Page 111«..1020..110111112113..120130..»

Exosome Therapeutic Market 2020 to Show Tremendous Growth | Leading Players evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United…

By daniellenierenberg

Global Exosome Therapeutic Market report is of huge importance when it is about building business strategy by identifying the high growth and attractive market categories. This report assists to design capital investment strategies based on forecasted high potential segments. With this market report, it becomes simple and easy to develop competitive strategy based on competitive landscape. Moreover, potential business partners, acquisition targets and business buyers can be identified by using this Exosome Therapeutic Market research report. To plan for a new product launch and inventory in advance, this business report provides several useful insights.

Get Sample PDF (including COVID19 Impact Analysis) of Market Report @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&rp

Market Analysis and Insights:Global Exosome Therapeutic Market

Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.

The major players covered in the Exosome Therapeutic Market report are evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global. Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.

Get Full TOC, Tables and Figures of Market Report @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&rp

Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.

Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.

Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.

This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.

Global Exosome Therapeutic Market Scope and Market Size

Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.

Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.

Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.

Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.

Based on source, the market is segmented into dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, urine and others. Mesenchymal stem cells are dominating in the market because mesenchymal stem cells (MSCs) are self-renewable, multipotent, easily manageable and customarily stretchy in vitro with exceptional genomic stability. Mesenchymal stem cells have a high capacity for genetic manipulation in vitro and also have good potential to produce. It is widely used in treatment of inflammatory and degenerative disease offspring cells encompassing the transgene after transplantation.

Based on therapy, the market is segmented into immunotherapy, gene therapy and chemotherapy. Chemotherapy is dominating in the market because chemotherapy is basically used in treatment of cancer which is major public health issues. The multidrug resistance (MDR) proteins and various tumors associated exosomes such as miRNA and IncRNA are include in in chemotherapy associated resistance.

Based on transporting capacity, the market is segmented into bio macromolecules and small molecules. Bio macromolecules are dominating in the market because bio macromolecules transmit particular biomolecular information and are basically investigated for their delicate properties such as biomarker source and delivery system.

Based on application, the market is segmented into oncology, neurology, metabolic disorders, cardiac disorders, blood disorders, inflammatory disorders, gynecology disorders, organ transplantation and others. Oncology segment is dominating in the market due to rising incidence of various cancers such as lung cancer, breast cancer, leukemia, skin cancer, lymphoma. As per the National Cancer Institute, in 2018 around 1,735,350 new cases of cancer was diagnosed in the U.S. As per the American Cancer Society Inc in 2019 approximately 268,600 new cases of breast cancer diagnosed in the U.S.

Based on route of administration, the market is segmented into oral and parenteral. Parenteral route is dominating in the market because it provides low drug concentration, free from first fast metabolism, low toxicity as compared to oral route as well as it is suitable in unconscious patients, complicated to swallow drug etc.

The exosome therapeutic market, by end user, is segmented into hospitals, diagnostic centers and research & academic institutes. Hospitals are dominating in the market because hospitals provide better treatment facilities and skilled staff as well as treatment available at affordable cost in government hospitals.

Exosome therapeutic Market Country Level Analysis

The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.

The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.

Country Level Analysis, By Type

North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.

The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.

Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration

Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.

Competitive Landscape and Exosome Therapeutic Market Share Analysis

Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.

Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.

For instance,

Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.

Customization Available:Global Exosome Therapeutic Market

Data Bridge Market Researchis a leader in advanced formative research. We take pride in servicing our existing and new customers with data and analysis that match and suits their goal. The report can be customised to include price trend analysis of target brands understanding the market for additional countries (ask for the list of countries), clinical trial results data, literature review, refurbished market and product base analysis. Market analysis of target competitors can be analysed from technology-based analysis to market portfolio strategies. We can add as many competitors that you require data about in the format and data style you are looking for. Our team of analysts can also provide you data in crude raw excel files pivot tables (Factbook) or can assist you in creating presentations from the data sets available in the report.

Do You Have Any Query Or Specific Requirement? Ask to Our Industry Expert @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&rp

About Data Bridge Market Research :

Data Bridge Market Researchis a versatile market research and consulting firm with over 500 analysts working in different industries. We have catered more than 40% of the fortune 500 companies globally and have a network of more than 5000+ clientele around the globe. Our coverage of industries include Medical Devices, Pharmaceuticals, Biotechnology, Semiconductors, Machinery, Information and Communication Technology, Automobiles and Automotive, Chemical and Material, Packaging, Food and Beverages, Cosmetics, Specialty Chemicals, Fast Moving Consumer Goods, Robotics, among many others.

Data Bridge adepts in creating satisfied clients who reckon upon our services and rely on our hard work with certitude.We are content with our glorious 99.9 % client satisfying rate.

Contact Us :

Data Bridge Market Research

US: +1 888 387 2818

UK: +44 208 089 1725

Hong Kong: +852 8192 7475

Mail:[emailprotected]

Go here to see the original:
Exosome Therapeutic Market 2020 to Show Tremendous Growth | Leading Players evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United...

To Read More: Exosome Therapeutic Market 2020 to Show Tremendous Growth | Leading Players evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United…
categoriaSkin Stem Cells commentoComments Off on Exosome Therapeutic Market 2020 to Show Tremendous Growth | Leading Players evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United… | dataJune 13th, 2020
Read All

EHA25Virtual: Combined Irradiation and Chemotherapy Better Prepares Children for Stem Cell Transplantation than Chemotherapy Alone – P&T Community

By daniellenierenberg

THE HAGUE, Netherlands, June 12, 2020 /PRNewswire/ -- Treatment of childhood cancer is a success story, particularly for acute lymphoblastic leukemia (ALL). More than 90% of ALL patients below 18 years of age are rescued with contemporary chemotherapy. However, the remaining 10% have resistant or reoccurring leukemia and require alternative treatment regimens. One of the most powerful leukemia therapies is hematopoietic stem cell transplantation from a donor (allogeneic HSCT). Approximately 50-80% of pediatric ALL patients that receive allogeneic HSCT are cured, 20% experience leukemic reoccurrence (relapse), and 10% die from complications.

Allogeneic HSCT is a multistep procedure:

For high-risk leukemia, the gold standard conditioning procedure is a combination of total body irradiation (TBI) and high dose chemotherapy. This approach is very effective in controlling leukemia in the conditioning step, but patients may experience highly negative consequences of this procedure later in life: sterility, growth retardation, lung problems, and secondary cancer.

Therefore, a large consortium of pediatric transplant experts initiated a global study to investigate whether chemotherapy-based conditioning could substitute TBI. The study is called FORUM (For Omitting Radiation Under Majority Age) and had to be stopped because chemotherapy-based conditioning had significantly poorer outcomes (i.e., lower overall survival rates) than the combination of TBI and chemotherapy. The researchers will now perform prospective monitoring to better define the advantages and limitations of various conditioning approaches.

Presenter:Dr Christina PetersAffiliation:Stem Cell Transplantation Unit, St. Anna Children's Hospital, Vienna, AustriaAbstract:#S102 TBI OR CHEMOTHERAPY BASED CONDITIONING FOR CHILDREN AND ADOLESCENTS WITH ALL: A PROSPECTIVE RANDOMIZED MULTICENTER-STUDY "FORUM" ON BEHALF OF THE AIEOP-BFM-ALL-SG, IBFM-SG, INTREALL-SG AND EBMT-PD-WP

Embargo: Please note that our embargo policy applies to all selected abstracts in the Press Briefings. For more information click here.

Logo - http://mma.prnewswire.com/media/622259/EHA_Logo.jpg

See the original post here:
EHA25Virtual: Combined Irradiation and Chemotherapy Better Prepares Children for Stem Cell Transplantation than Chemotherapy Alone - P&T Community

To Read More: EHA25Virtual: Combined Irradiation and Chemotherapy Better Prepares Children for Stem Cell Transplantation than Chemotherapy Alone – P&T Community
categoriaBone Marrow Stem Cells commentoComments Off on EHA25Virtual: Combined Irradiation and Chemotherapy Better Prepares Children for Stem Cell Transplantation than Chemotherapy Alone – P&T Community | dataJune 13th, 2020
Read All

Westerleigh resident is alive because of stem cell therapy by his doctor — for free. Heres his story. – SILive.com

By daniellenierenberg

Stephen Raffone had difficulty breathing. He coughed up sputum and was wheezing. Doctors told him he had chronic obstructive pulmonary disease (COPD), a condition that causes blocked airflow from the lungs.

As a result, he was being treated for stage 4 COPD.

His doctor was also treating him for cellulitis, an inflammatory and painful bacterial skin infection where extremities appear red and swollen and the area can feel hot and tender to the touch, as well as poor circulation.

My legs were beginning to get ulcerated and they were breaking down, said Raffone.

He was administered the Roman Catholic Churchs Last Rites three times several years ago when he was a patient in Richmond University Medical Center.

Raffone, who is now 63, was in need of a lung transplant.

He was a heavy smoker and it took its toll. However, because he was in a weakened state due to other serious health conditions, doctors told him hed never survive the surgery.

The Westerleigh resident, who has been in need of 24-hour care for the last several years, requires the assistance of two nurses who rotate 12-hour shifts.

One, a close family friend, suggested Raffone see a medical specialist who performs stem cell therapy, a procedure where the patients own stem cells are removed, treated and returned to his or her own body after a conditioning regimen.

She contacted Dr. Alexandre M. Scheer of Scheer Medical Wellness and he agreed to see Raffone.

Dr. Alexandre M. Scheer (Courtesy/Stephen Raffone)Staten Island Advance

But since Raffone was unable to leave his home, Scheer visited Raffone for a consultation and to evaluate his condition.

Fast forward a year and a half and Scheer has continued with those visits almost every Saturday free of charge also underwriting the cost for treatments, as well as Uber rides from Manhattan to Staten Island, in order to perform the stem cell procedure.

RAFFONES NURSE SPEAKS

One of Raffones nurses recounted Raffones journey.

She explained that when they started to explore stem cell therapy she placed calls to several doctors, but the biggest thing that jumped out at her was the astronomical cost.

But there was something about Dr. Scheer. And I just knew he was the right one, said the registered nurse for more than 30 years. "He wasnt interested in money. His goal is his patients outcome. Stephen did pay for the first set of treatments, but since then, Dr. Scheer has not taken a dime.

When the patient began treatments, the first therapy was a tremendous boost and then every week after that he was treated for seven weeks. In the beginning, the doctor visited every week and brought whatever supplies was needed. The PRP (platelet rich plasma) treatments are daily.

I draw the blood, I spin the blood," she said. We have a small centrifuge here so it separates the blood. The PRP is given by a nebulizer. It takes about 30 minutes. And once a week he gets a protein enriched plasma, which takes about a half hour, she added.

He has chronic venous ulcerations of the both lower extremities from the knee down, she said.

Raffone has end stage COPD. But since he started the treatments, hes gone to the hospital only once. And he has tested negative for antibody COVID-19.

RAFFONES TREATMENT BEGINS

Raffone was required to install the centrifuge machine with needles and plasma tube, a laboratory device used for the separation of fluids, gas or liquid, based on density. Separation is achieved by spinning a vessel containing material at high speed.

Initially, Dr. Scheer sent a plastic surgeon to my home to perform liposuction, a type of fat-removal procedure used in plastic surgery, where they separate the fat and preserve the stem cells, Raffone said. They did this four times weekly at the beginning. Dr. Scheer has been visiting my home pretty much each week since Sept. 22, 2018. But right now the stem cell therapy is done once a month."

They draw blood out and spin it. Its all done through IV. Right now stem cell infusion is done once a month and daily through a nebulizer. Dr. Scheer does it on Saturday and my nurse and dear friend to Dr. Scheer does it during the week. My house looks like a hospital. Dr. Scheer is keeping me alive and everything is healing up so well, said Raffone.

Stephen Raffone's left leg before stem cell treatment. (Courtesy/Stephen Raffone)Staten Island Advance

Raffone says he wanted to come forward with his account at this time because hes so grateful and especially today when so many negative stories are in the news.

We need some good stories. There are very few people like Dr. Scheer, especially now during the COVID-19 crisis, he said.

My nurse draws the blood and puts it in a centrifuge when the doctor cant make it from the city. But Dr. Scheer is still coming to my house in spite of the COVID-19 crisis," Raffone continued.

Raffone has been confined to a bed one that he says turns you from side to side and upside down. But Dr. Scheer is confident that when restrictions are lifted and physical therapy sessions resume, Raffone will be able to walk.

The stem cell therapy is not only helping to combat Raffones COPD, but it has also helped him with cellulitis on his leg.

Stephen's Raffone healed left leg after stem cell therapy. (Courtesy/Stephen Raffone)Staten Island Advance

Scheer, a staunch supporter of stem cell therapy, has a background in neurosurgery and regenerative medicine. He performs surgery at several surgical centers in Manhattan.

It has to do with the amount of cells your bone marrow," he said. What we do is . . . saturate the body with stem cells. It suppresses the inflammatory response. COVID-19 also is an inflammatory disease. The COVID-19 kills the lungs. So you dont have oxygen going through. The stem cells protect, so you have continual oxygen transfer.

Dr. Scheer, who practices at Sheer Medical Wellness in Manhattan, says you can regenerate yourself.

I want my patients to be fine. I will pay for the patient. Im happy Stephens alive. And then my life is made. Stephen will now be able to walk after physical therapy. He was on 12 liters of oxygen daily. Hes now on two liters. I know his nurse very well and thats how we connected. The stem cell treatment is the appropriate treatment for him. I pay out of pocket because I know the right treatment for his condition," he added.

Dr. Scheer points out in China and in Israel stem cell therapy is the treatment they use for COVID- 19.

Its where you take Eastern and Western medicine and put it together. The patients body and will to live and having the right outlook on life has a lot to do with proper health. Our group is so big. We have 40 different doctors in my practice. Im the medical director, he said. Stem cell treatment is the future of medicine. At $10,000 a treatment, its very expensive. And the number depends on the issue at hand.

THE INITIAL CALL

When Scheer spoke to Raffone, He said I cant get out of bed,' the doctor said. "I drove to Staten Island and I got to know Stephen and his family very well. Its not a one-time treatment. Im seeing him on a weekly basis. There is a relationship that occurs. And thats what matters and thats what keeps people alive. Hope is what keeps them alive. And Im doing this since 2001. The treatment involves platelet enriched plasma that suppresses inflammatory reactions in the lungs. Whats happening is youre able to suppress the inflammatory reaction. His legs and his heart are getting better as well. This is a treatment until we can get him walking.

Scheer says Raffone must undergo physical therapy in oder for him to walk around freely.

And hell be able to travel to my office. Im not giving up on him. Im paying out of pocket. A quarter of my patients, I pay for. Stephen has gone through so much. Hes alive because of stem cell therapy. And due to his lung condition with COVID, he has not contracted it."

Scheer says its been a team effort, with multiple doctors coming into play.

Stephen is keeping himself alive. Im just the tool that can help. I just do the best I can for as many people as I can.

Originally posted here:
Westerleigh resident is alive because of stem cell therapy by his doctor -- for free. Heres his story. - SILive.com

To Read More: Westerleigh resident is alive because of stem cell therapy by his doctor — for free. Heres his story. – SILive.com
categoriaBone Marrow Stem Cells commentoComments Off on Westerleigh resident is alive because of stem cell therapy by his doctor — for free. Heres his story. – SILive.com | dataJune 13th, 2020
Read All

New CRISPR, gene therapy results strengthen potential for treatment of blood diseases – BioPharma Dive

By daniellenierenberg

Three people with the inherited blood diseases sickle cell and beta thalassemia remain free of burdensome blood transfusions and their worst symptoms, months after receiving an infusion of genetically modified stem cells.

One of the three, a young woman with a severe form of beta thalassemia, has now been followed for over a year since she was treated, while the second, a woman in her 30s with sickle cell disease, is more than nine months removed from her infusion. They are the first two patients in pioneering studies of a therapy, developed by CRISPR Therapeutics and Vertex, that's based on the gene editing technology known as CRISPR.

Both patients continue to respond to treatment, bolstering evidence of genetic medicine's potential to permanently alter the course of devastating hereditary conditions like sickle cell and transfusion-dependent beta thalassemia. A gene therapy developed by Bluebird Bio has shown similar potential.

First results from the two studies, disclosed last November, were "taking the promise of CRISPR and turning that into a reality," said Samarth Kulkarni, CRISPR Therapeutics' CEO, in an interview. The additional data and follow-up now available "show these effects can be long-lasting and durable."

And in beta thalassemia, the first patient's experience is now supported by results from another patient who was treated about five months ago. This individual has also been able to stop receiving blood transfusions.

Taken together, the two patients responses are "proof of concept," CRISPR Therapeutics and Vertex claim, that their approach to treating beta thalassemia has the potential to be curative.

In sickle cell, the companies are also hopeful. The one patient for whom they have data has not had a vaso-occlusive crisis, a painful episode caused by the disease's characteristic sickling of red blood cells, since her treatment.

"The clinical manifestation of the disease is different, but we see consistent outcomes across both diseases," said Bastiano Sanna, Vertex's head of cell and genetic therapies, in an interview.

Three other beta thalassemia patients and one other sickle cell disease patient have been treated in the two studies of CRISPR Therapeutics and Vertex's therapy, dubbed CTX001. If results continue to look positive, CTX001 could be another powerful way to help people for whom treatment options have long been limited.

CRISPR, an easy-to-use method of genetic surgery that's derived from a bacterial defense system, has become a mainstay in labs across the world for all types of experiments. Its potential use as a human therapeutic has drawn closer as companies harnessing the technology CRISPR Therapeutics, Editas Medicine and Intellia Therapeutics have advanced their research. CRISPR Therapeutics is the first of the three to deliver results from a clinical trial.

CRISPR and Vertex unveiled their updated results at the European Hematology Association's virtual meeting on Friday. Also being presented were the latest data from Bluebird's gene therapy, known as LentiGlobin.

Bluebird is much further along, having treated 60 patients with beta thalassemia and 37 with sickle cell disease across six different studies.

Updated results from three of those studies showed 23 of 27 evaluable patients with beta thalassemia were transfusion independent for at least a year following treatment. And in sickle cell, no serious vaso-occlusive crises were observed in the 18 patients who had at least six months of follow-up. An episode was previously reported in one patient several months after LentiGlobin treatment, but was judged to be non-serious.

One sickle cell patient died suddenly 20 months following infusion with LentiGlobin, Bluebird reported Friday. Both the treating physician and an independent study committee concluded the death, ruled to be cardiovascular in nature, was unlikely to be related to the gene therapy.

Both beta thalassemia and sickle cell are diseases caused by mutations in the beta globin gene, faulty DNA that results in either absent or warped hemoglobin. Without enough hemoglobin, patients' red blood cells can't carry needed oxygen throughout the body. And those with sickle cell have abnormal hemoglobin that makes red blood cells fragile and stiff, causing them to stick in blood vessels.

Both diseases require chronic blood transfusions, and can lead to organ damage and reduced lifespans. Treatment options are limited, although that's now changing. The Food and Drug Administration, over the past few years, has approved Reblozyl, for beta thalassemia, and Oxbryta and Adakveo, for sickle cell.

Adakveo reduces the frequency of vaso-occlusive crises, while Reblozyl and Oxbryta are chronic medicines meant to boost patients' hemoglobin levels.

CRISPR Therapeutics and Vertex, along with Bluebird, are trying to accomplish the same goal but in more dramatic fashion: raising hemoglobin levels high enough so patients can stop blood transfusions and, in sickle cell, avoid pain crises altogether.

CRISPR and Vertex use CRISPR/cas9 gene editing to modify the DNA of stem cells extracted from a patient's bone marrow. The cells are engineered to produce a type of hemoglobin that's present at birth but normally replaced soon after. Once returned to the body and engrafted in the bone marrow, these CRISPR'd cells substitute this so-called fetal hemoglobin for the missing adult hemoglobin.

In the three patients treated so far, that appears to be what's happened. Both beta thalassemia patients are producing hemoglobin at levels considered normal. The sickle cell patient now has enough fetal hemoglobin to dilute the effects of sickled hemoglobin, potentially helping to preserve red blood cells.

Crucially, CRISPR and Vertex shared data for the first time indicating a high percentage of edited cells are present in each patient's bone marrow, supporting their confidence that the effects of treatment might last.

Bluebird, by contrast, doesn't edit the DNA of extracted stem cells, but rather inserts a modified gene into those cells. Once infused and engrafted in a patient, the cells can produce gene therapy-derived hemoglobin.

In most beta thalassemia and sickle cell patients treated with Bluebird's LentiGlobin, hemoglobin levels rose to normal or near-normal levels.

LentiGlobin is already approved for certain beta thalassemia patients in Europe as Zynteglo. In the U.S., Bluebird has hit delays and pushed back when it expects to submit an application to the middle of next year. A filing for an accelerated approval in sickle cell would likely follow sometime in the second half of 2021.

CRISPR and Vertex, meanwhile, plan to enroll more patients into their two studies, which they hope could serve as sufficient for an approval application if positive, Kulkarni said.

Original post:
New CRISPR, gene therapy results strengthen potential for treatment of blood diseases - BioPharma Dive

To Read More: New CRISPR, gene therapy results strengthen potential for treatment of blood diseases – BioPharma Dive
categoriaBone Marrow Stem Cells commentoComments Off on New CRISPR, gene therapy results strengthen potential for treatment of blood diseases – BioPharma Dive | dataJune 13th, 2020
Read All

Regenerative Therapy Options for Horses With Osteoarthritis – TheHorse.com

By daniellenierenberg

Biologic, or regenerative, therapies have altered the way many equine veterinarians treat problematic joints. Some of the most mainstream and popular modalities they currently use to manage osteoarthritis (OA) in horses are autologous conditioned serum, autologous protein solution, platelet-rich plasma, and mesenchymal stem cells.

Most biologic therapies involve collecting and concentrating the horses natural anti-inflammatory and regenerative proteins or cells so they can be injected into an area of pathology (disease or damage) in the same horse.

Autologous conditioned serum is a cell-free extract of whole blood that has been processed to contain high concentrations of interleukin-1 receptor antagonist protein (IRAP), a naturally occurring anti-inflammatory protein within the body. It is marketed under the trade names IRAP and IRAP II.

When preparing ACS, veterinarians collect venous blood in a proprietary syringe system that encourages porous glass beads to bind with white blood cells. During an incubation process the bound white cells release high concentrations of IRAP. The veterinarian then draws the serum off into small portions and freezes it for future injection into arthritic joints. In clinical studies of ACS, researchers have reported improved synovial membrane (joint surface lining) health, stimulation of natural IRAP production, and improved lameness.

Platelet rich plasma is blood plasma thats been centrifuged or filtrated to have a higher concentration of platelets than whole blood. Many horse owners are familiar with PRP and its use in tendon and ligament injuries; however, veterinarians are using it more regularly for treating joint disease.

One of platelets roles in the body is to modulate tissue healing. They do so by releasing growth factors and signaling molecules that initiate repair and promote anabolic (supporting tissue growth) effects. Veterinarians have capitalized on this ability by injecting high concentrations of platelets directly into damaged or inflamed regions. Because many PRP systems allow for stallside preparation, it is a convenient option for immediate treatment without the hassle of incubation or culturing in the lab, as is the case with ACS and stem cell preparation, respectively.

Historically, equine veterinarians have primarily used PRP to help treat soft tissue injuries. More recent work has led to intra-articular (in the joint) use with promising results. Although researchers have demonstrated how platelet-derived products work in vitro (in the lab) and veterinarians have seen promising anecdotal results in vivo (in the live horse), theyve yet to produce evidence-based confirmation of its clinical efficacy.

Mark Revenaugh, DVM, owner of Northwest Equine Performance, in Mulino, Oregon, says the main factors standing between researchers ability to gather objective data and establish a consensus on PRPs efficacy are the high variability among preparation systems, individual patient reactivity to the product, and an unknown ideal concentration of platelets for particular injuries.

Most practitioners cant always check how many platelets are being used, he says. Depending on the system, one veterinarian may be using 100,000 platelets/milliliter and another veterinarian may be using 1 billion platelets/milliliter. These are not the same treatments, even though both are called PRP. I would love to see an industry standard develop.

Overall, PRPs positive anecdotal results and relatively easy preparation make it a useful option for treating osteoarthritis (OA) in horses.

Autologous protein solution (marketed under the trade name Pro-Stride) is essentially a hybrid of ACS and PRP. Its two-step stallside preparation process involves separating whole blood and sequestering white blood cells and platelets in a small fraction of plasma. The veterinarian then concentrates the separate blood components by filtration, leaving a solution of white blood cells, platelets, and serum proteins that provides the anti-inflammatory mediators of IRAP and the platelet-derived growth factors of PRP.

In a 2014 study out of The Ohio State University, researchers revealed that an intra-articular APS injection can significantly improve lameness, weight-bearing symmetry, and range of joint motion in horses that dont have severe lameness or significant compromise to the joint structure.

Mesenchymal stems cells are adult stem cells that can direct regeneration and repair of damaged tissue. Veterinarians have used this type of stem cell as a treatment strategy for equine soft tissue injury for some time; its only recently that veterinarians have begun using them to treat OA, and its not fully clear how they work in this capacity. Researchers working on early stem cell studies hoped to establish evidence that stem cells injected into regions of injury would develop into the respective tissue. While this hypothesis proved to be incorrect, continued research has revealed that these cells might instead have anti-inflammatory effects and the ability to recruit other stem cells to the area that could, in fact, heal damaged tissue.

The two most common forms of mesenchymal stem cells are adipose (fat)-derived and bone-marrow-derived. Some study results have shown that bone marrow sources yield smaller concentrations thanbut are superior toadipose sources in their ability to differentiate into musculoskeletal tissue. Some encouraging data supporting the use of mesenchymal stem cells for treating OA exists, but researchers have only published a small number of studies with promising results. Equine veterinarians have used MSCs to treat intra-articular soft tissue injury (meniscal and cruciate damagecartilaginous tissues and ligaments that support the stifle), with successful anecdotal results. Theyve reported more variable outcomes when using it for primary intra-articular injuries.

Carter Judy, DVM, Dipl. ACVS, staff surgeon at Alamo Pintado Equine Medical Center, in Los Olivos, California, says he currently prefers to use PRP and APS for OA treatment over MSCs. However, he admits there is much to be discovered. What will be interesting to see is how manipulating the cells and providing them with different signals and markers can make their efficacy much more potent and focused, he says.

When weighing treatment options for horses with OA, veterinarians should base their decision to use a certain biologic modality on its cost, availability, and how a horse has responded previously.

Our knowledge base of how the biologics work is improving, but we are in the infancy of understanding, Judy says. Much of the use is based on the clinical response as much as is it on the scientific data.

Read more:
Regenerative Therapy Options for Horses With Osteoarthritis - TheHorse.com

To Read More: Regenerative Therapy Options for Horses With Osteoarthritis – TheHorse.com
categoriaBone Marrow Stem Cells commentoComments Off on Regenerative Therapy Options for Horses With Osteoarthritis – TheHorse.com | dataJune 13th, 2020
Read All

COVID 19 to Lead the Sales of Myelofibrosis Treatment to Register Stellar Growth in the Next 10 Years – Cole of Duty

By daniellenierenberg

Myelofibrosis or osteomyelofibrosis is a myeloproliferative disorder which is characterized by proliferation of abnormal clone of hematopoietic stem cells. Myelofibrosis is a rare type of chronic leukemia which affects the blood forming function of the bone marrow tissue. National Institute of Health (NIH) has listed it as a rare disease as the prevalence of myelofibrosis in UK is as low as 0.5 cases per 100,000 population. The cause of myelofibrosis is the genetic mutation in bone marrow stem cells. The disorder is found to occur mainly in the people of age 50 or more and shows no symptoms at an early stage. The common symptoms associated with myelofibrosis include weakness, fatigue, anemia, splenomegaly (spleen enlargement) and gout. However, the disease progresses very slowly and 10% of the patients eventually develop acute myeloid leukemia. Treatment options for myelofibrosis are mainly to prevent the complications associated with low blood count and splenomegaly.

Get Free Sample Copy With Impact Analysis Of COVID-19 Of Market Report @https://www.persistencemarketresearch.com/samples/11341

The global market for myelofibrosis treatment is expected to grow moderately due to low incidence of a disease. However, increasing incidence of genetic disorders, lifestyle up-gradation and rise in smoking population are the factors which can boost the growth of global myelofibrosis treatment market. The high cost of therapy will the growth of global myelofibrosis treatment market.

The global market for myelofibrosis treatment is segmented on basis of treatment type, end user and geography:

As myelofibrosis is considered as non-curable disease treatment options mainly depend on visible symptoms of a disease. Primary stages of the myelofibrosis are treated with supportive therapies such as chemotherapy and radiation therapy. However, there are serious unmet needs in myelofibrosis treatment market due to lack of disease modifying agents. Approval of JAK1/JAK2 inhibitor Ruxolitinib in 2011 is considered as a breakthrough in myelofibrosis treatment. Stem cell transplantation for the treatment of myelofibrosis also holds tremendous potential for market growth but high cost of therapy is foreseen to limits the growth of the segment.

On the basis of treatment type, the global myelofibrosis treatment market has been segmented into blood transfusion, chemotherapy, androgen therapy and stem cell or bone marrow transplantation. Chemotherapy segment is expected to contribute major share due to easy availability of chemotherapeutic agents. Ruxolitinib is the only chemotherapeutic agent approved by the USFDA specifically for the treatment of myelofibrosis, which will drive the global myelofibrosis treatment market over the forecast period.

You Can Buy This PMR Healthcare Report From Here @https://www.persistencemarketresearch.com/checkout/11341

Geographically, global myelofibrosis treatment market is segmented into five regions viz. North America, Latin America, Europe, Asia Pacific and Middle East & Africa. Northe America is anticipated to lead the global myelofibrosis treatment market due to comparatively high prevalence of the disease in the region.

Some of the key market players in the global myelofibrosis treatment market are Incyte Corporation, Novartis AG, Celgene Corporation, Mylan Pharmaceuticals Ulc., Bristol-Myers Squibb Company, Eli Lilly and Company, Taro Pharmaceuticals Inc., AllCells LLC, Lonza Group Ltd., ATCC Inc. and others.

Read more from the original source:
COVID 19 to Lead the Sales of Myelofibrosis Treatment to Register Stellar Growth in the Next 10 Years - Cole of Duty

To Read More: COVID 19 to Lead the Sales of Myelofibrosis Treatment to Register Stellar Growth in the Next 10 Years – Cole of Duty
categoriaBone Marrow Stem Cells commentoComments Off on COVID 19 to Lead the Sales of Myelofibrosis Treatment to Register Stellar Growth in the Next 10 Years – Cole of Duty | dataJune 13th, 2020
Read All

Majority of Evaluable Patients Across Genotypes Achieve Transfusion Independence and Maintain It with Near-Normal Hemoglobin Levels in Phase 3 Studies…

By daniellenierenberg

CAMBRIDGE, Mass.--(BUSINESS WIRE)--bluebird bio, Inc. (Nasdaq: BLUE) today announced that new data from ongoing Phase 3 studies of betibeglogene autotemcel (beti-cel; formerly LentiGlobin for -thalassemia gene therapy) show pediatric, adolescent and adult patients with a range of genotypes of transfusion-dependent -thalassemia (TDT) achieve and maintain transfusion independence with hemoglobin (Hb) levels that are near-normal (10.5 g/dL). These data are being presented at the Virtual Edition of the 25th European Hematology Association (EHA25) Annual Congress.

With more than a decade of clinical experience evaluating gene therapy in patients with transfusion dependent -thalassemia across a wide range of ages and genotypes, we have built the most comprehensive understanding of treatment outcomes in the field, said David Davidson, M.D., chief medical officer, bluebird bio. Seeing patients achieve transfusion independence and maintain that positive clinical benefit over time with robust hemoglobin levels reflects our initial vision of the potential of beti-cel. The accumulating long-term data demonstrating improvements in bone marrow histology, iron balance and red cell biology support the potential of beti-cel to correct the underlying pathophysiology of transfusion-dependent -thalassemia.

A total of 60 pediatric, adolescent and adult patients across genotypes of TDT have been treated with beti-cel in the Phase 1/2 Northstar (HGB-204) and HGB-205 studies, and the Phase 3 Northstar-2 (HGB-207) and Northstar-3 (HGB-212) studies as of March 3, 2020. In studies of beti-cel, transfusion independence is defined as no longer needing red blood cell transfusions for at least 12 months while maintaining a weighted average Hb of at least 9 g/dL.

TDT is a severe genetic disease caused by mutations in the -globin gene that results in significantly reduced or absent adult hemoglobin (HbA). In order to survive, people with TDT maintain Hb levels through lifelong, chronic blood transfusions. These transfusions carry the risk of progressive multi-organ damage due to unavoidable iron overload.

Patients with transfusion-dependent -thalassemia do not make enough healthy red blood cells and cannot live without chronic transfusions; for patients that means a lifetime of necessary visits to a hospital or clinic and reliance on an often unreliable blood supply, which compounds the challenges of managing this disease, said presenting study author Professor John B. Porter, MA, M.D., FRCP, FRCPath, University College London Hospital, London, UK. These results showing patients free from transfusions and maintaining near-normal hemoglobin levels after treatment with beti-cel is a positive outcome for people living with transfusion-dependent -thalassemia. In addition, we now have more data that provide further evidence that most of these patients have a measurable improvement in markers of healthy red blood cell production.

Beti-cel is a one-time gene therapy designed to address the underlying genetic cause of TDT by adding functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). This means there is no need for donor HSCs from another person, as is required for allogeneic HSC transplantation (allo-HSCT). Once a patient has the A-T87Q-globin gene, they have the potential to produce HbAT87Q, which is gene therapy-derived Hb, at levels that eliminate or significantly reduce the need for transfusions.

Northstar-2 (HGB-207) Efficacy

As of March 3, 2020, all 23 patients in HGB-207 were treated and have been followed for a median of 19.4 months. These patients ranged in age from four to 34 years, including eight pediatric (<12 years of age) and 15 adolescent/adult (>12 years of age) patients. Only 19 patients were evaluable for transfusion independence; four additional patients do not yet have sufficient follow-up to be assessed for transfusion independence.

Eighty-nine percent of evaluable patients (17/19) achieved transfusion independence, with median weighted average total Hb levels of 11.9 g/dL (min-max: 9.4 12.9 g/dL) over a median of 19.4 months of follow-up to date (min-max: 12.3 31.4 months). These 17 patients previously required a median of 17.5 transfusions per year (min-max: 11.5 37 transfusions per year).

Improved iron levels, as measured by serum ferritin and hepcidin levels (proteins involved in iron storage and homeostasis), were observed and trends toward improved iron management were seen. Over half of patients stopped chelation therapy, which is needed to reduce excess iron caused by chronic blood transfusions. Seven out of 23 patients began using phlebotomy for iron reduction.

Analysis of Healthy Red Blood Cell Production

In exploratory analyses, biomarkers of ineffective erythropoiesis (red blood cell production) were evaluated in patients who achieved transfusion independence in HGB-207.

The myeloid to erythroid (M:E) ratio in bone marrow from patients who achieved transfusion independence increased from a median of 1:3 (n=17) at baseline to 1:1.2 (n=16) at Month 12. Improvement of the M:E ratio, the ratio of white blood cell and red blood cell precursors in the bone marrow, suggests an improvement in mature red blood cell production. Images illustrating the bone marrow cellularity at baseline, Month 12 and Month 24 are available in the EHA25 presentation (abstract #S296): Improvement in erythropoiesis in patients with transfusion-dependent -thalassemia following treatment with betibeglogene autotemcel (LentiGlobin for -thalassemia) in the Phase 3 HGB-207 study.

Additionally, biomarkers of erythropoiesis continue to demonstrate a trend toward normalization in patients who achieved transfusion independence, including improved levels over time of erythropoietin, a hormone involved in red blood cell production; reticulocytes, immature red blood cells; and soluble transferrin receptor, a protein measured to help evaluate iron status. The continued normalization of red blood cell production over time among some patients who achieved transfusion independence supports the disease-modifying potential of beti-cel in patients with TDT.

Northstar-3 (HGB-212) Efficacy

As of March 3, 2020, 15 patients (genotypes: 9 0/0, 3 0/ +IVS1-110, 3 homozygous IVS-1-110 mutation) were treated and had a median follow-up of 14.4 months (min-max: 1.124.0 months). Median age at enrollment was 15 (min-max: 4 33 years).

Six of eight evaluable patients achieved transfusion independence, with median weighted average total Hb levels of 11.5 g/dL (min-max: 9.5 13.5 g/dL), and continued to maintain transfusion independence for a median duration of 13.6 months (min-max: 12.2 21.2 months) as of the data cutoff.

Eighty-five percent of patients (11/13) with at least seven months of follow-up had not received a transfusion in more than seven months at time of data cutoff. These 11 patients previously required a median of 18.5 transfusions per year (min-max: 11.0 39.5 transfusions per year). In these patients, gene therapy-derived HbAT87Q supported total Hb levels ranging from 8.814.0 g/dL at last visit.

Betibeglogene autotemcel Safety

Non-serious adverse events (AEs) observed during the HGB-207 and HGB-212 trials that were considered related or possibly related to beti-cel were tachycardia, abdominal pain, pain in extremities, leukopenia, neutropenia and thrombocytopenia. One serious event of thrombocytopenia was considered possibly related to beti-cel.

In HGB-207, serious events post-infusion in two patients included three events of veno-occlusive liver disease and two events of thrombocytopenia. In HGB-212, serious events post-infusion in two patients included two events of pyrexia.

Additional AEs observed in clinical studies were consistent with the known side effects of HSC collection and bone marrow ablation with busulfan, including SAEs of veno-occlusive disease.

In both Phase 3 studies, there have been no deaths, no graft failure, no cases of vector-mediated replication competent lentivirus or clonal dominance, no leukemia and no lymphoma.

The presentations are now available on demand on the EHA25 website:

About betibeglogene autotemcel

The European Commission granted conditional marketing authorization (CMA) for betibeglogene autotemcel (beti-cel; formerly LentiGlobin gene therapy for -thalassemia), marketed as ZYNTEGLO gene therapy, for patients 12 years and older with transfusion-dependent -thalassemia (TDT) who do not have a 0/0 genotype, for whom hematopoietic stem cell (HSC) transplantation is appropriate, but a human leukocyte antigen (HLA)-matched related HSC donor is not available. On April 28, 2020, the European Medicines Agency (EMA) renewed the CMA for ZYNTEGLO, supported by data from 32 patients treated with ZYNTEGLO, including three patients with up to five years of follow-up.

TDT is a severe genetic disease caused by mutations in the -globin gene that result in reduced or significantly reduced hemoglobin (Hb). In order to survive, people with TDT maintain Hb levels through lifelong chronic blood transfusions. These transfusions carry the risk of progressive multi-organ damage due to unavoidable iron overload.

Beti-cel adds functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once a patient has the A-T87Q-globin gene, they have the potential to produce HbAT87Q, which is gene therapy-derived hemoglobin, at levels that may eliminate or significantly reduce the need for transfusions.

Non-serious adverse events (AEs) observed during clinical studies that were attributed to beti-cel included abdominal pain, thrombocytopenia, leukopenia, neutropenia, hot flush, dyspnea, pain in extremity and non-cardiac chest pain. Two serious adverse events (SAE) of thrombocytopenia was considered possibly related to beti-cel.

Additional AEs observed in clinical studies were consistent with the known side effects of HSC collection and bone marrow ablation with busulfan, including SAEs of veno-occlusive disease.

The CMA for beti-cel is valid in the 27 member states of the EU as well as UK, Iceland, Liechtenstein and Norway. For details, please see the Summary of Product Characteristics (SmPC).

The U.S. Food and Drug Administration (FDA) granted beti-cel orphan drug designation and Breakthrough Therapy designation for the treatment of transfusion-dependent -thalassemia. Beti-cel is not approved in the U.S.

Beti-cel continues to be evaluated in the ongoing Phase 3 Northstar-2 and Northstar-3 studies. For more information about the ongoing clinical studies, visit http://www.northstarclinicalstudies.com or clinicaltrials.gov and use identifier NCT02906202 for Northstar-2 (HGB-207) and NCT03207009 for Northstar-3 (HGB-212).

bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-303) for people who have participated in bluebird bio-sponsored clinical studies of betibeglogene autotemcel or LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT02633943 for LTF-303.

About bluebird bio, Inc.

bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders including cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma using three gene therapy technologies: gene addition, cell therapy and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

ZYNTEGLO, LentiGlobin, and bluebird bio are trademarks of bluebird bio, Inc.

bluebird bio Forward-Looking Statements

This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: the risk that the COVID-19 pandemic and resulting impact on our operations and healthcare systems will affect the execution of our development plans or the conduct of our clinical studies; the risk that the efficacy and safety results observed in the patients treated in our prior and ongoing clinical trials of beti-cel may not persist; and the risk that the efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated with additional patients in our ongoing or planned clinical trials or in the commercial context; the risk that the FDA will require additional information regarding beti-cel, resulting in a delay to our anticipated timelines for regulatory submissions, including submission of our BLA. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.

Read more from the original source:
Majority of Evaluable Patients Across Genotypes Achieve Transfusion Independence and Maintain It with Near-Normal Hemoglobin Levels in Phase 3 Studies...

To Read More: Majority of Evaluable Patients Across Genotypes Achieve Transfusion Independence and Maintain It with Near-Normal Hemoglobin Levels in Phase 3 Studies…
categoriaBone Marrow Stem Cells commentoComments Off on Majority of Evaluable Patients Across Genotypes Achieve Transfusion Independence and Maintain It with Near-Normal Hemoglobin Levels in Phase 3 Studies… | dataJune 13th, 2020
Read All

Market Analysis and Technological Opportunities of Cell Therapy Manufacturing Market till 2030 – Medic Insider

By daniellenierenberg

Prophecy Market Insights Cell Therapy Manufacturing market research report provides a comprehensive, 360-degree analysis of the targeted market which helps stakeholders to identify the opportunities as well as challenges. The research report study offers keen competitive landscape analysis including key development trends, accurate quantitative and in-depth commentary insights, market dynamics, and key regional development status forecast 2020-2029. It incorporates market evolution study, involving the current scenario, growth rate, and capacity inflation prospects, based on Porters Five Forces and DROT analyses.

Get Sample Copy of This Report @ https://www.prophecymarketinsights.com/market_insight/Insight/request-sample/21

An executive summary provides the markets definition, application, overview, classifications, product specifications, manufacturing processes; raw materials, and cost structures.

Market Dynamics offers drivers, restraints, challenges, trends, and opportunities of the Cell Therapy Manufacturing market

Segment Level Analysis in terms of types, product, geography, demography, etc. along with market size forecast

Regional and Country- level Analysis different geographical areas are studied deeply and an economical scenario has been offered to support new entrants, leading market players, and investors to regulate emerging economies. The top producers and consumers focus on production, product capacity, value, consumption, growth opportunity, and market share in these key regions, covering

The comprehensive list of Key Market Players along with their market overview, product protocol, key highlights, key financial issues, SWOT analysis, and business strategies. The report dedicatedly offers helpful solutions for players to increase their clients on a global scale and expand their favour significantly over the forecast period. The report also serves strategic decision-making solutions for the clients.

Competitive landscape Analysis provides mergers and acquisitions, collaborations along with new product launches, heat map analysis, and market presence and specificity analysis.

Segmentation Overview:

Cell Therapy ManufacturingMarket Key Companies:

harmicell, Merck Group, Dickinson and Company, Thermo Fisher, Lonza Group, Miltenyi Biotec GmBH, Takara Bio Group, STEMCELL Technologies, Cellular Dynamics International, Becton, Osiris Therapeutics, Bio-Rad Laboratories, Inc., Anterogen, MEDIPOST, Holostem Terapie Avanazate, Pluristem Therapeutics, Brammer Bio, CELLforCURE, Gene Therapy Catapult EUFETS, MaSTherCell, PharmaCell, Cognate BioServices and WuXi AppTec.

The Cell Therapy Manufacturing research study comprises 100+ market data Tables, Graphs & Figures, Pie Chat to understand detailed analysis of the market. The predictions estimated in the market report have been resulted in using proven research techniques, methodologies, and assumptions. This Cell Therapy Manufacturing market report states the market overview, historical data along with size, growth, share, demand, and revenue of the global industry.

Request [emailprotected] https://www.prophecymarketinsights.com/market_insight/Insight/request-discount/21

The study analyses the manufacturing and processing requirements, project funding, project cost, project economics, profit margins, predicted returns on investment, etc. This report is a must-read for investors, entrepreneurs, consultants, researchers, business strategists, and all those who have any kind of stake or are planning to foray into the Cell Therapy Manufacturing industry in any manner.

Key Questions Answered in Report:

Stakeholders Benefit:

About us:

Prophecy Market Insights is specialized market research, analytics, marketing/business strategy, and solutions that offers strategic and tactical support to clients for making well-informed business decisions and to identify and achieve high-value opportunities in the target business area. We also help our clients to address business challenges and provide the best possible solutions to overcome them and transform their business.

Contact Us:

Mr. Alex (Sales Manager)

Prophecy Market Insights

Phone: +1 860 531 2701

Email: [emailprotected]

VISIT MY BLOG:- https://atransportation.blogspot.com/

View original post here:
Market Analysis and Technological Opportunities of Cell Therapy Manufacturing Market till 2030 - Medic Insider

To Read More: Market Analysis and Technological Opportunities of Cell Therapy Manufacturing Market till 2030 – Medic Insider
categoriaBone Marrow Stem Cells commentoComments Off on Market Analysis and Technological Opportunities of Cell Therapy Manufacturing Market till 2030 – Medic Insider | dataJune 13th, 2020
Read All

Aprea Therapeutics Presents Results From French Phase Ib/II Clinical Trial of APR-246 (Eprenetapopt) and Azacitidine in Patients with TP53 Mutant…

By daniellenierenberg

BOSTON, June 12, 2020 (GLOBE NEWSWIRE) -- Aprea Therapeutics, Inc.(Nasdaq: APRE), a biopharmaceutical company focused on developing and commercializing novel cancer therapeutics that reactivate mutant tumor suppressor protein, p53, today announced the oral presentation of updated data from its French Phase 1b/2 clinical trial at the 25th European Hematology Association Annual Meeting (EHA). The trial is evaluating the safety and efficacy of APR-246 (eprenetapopt) in combination with azacitidine (AZA) for the treatment of TP53 mutant myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). The clinical trial is sponsored by the Groupe Francophone des Mylodysplasies (GFM).

As of the April 1, 2020 data cutoff, the overall response rate (ORR) in 28 evaluable MDS patients was 75%, with a 57% complete remission (CR) rate, by International Working Group (IWG) criteria. With a median duration of follow-up of 9.7 months, the median overall survival (OS) for all enrolled patients (n=52) was 12.1 months and in MDS patients (n=34) was 12.1 months. For patients who remained on treatment for 3 or more cycles of treatment the median OS was higher at 13.7 months versus 2.8 months for patients who were on treatment for fewer than 3 cycles. Relative to baseline, mutant TP53 variant allele frequency (VAF) was decreased in responding patients by 3 cycles of treatment, including 20 (51%) patients who achieved mutant TP53 negativity by next-generation sequencing (NGS).

The data from this ongoing trial of eprenetapopt with azacitidine continue to be very encouraging in these most difficult-to-treat TP53 mutant MDS and AML patients, who not only have at least one TP53 mutation but the majority of whom also have high risk cytogenetic abnormalities, said Thomas Cluzeau, M.D., co-lead investigator for the GFM trial. We continue to observe ORR and CR rates in these patients that are substantially higher than the GFMs experience with azacitidine monotherapy. Furthermore, with increased duration of follow-up, we now also see the emergence of highly encouraging overall survival that appears to be better than azacitidine alone or in combination with others agents in this very high-risk molecular group of patients with a TP53 mutation.

Details of the on-demand oral presentation are as follows:

Title: APR-246 Combined with Azacitidine in TP53 Mutated Myelodysplastic Syndromes (MDS) and Acute Myeloid Leukemia. A Phase 2 Study by the Groupe Francophone des Mylodysplasies (GFM)

Oral Abstract Session: Novel treatments for MDS I

Abstract: S181

About the Clinical Trial

Eligible patients in the Phase Ib/II clinical trial include hypomethylating agent (HMA) nave, TP53 mutated MDS and AML. All enrolled patients were to receive APR-246 as a 4,500 mg fixed dose IV daily for 4 days and AZA over 7 days in 28-day cycles. The primary endpoint of the trial is CR rate.

AboutAprea Therapeutics, Inc.

Aprea Therapeutics, Inc.is a biopharmaceutical company headquartered inBoston, Massachusettswith research facilities inStockholm, Sweden, focused on developing and commercializing novel cancer therapeutics that reactivatemutant tumor suppressor protein, p53. The Companys lead product candidate is APR-246 (eprenetapopt), a small molecule in clinical development for hematologic malignancies, including myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). APR-246 has received Breakthrough Therapy, Orphan Drug and Fast Track designations from the FDA for MDS, and Orphan Drug designation from the European Commission for MDS, AML and ovarian cancer. For more information, please visit the company website atwww.aprea.com.

The Company may use, and intends to use, its investor relations website at https://ir.aprea.com/ as a means of disclosing material nonpublic information and for complying with its disclosure obligations under Regulation FD.

About Myelodysplastic Syndromes

Myelodysplastic syndromes (MDS) represents a spectrum of hematopoietic stem cell malignancies in which bone marrow fails to produce sufficient numbers of healthy blood cells. Approximately 30-40% of MDS patients progress to acute myeloid leukemia (AML) and mutation of the p53 tumor suppressor protein is thought to contribute to disease progression. Mutations in p53 are found in up to 20% of MDS and AML patients and are associated with poor overall prognosis.

About p53 and APR-246 (eprenetapopt)

The p53 tumor suppressor gene is the most frequently mutated gene in human cancer, occurring in approximately 50% of all human tumors. These mutations are often associated with resistance to anti-cancer drugs and poor overall survival, representing a major unmet medical need in the treatment of cancer.

APR-246 (eprenetapopt) is a small molecule that has demonstrated reactivation of mutant and inactivated p53 protein by restoring wild-type p53 conformation and function and thereby induce programmed cell death in human cancer cells. Pre-clinical anti-tumor activity has been observed with APR-246 in a wide variety of solid and hematological cancers, including MDS, AML, and ovarian cancer, among others. Additionally, strong synergy has been seen with both traditional anti-cancer agents, such as chemotherapy, as well as newer mechanism-based anti-cancer drugs and immuno-oncology checkpoint inhibitors. In addition to pre-clinical testing, a Phase 1/2 clinical program with APR-246 has been completed, demonstrating a favorable safety profile and both biological and confirmed clinical responses in hematological malignancies and solid tumors with mutations in the TP53 gene.

Forward-Looking StatementCertain information contained in this press release includes forward-looking statements, within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, related to our clinical trials, regulatory submissions and projected cash position. We may, in some cases use terms such as predicts, believes, potential, continue, anticipates, estimates, expects, plans, intends, targeting, confidence, may, could, might, likely, will, should or other words that convey uncertainty of the future events or outcomes to identify these forward-looking statements. Our forward-looking statements are based on current beliefs and expectations of our management team that involve risks, potential changes in circumstances, assumptions, and uncertainties. Any or all of the forward-looking statements may turn out to be wrong or be affected by inaccurate assumptions we might make or by known or unknown risks and uncertainties. These forward looking statements are subject to risks and uncertainties including risks related to the success and timing of our clinical trials or other studies, risks associated with the coronavirus pandemic and the other risks set forth in our filings with theU.S. Securities and Exchange Commission. For all these reasons, actual results and developments could be materially different from those expressed in or implied by our forward-looking statements. You are cautioned not to place undue reliance on these forward-looking statements, which are made only as of the date of this press release. We undertake no obligation to publicly update such forward-looking statements to reflect subsequent events or circumstances.

Source:Aprea Therapeutics, Inc.

Excerpt from:
Aprea Therapeutics Presents Results From French Phase Ib/II Clinical Trial of APR-246 (Eprenetapopt) and Azacitidine in Patients with TP53 Mutant...

To Read More: Aprea Therapeutics Presents Results From French Phase Ib/II Clinical Trial of APR-246 (Eprenetapopt) and Azacitidine in Patients with TP53 Mutant…
categoriaBone Marrow Stem Cells commentoComments Off on Aprea Therapeutics Presents Results From French Phase Ib/II Clinical Trial of APR-246 (Eprenetapopt) and Azacitidine in Patients with TP53 Mutant… | dataJune 13th, 2020
Read All

Exploring the Therapeutic Potential of ST266 Against Numerous Diseases Including COVID-19 – Technology Networks

By daniellenierenberg

Noveome Biotherapeutics is a clinical-stage company focused on developing therapies for the regenerative repair of tissues. Their product ST266, a first-of-its-kind, multi-targeted, non-cellular platform biologic comprised of a complex mixture of biomolecules, is currently being evaluated as a potential treatment for the severe inflammatory response observed in the lungs of some COVID-19 patients.Technology Networks recently spoke with William J. Golden, Noveome Biotherapeutics Founder, Chairman and CEO, who explains the underlying basis for investigating ST266s potential against COVID-19. Golden also elaborates on many of the other indications for which ST266 is being developed to treat.Laura Lansdowne (LL): Could you provide our readers with a brief overview of Noveome Biotherapeutics?William J. Golden (WJG): Noveome is a clinical-stage biotherapeutics company located in Pittsburgh, PA. The company was founded in 2000 by Bill Golden and Lancet Capital. The group was interested in exploring non-embryonic stem cells and identified a technology at the University of Pittsburgh that was using cells derived from human amnion, a membrane that closely covers the fetus during development. The company, named Kytaron Technologies, Inc. at the time, licensed that amnion cell technology but, ultimately, Noveome scientists were able to discover, develop and patent their own unique population of cells, called Amnion-derived Multipotential Progenitor (AMP) cells, using a proprietary culture method that follows current Good Manufacturing Practice (cGMP) regulations. These novel cells were used to produce our product, ST266.LL: What is ST266? Could you elaborate on its mechanism of action in relation to the healing process?WJG: Noveomes product, ST266, is the secretome produced by the AMP cells. It is a completely cell-free solution and is comprised of hundreds of biologically active molecules, including cytokines and growth factors. Interestingly, these cytokines and growth factors exist at very low physiological levels ranging from pg/mL ng/mL concentrations.1 The fact that such low concentrations of these molecules are biologically active is quite remarkable when you consider that traditional protein-based therapies are usually administered at concentrations that are orders of magnitude greater than the concentrations found in ST266.Because the composition of ST266 is so complex, its multiple mechanisms of action have only been partially elucidated. Clinical and preclinical studies have shown ST266 to be anti-inflammatory,2,3 promote wound healing,4,5 reduce apoptosis, reduce vascular permeability (manuscript in preparation), and restore cellular homeostasis.3 Preclinical studies have also shown ST266 to be neuroprotective. In a traumatic brain injury model, ST266 significantly protected against reactive gliosis, suggesting potent anti-inflammatory activity, and resulted in significant recovery of rotarod motor function.6,7 In another study, ST266 was tested in the experimental autoimmune encephalopathy (EAE) mouse model of multiple sclerosis (MS). In this model, the mice develop optic neuritis, which is among the presenting symptoms of MS in humans. ST266 was administered to the nares of mice 15 or 22 days after disease induction. ST266 is absorbed via capillary action along the olfactory nerves which bypasses the blood-brain barrier. This unique route of administration allows for the delivery of high molecular weight biologics to the optic nerve of the eye and the central nervous system. ST266 attenuated visual dysfunction, prevented retinal ganglion cell (RGC) loss, reduced inflammation, and decreased the rate of demyelination of the optic nerve in EAE mice.3Mechanistically, ST266 simultaneously acts on multiple cell receptor-activated and intracellular signaling pathways. For example, in the EAE MS model, neuroprotective effects involved oxidative stress reduction, SIRT1-mediated mitochondrial function promotion, and pAKT signaling.3 In a Phase 2 UV light burn study, ST266 reduced erythema and DNA damage and increased the expression of XPA DNA repair proteins.2Importantly, ST266 has a proven clinical safety profile. It has been administered to 243 patients by various routes of administration (topical skin, topical ocular, topical oral, targeted intranasal), and no drug-related serious adverse events have been reported. Preclinical studies of systemically administered ST266 have also yielded no drug-related safety concerns.LL: For what indications is ST266 currently being evaluated as a treatment?WJG: We refer to ST266 as a platform biologic. By this, we mean that ST266 is one product that has the potential to treat numerous and varied diseases. In the clinic, we have shown anti-inflammatory activity when ST266 is applied topically to UV light-burned the skin2 and topical application to the gums of patients with gingivitis and periodontitis showed a reduction in proinflammatory cytokines in the patients crevicular fluid (manuscript in preparation). We are currently conducting a Phase 2 open label trial of ST266 to treat persistent corneal epithelial defects (PEDs) when applied topically to the eye. Results from this trial will be published soon. We are currently planning a Phase 2b multi-center, randomized, double-masked trial to further evaluate the safety and efficacy of ST266 in this indication. Finally, we are conducting a Phase 1 study in patients at risk for developing glaucoma. This study is using the intranasal route of delivery described above in combination with a novel delivery device. The goal is to deliver ST266 directly to the optic nerve, where it can protect the RGCs that are damaged in glaucoma. We envision this route of delivery will be applicable to central nervous system and other back-of-the eye indications.We also have several ongoing preclinical programs that are evaluating systemically administered ST266 for more generalized inflammatory conditions. These data are not yet published but combined with the data we have compiled in preclinical and clinical studies of topical skin, topical oral and topical ocular administration, we believe ST266 has the potential to be an effective therapy for numerous systemic inflammatory conditions.LL: Could you elaborate on the underlying basis for your evaluation of ST266 as a potential treatment for COVID-19?WJG: As you know, a major complication of COVID-19 is the severe inflammatory response seen in the lungs of some patients. This response is called cytokine storm or cytokine release syndrome. As the pandemic continues and more data have become available, it is now known that the cytokine storm does not just affect the lungs. Multi-organ damage occurs in many of these patients. We believe that systemic delivery of ST266 and its anti-inflammatory activity has the potential to calm the storm. Our as-yet-unpublished preclinical studies with intravenous ST266 support this hypothesis and we are moving rapidly to initiate intravenous ST266 in a Phase 1 study. Once safety in humans is established by this route of administration, we will commence Phase 2 studies in COVID-19 patients.William J. Golden was speaking to Laura Elizabeth Lansdowne, Senior Science Writer for Technology Networks.References

1. Steed, DL, C Trumpower, D Duffy, C Smith, V Marshall, R Rupp, and M Robson. (2008). Amnion-Derived Cellular Cytokine Solution: A Physiological Combination of Cytokines for Wound Healing. Eplasty 8: 15765.

2. Guan, Linna, Amanda Suggs, Emily Galan, Minh Lam, and Elma D. Baron. (2017). Topical Application of ST266 Reduces UV-Induced Skin Damage. Clinical, Cosmetic and Investigational Dermatology. DOI: https://doi.org/10.2147/CCID.S147112.

3. Khan, Reas S, Kimberly Dine, Bailey Bauman, Michael Lorentsen, Lisa Lin, Helayna Brown, Leah R Hanson, et al. (2017). Intranasal Delivery of A Novel Amnion Cell Secretome Prevents Neuronal Damage and Preserves Function In A Mouse Multiple Sclerosis Model. Scientific Reports. DOI: https://doi.org/10.1038/srep41768.

4. Bergmann, Juri, Florian Hackl, Taro Koyama, Pejman Aflaki, Charlotte a Smith, Martin C Robson, and Elof Eriksson. (2009). The Effect of Amnion-Derived Cellular Cytokine Solution on the Epithelialization of Partial-Thickness Donor Site Wounds in Normal and Streptozotocin-Induced Diabetic Swine. Eplasty 9: e49.

5. Franz, Michael G, Wyatt G Payne, Liyu Xing, D K Naidu, R E Salas, Vivienne S Marshall, C J Trumpower, Charlotte A Smith, David L Steed, and M C Robson. (2008). The Use of Amnion-Derived Cellular Cytokine Solution to Improve Healing in Acute and Chronic Wound Models. Eplasty 8: e21.

6. Deng-Bryant, Ying, Zhiyong Chen, Christopher van der Merwe, Zhilin Liao, Jitendra R Dave, Randall Rupp, Deborah a Shear, and Frank C Tortella. (2012). Long-Term Administration of Amnion-Derived Cellular Cytokine Suspension Promotes Functional Recovery in a Model of Penetrating Ballistic-like Brain Injury. The Journal of Trauma and Acute Care Surgery DOI: https://doi.org/10.1097/TA.0b013e3182625f5f.

7. Deng-Bryant, Ying, Ryan D. Readnower, Lai Yee Leung, Tracy L. Cunningham, Deborah A. Shear, and Frank C. Tortella. (2015). Treatment with Amnion-Derived Cellular Cytokine Solution (ACCS) Induces Persistent Motor Improvement and Ameliorates Neuroinflammation in a Rat Model of Penetrating Ballistic-like Brain Injury. Restorative Neurology and Neuroscience. DOI: https://doi.org/10.3233/RNN-140455.

More here:
Exploring the Therapeutic Potential of ST266 Against Numerous Diseases Including COVID-19 - Technology Networks

To Read More: Exploring the Therapeutic Potential of ST266 Against Numerous Diseases Including COVID-19 – Technology Networks
categoriaSkin Stem Cells commentoComments Off on Exploring the Therapeutic Potential of ST266 Against Numerous Diseases Including COVID-19 – Technology Networks | dataJune 12th, 2020
Read All

‘I found these 4 affordable winter skin saviours in the chemist beauty aisles.’ – Mamamia

By daniellenierenberg

The light, non-greasy, dermatologically tested formula contains Vitamin B3 to help hydrate and support the skin barrier, and SPF30 for added sun protection. It alsosits beautifully under your regular SPF you'll have on, and makeup.

It won't clog your pores and doesn't include common irritants like fragrance or colour. The no-fuss formula also won't mess with the rest of your skincare, making it the easy to slot into your existing routine. Done!

(*Side note:Always read the label. Follow the directions for use. Avoid prolonged sun exposure and wear protective clothing, hats and eyewear to further reduce risk. Frequent re-application is required.)

Anyone else get dry lips in winter? This lip balm is brilliant for a few reasons.

A) It's super affordable and accessible - you'll find it at most pharmacies.

B) It has SPF50+ broad spectrum protection.

C) The texture isn't too thick or too thin, it's just right.

And D) You can wear the clear formula over the top of alip stain or lip liner.

Just don't leave it in the car, OK?

(And yes, you know the drill:Always read the label. Follow the directions for use. Avoid prolonged sun exposure and wear protective clothing, hats and eyewear to further reduce risk. Frequent re-application is required.)

See the article here:
'I found these 4 affordable winter skin saviours in the chemist beauty aisles.' - Mamamia

To Read More: ‘I found these 4 affordable winter skin saviours in the chemist beauty aisles.’ – Mamamia
categoriaSkin Stem Cells commentoComments Off on ‘I found these 4 affordable winter skin saviours in the chemist beauty aisles.’ – Mamamia | dataJune 12th, 2020
Read All

EHA25Virtual: Combined Irradiation and Chemotherapy Better Prepares Children for Stem Cell Transplantation than Chemotherapy Alone – PR Newswire UK

By daniellenierenberg

THE HAGUE, Netherlands, June 12, 2020 /PRNewswire/ -- Treatment of childhood cancer is a success story, particularly for acute lymphoblastic leukemia (ALL). More than 90% of ALL patients below 18 years of age are rescued with contemporary chemotherapy. However, the remaining 10% have resistant or reoccurring leukemia and require alternative treatment regimens. One of the most powerful leukemia therapies is hematopoietic stem cell transplantation from a donor (allogeneic HSCT). Approximately 50-80% of pediatric ALL patients that receive allogeneic HSCT are cured, 20% experience leukemic reoccurrence (relapse), and 10% die from complications.

Allogeneic HSCT is a multistep procedure:

For high-risk leukemia, the gold standard conditioning procedure is a combination of total body irradiation (TBI) and high dose chemotherapy. This approach is very effective in controlling leukemia in the conditioning step, but patients may experience highly negative consequences of this procedure later in life: sterility, growth retardation, lung problems, and secondary cancer.

Therefore, a large consortium of pediatric transplant experts initiated a global study to investigate whether chemotherapy-based conditioning could substitute TBI. The study is called FORUM (For Omitting Radiation Under Majority Age) and had to be stopped because chemotherapy-based conditioning had significantly poorer outcomes (i.e., lower overall survival rates) than the combination of TBI and chemotherapy. The researchers will now perform prospective monitoring to better define the advantages and limitations of various conditioning approaches.

Presenter:Dr Christina PetersAffiliation:Stem Cell Transplantation Unit, St. Anna Children's Hospital, Vienna, AustriaAbstract:#S102 TBI OR CHEMOTHERAPY BASED CONDITIONING FOR CHILDREN AND ADOLESCENTS WITH ALL: A PROSPECTIVE RANDOMIZED MULTICENTER-STUDY "FORUM" ON BEHALF OF THE AIEOP-BFM-ALL-SG, IBFM-SG, INTREALL-SG AND EBMT-PD-WP

Embargo: Please note that our embargo policy applies to all selected abstracts in the Press Briefings. For more information click here.

Logo - http://mma.prnewswire.com/media/622259/EHA_Logo.jpg

SOURCE European Hematology Association (EHA)

Go here to see the original:
EHA25Virtual: Combined Irradiation and Chemotherapy Better Prepares Children for Stem Cell Transplantation than Chemotherapy Alone - PR Newswire UK

To Read More: EHA25Virtual: Combined Irradiation and Chemotherapy Better Prepares Children for Stem Cell Transplantation than Chemotherapy Alone – PR Newswire UK
categoriaBone Marrow Stem Cells commentoComments Off on EHA25Virtual: Combined Irradiation and Chemotherapy Better Prepares Children for Stem Cell Transplantation than Chemotherapy Alone – PR Newswire UK | dataJune 12th, 2020
Read All

Bone Marrow Processing Systems Market : Industry Trends and Developments 2018 2025 – Cole of Duty

By daniellenierenberg

Bone marrow aspirationand trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.

The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.

Request For Report Sample:https://www.trendsmarketresearch.com/report/sample/3374

Europe and North America spearheaded the market as of 2018, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.

In 2018, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.

Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy. Japan and China are the biggest markets for harvesting systems in Asia Pacific.

Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.

Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others.

Covid 19 Impact [emailprotected]https://www.trendsmarketresearch.com/report/covid-19-analysis/3374

Here is the original post:
Bone Marrow Processing Systems Market : Industry Trends and Developments 2018 2025 - Cole of Duty

To Read More: Bone Marrow Processing Systems Market : Industry Trends and Developments 2018 2025 – Cole of Duty
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Processing Systems Market : Industry Trends and Developments 2018 2025 – Cole of Duty | dataJune 12th, 2020
Read All

BrainStorm to Present at the Raymond James Human Health Innovations Conference – Yahoo Finance

By daniellenierenberg

Management to Host One-on-One Investment Meetings

NEW YORK, June 11, 2020 /PRNewswire/ --BrainStorm Cell Therapeutics Inc.(NASDAQ: BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, today announced Chaim Lebovits, CEO and Ralph Kern, MD, MHSc, President and Chief Medical Officer, will present a corporate overview on Thursday, June 18 at 9:00 am EST, during theRaymond James Human Health Innovations Conference, a virtual event connecting institutional investors with company management teams that will be held June 15-18, 2020.

Mr. Lebovits and Dr. Kern will update conference participants on the Company's investigational therapeutic, NurOwn, that is currently in a fully enrolled phase 3 study for the treatment of ALS and a phase 2 study for the treatment of progressive multiple sclerosis. Additionally, they will present an overview of the Company's financial position and pipeline. After the presentation, the management team will participate in a question and answer session with institutional investors.

Mr. Lebovits and Dr. Kern will be joined by David Setboun, PhD, MBA, Chief Operating Officer, Stacy Lindborg, PhD, Head of Global Clinical Research, and Preetam Shah, PhD, MBA, Chief Financial Officer, for a series of one-on-one meetings, with select institutional investors arranged by Raymond James.

Participants can view the presentation via the event link and those unable to join will have access to an archived link on the Company's Events and Presentation webpage after the conclusion of the conference.

EVENT: Raymond James Human Health Innovations Conference

PRESENTATION: Thursday, June 18th at 9:00 am EST

LINK: https://bit.ly/2YmZf8u

About NurOwn

NurOwn (autologous MSC-NTF) cells represent a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. BrainStorm has fully enrolled a Phase 3 pivotal trial of autologous MSC-NTF cells for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm also recently receivedU.S.FDA acceptance to initiate a Phase 2 open-label multicenter trial in progressive MS and enrollment began inMarch 2019.

AboutBrainStorm Cell Therapeutics Inc.

BrainStorm Cell Therapeutics Inc.is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from theU.S. Food and Drug Administration(U.S.FDA) and theEuropean Medicines Agency(EMA) in ALS. BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at sixU.S.sites supported by a grant from theCalifornia Institute for Regenerative Medicine(CIRM CLIN2-0989). The pivotal study is intended to support a filing forU.S.FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently receivedU.S.FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive Multiple Sclerosis. The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) started enrollment inMarch 2019.

Story continues

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorm's need to raise additional capital, BrainStorm's ability to continue as a going concern, regulatory approval of BrainStorm's NurOwn treatment candidate, the success of BrainStorm's product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorm's NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorm's ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorm's ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

CONTACTS

Investor Relations:Preetam Shah, MBA, PhDChief Financial OfficerBrainStorm Cell Therapeutics Inc.Phone: +1-862-397-1860pshah@brainstorm-cell.com

Media:

Sean LeousWestwicke/ICR PRPhone: +1-646-677-1839sean.leous@icrinc.com

View original content:http://www.prnewswire.com/news-releases/brainstorm-to-present-at-the-raymond-james-human-health-innovations-conference-301074370.html

SOURCE Brainstorm Cell Therapeutics Inc

Link:
BrainStorm to Present at the Raymond James Human Health Innovations Conference - Yahoo Finance

To Read More: BrainStorm to Present at the Raymond James Human Health Innovations Conference – Yahoo Finance
categoriaBone Marrow Stem Cells commentoComments Off on BrainStorm to Present at the Raymond James Human Health Innovations Conference – Yahoo Finance | dataJune 12th, 2020
Read All

Avalon GloboCare strikes three-way material transfer agreement with Weill Cornell Medicine and Arbele Limited – Proactive Investors USA & Canada

By daniellenierenberg

The company said the move was aimed at the development of next generation cellular immunotherapy FLASH-CAR technology

(), a clinical-stage developer of cell-based technologies and therapeutics, announced Thursday that it has struck a three-way material transfer agreement (MTA) with Weill Cornell Medicine in New York City and the companys strategic partner, Arbele Limited.

With this agreement, Avalon GloboCare and Arbele Limited intend to collaborate with Weill Cornell Medicine and co-develop the standardized laboratory steps necessary to generate clinical-grade CAR-T and CAR-natural killer (NK) cells for use in future human clinical trials with Avalons first FLASH-CAR platform candidate, AVA-011.Similar to T-cells, NK cells are a type of white blood cell, also able to attack cancer cells, but utilize different mechanisms.

The company said this process development step will provide the bridge between Avalons benchtop research and the bio-manufacturing processes to potentially deliver the clinical-grade cellular immunotherapy product to patients.

READ:Avalon GloboCare advancing immune cell therapy to treat blood cancers using FLASH-CAR technology

We are excited about this agreement to translate our cellular therapy candidates into standardized, clinical-grade cell products that could be used in future clinical trials, Avalon GloboCare CEO David Jin said in a statement.

This step reflects our dedication to establishing an infrastructure to develop our cellular immunotherapy candidates and to maintain the highest possible standards for generating clinical-grade cells for human cancer trials, he added.

AVA-011 is a next generation cellular immunotherapy candidate using Avalons FLASH-CAR technology that targets both CD19 and CD22 tumor antigens on cancer cells. Avalon has already successfully completed pre-clinical research on AVA-011, including tumor cytotoxicity studies.

Avalon expects to begin a first-in-human clinical trial with AVA-011 for the treatment of relapsed or refractory B-cell lymphoblastic leukemia (B-ALL) and non-Hodgkin lymphoma in the first quarter of 2021. The goal is to use AVA-011 as a bridge to bone marrow stem cell transplant therapy, currently the only curative approach for patients with these blood cancers.

Avalons next generation immune cell therapy using FLASH-CAR technology is being co-developed with the companys strategic partner Arbele Limited. The adaptable FLASH-CAR platform can be used to create personalized cell therapy from a patients own cells, as well as off-the-shelf cell therapy from a universal donor, expanding the reach of cancer patients that can be treated.

Avalon, based in Freehold, New Jersey, specializes in developing cell-based technologies and is involved in the management of stem-cell banks and clinical laboratories.

Contact the author Uttara Choudhury at [emailprotected]

Follow her on Twitter: @UttaraProactive

View post:
Avalon GloboCare strikes three-way material transfer agreement with Weill Cornell Medicine and Arbele Limited - Proactive Investors USA & Canada

To Read More: Avalon GloboCare strikes three-way material transfer agreement with Weill Cornell Medicine and Arbele Limited – Proactive Investors USA & Canada
categoriaBone Marrow Stem Cells commentoComments Off on Avalon GloboCare strikes three-way material transfer agreement with Weill Cornell Medicine and Arbele Limited – Proactive Investors USA & Canada | dataJune 12th, 2020
Read All

CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001 in Severe Hemoglobinopathies at the 25th…

By daniellenierenberg

-Beta thalassemia: Two patients are transfusion independent at 5 and 15 months after CTX001 infusion; data demonstrate clinical proof-of-concept for CTX001 in transfusion-dependent beta thalassemia-

-Sickle cell disease: Patient is free of vaso-occlusive crises at 9 months after CTX001 infusion-

-Five patients with beta thalassemia and two patients with sickle cell disease have been treated to date with CTX001 and all have successfully engrafted-

ZUG, Switzerland and CAMBRIDGE, Mass. and BOSTON, June 12, 2020 (GLOBE NEWSWIRE) -- CRISPR Therapeutics (Nasdaq: CRSP) and Vertex Pharmaceuticals Incorporated (Nasdaq: VRTX) today announced new clinical data for CTX001, an investigational CRISPR/Cas9 gene-editing therapy, from the CLIMB-111 and CLIMB-121 Phase 1/2 trials in transfusion-dependent beta thalassemia (TDT) and severe sickle cell disease (SCD), and highlighted recent progress in the CTX001 development program. These data were presented during an oral presentation at the European Hematology Association (EHA) virtual congress by Dr. Selim Corbacioglu, Professor of Pediatrics and the Chair of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Regensburg University Hospital, Regensburg, Germany.

CLIMB-111 Trial in Transfusion-Dependent Beta Thalassemia Updated ResultsData presented today at EHA demonstrate clinical proof-of-concept for CTX001 in TDT. Data include longer-duration follow-up data for the first patient with TDT treated with CTX001 and new data for the second TDT patient treated. CRISPR Therapeutics and Vertex announced initial data for the first TDT patient in November of 2019.

Patient 1 with TDT has the 0/IVS-I-110 genotype, which is associated with a severe phenotype similar to 0/0, and had a transfusion requirement of 34 units of packed red blood cells per year (annualized rate during the two years prior to consenting for the trial) before enrolling in the clinical trial. As previously reported, the patient achieved neutrophil engraftment 33 days after CTX001 infusion and platelet engraftment 37 days after infusion. After CTX001 infusion, two serious adverse events (SAEs) occurred, neither of which the principal investigator (PI) considered related to CTX001: pneumonia in the presence of neutropenia, and veno-occlusive liver disease attributed to busulfan conditioning; both subsequently resolved. New data presented today show that at 15 months after CTX001 infusion, the patient was transfusion independent and had total hemoglobin levels of 14.2 g/dL, fetal hemoglobin of 13.5 g/dL, and F-cells (erythrocytes expressing fetal hemoglobin) of 100.0%. Bone marrow allelic editing was 78.1% at 6 months and 76.1% at one year.

Patient 2 with TDT has the 0/IVS-II-745 genotype and had a transfusion requirement of 61 units of packed red blood cells per year (annualized rate during the two years prior to consenting for the trial) before enrolling in the clinical trial. The patient achieved neutrophil engraftment 36 days after CTX001 infusion and platelet engraftment 34 days after infusion. After CTX001 infusion, two SAEs occurred, neither of which the PI considered related to CTX001: pneumonia and an upper respiratory tract infection; both subsequently resolved. At 5 months after CTX001 infusion, the patient was transfusion independent and had total hemoglobin levels of 12.5 g/dL, fetal hemoglobin of 12.2 g/dL, and F-cells (erythrocytes expressing fetal hemoglobin) of 99.4%.

Hemoglobin data over time are presented for Patient 1 and Patient 2 below.

Figure 1accompanying this announcement is available at https://www.globenewswire.com/NewsRoom/AttachmentNg/35581299-d683-44b0-a75e-7a1a9b9fe9eb

CLIMB-121 Trial in Severe Sickle Cell Disease Updated Results Data presented today at EHA reflect longer-duration follow-up data for the first patient with SCD treated with CTX001. CRISPR Therapeutics and Vertex announced initial data for this first SCD patient in November of 2019.

Patient 1 with SCD experienced seven vaso-occlusive crises (VOCs) and five packed red blood cell transfusions per year (annualized rate during the two years prior to consenting for the trial) before enrolling in the clinical trial. As previously reported, the patient achieved neutrophil and platelet engraftment 30 days after CTX001 infusion. After CTX001 infusion, three SAEs occurred, none of which the PI considered related to CTX001: sepsis in the presence of neutropenia, cholelithiasis and abdominal pain; all subsequently resolved. New data presented today show that at 9 months after CTX001 infusion, the patient was free of VOCs, was transfusion independent and had total hemoglobin levels of 11.8 g/dL, 46.1% fetal hemoglobin, and F-cells (erythrocytes expressing fetal hemoglobin) of 99.7%. Bone marrow allelic editing was 81.4% at 6 months. Figure 2 presents the hemoglobin data over time for this patient.

Figure 2 accompanying this announcement is available at https://www.globenewswire.com/NewsRoom/AttachmentNg/7610c5bd-25c8-4f5b-be86-8bc16ed57eb1

With these new data, we are beginning to see early evidence of the potential durability of benefit from treatment with CTX001, as well as consistency of the therapeutic effect across patients, said Samarth Kulkarni, Ph.D., Chief Executive Officer of CRISPR Therapeutics. These highly encouraging early data represent one more step toward delivering on the promise and potential of CRISPR/Cas9 therapies as a new class of potentially transformative medicines to treat serious diseases.

The data announced today are remarkable, including the demonstration of clinical proof-of-concept in TDT, said Reshma Kewalramani, M.D., Chief Executive Officer and President of Vertex. While these are still early days, these data mark another important milestone for this program and for the field of gene editing. The results presented at this medical conference add to results previously shared demonstrating that CRISPR/Cas9 gene editing has the potential to be a curative therapy for severe genetic diseases like sickle cell and beta thalassemia.

In my 25 years of caring for children and young adults facing both sickle cell disease and beta thalassemia, I have seen how these diseases can adversely affect patients lives in very significant ways, said Dr. Haydar Frangoul, Medical Director of Pediatric Hematology and Oncology at Sarah Cannon Research Institute, HCA Healthcares TriStar Centennial Medical Center and senior author of the abstract presented at the EHA virtual congress. I am encouraged by the preliminary results, which demonstrate, in essence, a functional cure for patients with beta thalassemia and sickle cell disease.

Recent Progress in the Phase 1/2 Clinical TrialsCLIMB-111 for TDT has dosed a total of 5 patients, and all patients have successfully engrafted. The trial is also now open for concurrent dosing after successful dosing and engraftment of the first two patients. Additionally, CLIMB-111 has been expanded to allow enrollment of 0/0 patients and is in the process of being expanded to allow enrollment of pediatric patients ages 12 years or older.

CLIMB-121 for SCD has dosed a total of 2 patients and both patients have successfully engrafted. The trial is also now open for concurrent dosing after successful dosing and engraftment of these first two patients.

The initial safety profile in these trials appears to be consistent with myeloablative busulfan conditioning and an autologous hematopoietic stem cell transplant.

In March 2020, clinical trial sites in the U.S. and Europe temporarily paused their elective hematopoietic stem cell transplant programs due to the COVID-19 pandemic, and as a result, CRISPR and Vertex temporarily paused conditioning and dosing in these trials. Enrollment, mobilization and drug product manufacturing in each trial remains ongoing. The companies are now in the process of re-initiating dosing with CTX001 at certain clinical trial sites. The CLIMB-111 and CLIMB-121 clinical trials are ongoing, and patients will be followed for 2 years following CTX001 infusion. The companies expect to provide additional data in the second half of 2020.

About CTX001CTX001 is an investigational ex vivo CRISPR gene-edited therapy that is being evaluated for patients suffering from TDT or severe SCD in which a patients hematopoietic stem cells are engineered to produce high levels of fetal hemoglobin (HbF; hemoglobin F) in red blood cells. HbF is a form of the oxygen-carrying hemoglobin that is naturally present at birth, which then switches to the adult form of hemoglobin. The elevation of HbF by CTX001 has the potential to alleviate transfusion requirements for TDT patients and reduce painful and debilitating sickle crises for SCD patients.

Based on progress in this program to date, CTX001 has been granted Regenerative Medicine Advanced Therapy (RMAT) from the U.S. FDA, Orphan Drug Designation from both the FDA and the European Medicines Agency (EMA), and Fast Track Designation from the FDA for both SCD and TDT.

CTX001 is being developed under a co-development and co-commercialization agreement between CRISPR Therapeutics and Vertex. CTX001 is the most advanced gene-editing approach in development for TDT and SCD.

About CLIMB-111The ongoing Phase 1/2 open-label trial, CLIMB-Thal-111, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 18 to 35 with TDT. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About CLIMB-121The ongoing Phase 1/2 open-label trial, CLIMB-SCD-121, is designed to assess the safety and efficacy of a single dose of CTX001 in patients ages 18 to 35 with severe SCD. The trial will enroll up to 45 patients and follow patients for approximately two years after infusion. Each patient will be asked to participate in a long-term follow-up trial.

About the Gene-Editing Process in These TrialsPatients who enroll in these trials will have their own hematopoietic stem and progenitor cells collected from peripheral blood. The patients cells will be edited using the CRISPR/Cas9 technology. The edited cells, CTX001, will then be infused back into the patient as part of a stem cell transplant, a process which involves, among other things, a patient being treated with myeloablative busulfan conditioning. Patients undergoing stem cell transplants may also encounter side effects (ranging from mild to severe) that are unrelated to the administration of CTX001. Patients will initially be monitored to determine when the edited cells begin to produce mature blood cells, a process known as engraftment. After engraftment, patients will continue to be monitored to track the impact of CTX001 on multiple measures of disease and for safety.

About the CRISPR-Vertex Collaboration CRISPR Therapeutics and Vertex entered into a strategic research collaboration in 2015 focused on the use of CRISPR/Cas9 to discover and develop potential new treatments aimed at the underlying genetic causes of human disease. CTX001 represents the first treatment to emerge from the joint research program. CRISPR Therapeutics and Vertex will jointly develop and commercialize CTX001 and equally share all research and development costs and profits worldwide.

About CRISPR TherapeuticsCRISPR Therapeutics is a leading gene editing company focused on developing transformative gene-based medicines for serious diseases using its proprietary CRISPR/Cas9 platform. CRISPR/Cas9 is a revolutionary gene editing technology that allows for precise, directed changes to genomic DNA. CRISPR Therapeutics has established a portfolio of therapeutic programs across a broad range of disease areas including hemoglobinopathies, oncology, regenerative medicine and rare diseases. To accelerate and expand its efforts, CRISPR Therapeutics has established strategic collaborations with leading companies including Bayer, Vertex Pharmaceuticals and ViaCyte, Inc. CRISPR Therapeutics AG is headquartered in Zug, Switzerland, with its wholly-owned U.S. subsidiary, CRISPR Therapeutics, Inc., and R&D operations based in Cambridge, Massachusetts, and business offices in San Francisco, California and London, United Kingdom. For more information, please visit http://www.crisprtx.com.

CRISPR Therapeutics Forward-Looking StatementThis press release may contain a number of forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, as amended, including statements made by Dr. Kulkarni, Dr. Kewalramani and Dr. Frangoul in this press release, as well as statements regarding CRISPR Therapeutics expectations about any or all of the following: (i) the status of clinical trials (including, without limitation, the expected timing of data releases and activities at clinical trial sites) related to product candidates under development by CRISPR Therapeutics and its collaborators, including expectations regarding the data that is being presented at the European Hematology Associations virtual congress; (ii) the expected benefits of CRISPR Therapeutics collaborations; and (iii) the therapeutic value, development, and commercial potential of CRISPR/Cas9 gene editing technologies and therapies. Without limiting the foregoing, the words believes, anticipates, plans, expects and similar expressions are intended to identify forward-looking statements. You are cautioned that forward-looking statements are inherently uncertain. Although CRISPR Therapeutics believes that such statements are based on reasonable assumptions within the bounds of its knowledge of its business and operations, forward-looking statements are neither promises nor guarantees and they are necessarily subject to a high degree of uncertainty and risk. Actual performance and results may differ materially from those projected or suggested in the forward-looking statements due to various risks and uncertainties. These risks and uncertainties include, among others: potential impacts due to the coronavirus pandemic, such as the timing and progress of clinical trials; the potential for initial and preliminary data from any clinical trial and initial data from a limited number of patients (as is the case with CTX001 at this time) not to be indicative of final trial results; the potential that CTX001 clinical trial results may not be favorable; that future competitive or other market factors may adversely affect the commercial potential for CTX001; uncertainties regarding the intellectual property protection for CRISPR Therapeutics technology and intellectual property belonging to third parties, and the outcome of proceedings (such as an interference, an opposition or a similar proceeding) involving all or any portion of such intellectual property; and those risks and uncertainties described under the heading "Risk Factors" in CRISPR Therapeutics most recent annual report on Form 10-K, and in any other subsequent filings made by CRISPR Therapeutics with the U.S. Securities and Exchange Commission, which are available on the SEC's website at http://www.sec.gov. Existing and prospective investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date they are made. CRISPR Therapeutics disclaims any obligation or undertaking to update or revise any forward-looking statements contained in this press release, other than to the extent required by law.

About VertexVertex is a global biotechnology company that invests in scientific innovation to create transformative medicines for people with serious diseases. The company has multiple approved medicines that treat the underlying cause of cystic fibrosis (CF) a rare, life-threatening genetic disease and has several ongoing clinical and research programs in CF. Beyond CF, Vertex has a robust pipeline of investigational small molecule medicines in other serious diseases where it has deep insight into causal human biology, including pain, alpha-1 antitrypsin deficiency and APOL1-mediated kidney diseases. In addition, Vertex has a rapidly expanding pipeline of genetic and cell therapies for diseases such as sickle cell disease, beta thalassemia, Duchenne muscular dystrophy and type 1 diabetes mellitus.

Founded in 1989 in Cambridge, Mass., Vertex's global headquarters is now located in Boston's Innovation District and its international headquarters is in London, UK. Additionally, the company has research and development sites and commercial offices in North America, Europe, Australia and Latin America. Vertex is consistently recognized as one of the industry's top places to work, including 10 consecutive years on Science magazine's Top Employers list and top five on the 2019 Best Employers for Diversity list by Forbes. For company updates and to learn more about Vertex's history of innovation, visit http://www.vrtx.com or follow us on Facebook, Twitter, LinkedIn, YouTube and Instagram.

Vertex Special Note Regarding Forward-Looking StatementsThis press release contains forward-looking statements as defined in the Private Securities Litigation Reform Act of 1995, including, without limitation, statements made by Dr. Kulkarni, Dr. Kewalramani and Dr. Frangoul in this press release, and statements regarding our plans and expectations for our clinical trials and clinical trial sites, and our expectations regarding future data announcements. While Vertex believes the forward-looking statements contained in this press release are accurate, these forward-looking statements represent the company's beliefs only as of the date of this press release and there are a number of risks and uncertainties that could cause actual events or results to differ materially from those expressed or implied by such forward-looking statements. Those risks and uncertainties include, among other things, that data from the company's development programs may not support registration or further development of its compounds due to safety, efficacy or other reasons, and other risks listed under Risk Factors in Vertex's annual report and subsequent quarterly reports filed with the Securities and Exchange Commission and available through the company's website at http://www.vrtx.com. Vertex disclaims any obligation to update the information contained in this press release as new information becomes available.

(VRTX-GEN)

CRISPR Therapeutics Investor Contact:Susan Kim, +1 617-307-7503susan.kim@crisprtx.com

CRISPR Therapeutics Media Contact:Rachel EidesWCG on behalf of CRISPR+1 617-337-4167reides@wcgworld.com

Vertex Pharmaceuticals IncorporatedInvestors:Michael Partridge, +1 617-341-6108orZach Barber, +1 617-341-6470orBrenda Eustace, +1 617-341-6187

Media:mediainfo@vrtx.comorU.S.: +1 617-341-6992orHeather Nichols: +1 617-839-3607orInternational: +44 20 3204 5275

Read the rest here:
CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001 in Severe Hemoglobinopathies at the 25th...

To Read More: CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001 in Severe Hemoglobinopathies at the 25th…
categoriaBone Marrow Stem Cells commentoComments Off on CRISPR Therapeutics and Vertex Announce New Clinical Data for Investigational Gene-Editing Therapy CTX001 in Severe Hemoglobinopathies at the 25th… | dataJune 12th, 2020
Read All

Impact of Corona on Spinal Fusion Market Statistics, Investment Trends, Key Players and Forecast 2020-2026 | Cotton, Rayon, Blended – Cole of Duty

By daniellenierenberg

Spinal Fusion Market 2020: Latest Analysis

Chicago, United States:- The report titled Global Spinal Fusion Market is one of the most comprehensive and important additions to Report Hive Research archive of market research studies. It offers detailed research and analysis of key aspects of the global Spinal Fusion market. The market analysts authoring this report have provided in-depth information on leading growth drivers, restraints, challenges, trends, and opportunities to offer a complete analysis of the global Spinal Fusion market. Market participants can use the analysis on market dynamics to plan effective growth strategies and prepare for future challenges beforehand. Each trend of the global Spinal Fusion market is carefully analyzed and researched about by the market analysts.

Top Players of Spinal Fusion Market are Studied: Market by Materials, Cotton, Rayon, Blended

Download Free Sample PDF (including full TOC, Tables, and Figures) of Spinal Fusion Market Research 2020-2026:- @

Global Spinal Fusion Market is estimated to reach xxx million USD in 2020 and projected to grow at the CAGR of xx% during 2020-2026. According to the latest report added to the online repository of Report Hive Research the Spinal Fusion market has witnessed an unprecedented growth till 2020. The extrapolated future growth is expected to continue at higher rates by 2026.

Our exploration specialists acutely ascertain the significant aspects of the global Spinal Fusion market report. It also provides an in-depth valuation in regards to the future advancements relying on the past data and present circumstance of Spinal Fusion market situation. In this Spinal Fusion report, we have investigated the principals, players in the market, geological regions, product type, and market end-client applications. The global Spinal Fusion report comprises of primary and secondary data which is exemplified in the form of pie outlines, Spinal Fusion tables, analytical figures, and reference diagrams. The Spinal Fusion report is presented in an efficient way that involves basic dialect, basic Spinal Fusion outline, agreements, and certain facts as per solace and comprehension.

Segmentation by Application: Cord Blood Stem Cells CryopreservationOther Stem Cells Cryopreservation

Segmentation by Type: Liquid phaseVapor phase

NOTE:Due to the pandemic, we have included a special section on the Impact of COVID 19 on the Spinal Fusion Market which would mention How the Covid-19 is Affecting the Spinal Fusion Industry, Market Trends and Potential Opportunities in the COVID-19 Landscape, Covid-19 Impact on Key Regions and Proposal for Spinal Fusion Players to Combat Covid-19 Impact.

The Essential Content Covered in the GlobalSpinal Fusion Market Report:

* Top Key Company Profiles.* Main Business and Rival Information* SWOT Analysis and PESTEL Analysis* Production, Sales, Revenue, Price and Gross Margin* Market Share and Size

The report provides a 6-year forecast (2020-2026) assessed based on how the Spinal Fusion market is predicted to grow in major regions like USA, Europe, Japan, China, India, Southeast Asia, South America, South Africa, Others.

Key Questions Answered In this Report:

What is the overall market size in 2019? What will be the market growth during the forecast period i.e. 2020-2026?

Which region would have high demand for product in the upcoming years?

What are the factors driving the growth of the market?

Which sub-market will make the most significant contribution to the market?

What are the market opportunities for existing and entry-level players?

What are various long-term and short-term strategies adopted by the market players?

What are the key business strategies being adopted by new entrants in the Spinal Fusion Market?

Get Full Customize report or for any Special Discount [emailprotected] https://www.reporthive.com/request_customization/2250326

Table of Contents

Market Overview: This is the first section of the report that includes an overview of the scope of products offered in the global Spinal Fusion market, segments by product and application, and market size.

Market Competition by Player: Here, the report shows how the competition in the global Spinal Fusion market is growing or decreasing based on deep analysis of market concentrate rate, competitive situations and trends, expansions, merger and acquisition deals, and other subjects. It also shows how different companies are progressing in the global Spinal Fusion market in terms of revenue, production, sales, and market share.

Company Profiles and Sales Data: This part of the report is very important as it gives statistical as well as other types of analysis of leading manufacturers in the global Spinal Fusion market. It assesses each and every player studied in the report on the basis of main business, gross margin, revenue, sales, price, competitors, manufacturing base, product specification, product application, and product category.

Market Status and Outlook by Region: The report studies the status and outlook of different regional markets such as Europe, North America, the MEA, Asia Pacific, and South America. All of the regional markets researched about in the report are examined based on price, gross margin, revenue, production, and sales. Here, the size and CAGR of the regional markets are also provided.

Market by Product: This section carefully analyzes all product segments of the global Spinal Fusion market.

Market by Application: Here, various application segments of the global Spinal Fusion market are taken into account for research study.

Market Forecast: It starts with revenue forecast and then continues with sales, sales growth rate, and revenue growth rate forecasts of the global Spinal Fusion market. The forecasts are also provided taking into consideration product, application, and regional segments of the global Spinal Fusion market.

Upstream Raw Materials: This section includes industrial chain analysis, manufacturing cost structure analysis, and key raw materials analysis of the global Spinal Fusion market.

Marketing Strategy Analysis, Distributors: Here, the research study digs deep into behavior and other factors of downstream customers, distributors, development trends of marketing channels, and marketing channels such as indirect marketing and direct marketing.

Research Findings and Conclusion: This section is solely dedicated to the conclusion and findings of the research study on the global Spinal Fusion market.

Appendix: This is the last section of the report that focuses on data sources, viz. primary and secondary sources, market breakdown and data triangulation, market size estimation, research programs and design, research approach and methodology, and the publishers disclaimer.

Get Free Sample Copy of this report: https://www.reporthive.com/request_sample/2250326

COVID-19 impact on Spinal Fusion Market Share, Size, Revenue, Gross Margin and Growth Rate Analysis 2020-2026

Why Go For Report Hive Research?Report Hive Research delivers strategic market research reports, statistical surveys, industry analysis and forecast data on products and services, markets and companies. Our clientele ranges mix of global business leaders, government organizations, SMEs, individuals and Start-ups, top management consulting firms, universities, etc. Our library of 700,000 + reports targets high growth emerging markets in the USA, Europe Middle East, Africa, Asia Pacific covering industries like IT, Telecom, Semiconductor, Chemical, Healthcare, Pharmaceutical, Energy and Power, Manufacturing, Automotive and Transportation, Food and Beverages, etc. This large collection of insightful reports assists clients to stay ahead of time and competition. We help in business decision-making on aspects such as market entry strategies, market sizing, market share analysis, sales and revenue, technology trends, competitive analysis, product portfolio, and application analysis, etc.

Get in Touch with Us :

Report Hive Research

Speak to Research Analyst: +1-312-604-7084

See the article here:
Impact of Corona on Spinal Fusion Market Statistics, Investment Trends, Key Players and Forecast 2020-2026 | Cotton, Rayon, Blended - Cole of Duty

To Read More: Impact of Corona on Spinal Fusion Market Statistics, Investment Trends, Key Players and Forecast 2020-2026 | Cotton, Rayon, Blended – Cole of Duty
categoriaSpinal Cord Stem Cells commentoComments Off on Impact of Corona on Spinal Fusion Market Statistics, Investment Trends, Key Players and Forecast 2020-2026 | Cotton, Rayon, Blended – Cole of Duty | dataJune 12th, 2020
Read All

Canine Stem Cell Therapy Market to Expand with Significant CAGR – WorldsTrend

By daniellenierenberg

Health care stakeholders need to invest in value-based care, innovative care delivery models, advanced digital technologies. XploreMR will help you to know declarative, procedural, contextual, and somatic information about the Canine Stem Cell Therapy Market. It also provides a critical assessment of the performance of emerging and mature markets in a new publication titled Global Market Study on Canine Stem Cell Therapy: Ongoing Clinical Trials and Focus on Advancements to Push Adoption in Veterinary Clinics.

A synopsis of the global canine stem cell therapy market with reference to the global healthcare pharmaceutical industry

Despite the economic and political uncertainty in the recent past, the global healthcare industry has been receiving positive nudges from reformative and technological disruptions in medical devices, pharmaceuticals and biotech, in-vitro diagnostics, and medical imaging. Key markets across the world are facing a massive rise in demand for critical care services that are pushing global healthcare spending levels to unimaginable limits.

Click HERE To get SAMPLE PDF (Including Full TOC, Table & Figures) and many more Information:https://www.xploremr.com/connectus/sample/2360

A rapidly multiplying geriatric population; increasing prevalence of chronic ailments such as cancer and cardiac disease; growing awareness among patients; and heavy investments in clinical innovation are just some of the factors that are impacting the performance of the global healthcare industry. Proactive measures such as healthcare cost containment, primary care delivery, innovation in medical procedures (3-D printing, blockchain, and robotic surgery to name a few), safe and effective drug delivery, and well-defined healthcare regulatory compliance models are targeted at placing the sector on a high growth trajectory across key regional markets.

Parent Indicators Healthcare

Research Methodology

XploreMR utilizes a triangulation methodology that is primarily based on experimental techniques such as patient-level data, to obtain precise market estimations and insights on Molecule and Drug Classes, API Formulations and preferred modes of administration. Bottom-up approach is always used to obtain insightful data for the specific country/regions. The country specific data is again analysed to derive data at a global level. This methodology ensures high quality and accuracy of information.

Secondary research is used at the initial phase to identify the age specific disease epidemiology, diagnosis rate and treatment pattern, as per disease indications. Each piece of information is eventually analysed during the entire research project which builds a strong base for the primary research information.

Primary research participants include demand-side users such as key opinion leaders, physicians, surgeons, nursing managers, clinical specialists who provide valuable insights on trends and clinical application of the drugs, key treatment patterns, adoption rate, and compliance rate.

Quantitative and qualitative assessment of basic factors driving demand, economic factors/cycles and growth rates and strategies utilized by key players in the market is analysed in detail while forecasting, in order to project Year-on-Year growth rates. These Y-o-Y growth projections are checked and aligned as per industry/product lifecycle and further utilized to develop market numbers at a holistic level.

On the other hand, we also analyse various companies annual reports, investor presentations, SEC filings, 10k reports and press release operating in this market segment to fetch substantial information about the market size, trends, opportunity, drivers, restraints and to analyse key players and their market shares. Key companies are segmented at Tier level based on their revenues, product portfolio and presence.

Please note that these are the partial steps that are being followed while developing the market size. Besides this, forecasting will be done based on our internal proprietary model which also uses different macro-economic factors such as per capita healthcare expenditure, disposable income, industry based demand driving factors impacting the market and its forecast trends apart from disease related factors.

Get Full Access Of This Exclusive Report Right Now: https://www.xploremr.com/cart/2360/SL

Standard Report Structure

Target Audience

Market Taxonomy

The global canine stem cell therapy market has been segmented into:

Product Type:

Application:

End User:

Region:

Visit link:
Canine Stem Cell Therapy Market to Expand with Significant CAGR - WorldsTrend

To Read More: Canine Stem Cell Therapy Market to Expand with Significant CAGR – WorldsTrend
categoriaCardiac Stem Cells commentoComments Off on Canine Stem Cell Therapy Market to Expand with Significant CAGR – WorldsTrend | dataJune 12th, 2020
Read All

New Results From Landmark NURTURE Study Show That Pre-Symptomatic SMA Patients Treated With SPINRAZA (nusinersen) Continue to Demonstrate Sustained…

By daniellenierenberg

DetailsCategory: DNA RNA and CellsPublished on Wednesday, 10 June 2020 16:58Hits: 131

CAMBRIDGE, MA, USA I June 10, 2020 I Biogen Inc.(Nasdaq: BIIB) today announced new results from NURTURE, the longest study of pre-symptomatic patients with spinal muscular atrophy (SMA) that is transforming expectations of early treatment with SPINRAZA (nusinersen). In infants genetically diagnosed with SMA, new data demonstrate that early and sustained treatment with SPINRAZA for up to 4.8 years enabled unprecedented survival. Patients continued to maintain and make progressive gains in motor function compared to the natural course of the disease. These results are being presented at the virtual Cure SMA Research & Clinical Care Meeting taking place June 10-12, 2020.

The new data include nearly a year of additional follow-up for NURTURE study participants. As of February 2020, all patients treated (n=25; median age of 3.8 years old) were alive and remained free of permanent ventilation. In the absence of treatment, the majority of children with SMA Type 1 would, on average, not reach their second birthday. Additionally, all children who achieved the motor milestone of being able to walk independently (many within a normal timeframe) have maintained that ability from the first occurrence until the last visit.

The impact of early and sustained SPINRAZA treatment on these infants and their families is remarkable. Ive had the privilege to watch them grow into active young children, many of whom have experienced progress in motor function consistent with children their age who do not have SMA, said Kathryn Swoboda, M.D., the Katherine B. Sims, M.D., Endowed Chair in Neurogenetics and Director of the Neurogenetics Program, Massachusetts General Hospital. The new results from NURTURE continue to bolster the substantial benefit of both prompt diagnosis and early and longer-term treatment with SPINRAZA.

NURTURE is an ongoing, Phase 2, open-label study of 25 pre-symptomatic patients with the genetic diagnosis of SMA (most likely to develop SMA Type 1 or 2) who received their first dose of SPINRAZA before 6 weeks old. The study has been extended by an additional three years, enabling Biogen to evaluate the longer-term efficacy and safety of SPINRAZA through 8 years of age and further understand the impact of early treatment. More information on the NURTURE study (NCT02386553) is available onclinicaltrials.gov.

Additional results from the updated interim analysis as of February 2020 show:

About SPINRAZA (nusinersen)2-4 SPINRAZA is the first therapy approved to treat infants, children and adults with spinal muscular atrophy (SMA) and is approved in more than 50 countries. As of March 31, 2020, more than 10,000 individuals have been treated with SPINRAZA. It is the only SMA treatment to combine unsurpassed real-world experience with a robust level of clinical evidence across a broad spectrum of patient populations.

SMA is a rare, genetic, neuromuscular disease that is characterized by a loss of motor neurons in the spinal cord and lower brain stem that can result in severe, progressive muscle atrophy and weakness. Approximately one in 10,000 live births have a diagnosis of SMA, and people of all ages are impacted by the disease. It is a leading genetic cause of infant mortality.

SPINRAZA, a foundation of care in SMA, is an antisense oligonucleotide (ASO), developed using Ionis Pharmaceuticals proprietary technology that is designed to target a root cause of SMA by increasing the amount of full-length survival motor neuron (SMN) protein, which is critical to maintaining motor neurons. It is administered by intrathecal injection into the fluid surrounding the spinal cord where motor neurons reside to deliver the treatment where the disease starts.

SPINRAZA currently maintains a robust clinical data set in SMA based on data from approximately 300 patients across a broad range of SMA populations demonstrating a favorable benefit:risk profile. SPINRAZA was evaluated in two randomized, double-blind, sham-controlled studies of infantile and later-onset SMA (ENDEAR and CHERISH, respectively) and supported by open-label studies that include pre-symptomatic infants (NURTURE), individuals with later-onset SMA (CS2/CS12) and an extension study of individuals who previously participated in the clinical development program (SHINE). The most common adverse events observed were respiratory infection, fever, constipation, headache, vomiting and back pain. Hypersensitivity, meningitis and hydrocephalus have been observed in the post-marketing setting. Renal toxicity and coagulation abnormalities, including acute severe low platelet counts, have been observed after administration of some ASOs. Laboratory tests can monitor for these signs.

Biogen licensed the global rights to develop, manufacture and commercialize SPINRAZA from Ionis Pharmaceuticals, Inc. (Nasdaq: IONS), a leader in antisense therapeutics. Biogen and Ionis conducted an innovative clinical development program that moved SPINRAZA from its first dose in humans in 2011 to its first regulatory approval in five years.

About BiogenAt Biogen, our mission is clear: we are pioneers in neuroscience. Biogen discovers, develops and delivers worldwide innovative therapies for people living with serious neurological and neurodegenerative diseases as well as related therapeutic adjacencies. One of the worlds first global biotechnology companies, Biogen was founded in 1978 by Charles Weissmann, Heinz Schaller, Kenneth Murray and Nobel Prize winners Walter Gilbert and Phillip Sharp. Today Biogen has the leading portfolio of medicines to treat multiple sclerosis, has introduced the first approved treatment for spinal muscular atrophy, commercializes biosimilars of advanced biologics and is focused on advancing research programs in multiple sclerosis and neuroimmunology, Alzheimers disease and dementia, neuromuscular disorders, movement disorders, ophthalmology, immunology, neurocognitive disorders, acute neurology and pain.

We routinely post information that may be important to investors on our website at http://www.biogen.com. To learn more, please visit http://www.biogen.com and follow us on social media Twitter, LinkedIn, Facebook, YouTube.

References:

SOURCE: Biogen

Excerpt from:
New Results From Landmark NURTURE Study Show That Pre-Symptomatic SMA Patients Treated With SPINRAZA (nusinersen) Continue to Demonstrate Sustained...

To Read More: New Results From Landmark NURTURE Study Show That Pre-Symptomatic SMA Patients Treated With SPINRAZA (nusinersen) Continue to Demonstrate Sustained…
categoriaSpinal Cord Stem Cells commentoComments Off on New Results From Landmark NURTURE Study Show That Pre-Symptomatic SMA Patients Treated With SPINRAZA (nusinersen) Continue to Demonstrate Sustained… | dataJune 10th, 2020
Read All

Molecular alterations in the extracellular matrix in the brains of newborns with congenital Zika syndrome – Science

By daniellenierenberg

How Zika affects the extracellular matrix

In some cases, Zika virus (ZIKV) infection during pregnancy leads to a series of severe defects in the fetus collectively known as congenital Zika syndrome (CZS). These include microcephaly, defective neuronal migration, and impaired cortical development. Aguiar et al. combined genomic, transcriptomic, and proteomic analyses of blood and postmortem brains and demonstrated that ZIKV-infected neonates showed a reduction in collagen expression and an increase in adhesion factor expression, alterations in the extracellular matrix consistent with the brain defects seen in CZS. Together, these datasets form a useful resource for those investigating the molecular mechanisms underlying CZS in humans.

Zika virus (ZIKV) infection during pregnancy can cause a set of severe abnormalities in the fetus known as congenital Zika syndrome (CZS). Experiments with animal models and in vitro systems have substantially contributed to our understanding of the pathophysiology of ZIKV infection. Here, to investigate the molecular basis of CZS in humans, we used a systems biology approach to integrate transcriptomic, proteomic, and genomic data from the postmortem brains of neonates with CZS. We observed that collagens were greatly reduced in expression in CZS brains at both the RNA and protein levels and that neonates with CZS had several single-nucleotide polymorphisms in collagen-encoding genes that are associated with osteogenesis imperfecta and arthrogryposis. These findings were validated by immunohistochemistry and comparative analysis of collagen abundance in ZIKV-infected and uninfected samples. In addition, we showed a ZIKV-dependent increase in the expression of cell adhesion factors that are essential for neurite outgrowth and axon guidance, findings that are consistent with the neuronal migration defects observed in CZS. Together, these findings provide insights into the underlying molecular alterations in the ZIKV-infected brain and reveal host genes associated with CZS susceptibility.

Go here to read the rest:
Molecular alterations in the extracellular matrix in the brains of newborns with congenital Zika syndrome - Science

To Read More: Molecular alterations in the extracellular matrix in the brains of newborns with congenital Zika syndrome – Science
categoriaSpinal Cord Stem Cells commentoComments Off on Molecular alterations in the extracellular matrix in the brains of newborns with congenital Zika syndrome – Science | dataJune 10th, 2020
Read All

Page 111«..1020..110111112113..120130..»


Copyright :: 2024