Long-term pesticide exposure is harmful: STM study
By Dr. Matthew Watson
Kolkata, June 20 : Long-time exposure to pesticides via inhalation may cause moderate to severe blood toxicity and reduction in the total number of bone marrow cells, leading to several degenerative diseases like aplastic anaemia, researchers at the School of Tropical Medicine (STM) here say.
The researches arrived at the conclusion from procedures performed on mice.
"As a whole, exposure to pesticides reduced the total number of bone marrow cells or, in other words, suppressed them," Sujata Law, assistant professor (Stem Cell Biology) at STM's Department of Medical Biotechnology, told IANS.
Bone marrow is the soft, flexible tissue found in long bones such as the thigh bone and the hip bone that contain immature cells called stem cells.
Stem cells, particularly the haematopoeitic stem cells (HSC) or the blood-forming stem cells can develop into the following types - red blood cells that carry oxygen, white blood cells that fight infection and platelets that help to clot blood.
So, in effect, bone marrow is the birthplace of these important cells.
"Bone marrow suppression leads to a number of degenerative diseases like aplastic anaemia, where the deficiency in the number of cells in the circulating blood (peripheral cytopenia) is the main feature," Law said.
The exact underlying mechanism is unknown but it has been concluded from the research published in the Journal of Environmental Toxicology that the microenvironment of the stem cells, in which they develop, is somehow deranged and this prevents their development into the various types of cells.
"In order to prevent degenerative diseases related to pesticide exposure, it is of prime importance that those handling pesticides take precautions like wearing protective clothing, including masks and gloves," she said.
"Also pesticides should be stored in properly labelled containers, away from food, and kept out of reach of children and animals," Law said. (IANS)
Continued here:
Long-term pesticide exposure is harmful: STM study
Understanding of spinal muscular atrophy improved with use of stem cells
By Dr. Matthew Watson
ScienceDaily (June 20, 2012) Cedars-Sinai's Regenerative Medicine Institute has pioneered research on how motor-neuron cell-death occurs in patients with spinal muscular atrophy, offering an important clue in identifying potential medicines to treat this leading genetic cause of death in infants and toddlers.
The study, published in the June 19 online issue of PLoS ONE, extends the institute's work to employ pluripotent stem cells to find a pharmaceutical treatment for spinal muscular atrophy or SMA, a genetic neuromuscular disease characterized by muscle atrophy and weakness.
"With this new understanding of how motor neurons die in spinal muscular atrophy patients, we are an important step closer to identifying drugs that may reverse or prevent that process," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute.
Svendsen and his team have investigated this disease for some time now. In 2009, Nature published a study by Svendsen and his colleagues detailing how skin cells taken from a patient with the disorder were used to generate neurons of the same genetic makeup and characteristics of those affected in the disorder; this created a "disease-in-a-dish" that could serve as a model for discovering new drugs.
As the disease is unique to humans, previous methods to employ this approach had been unreliable in predicting how it occurs in humans. In the research published in PLoS ONE, the team reproduced this model with skin cells from multiple patients, taking them back in time to a pluripotent stem cell state (iPS cells), and then driving them forward to study the diseased patient-specific motor neurons.
Children born with this disorder have a genetic mutation that doesn't allow their motor neurons to manufacture a critical protein necessary for them to survive. The study found these cells die through apoptosis -- the same form of cell death that occurs when the body eliminates old, unnecessary as well as unhealthy cells. As motor neuron cell death progresses, children with the disease experience increasing paralysis and eventually death. There is no effective treatment now for this disease. An estimated one in 35 to one in 60 people are carriers and about in 100,000 newborns have the condition.
"Now we are taking these motor neurons (from multiple children with the disease and in their pluripotent state) and screening compounds that can rescue these cells and create the protein necessary for them to survive," said Dhruv Sareen, director of Cedars-Sinai's Induced Pluripotent Stem Cell Core Facility and a primary author on the study. "This study is an important stepping stone to guide us toward the right kinds of compounds that we hope will be effective in the model -- and then be reproduced in clinical trials."
The study was funded in part by a $1.9 million Tools and Technology grant from the California Institute for Regenerative Medicine aimed at developing new tools and technologies to aid pharmaceutical discoveries for this disease.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
More here:
Understanding of spinal muscular atrophy improved with use of stem cells
‘Magical State' Of Embryonic Stem Cells May Help Overcome Hurdles To Therapeutics
By Dr. Matthew Watson
Salk researcher's findings suggest a potentially favorable time to harvest stem cells for therapy and may reveal genes crucial to tissue production
With their potential to treat a wide range of diseases and uncover fundamental processes that lead to those diseases, embryonic stem (ES) cells hold great promise for biomedical science. A number of hurdles, both scientific and non-scientific, however, have precluded scientists from reaching the holy grail of using these special cells to treat heart disease, diabetes, Alzheimer's and other diseases.
In a paper published June 13 in Nature, scientists at the Salk Institute for Biological Studies report discovering that ES cells cycle in and out of a "magical state" in the early stages of embryo development, during which a battery of genes essential for cell potency (the ability of a generic cell to differentiate, or develop, into a cell with specialized functions) is activated. This unique condition, called totipotency, gives ES cells their unique ability to turn into any cell type in the body, thus making them attractive therapeutic targets.
"These findings," says senior authorSamuel L. Pfaff, a professor in Salk'sGene Expression Laboratory, "give new insight into the network of genes important to the developmental potential of cells. We've identified a mechanism that resets embryonic stem cells to a more youthful state, where they are more plastic and therefore potentially more useful in therapeutics against disease, injury and aging."
ES cells are like silly putty that can be induced, under the right circumstances, to become specialized cells-for example, skin cells or pancreatic cells-in the body. In the initial stages of development, when an embryo contains as few as five to eight cells, the stem cells are totipotent and can develop into any cell type. After three to five days, the embryo develops into a ball of cells called a blastocyst. At this stage, the stem cells are pluripotent, meaning they can develop into almost any cell type. In order for cells to differentiate, specific genes within the cells must be turned on.
Pfaff and his colleagues performed RNA sequencing (a new technology derived from genome-sequencing to monitor what genes are active) on immature mouse egg cells, called oocytes, and two-cell-stage embryos to identify genes that are turned on just prior to and immediately following fertilization. Pfaff's team discovered a sequence of genes tied to this privileged state of totipotency and noticed that the genes were activated by retroviruses adjacent to the stem cells.
Nearly 8 percent of the human genome is made up of ancient relics of viral infections that occurred in our ancestors, which have been passed from generation to generation but are unable to produce infections. Pfaff and his collaborators found that cells have used some of these viruses as a tool to regulate the on-off switches for their own genes. "Evolution has said, 'We'll make lemonade out of lemons, and use these viruses to our advantage,'" Pfaff says. Using the remains of ancient viruses to turn on hundreds of genes at a specific moment of time in early embryo development gives cells the ability to turn into any type of tissue in the body.
From their observations, the Salk scientists say these viruses are very tightly controlled-they don't know why-and active only during a short window during embryonic development. The researchers identified ES cells in early embryogenesis and then further developed the embryos and cultured them in a laboratory dish. They found that a rare group of special ES cells activated the viral genes, distinguishing them from other ES cells in the dish. By using the retroviruses to their advantage, Pfaff says, these rare cells reverted to a more plastic, youthful state and thus had greater developmental potential.
Pfaff's team also discovered that nearly all ES cells cycle in and out of this privileged form, a feature of ES cells that has been underappreciated by the scientific community, says first author Todd S. Macfarlan, a former postdoctoral researcher in Pfaff's lab who recently accepted a faculty position at the Eunice Kennedy Shriver National Institute of Child Health and Human Development. "If this cycle is prevented from happening," he says, "the full range of cell potential seems to be limited."
It is too early to tell if this "magical state" is an opportune time to harvest ES cells for therapeutic purposes. But, Pfaff adds, by forcing cells into this privileged status, scientists might be able to identify genes to assist in expanding the types of tissue that can be produced.
See original here:
‘Magical State' Of Embryonic Stem Cells May Help Overcome Hurdles To Therapeutics
CBR – World's Largest Stem Cell Bank – Applies Two Decades of Experience to Advance Regenerative Medicine
By Dr. Matthew Watson
SAN BRUNO, Calif., June 20, 2012 /PRNewswire/ -- Twenty years ago this month, CBR (Cord Blood Registry) in partnership with the University of Arizona, processed the first cord blood stem cell sample in the world to be stored specifically for family use. Since 1992, the number of conditions treated with cord blood stem cells has greatly expanded, and so has CBR. Today, CBR is the largest family cord blood bank in the world with more than 425,000 samples in storage a population the size of a major city like Miami. What distinguishes the "city of individuals" with newborn stem cells banked at CBR is the exclusive opportunity to participate in a growing number of ground-breaking clinical trials.
(Photo: http://photos.prnewswire.com/prnh/20120620/SF27549-INFO)
(Logo: http://photos.prnewswire.com/prnh/20120216/AQ54476LOGO)
"As the leader and innovator in family banking, we believe every newborn deserves a healthy future and that we have a responsibility to lead the way," said Heather Brown, vice president of scientific & medical affairs at CBR. "Looking back, the creation of our bank allowed families for the first time to preserve a genetically-related source of newborn stem cells, ready and available if needed for a lifesaving transplant to regenerate a person's immune system after radiation or chemotherapy. As we look to the future, we are helping shape new areas of regenerative medicine. We are the only family bank actively pioneering clinical trials evaluating new therapeutic uses of cord blood stem cells for unexpected injuries and conditions with no current cure."
Expanding Areas of Clinical Research: Helping the Body Heal Injured Nerves Until very recently, the prevailing medical opinion in neurology has been that damage to the central nervous system caused by injuries like birth trauma, accidents or stroke is often permanent. Currently, intervention after injury focuses on stabilizing the patient to minimize damage. However, data from animal research in recent years has challenged this assumption, leading to cord blood stem cell clinical research to study whether these cells may stimulate neural cell and tissue repair to restore function and alleviate neurological impairments.
CBR is taking the lead in moving animal research rapidly into the clinic to investigate the ability for cord blood stem cells to trigger the body's own mechanisms to initiate nerve repair by establishing specific clinical trials at leading medical institutions across the country. By pairing researchers with children who have been diagnosed with chronic conditions like cerebral palsy, traumatic brain injury or hearing loss-- and who also have access to their own cord blood stem cells -- CBR is helping physicians move beyond surgery and drugs to evaluate how newborn stem cells may help the body repair itself.
Celebrating a History of Firsts Throughout its history, CBR has taken many of the first steps to create and advance the notion of preserving and ensuring access to high quality newborn stem cells that are viable for use. Among the company's contributions to stem cell medicine and science, CBR was:
"CBR continuously improves our systems and technology to maintain the highest published cell recovery rate in the industry of 99%, every single time. We treat every sample as if it belongs to our own child or grandchild," says Tom Moore, CEO and founder of CBR. "That care and precision is what we offer clinical researchers, who are partnering exclusively with CBR to evaluate the use of a child's own cord blood stem cells to help treat chronic diseases like cerebral palsy, hearing loss and traumatic brain injury."
About Cord Blood RegistryCBR (Cord Blood Registry) is the world's largest and most experienced cord blood bank.The company has consistently led the industry in technical innovations and safeguards more than 425,000 cord blood collections for individuals and their families. CBR was the first family bank accredited by AABB and the company's quality standards have been recognized through ISO 9001:2008 certificationthe global business standard for quality. CBR has also released more client cord blood units for specific therapeutic use than any other family cord blood bank. Our research and development efforts are focused on helping the world's leading clinical researchers advance regenerative medical therapies.For more information, visit http://www.cordblood.com.
Read more from the original source:
CBR - World's Largest Stem Cell Bank - Applies Two Decades of Experience to Advance Regenerative Medicine
Animal Stem Cell Therapy
By Dr. Matthew Watson
BYRON, MN--It's a dream for many in the medical field, to use a person's own stem cells to help them heal. And it's a reality already happening in our area.
But it's not humans who are being treated. In this case, dogs are the ones being treated.
Animal Stem Cell Regenerative Therapy has been performed a few thousand times now across the U.S. Doctors harvest stem cells and re-enter them where the animal is having problems.
Both Marley and Vinnie have bad ligaments in their legs, and like many dogs suffering from arthritis, they are subject to monthly doses of expensive drugs.
That is until today.
Dr. Garren Kelly, D.V.M. at Meadow View Veterinary Clinic just outside Rochester says, "If you'd of asked me 5 years ago if I would be doing anything like this, I would have said no. But then as soon as I saw it i'm like 'Yeah that's for me'. I kind of like staying on the cutting edge of technology and surgeries".
The two are undergoing a first of its kind surgery in minnesota, using regenerative stem cells.
Blood is taken from the dogs, as well as fat tissue.
Then stem cells are separated out from the fat, activated with an led light, and injected back into the affected area. All in the same day.
MediVet America trainer Jordan Smith says, "It's a better quality of life, we're not promising to give them 10 years or 5 years but we are promising that the years that they do have remaining are a lot more enjoyable".
Read the original:
Animal Stem Cell Therapy
Bethel woman waits for marrow match
By Dr. Matthew Watson
BETHEL, Vt. -
Amelia Lincoln loves to garden. But so far this planting season, she has had to sit it out.
"It's been a long haul and we try to keep a pretty positive attitude about everything. So, I generally could feel worse right now," she said.
Lincoln's immune system is fragile. For the past six weeks, she has been undergoing chemotherapy for cancer.
"I have acute myelogenous leukemia," she said. "I have a leukemia that came back after a stem cell transplant two years ago."
She had been in remission, but the aggressive cancer in her bone marrow is back.
"It's a change of priorities, but what would anyone say if their spouse was sick," husband James Patterson said.
Lincoln needs another transplant at the Norris Cotton Cancer Center. But right now, she has yet to find the perfect match.
"We used to use bone marrow specifically for a bone marrow transplant. Nowadays, we can use medicines to stimulate a patient's bone marrow cells into the blood. We can collect those bone marrow cells in the blood-- called peripheral blood stem cells-- and use those cells for the transplant," said Dr. Kenneth Meehan of the Norris Cotton Cancer Center.
A donor drive Tuesday in Randolph Center could increase Amelia's odds. No needles-- just a swab.
Visit link:
Bethel woman waits for marrow match
From Cloning 'Dolly the Sheep' to Curing Blindness, Scotland is on the Forefront of Life Science Discoveries
By Dr. Matthew Watson
EDINBURGH, Scotland, June 18, 2012 /PRNewswire/ --A revolution in modern medicine is quietly under way in Scotland, which is rapidly emerging as a global leader in regenerative medicine and drug discovery.
Ranked #1 in the world for stem cell research, Scotland recently launched a new stem cell trial to cure corneal blindness, which could result in the development of the first harvest stem cells that restore the sight of millions of people. The revolutionary research, conducted by Advanced Cell Technologies at the Aberdeen Royal Infirmary, is the first trial of its kind ever to be carried out in the UK.
Scotland is also responsible for many other groundbreaking life science discoveries, including MRI and CAT scanners, the discovery of p53 cancer suppressor gene, world-recognized research in diabetes and cancer, ReNeuron's stem cell trial for stroke patients, and the cloning of "Dolly" the sheep.
More than two dozen Scottish life science companies and research organizations will come together to showcase these discoveries among other recent life science developments at the 2012 BIO International Convention on June 18-21 in Boston.
"Scotland may be small in size, but we're big in bioscience," said Danny Cusick, President, Americas, of Scottish Development International. "Scotland is home to some of the world's leading life science companies and has the largest concentration of animal science-related expertise and more medical research per capita than any other country in Europe."
The University of Dundee and the University of St. Andrews are both ranked among the top 10 best international academic institutions for scientists. Little wonder that the University of Dundee and the Medical Research Council just announced more than $21 million in funding from a consortium of six of the world's leading pharmaceutical companies for continuing research on the development of new drug treatments of major global diseases.
Beyond the universities, Scotland is also investing heavily in infrastructure to support development of its life science sector. Case in point is the expansive new Edinburgh BioQuarter (EBQ), which just celebrated the opening of pioneering bio-medical facilities: The Scottish Centre for Regenerative Medicine and new bio-incubator building, Nine. The EBQ was designed to foster collaboration between Scottish researchers and global life science companies that is conducive to developing and commercializing new medical discoveries.
Likewise, a former Merck research facility in Scotland's Central Belt between Glasgow and Edinburgh, is being transformed into "BioCity Scotland" to foster the growth of life science and pharmaceutical companies.
Read the rest here:
From Cloning 'Dolly the Sheep' to Curing Blindness, Scotland is on the Forefront of Life Science Discoveries
Stem Cell Therapy for CMT – Gary B-part 1 – Video
By Dr. Matthew Watson
17-06-2012 02:12 Gary B. Stem Cell Therapy for CMT - For more info. visit
Read more here:
Stem Cell Therapy for CMT - Gary B-part 1 - Video
Genetic engineering for synthetic semiconductors – EE Times
By Dr. Matthew Watson
![]() EE Times | Genetic engineering for synthetic semiconductors EE Times Genetic engineering for synthetic semiconductors. ... SAN FRANCISCO--Genetic engineering could hold the key to artificially creating semiconductors in a lab. Artificial cells evolve proteins to structure semiconductorsArs Technica |
Source:
http://news.google.com/news?q=genetic-engineering&output=rss
BIO to Host China Day: Biotechnology in the Middle Kingdom: A … – MarketWatch (press release)
By Dr. Matthew Watson
![]() Mass High Tech | BIO to Host China Day: Biotechnology in the Middle Kingdom: A ... MarketWatch (press release) WASHINGTON, Jun 12, 2012 (BUSINESS WIRE) -- The Biotechnology Industry Organization (BIO) will host a special China Day program dedicated to exploring ... Need for biotech more critical than everMass High Tech Leadership Summit to Highlight the Commercial Potential of ...Business Wire (press release) 2012 BIO International Convention International Leadership Award ...PharmiWeb.com (press release) |
Source:
http://news.google.com/news?q=biotechnology&output=rss
Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing
By Dr. Matthew Watson
Tweet
A short and sweet note to point you to a great article on bioreactor technologies related to cell therapy bioprocessing by CTG consultant and Director of Stem Cell-based Drug Discovery, John E. Hambor, who you can now follow on Twitter @StemCellonDrugs."Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing" was published in the June issue of BioProcess International.
The BPI team has made a real and meaningful commitment to representing cell therapy bioprocessing and we applaud them for their contribution to this emerging discipline.
If this is a topic of interest to you, I recommend you also check out a conference being held this Fall by BPI's sister company, IBC LifeSciences, entitled "Cell Therapy BioProcessing" to be held September 11-12 in Arlington, Virginia.
$30 Million Round Attracts Strong Industry Interest; More Cash Coming?
By Dr. Matthew Watson
The California stem cell agency is
considering adding more cash to its upcoming $30 million award round
aimed at aiding projects that can complete – within the next four
years – a clinical trial for a therapy.
a Los Angeles bond financier, last month told agency directors that
there is "some real quality in the mix" among the firms
that have expressed initial interest. Depending on the judgment of
CIRM award reviewers later this year, Thomas said the board could
well be asked to increase the funding.
round has already exceeded expectations in terms of volume. CIRM told
the California Stem Cell Report that the agency has received
letters of intent from 37 enterprises, including 29 biotech
companies.
recommendations two years ago from an "external review"
panel that said that CIRM needed to do a better job of engaging the
biotech industry. The RFA for the round said the agency's intent is
to "enhance the likelihood that CIRM-funded projects will obtain
funding for phase III clinical trials" and attract additional
financing.
counsel and vice president for business development,, said in a news release earlier this spring,
“The Strategic Partnership Funding
Program represents a new era for CIRM, one that is increasingly
focused on moving therapies from the lab to the clinic, while still
recognizing the importance of maintaining investments in early stage
science,”
will provide grants or loans of up to $10 million to three
recipients. Applicants will have to match the size of the award. For
the first time, CIRM will also require applicants to demonstrate the
financial ability to carry the project forward.
Kevin McCormack said,
"We received 37 letters of intent
(LOIs), including 8 from non-profits and 29 from biotech companies.
Based on the information in the LOIs, and on discussions with
applicants, we were able to determine that some of the proposals were
for projects that were outside the scientific scope of the RFA and
that some of the applicants did not meet the minimum specified
criteria in the RFA for 'Commercial Validation.' We currently expect
to receive 10-15 applications for projects that appear to be
eligible."
review is scheduled for this fall by the directors' Intellectual
Property and Industry Subcommittee, which is co-chaired by
Stephen Juelsgaard, former executive vice president of Genentech,
and Duane Roth, CEO of CONNECT, a San Diego nonprofit
that supports technology and life sciences business development. The
others on the six-member panel are Chairman Thomas, Michael
Goldberg, a general partner at the MDV venture capital
firm, and two academics, Os Steward, chair and director of the
Reeve-Irvine Research Center for Spinal Cord Injury at UC
Irvine, and Susan Bryant, former vice chancellor for research,
also at UC Irvine.
validation says that applications must have "the financial
capacity to move the project through development or of being able to
attract the capital to do so. This may be evidenced by, for example,
(i) significant investment by venture capital firms, large
biotechnology or pharmaceutical companies and/or disease foundations;
(ii) a licensing and development agreement with a large biotechnology
or pharmaceutical company, or a commitment to enter into such an
agreement executed prior to the disbursement of CIRM funding; and/or
(iii) financial statements evidencing significant liquid assets."
reviews in September. The directors' Industry Subcommittee will meet
following the reviews. CIRM said funding would come no earlier than
January of next year.
Source:
http://californiastemcellreport.blogspot.com/feeds/posts/default?alt=rss
Finding on ‘Evil’ Stem Cells Boosts Stem Cell Agency PR
By Dr. Matthew Watson
is struggling to spread the word about its good deeds, made a bit of
progress last week when it was praised – not once but three times –
on a widely followed national media outlet.
![]() |
Jill Helms, Stanford photo |
Friday, the NPR program that is a favorite on PBS radio stations
around the country. It has 1.4 million listeners and 600,000 podcast downloads each week.
Stanford and a specialist in regenerative medicine, was the guest
last Friday. She talked about what Science Friday host Ira
Flatow called a "paradigm-shifting" finding that
cholestrol and fat are not the likely villains in clogging arteries.
Instead the villain is a stem cell – an evil one.
collaboration began as a result of a CIRM-sponsored meeting in Japan.
Although she and lead researcher Song Li, an associate professor of bioengineering at UC Berkeley, work nearly within shouting distance,
they had never met. She said,
![]() |
Zhenyu Tang (at microscope) examines vascular stem cells in culture along with Aijun Wang (left) and Song Li. UC Berkeley/Zoey Huang photo |
"Even though he works just across
the (San Francisco) Bay from me - I met him at a meeting in Japan
that was sponsored by the California Institute for Regenerative
Medicine, or CIRM, and they fund a lot of stem cell research in
California."
"I will tell you that cancer is
certainly a disease that looks very much like a stem cell gone out of
control. And so if we understand what normally regulates a stem
cell's behavior, then we gain some crucial insights into what
regulates maybe a cancer cell's behavior. It's that kind of approach
that I think that CIRM is largely funding initiatives to try to
target human diseases, the big ones, and the ones that make us all
sort of quake in our shoes, and attempt to come up with new
therapies."
"Most basic scientists that work
in stem cells and in the area of stem cell are trying as hard as
possible to move this into translational therapies, things that can
be used in humans. And, of course, CIRM, our funding institution, is
very adamant about this being the trajectory. So, you know, I'll be
taking a stab at it about five to seven years. I think that the
ability to rapidly screen existing drugs for their ability to target
this cell population is why we think that it might have a shorter
course to getting into humans."
received a grant from the stem cell agency nor is she even one of the
featured players in CIRM's many videos. Song Li does have a $1.3million grant from the agency.
what the agency needs if it is to sell its efforts, which are almost
totally ignored by the mainstream media. However, the Science Friday
audience consists almost entirely of "true believers" in
the virtues of science and research. If CIRM is to accomplish its
PR-communications-marketing goals it also has to reach the unwashed
heathens, who are, however, unlikely converts. But most importantly,
CIRM needs to persuade fence-sitters. All of which will require a
long, hard and sometimes frustrating campaign.
NIH and the United States Army. According to CIRM's research blog post
on Li's work, his team included two researchers who were
part of Berkeley’s CIRM-funded training program.
Source:
http://californiastemcellreport.blogspot.com/feeds/posts/default?alt=rss
BIO comes back – Boston.com
By Dr. Matthew Watson
![]() Boston Globe | BIO comes back Boston.com More than 15000 people arriving in Boston for the Biotechnology Industry Organization convention opening Monday will see a Massachusetts life sciences ... Marshall, spinoffs to be featured at biosciences conferenceWOWK Europe's biotech firms flocking to Bay StateBoston Globe Former Secretary of Health and Human Services to Lead Panel at ...PharmaLive.com (press release) CNBC.com -NECN -Huntington Herald Dispatch all 20 news articles » |
Source:
http://news.google.com/news?q=biotechnology&output=rss
Girl's stem cells used to make her a new vein
By Dr. Matthew Watson
1:00 AM Since the new vein was transplanted, the 10-year-old with blockage to her liver is much improved.
The Associated Press
LONDON - For the first time doctors have successfully transplanted a vein grown with a patient's own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girl's doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 3-inch section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girl's bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
"This is the future for tissue engineering, where we can make tailor-made organs for patients," said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the study's authors.
She and colleagues published the results of their work online Thursday in the medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary, and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing "acute pressures" on health systems that might make these treatments impractical for many patients.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Original post:
Girl's stem cells used to make her a new vein
Cell Therapeutics Appoints New Chief Medical Officer
By Dr. Matthew Watson
June 14, 2012, SEATTLE /PRNewswire/ -- Cell Therapeutics, Inc. ("CTI") (NASDAQ and MTA: CTIC), a company focused on translating science into novel cancer therapies, today announced that former OncoMed Pharmaceuticals executive, Steven E. Benner, M.D., M.H.S., has joined CTI as Executive Vice President and Chief Medical Officer ("CMO"), reporting to James A. Bianco, M.D., Chief Executive Officer. Dr. Benner will take over all drug development activities at the company.Dr. Benner was previously senior vice president and chief medical officer at OncoMed, a venture-backed biotechnology company focused on the development of cancer stem cell targeting agents. Prior to OncoMed, he was CMO at Protein Design Labs ("PDL"), where he was accountable for all development activities including clinical development, clinical operations, biometry, regulatory affairs, and safety. He also served as Chair of the Portfolio and Clinical Development Management Committees of PDL. Before PDL he held several senior executive roles at Bristol-Myers Squibb in global development, life cycle management, and licensing and alliances.
"Dr. Benner brings to CTI his proven track record of success in advancing the development of innovative therapies for cancer patients," said Dr. Bianco. "His appointment is the first step in re-aligning our portfolio efforts, as we focus on advancing pacritinib into Phase III pivotal studies later this year."
With the new company initiative of the planned Pixuvri launch in Europe later this year, Jack W. Singer, M.D., will assume the newly-created role of Executive Vice President ("EVP") of Global Medical Affairs and Translational Medicine, responsible for cancer drug development strategy, global medical affairs, and life cycle management.
"Given Jack's impressive academic credentials, the respect he receives from an international network of key opinion leaders in the field, and his track record in oncology drug development, this was a natural promotion as we introduce Pixuvri in Europe," said Dr. Bianco.
"CTI has assembled an impressive late-stage portfolio of novel targeted therapies that address a spectrum of blood related cancers," said Dr. Benner. "With two drugs in Phase III and two more expected to enter Phase III trials within a year, this is an exciting and transformational time to join the team at CTI."
About Pixuvri (pixantrone)Pixuvri is a novel aza-anthracenedione with unique structural and physio-chemical properties. Unlike related compounds,Pixuvri forms stable DNA adducts and in preclinical models has superior anti-lymphoma activity compared to related compounds. Pixuvri was structurally designed so that it cannot bind iron and perpetuate oxygen radical production or form a long-lived hydroxyl metabolite -- both of which are the putative mechanisms for anthracycline induced acute and chronic cardiotoxicity. These novel pharmacologic properties allow Pixuvri to be administered to patients with near maximal lifetime exposure to anthracyclines without unacceptable rates of cardiotoxicity, and, because Pixuvri is not a vesicant, allow it to be safely delivered via a peripheral intravenous catheter.
In May 2012 Pixuvri received conditional marketing authorization in the EU as monotherapy for the treatment of adult patients with multiply relapsed or refractory aggressive NHL. The benefit of pixantrone treatment has not been established in patients when used as fifth line or greater chemotherapy in patients who are refractory to last therapy.The Summary of Product Characteristics ("SmPC") has the full prescribing information, including the safety and efficacy profile of Pixuvri in the approved indication. The SmPC is available at http://ec.europa.eu/health/documents/communityregister/html/h764.htm#ProcList.
Pixuvri is currently available in the EU through Named Patient Programs.
Pixuvri does not have marketing approval in the United States.
About Conditional Marketing AuthorizationSimilar to accelerated approval regulations inthe United States, conditional marketing authorizations are granted in the EU to medicinal products with a positive benefit/risk assessmentthat address unmet medical needs and whose availability would result in a significant public health benefit. A conditional marketing authorization is renewable annually. Under the provisions of the conditional marketing authorization for Pixuvri, CTI will be required to complete a post-marketing study aimed at confirming the clinical benefit previously observed.
Go here to see the original:
Cell Therapeutics Appoints New Chief Medical Officer
Doctors make new vein with girl's own stem cells
By Dr. Matthew Watson
LONDONFor the first time doctors have successfully transplanted a vein grown with a patient's own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girl's doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 9-centimeter (3 1/2-inch) section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girl's bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
"This is the future for tissue engineering, where we can make tailor-made organs for patients," said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the study's authors.
She and colleagues published the results of their work online Thursday in the British medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing "acute pressures" on health systems that might make these treatments impractical for many patients.
Sumitran-Holgersson estimated the cost at between $6,000 and $10,000.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Patients with the girl's condition are usually treated with a vein transplant from their own leg, a donated vein, or a liver transplant. Those options can be complicated in children and using a donated vein or liver also requires taking anti-rejection medicines.
Read the rest here:
Doctors make new vein with girl's own stem cells
Abunda to try stem cell therapy for mom
By Dr. Matthew Watson
MANILA, Philippines -- "The Buzz" host Boy Abunda is going to Europe this weekend with his mother, who is suffering from dementia and Alzeimers disease.
In an interview with ABS-CBN News on Tuesday afternoon, Abunda said he will bring his mother to Germany to try stem cell therapy.
"Ako ay pupunta sa Europe hindi para magbakasyon. Dadalhin ko po ang aking ina para magpagamot sa Germany. Ito po 'yung fresh stem cell therapy. Maganda 'yung dini-diretso na dahil napag-uusapan ito," Abunda said.
While Abunda is in Germany, Kris Aquino will take his place on ABS-CBN's entertainment talk show "The Buzz."
In the interview, Abunda also said he's proud of Aquino, who's now open to doing extreme adventures, while continuing to be a good mother to her two sons.
"Ang daming nagbago kay Kris. May mga bagay na hindi ko inakala na gagawin ni Kris like 'yung diving, zipline at marami pang iba. Natutuwa ako that she has become more open to many things. She has become more adventurous. She has retained being the doting mother that she is pero mas malalim ang halakhak niya ngayon sa buhay. She's just so joyful. Natutuwa ako habang pinapanood ko ang kanyang adventure sa 'KrisTV,'" Abunda said.
Abunda said he's also hoping to do a new project with Aquino.
"I'm hoping na someday ay muli kaming magtagpo sa isang palabas dahil marami ang humihiling na kami ay magsama sa isang palabas. Sigurado ako sa puso ko na kami ay gagawa at gagawa dahil magkadugtong ang aming pusod," he said.
Read more from the original source:
Abunda to try stem cell therapy for mom
International Stem Cell Corporation Announces Marketing Plans for Its Wholly Owned Subsidiary Lifeline Skin Care
By Dr. Matthew Watson
CARLSBAD, Calif.--(BUSINESS WIRE)--
International Stem Cell Corporation (ISCO) (www.internationalstemcell.com) has announced new sales and marketing initiatives for its Lifeline Skin Care products (www.lifelineskincare.com). These efforts are designed to enable Lifeline to robustly, strategically and profitably grow the business.
Consumer Advertising
During June and July, new integrated advertising campaigns will be launched in three marketing channelsonline, in newspapers and magazines, and through direct mail. The campaigns will feature Lifelines innovative stem cell technology and proof of the brands potential: younger looking skin. Although the ads will eventually be national in reach, the first few months will be devoted to optimizing the creative approach, targeting, frequency, timing, positioning, offer and ROI.
Key Opinion Leader and Peer Group Influencer
Elizabeth K. Hale, MD, one of the nation's top dermatologists, is now endorsing Lifeline Skin Care to both consumer and trade audiences. Dr. Hale is an Associate Clinical Professor of Dermatology at New York University, a private practitioner and a guest of the Doctor Oz show, the Today Show and Good Morning America. During the week of June 4 she met with beauty editors for Prevention, Health, Town and Country, Allure, FoxNews.com and InStyle, to present Lifeline Skin Care and its unique technology. The endorsement of a leading dermatologist should not only enhance the credibility of the brand but increase its visibility.
Strategic Partners
Email campaigns through strategic partners have been very successful at marketing Lifeline products. To expand that effort, several new key opinion leaders have now agreed to endorse Lifeline Skin Care to their social networks, including Mrs. Jeri Thompson, a conservative spokesperson, radio and TV guest and advocate for non-embryonic stem cell research; and authors, experts and media personalities in the areas of women's health, yoga, cosmetic dentistry, and retirement planning. Many of these partners plan to market Lifeline through their social network (email marketing, blogs, Facebook, etc.) as well as through personal and radio appearances. Most of these campaigns will launch during the third quarter.
Professional Channels
During the week of June 12, Lifeline is launching two campaigns directed to 27,000 cosmetic dermatologists and day spas. These campaigns are focused on providing information to skin care professionals, including dermatologists and plastic surgeons, to understand and embrace the significance and value of stem cell extracts for skin rejuvenation.
Read the original:
International Stem Cell Corporation Announces Marketing Plans for Its Wholly Owned Subsidiary Lifeline Skin Care
HealthWatch:How to become a marrow donor
By Dr. Matthew Watson
COLUMBUS, Ga. --
Every year, thousands of people like Noah Hein are diagnosed with blood cancers such as leukemia. A bone marrow or cord blood transplant can save their lives. The patients who do not have a donor in their family, depend on the National Marrow Donor Program and its Be the Match Registry. At this donor drive in honor of Noah , Jimmy Dawes was the 100th person to walk in and join the registry.
I saw the story and read the story about Noah and it touched my heart personally because my father lost a battle with leukemia when I was 14 so it kind of hit home for me personally, says Dawes.
After filling out the paper work, you simply swab your cheeks. Doctors will be looking for a tissue match, specifically the human leukocyte antigen or HLA. HLAs are proteins, or markers found on most cells in your body.
Roderick Gunn works for the National Marrow Donor Program.
If your tissue type comes up as a match, you would then be asked to submit a blood sample, so we could do confirmatory testing to confirm that you are indeed the best possible match, says Gunn.
Then, after passing a physical exam,the transplant is scheduled. There are two ways to give. Peripheral blood stem cells or PBSC and marrow. Gunn says PBSC is used 80 percent of the time but the doctor chooses the best donation method for the patient. PBSC is similar to giving blood at a blood drive.
And they separate the stem cells from your blood while at the same time returning your blood back to you.
In marrow donation, the donor is anesthetized and a special needle is inserted into pelvic bone, and the marrow withdrawn.
Gunn says the program needs more minorities. He says its harder to match minority patients with donors because the pool is so small. He says often misinformation can keep people away from the program. One myth is its going to cost the donor too much money.
Read more here:
HealthWatch:How to become a marrow donor