but so far progress has been fairly slow: they can stimualte regrowth of heart tissue, make incredibly expesnive artifical blood, orat bestconstruct a short piece of vein. Now, though, scientists are claiming they can grow functional liver.

Nature reports that a team of scientists from Japan has presented its works at a conference, and it's incredible. In fact, George Daley, director of the stem-cell transplantation program at the Boston Children's Hospital in Massachusetts, told Nature that "it blew [his] mind." Wow.

The researchers used stem cells created from human skin cells, then placed the cells on growth plates in a specially designed culture medium. Over the course of nine days, the cells started producing chemicals that a typical liver cell, otherwise known as a hepatocyte, would produce. They then added endothelial and mesenchymal cellswhich form parts of blood vessels and other structural tissues within the bodyto the mix, in the hope that they would be incorporated and begin to help the cells develop a structure akin to the liver.

The result was amazing: two days later, the researchers found the cells assembled into a 5-millimeter-long, three-dimensional lump. That lump was almost identical to something known as a liver budan early stage of liver development. From Nature's report:

"The tissue lacks bile ducts, and the hepatocytes do not form neat plates as they do in a real liver. In that sense, while it does to some degree recapitulate embryonic growth, it does not match the process as faithfully as the optic cup recently reported by another Japanese researcher. But the tissue does have blood vessels that proved functional when it was transplanted under the skin of a mouse. Genetic tests show that the tissue expresses many of the genes expressed in real liver. And, when transferred to the mouse, the tissue was able to metabolize some drugs that human livers metabolize but mouse livers normally cannot. "

While it's not perfect, it's the first time anyone has successfully created part of a functional human organ from stem cells produced from human skin. If scientists hadn't quite managed to deliver on the promise of stem cells so far, they have now. [Nature]

Image by Spirit-Fire under Creative Commons license

Link:
Scientists Can Now Grow Functioning Liver From Stem Cells [Medicine]

To Read More: Scientists Can Now Grow Functioning Liver From Stem Cells [Medicine]
categoriaSkin Stem Cells commentoComments Off on Scientists Can Now Grow Functioning Liver From Stem Cells [Medicine] | dataJune 21st, 2012
Read All

'Master molecule' may improve stem cell treatment of heart attacks

By Dr. Matthew Watson

ScienceDaily (June 20, 2012) Johns Hopkins researchers have discovered that a single protein molecule may hold the key to turning cardiac stem cells into blood vessels or muscle tissue, a finding that may lead to better ways to treat heart attack patients.

Human heart tissue does not heal well after a heart attack, instead forming debilitating scars. However, for reasons not completely understood, stem cells can assist in this repair process by turning into the cells that make up healthy heart tissue, including heart muscle and blood vessels. Recently, doctors elsewhere have reported promising early results in the use of cardiac stem cells to curb the formation of unhealthy scar tissue after a heart attack. But the discovery of a "master molecule" that guides the destiny of these stem cells could result in even more effective treatments for heart patients, the Johns Hopkins researchers say.

In a study published in the June 5 online edition of journal Science Signaling, the team reported that tinkering with a protein molecule called p190RhoGAP shaped the development of cardiac stem cells, prodding them to become the building blocks for either blood vessels or heart muscle. The team members said that by altering levels of this protein, they were able to affect the future of these stem cells.

"In biology, finding a central regulator like this is like finding a pot of gold," said Andre Levchenko, a biomedical engineering professor and member of the Johns Hopkins Institute for Cell Engineering, who supervised the research effort.

The lead author of the journal article, Kshitiz, a postdoctoral fellow who uses only his first name, said, "Our findings greatly enhance our understanding of stem cell biology and suggest innovative new ways to control the behavior of cardiac stem cells before and after they are transplanted into a patient. This discovery could significantly change the way stem cell therapy is administered in heart patients."

Earlier this year, a medical team at Cedars-Sinai Medical Center in Los Angeles reported initial success in reducing scar tissue in heart attack patients after harvesting some of the patient's own cardiac stem cells, growing more of these cells in a lab and transfusing them back into the patient. Using the stem cells from the patient's own heart prevented the rejection problems that often occur when tissue is transplanted from another person.

Levchenko's team has been trying to figure out what, at the molecular level, causes the stem cells to change into helpful heart tissue. If they could solve this mystery, the researchers hoped the cardiac stem cell technique used by the Los Angeles doctors could be altered to yield even better results.

During their research, the Johns Hopkins team members wondered whether changing the surface on which the harvested stem cells grew would affect the cells' development. The researchers were surprised to find that growing the cells on a surface whose rigidity resembled that of heart tissue caused the stem cells to grow faster and to form blood vessels. This cell population boom had occurred far less often in the stem cells grown in the glass or plastic dishes typically used in biology labs. This result also suggested why formation of cardiac scar tissue, a structure with very different rigidity, can inhibit stem cells naturally residing there from regenerating the heart.

Looking further into this stem cell differentiation, the Johns Hopkins researchers found that the increased cell growth occurred when there was a decrease in the presence of the protein p190RhoGAP. "It was the kind of master regulator of this process," Levchenko said. "And an even bigger surprise was that if we directly forced this molecule to disappear, we no longer needed the special heart-matched surfaces. When the master regulator was missing, the stem cells started to form blood vessels, even on glass."

A final surprise occurred when the team decided to increase the presence of p190RhoGAP, instead of making it disappear. "The stem cells started to turn into cardiac muscle tissue, instead of blood vessels," Levchenko said. "This told us that this amazing molecule was the master regulator not only of the blood vessel development, but that it also determined whether cardiac muscles and blood vessels would develop from the same cells, even though these types of tissue are quite different."

Read the original:
'Master molecule' may improve stem cell treatment of heart attacks

To Read More: 'Master molecule' may improve stem cell treatment of heart attacks
categoriaCardiac Stem Cells commentoComments Off on 'Master molecule' may improve stem cell treatment of heart attacks | dataJune 20th, 2012
Read All

Page 258«..1020..257258259260..270280..»


Copyright :: 2025