NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting
By daniellenierenberg
--Poster presentation to showcase NGM Bio’s in vitro and in vivo research supporting development of NGM936, a ILT3 x CD3 bispecific T cell engager product candidate engineered to direct T cell-mediated killing of ILT3-positive cancer cells----Oral presentation from the lab of Dr. Fabiana Perna at the Indiana University School of Medicine to showcase research done in collaboration with NGM Bio demonstrating the rationale for the study of NGM936 for the treatment of patients with multiple myeloma--
See the rest here:
NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting
Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update
By daniellenierenberg
WALTHAM, Mass., Nov. 04, 2022 (GLOBE NEWSWIRE) -- CinCor Pharma, Inc. is re-issuing its earnings press release for the third quarter ended September 30, 2022, issued on November 3, 2022 at 8:00 am ET, to correct and clarify certain information contained in the quotation of the Chief Executive Officer. All other information remains unchanged.
Read the rest here:
Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update
Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core…
By daniellenierenberg
Data demonstrating nanomolar potency of core inhibitor ABI-4334 to disrupt the hepatitis B virus (HBV) life cycle at multiple points supports advancement into clinical studies
Here is the original post:
Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core...
CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver…
By daniellenierenberg
NEWARK, Calif., Nov. 04, 2022 (GLOBE NEWSWIRE) -- CymaBay Therapeutics, Inc. (NASDAQ: CBAY), a biopharmaceutical company focused on developing and providing access to innovative therapies for patients with liver and other chronic diseases, today announced encouraging seladelpar data in patients with primary biliary cholangitis (PBC) that are being presented at The Liver Meeting® of the American Association for the Study of Liver Diseases (AASLD), in Washington, DC (November 4th – 8th).
Read this article:
CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver...
Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference
By daniellenierenberg
Late-breaking abstract one of nine abstracts selected by SITC Communications Committee to be showcased at the SITC 2022 Press Conference
The rest is here:
Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference
Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection
By daniellenierenberg
Six-month outcomes are expected in second quarter of 2023 Six-month outcomes are expected in second quarter of 2023
See the rest here:
Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection
PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors
By daniellenierenberg
CRANBURY, N.J., Nov. 04, 2022 (GLOBE NEWSWIRE) -- PMV Pharmaceuticals, Inc. (Nasdaq: PMVP), a precision oncology company pioneering the discovery and development of small molecule, tumor-agnostic therapies targeting p53, today announced the appointment of Carol Gallagher, Pharm.D., to its Board of Directors. Dr. Gallagher brings more than 30 years of biotech leadership and expertise in drug development and commercialization. She replaces Thilo Schroeder, Ph.D., who is stepping down from the Board. The Board changes are effective immediately.
See the article here:
PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors
ORYZON to Give Updates on Corporate Progress in November
By daniellenierenberg
MADRID, Spain and BOSTON, Nov. 04, 2022 (GLOBE NEWSWIRE) -- Oryzon Genomics, S.A. (ISIN Code: ES0167733015, ORY), a clinical-stage biopharmaceutical company leveraging epigenetics to develop therapies in diseases with strong unmet medical need, announced today that its management will give an update on corporate progress at several international events in November.
More here:
ORYZON to Give Updates on Corporate Progress in November
Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver…
By daniellenierenberg
ALG-055009, a THR-? agonist drug candidate in development as a treatment for NASH, demonstrated dose-dependent reductions in several atherogenic lipids and a favorable pharmacokinetic profile in subjects with hyperlipidemia
See the article here:
Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver...
Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022
By daniellenierenberg
Data demonstrated treatment with TERN-501 resulted in time- and dose-dependent increases in sex hormone binding globulin (SHBG), a key marker linked to NASH histologic efficacy
Original post:
Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022
Skin Cell – The Definitive Guide | Biology Dictionary
By daniellenierenberg
Skin cells are the basic building blocks of the skin; a large, complex organ forms a protective barrier between our insides and the external environment. The most common type of skin cell is the keratinocyte, whose primary function is to form a tough, waterproof layer against UV radiation, harmful chemicals, and infectious agents.
However, the skin also contains highly specialized cells with important immunological, photoprotective, and sensory functions. The term skin cell, therefore, may refer to any of the four major types of cells found in the epidermis (or outer layer) of the skin.
The skin is the largest organ of the human body and has a range of vital functions in supporting survival. The primary function of the skin is to form a physical barrier between the internal environment of an organism and the outside world. This protects internal organs and structures from injury and infection.
The skin also helps to maintain homeostasis by preventing water loss and regulating body temperature. It protects organisms from the damaging effects of UV light and helps to produce vitamin D when exposed to the sun. Finally, the skin functions as a sensory organ, allowing us to perceive touch, temperature changes, and pain.
The skin can perform all of these functions thanks to the highly specialized cells that make up the epidermis (the outermost layer of the skin).
The skin consists of three major layers; the epidermis, the dermis, and the hypodermis (AKA the subcutaneous layer).
The epidermis is the outermost layer of the skin. This waterproof barrier protects the underlying skin layers and other internal structures from injury, UV damage, harmful chemicals, and infections by pathogens such as bacteria, viruses, and fungi. The thickness of the epidermis varies between different parts of the body. In the thin, delicate skin of the eyelids, the epidermis is only around 0.5 mm thick, whereas the more resilient skin of the palms and feet is about 1.5 mm thick.
The dermis is found directly beneath the epidermis and is the thickest of the three skin layers. This layer contains a complex network of specialized structures, including blood vessels, lymph vessels, sweat glands, hair follicles, sebaceous glands, and nerve endings. It also contains collagen and elastin, which are structural proteins that make skin strong and flexible. The main functions of the dermis are to deliver oxygen and nutrients to the epidermis and to help regulate body temperature.
The hypodermis (or subcutaneous layer) is the fatty, innermost layer of the skin. It consists mainly of fat cells and functions as an insulating layer that helps to regulate internal body temperature. The hypodermis also acts as a shock absorber that protects the internal organs from injury.
The term skin cell may refer to any of the four main types of cells found in the epidermis. These are keratinocytes, melanocytes, Langerhans cells, and Merkel cells. Each type of skin cell has a unique role that contributes to the overall structure and function of the skin.
Keratinocytes are the most abundant type of skin cell found in the epidermis and account for around 90-95% of the epidermal cells.
They produce and store a protein called keratin, a structural protein that makes skin, hair, and nails tough and waterproof. The main function of the keratinocytes is to form a strong barrier against pathogens, UV radiation, and harmful chemicals, while also minimizing the loss of water and heat from the body.
Keratinocytes originate from stem cells in the deepest layer of the epidermis (the basal layer) and are pushed up through the layers of the epidermis as new cells are produced. As they migrate upwards, keratinocytes differentiate and undergo structural and functional changes.
The stratum basal (or basal layer) is where keratinocytes are produced by mitosis. Cells in this layer of the epidermis may also be referred to as basal cells. As new cells are continually produced, older cells are pushed up into the next layer of the epidermis; the stratum spinosum.
In the stratum spinosum (or squamous cell layer), keratinocytes take on a spiky appearance and are known as spinous cells or prickle cells. The main function of this epidermal layer is to maintain the strength and flexibility of the skin.
Next, the keratinocytes migrate to the stratum granulosum. Cells in this layer are highly keratinized and have a granular appearance. As they move closer to the surface of the skin, keratinocytes begin to flatten and dry out.
By the time keratinocytes enter the stratum lucidum (AKA the clear layer), they have flattened and died, thanks to their increasing distance from the nutrient-rich blood supply of the stratum basal. The stratum corneum (the outermost layer of the epidermis) is composed of 10 30 layers of dead keratinocytes that are constantly shed from the skin. Keratinocytes of the stratum corneum may also be referred to as corneocytes.
Melanocytes are another major type of skin cell and comprise 5-10% of skin cells in the basal layer of the epidermis.
The main function of melanocytes is to produce melanin, which is the pigment that gives skin and hair its color. Melanin protects skin cells against harmful UV radiation and is produced as a response to sun exposure. In cases of continuous sun exposure, melanin will accumulate in the skin and cause it to become darker i.e., a suntan develops.
Langerhans cells are immune cells of the epidermis and play an essential role in protecting the skin against pathogens. They are found throughout the epidermis but are most concentrated in the stratum spinosum.
Langerhans cells are antigen-presenting cells and, upon encountering a foreign pathogen, will engulf and digest it into protein fragments. Some of these fragments are displayed on the surface of the Langerhans cell as part of its MHCI complex and are presented to nave T cells in the lymph nodes. The T cells are activated to launch an adaptive immune response, and effector T cells are deployed to find and destroy the invading pathogen.
Merkel cells are found in the basal layer of the epidermis and are especially concentrated in the palms, finger pads, feet, and undersides of the toes. They are positioned very close to sensory nerve endings and are thought to function as touch-sensitive cells. Merkel cells allow us to perceive sensory information (such as touch, pressure, and texture) from our external environment.
Continued here:
Skin Cell - The Definitive Guide | Biology Dictionary
What is a stem cell? YourGenome
By daniellenierenberg
What is a stem cell? What is a stem cell?
An illustration showing a stem cell giving rise to more stem cells or specialised cells.Image credit: Genome Research Limited
An illustration showing different types of stem cell in the body.Image credit: Genome Research Limited
A scientist here at the Wellcome Genome Campus working on induced pluripotant stem cells.Image credit: Genome Research Limited
These heart cells were grown from stem cells in a petri dish and can be used to study the beating rhythm of the heart.Image credit: The McEwen Centre for Regenerative Medicine, University Health Network
An illustration showing how stem cells can be used to produce retinal pigment epithelium (RPE) cells that can be used to treat patients with age-related macular degeneration (AMD).Image credit: Genome Research Limited
This page was last updated on 2021-07-21
How has the site influenced you (or others)?
Thankyou, we value your feedback!
If you have any other comments or suggestions, please let us know at comment@yourgenome.org
Can you spare 5-8 minutes to tell us what you think of this website? Open survey
Read the original post:
What is a stem cell? YourGenome
Explora Journeys Plans Extensive Fitness And Well-Being Initiatives At Sea, Right On Trend – Forbes
By daniellenierenberg
Explora Journeys Plans Extensive Fitness And Well-Being Initiatives At Sea, Right On Trend Forbes
Go here to read the rest:
Explora Journeys Plans Extensive Fitness And Well-Being Initiatives At Sea, Right On Trend - Forbes
First U.S. patient receives autologous stem cell therapy to treat dry …
By daniellenierenberg
Media Advisory
Wednesday, August 31, 2022
At the National Institutes of Health, a surgical team successfully implanted a patch of tissue made from patient cells with the goal of treating advanced dry age-related macular degeneration (AMD), also known as geographic atrophy. Dry AMD is a leading cause of vision loss among older Americans and currently has no treatment.
The patient received the therapy as part of a clinical trial that is the first in the United States to use replacement tissues from patient-derived induced pluripotent stem (iPS) cells. The surgery was performed by Amir H. Kashani, M.D., Ph.D., associate professor of ophthalmology, Wilmer Eye Institute, Johns Hopkins School of Medicine with assistance by Shilpa Kodati, M.D., staff clinician, NEI. The procedure was performed at the NIH Clinical Center in Bethesda, Maryland, under a phase 1/2a clinical trial to determine the therapys safety.
This iPS cell derived therapy was developed by the Ocular and Stem Cell Translational Research Section team led by Kapil Bharti, Ph.D., senior investigator at the National Eye Institute (NEI), part of NIH, in collaboration with FUJIFILM Cellular Dynamics Inc., and Opsis Therapeutics, based in Madison, Wisconsin. Safety and efficacy of this cell therapy was tested by the NEI preclinical team. Clinical-grade manufacturing of this cell therapy was performed at the Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, NIH.
This surgery is the culmination of 10 years of research and development at the NEI. In the NIH lab, the patients blood cells were converted to iPS cells, which can become almost any type of cell in the body. In this case, they were programmed to become retinal pigment epithelial (RPE) cells, the type of cell that degenerates in the advanced forms of dry AMD. RPE cells nourish and support light-sensing photoreceptors in the retina. In AMD, the loss of RPE leads to the loss of photoreceptors, which causes vision loss. This work was supported by the NIH Common Fund and NEI Intramural funding.
Kapil Bharti, Ph.D., senior investigator, Ocular and Stem Cell Translational Research Section, NEI
Brian Brooks, M.D., Ph.D., chief, Ophthalmic Genetics and Visual Function Branch, NEI
To schedule interviews with Drs. Bharti and Brooks, contact NEI at neinews@nei.nih.gov
NIH launches first U.S. clinical trial of patient-derived stem cell therapy to replace and repair dying cells in retina (News release)
NIH researchers rescue photoreceptors, prevent blindness in animal models of retinal degeneration (News release)
Autologous Transplantation of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for Geographic Atrophy Associated with Age-Related Macular Degeneration (Clinical trial information)
About the NEI: NEI leads the federal governments efforts to eliminate vision loss and improve quality of life through vision researchdriving innovation, fostering collaboration, expanding the vision workforce, and educating the public and key stakeholders. NEI supports basic and clinical science programs to develop sight-saving treatments and to broaden opportunities for people with vision impairment. For more information, visit https://www.nei.nih.gov.
About the National Institutes of Health (NIH):NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.
NIHTurning Discovery Into Health
###
Go here to see the original:
First U.S. patient receives autologous stem cell therapy to treat dry ...
Learn How to Donate Bone Marrow | Be The Match
By daniellenierenberg
Join Be The Match Registry
The first step to being someone's cure is to join Be The Match Registry. If you are between the ages of 18-40, committed to donating to any patient in need, and meet the health guidelines, there are two ways to join.
Join in-person at a donor registry drive in your community.Be The One to Save a Life
Find a donor registry drive
Or join online today:
Join online
If you are between the ages of 18 and 35 patients especially need you. Research shows that cells from younger donors lead to more successful transplants. Doctors request donors in the 18-35 age group nearly 75% of the time.
Under 18 years old? Click here to sign up for the Under 18 Pre-Registry. You will receive information about ways to stay involved with our life-saving mission and a reminder to join when you're eligible.
There are many other ways you can be the cure for patients with blood cancers.
Check outFAQs about donationor call us at 1 (800) MARROW2 for more information about bone marrow donation.
Stem Cell Transplantation Program – DanaFarber Cancer Institute
By daniellenierenberg
Stem cell/bone marrow transplant offers some patients with blood cancers and blood disorders the possibility of a cure, and others a longer period of disease-free survival. Founded in 1972, our Adult Stem Cell Transplant Program is one of the largest and most experienced in the world.
Our stem cell/bone marrow transplant program performs approximately 500 transplants each year and has performed more than 11,180 transplants in the programs history. This includes more than 5,500 allogeneic transplants and more than 5,100 autologous transplants. This experience makes a difference for our patients.
Our patients' outcomes regularly exceed expected outcomes as established by the Center for International Blood and Marrow Transplant Research, which reports and analyzes outcomes for recipients of allogeneic hematopoietic stem cell transplant. In the most recent report (2020), only 10% of centers achieved this outcome level. Dana-Farber Brigham Cancer Center was the largest center to achieve this outcome.
Stem cell/bone marrow transplant can be an effective treatment for a variety of hematologic malignancies, bone marrow failure syndromes, and rare and congenital blood disorders. We are experienced in stem cell transplant for a variety of hematologic malignancies, bone marrow failure syndromes, and rare and congenital blood disorders. This includes:
We perform both autologous and allogeneic stem cell/bone marrow transplants.
For allogeneic patients (i.e., those requiring donor stem cells), we offer:
Reduced-intensity transplants use lower doses of chemotherapy and have been a major factor in extending stem cell/bone marrow transplants for older adults up into their 70s. Our program has transplanted more than 5,000 patients over 55 years old. Our Older Adult Hematologic Malignancies Program provides dedicated support for older patients.
From exceptional medical care to support with housing and other logistics, we offer many services to international patients:
Learn more about international referrals and services.
Original post:
Stem Cell Transplantation Program - DanaFarber Cancer Institute
Ahead of the holiday shopping season, Amazon kicks off second annual Holiday Beauty Haul on Oct. 24 – KXAN.com
By daniellenierenberg
Ahead of the holiday shopping season, Amazon kicks off second annual Holiday Beauty Haul on Oct. 24 KXAN.com
Follow this link:
Ahead of the holiday shopping season, Amazon kicks off second annual Holiday Beauty Haul on Oct. 24 - KXAN.com
BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH – Yahoo Finance
By daniellenierenberg
BORDEAUX, France, Oct. 11, 2022 /PRNewswire/ --TreeFrog Therapeutics,a biotechnology company developing stem cell-derived therapies in regenerative medicine and immuno-oncology based on the biomimetic C-Stemtechnology platform, and Invetech, a global leader in the development and production ofautomated manufacturing solutionsfor cell and advanced therapies, today announced the delivery of a GMP-grade cell encapsulation device using the C-Stemtechnology. The machine will be transferred in 2023 to a contract development and manufacturing organization (CDMO) to produce TreeFrog's cell therapy candidate for Parkinson's disease, with the aim of a first-in-human trial in 2024.Over 2023, Invetech will deliver three additional GMP encapsulation devices to support TreeFrog's in-house and partnered cell therapy programs in regenerative medicine and immuno-oncology.
TreeFrogs C-Stem technology generates alginate capsules seeded with induced pluripotent stem cells (iPSCs) at very high speed. Engineered to mimic the in vivo stem cell niche, the capsules allow iPSCs to grow exponentially in 3D, and to differentiate into ready-to-transplant functional microtissues.
Blending microfluidics and stem cell biology, TreeFrog's C-Stemtechnology generates alginate capsules seeded with induced pluripotent stem cells (iPSCs) at very high speed. Engineered to mimic the in vivo stem cell niche, the capsules allow iPSCs to grow exponentially in 3D, and to differentiate into ready-to-transplant functional microtissues. And because alginate is both porous and highly resistant, encapsulated iPSCs can be expanded and differentiated in large-scale bioreactors without suffering from impeller-induced shear stress.
"TreeFrog Therapeutics introduces a breakthrough technology for cell therapy, which impacts scale, quality, as well as the efficacy and safety potential of cellular products. Automating this disruptive technology and turning it into a robust GMP-grade instrument is a tremendous achievement for our team. This deliverable is the result of a very fruitful and demanding collaboration with TreeFrog's engineers in biophysics and bioproduction over the past four years. We're now eager to learn how the neural microtissues produced with C-Stemwill perform in the clinic." Anthony Annibale, Global VP Commercial at Invetech.
Started in 2019, the collaboration between TreeFrog and Invetech led to the delivery of a prototype in October 2020. With this research-grade machine, TreeFrog demonstrated the scalability of C-Stem, moving within six months from milliliter-scale to 10-liter bioreactors. In June 2021, the company announced the production of two single-batches of 15 billion iPSCs in 10L bioreactors with an unprecedented 275-fold amplification per week, striking reproducibility and best-in-class cell quality. The new GMP-grade device delivered by Invetech features the same technical specifications. The machine generates over 1,000 capsules per second, allowing to seed bioreactors from 200mL to 10L. However, the device was entirely redesigned to fit bioproduction standards.
"With the GMP device, our main challenge was to minimize the learning curve for operators, so as to facilitate tech transfer. Invetech and our team did an outstanding job in terms of automation and industrial design to make the device both robust and easy to use. As an inventor, I am so proud of the journey of the C-Stemtechnology. Many elements have been changed and improved on the way, and now comes the time to put the platform in the hands of real-world users to make real products." Kevin Alessandri, Ph.D., co-founder and chief technology officer, TreeFrog Therapeutics
"In October 2020, we announced that we were planning for the delivery of a GMP encapsulation device by the end of 2022. Exactly two years after, we're right on time. I guess this machine testifies to the outstanding execution capacity of TreeFrog and Invetech. But more importantly, this machine constitutes a key milestone. Our platform can now be used to manufacture clinical-grade cell therapy products. Our plan is to accelerate the translation of our in-house and partnered programs to the clinic, with a focus on immuno-oncology and regenerative medicine applications." Frederic Desdouits, Ph.D., chief executive officer, TreeFrog Therapeutics
About Invetech
Invetech helps cell and gene therapy developers to visualize, strategize and manage the future. With proven processes, expert insights and full-spectrum services, we swiftly accelerate life-changing therapies from the clinic to commercial-scale manufacturing. Through our ready-to-run, preconfigured systems, our custom and configurable technology platforms and automated production systems, we assure predictable, reproducible products of the highest quality and efficacy. Our integrated approach brings together biological scientists, engineers, designers and program managers to deliver successful, cost-effective market offerings to more people, more quickly. Working in close collaboration with early-stage and mature life sciences companies, we are committed to advancing the next generation of vital, emerging therapies to revolutionize healthcare and precision medicine.invetechgroup.com
About TreeFrog Therapeutics
TreeFrog Therapeutics is a French-based biotech company aiming to unlock access to cell therapies for millions of patients. Bringing together over 100 biophysicists, cell biologists and bioproduction engineers, TreeFrog Therapeutics raised $82M over the past 3 years to advance a pipeline of stem cell-based therapies in immuno-oncology and regenerative medicine. In 2022, the company opened technological hubs in Boston, USA, and Kobe, Japan, with the aim of driving the adoption of the C-Stemplatform and establish strategic alliances with leading academic, biotech and industry players in the field of cell therapy.www.treefrog.fr
Media ContactsPierre-Emmanuel GaultierTreeFrog Therapeutics+ 33 6 45 77 42 58pierre@treefrog.fr
Marisa ReinosoInvetech+1 858 437 1061marisa.reinoso@invetechgroup.com
TreeFrog Therapeutics is a French-based biotech company aiming to unlock access to cell therapies for millions of patients. Bringing together over 100 biophysicists, cell biologists and bioproduction engineers, TreeFrog Therapeutics raised $82M over the past 3 years to advance a pipeline of stem cell-based therapies in immuno-oncology and regenerative medicine.
Invetech logo (PRNewsFoto/Invetech)
Cision
View original content to download multimedia:https://www.prnewswire.com/news-releases/breakthrough-technology-for-ips-derived-cell-therapies-turned-into-gmp-platform-by-treefrog-therapeutics--invetech-301645370.html
SOURCE Invetech; Treefrog Therapeutics
View original post here:
BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH - Yahoo Finance
A CRISPR Alternative for Correcting Mutations That Sensitize Cells to DNA Damage – The Scientist
By daniellenierenberg
Fanconi anemia is a rare genetic disease in which essential DNA repair pathway genes are mutated, disrupting the DNA damage response. Patients with Fanconi anemia experience hematological complications, including bone marrow failure, and are predisposed to cancer. The only curative therapy for the hematological symptoms of Fanconi anemia is an allogeneic hematopoietic stem cell transplant, in which a patient receives healthy stem cells from a donor. While this may cure or prevent some of the diseases complications, stem cell transplantation can cause additional difficulties, including graft-versus-host disease (GvHD) and exacerbated cancer risk.1
There is growing interest in applying genome editing technologies like CRISPR-Cas9 to correct Fanconi anemia mutations in patient-derived cells for autologous transplants, in which corrected stem cells are given back to the patient. However, this disease poses a unique challenge: How do you apply a genome editing technique in cells that are particularly sensitive to DNA damage? Fanconi anemia cells cannot resolve the double-strand breaks that conventional CRISPR-Cas9 gene editing creates in the target DNA, which prevents researchers from effectively correcting disease-causing mutations with this method.
In a study published in International Journal of Molecular Science, a research team at the University of Minnesota led by Branden Moriarity and Beau Webber used Cas9-based tools called base editors (BEs) to edit genes in Fanconi anemia patient-derived cells without inducing double-strand DNA damage.2 BEs are fusion proteins made of a Cas9 enzyme that cleaves target DNA (nCas9) and a deaminase that converts cytidine to uridine (cytosine base editor, CBE) or adenosine to inosine (adenosine base editor, ABE). During DNA replication or repair, sites targeted by a BE are rewritten as thymine in the case of CBEs, or guanine with ABEs.
Although base editors do not induce double-strand breaks, they still nick the DNA and trigger a DNA repair response. Because of this, the researchers first examined if CBEs and ABEs would work on non-Fanconi anemia genes in patient-derived cells. There was that mystery, you know, because [Fanconi anemia patient cells are] DNA repair deficient. So we weren't surewe thought maybe it would work, but not as well as a normal cell. But indeed, it works on the same level, basically. So that was pretty exciting, Moriarity explained.
The research team then demonstrated that CBEs and ABEs can correct Fanconi anemia-causing mutations in the FANCA gene in primary patient fibroblast and lymphoblastoid cell lines. Base editing restored FANCA protein expression and improved the ability of the patient-derived cells to grow in the presence of a DNA damaging chemical. Additionally, in culture, fibroblasts with corrected FANCA mutations outgrew cells in which the base editing failed. Finally, the researchers assessed if BEs could correct mutations in different Fanconi anemia genes. Using an algorithm, they predicted that most Fanconi anemia mutations were correctable either by BEs or by another nCas9-fusion technology called prime editing (PE), which is capable of large genetic insertions and deletions.
This work comes on the heels of a preprint from another research group at The Centre for Energy, Environmental and Technological Research and ETH Zurich, who investigated ABEs in patient blood cell lines. This group also effectively targeted Fanconi anemia genes with BE technology, and their investigation went one step further: they corrected mutations in patient-derived hematopoietic stem cells.3This was something that Moriarity and Webber were unable to dobecause the disease is a bone marrow failure syndrome, these cells are scarce. Basically, these patients do not have stem cells, explains Annarita Miccio, a senior researcher and lab director at Institute Imagine of Paris Cit University, who was not involved in either study. These are very challenging experiments, and more than the experiments, the challenge of [treating] Fanconi anemia is exactly thatthe number of cells.
Despite this challenge, the researchers have laid the groundwork for genome editing as a treatment approach in Fanconi anemia, without the need for double-strand DNA breaks. I think the study we did is a good, solid proof of concept, and sets the stage for the next steps, but certainly, it's not the end of the story, said Webber.
References
Follow this link:
A CRISPR Alternative for Correcting Mutations That Sensitize Cells to DNA Damage - The Scientist
Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Ma – Benzinga
By daniellenierenberg
Dublin, Oct. 11, 2022 (GLOBE NEWSWIRE) -- The "Stem Cell Manufacturing Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022-2027" report has been added to ResearchAndMarkets.com's offering.
The global stem cell manufacturing market size reached US$ 11.2 Billion in 2021. Looking forward, the publisher expects the market to reach US$ 18.59 Billion by 2027, exhibiting a CAGR of 8.81% during 2021-2027.
Stem cells are undifferentiated or partially differentiated cells that make up the tissues and organs of animals and plants. They are commonly sourced from blood, bone marrow, umbilical cord, embryo, and placenta. Under the right body and laboratory conditions, stem cells can divide to form more cells, such as red blood cells (RBCs), platelets, and white blood cells, which generate specialized functions.
They are widely used for human disease modeling, drug discovery, development of cell therapies for untreatable diseases, gene therapy, and tissue engineering. Stem cells are cryopreserved to maintain their viability and minimize genetic change and are consequently used later to replace damaged organs and tissues and treat various diseases.
Stem Cell Manufacturing Market Trends:
The global market is primarily driven by the increasing venture capital (VC) investments in stem cell research due to the rising awareness about the therapeutic potency of stem cells. Apart from this, the widespread product utilization in effective disease management, personalized medicine, and genome testing applications are favoring the market growth. Additionally, the incorporation of three-dimensional (3D) printing and microfluidic technologies to reduce production time and lower cost by integrating multiple production steps into one device is providing an impetus to the market growth.
Furthermore, the increasing product utilization in the pharmaceutical industry for manufacturing hematopoietic stem cells (HSC)- and mesenchymal stem cells (MSC)-based drugs for treating tumors, leukemia, and lymphoma is acting as another growth-inducing factor.
Moreover, the increasing product application in research applications to produce new drugs that assist in improving functions and altering the progress of diseases is providing a considerable boost to the market. Other factors, including the increasing usage of the technique in tissue and organ replacement therapies, significant improvements in medical infrastructure, and the implementation of various government initiatives promoting public health, are anticipated to drive the market.
Key Players
Key Questions Answered in This Report:
Key Market Segmentation
Breakup by Product:
Breakup by Application:
Breakup by End User:
Breakup by Region:
Key Topics Covered:
1 Preface
2 Scope and Methodology
3 Executive Summary
4 Introduction
5 Global Stem Cell Manufacturing Market
6 Market Breakup by Product
7 Market Breakup by Application
8 Market Breakup by End User
9 Market Breakup by Region
10 SWOT Analysis
11 Value Chain Analysis
12 Porters Five Forces Analysis
13 Price Analysis
14 Competitive Landscape
For more information about this report visit https://www.researchandmarkets.com/r/5iujo7
Original post:
Stem Cell Manufacturing Global Market Report 2022: Widespread Product Utilization in Effective Disease Ma - Benzinga