Page 112«..1020..111112113114..120130..»

Augmenting Demand for Stem Cell Characterization and Analysis Tools to Bolster Global Market Revenue Growth During the Crisis Period of COVID 19 – The…

By daniellenierenberg

Stem cell characterization is the study of tissue-specific differentiation. Thera are various type of stem cell such as embryonic stem cell, epithelial stem cell and others. Further, various techniques are used to characterized stem cells such as immunological techniques, used for depiction of different population of stem cells. These techniques are generally based on immunochemistry using staining technique or florescent microscopy. Besides, stem cells characterization and analysis tools are used against target chronic diseases. In 2014, the San Diego (UCSD) Health System and Sanford Stem Cell Clinical Center at the University of California announced the launch of a clinical trial, in order to assess the safety of neural stem cellbased therapy in patients with chronic spinal cord injury.

The factors driving the growth of stem cell characterization and analysis tools market due to increasing chronic disorders such as cancer, a diabetes and others. In addition, increasing awareness about among people about the therapeutic potency of stem cells characterization in the management of effective diseases is anticipated to increase the demand for stem cell characterization and analysis tools. Further, there are various technologies such as flow cytometry which is used to characterize the cell surface profiling of human-bone marrow and other related purposes are expected to increase the growth of stem cell characterization and analysis tools market. In addition, increasing investment by private and public organization for research activities are likely to supplement the market growth in near future.

Get Free Sample Copy With Impact Analysis Of COVID-19 Of Market Report @https://www.persistencemarketresearch.com/samples/31444

On the other hand, the unclear guidelines and the technical limitation for the development of the product are expected to hamper the growth of stem cell characterization and analysis tools market.

Rapid increase in corona virus all around the world is expected to hamper the growth of stem cell characterization and analysis tools market. The virus outburst has become one of the threats to the global economy and financial markets. The impact has made immense decrease in revenue generation in the field of all healthcare industry growth for the market in terms of compatibility and it has led in huge financial losses and human life which has hit very hard to the core of developing as well as emerging economies in healthcare sector. It further anticipated that such gloomy epidemiological pandemic environment is going to remain in next for at least some months, and this is going to also affect the life-science market which also include the market of stem cell characterization and analysis tools market.

Based on the Products and Service Type, stem cell characterization and analysis tools market are segmented into:

Based on the Technology, stem cell characterization and analysis tools market are segmented into:

Based on the Applications, stem cell characterization and analysis tools market are segmented into:

Based on the End User, stem cell characterization and analysis tools market are segmented into:

Based on the segmentation, human embryonic stem cell is expected to dominate the market due to their indefinite life span and higher totipotency as compared to other stem cells. Further, on the basis of technology segmentations, cell production is anticipated to increase the demand for stem cell characterization and analysis tools due to their emerging applications for stem cells in drug testing in the management of the effective diseases. Furthermore, on the basis of application segmentations, oncology is expected to show significant growth rate due to increase in the number of pipelines products for the treatment of cancers or tumors. Based on the end user, pharmaceutical and biotechnology companies are expected to dominate the market due to rising global awareness about the therapeutics research activities.

You Can Buy This PMR Healthcare Report From Here @https://www.persistencemarketresearch.com/checkout/31444

Geographically, the global stem cell characterization and analysis tools market is segmented into regions such as Latin America, Europe, North America, South Asia, East Asia Middle East & Africa and Oceania. North America is projected to emerge as prominent market in the global stem cell characterization and analysis tools market due to growing cases of target chronic diseases and increasing investments for research activities. Europe is the second leading region to dominate the market due to technological advancement and also surge in therapeutic activities, funded by government across the world. Asia-pacific is likely to witness maximum growth in near future due to increasing disposable income and with the development of infrastructure.

Some of the major key players competing in the global stem cell characterization and analysis tools market are Osiris Therapeutics, Inc., Caladrius Biosciences, Inc., U.S. Stem Cell, Inc., Astellas Pharma Inc., TEMCELL Technologies Inc., BioTime Inc., Cellular Engineering Technologies Inc., Cytori Therapeutics, Inc., and BrainStorm Cell Therapeutics Inc.

Rustil is a regular contributor to blog , Specializing in Industry Research and Forecast

See the original post:
Augmenting Demand for Stem Cell Characterization and Analysis Tools to Bolster Global Market Revenue Growth During the Crisis Period of COVID 19 - The...

To Read More: Augmenting Demand for Stem Cell Characterization and Analysis Tools to Bolster Global Market Revenue Growth During the Crisis Period of COVID 19 – The…
categoriaSpinal Cord Stem Cells commentoComments Off on Augmenting Demand for Stem Cell Characterization and Analysis Tools to Bolster Global Market Revenue Growth During the Crisis Period of COVID 19 – The… | dataJune 10th, 2020
Read All

Autologous Bone Marrow Transplantation and Metformin, a Hope for the Cure of Multiple Sclerosis – Gilmore Health News

By daniellenierenberg

On Friday, June 5, a few days after World MS Day on May 30, there was a day of online conferences and workshops to learn more about multiple sclerosis. It was an opportunity to shed light on autologous bone marrow transplantation, a little known treatment that could cure multiple sclerosis.

Neuron

Multiple sclerosis (MS) is a neurodegenerative autoimmune disease that causes stiffness, pain, and fatigue. It is the main cause of disability, exclusion from the labor market, and social exclusion among young people, as it occurs mainly among people between 25 and 35 years old. According to the National MS Society, approximately 1 million people in the United States suffer from MS.

Currently, there is no treatment to cure MS, but there is hope: Autologous bone marrow transplantation or autologous hematopoietic stem cell transplantation. This treatment allows patients to go from the more common forms of multiple sclerosis into remission. If carried out early enough, it enables at least partial recovery from the disability.

Read Also: Combo of Diabetes and Hypertension Drugs Causes Cancer Cell Death, Researchers Find

The aim of this treatment is to rebuild a new immune system in patients. This includes intensive chemotherapy followed by reinjection of the patients hematopoietic stem cells. Several studies conducted between 2015 and 2019 on this technique have shown that 83.3 of patients with the relapsing-remitting form had no attack in the four years following auto-transplantation and three years after transplantation 78% of patients with secondary progressive multiple sclerosis and 66% of patients with primary progressive multiple sclerosis experienced no worsening of their disability, Mediapart continues.

One of the main obstacles to this treatment remains the difficulty of access. Many patients testify that their neurologist often finds this method too experimental and too risky. Another factor that discourages the use of autologous bone marrow transplantation is the risk-benefit ratio, which is considered unbalanced. Transplant-related mortality is between 5 and 10%, which justifies doctors preference for a treatment that is considered safer.

Read Also: Diabetes: Metformin Transfers Blood Sugar From the Blood to the Intestines

Another treatment has shown encouraging results in multiple sclerosis. This is a drug for diabetes, metformin, which rejuvenates stem cells to convert them into myelin-producing cells and thus help combat multiple sclerosis. These results have been published in the journal Cell Stem Cell, and it is expected that the tests, which are currently only carried out on mice, will also be carried out on humans within a year. I am very optimistic, study author Professor Robin Franklin told The Guardian newspaper.

References

Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells

https://blogs.mediapart.fr/noelle-tassy/blog/300520/journee-mondiale-de-la-sep-et-si-parlait-du-traitement-dont-ne-parle-pas

Autologous Hematopoietic Cell Transplantation in Multiple Sclerosis: Changing Paradigms in the Era of Novel Agents

Go here to read the rest:
Autologous Bone Marrow Transplantation and Metformin, a Hope for the Cure of Multiple Sclerosis - Gilmore Health News

To Read More: Autologous Bone Marrow Transplantation and Metformin, a Hope for the Cure of Multiple Sclerosis – Gilmore Health News
categoriaBone Marrow Stem Cells commentoComments Off on Autologous Bone Marrow Transplantation and Metformin, a Hope for the Cure of Multiple Sclerosis – Gilmore Health News | dataJune 10th, 2020
Read All

Hematopoietic Stem Cell Transplantation (HSCT) Market Trends 2020: In-Depth Analysis of Industry Growth & Forecast Up To 2026 – Cole of Duty

By daniellenierenberg

The Hematopoietic Stem Cell Transplantation (HSCT) Market research report enhanced worldwide Coronavirus COVID19 impact analysis on the market size (Value, Production and Consumption), splits the breakdown (Data Status 2014-2020 and 6 Year Forecast From 2020 to 2026), by region, manufacturers, type and End User/application. This Hematopoietic Stem Cell Transplantation (HSCT) market report covers the worldwide top manufacturers like (Regen Biopharma Inc, China Cord Blood Corp, CBR Systems Inc, Escape Therapeutics Inc, Cryo-Save AG, Lonza Group Ltd, Pluristem Therapeutics Inc, ViaCord Inc) which including information such as: Capacity, Production, Price, Sales, Revenue, Shipment, Gross, Gross Profit, Import, Export, Interview Record, Business Distribution etc., these data help the consumer know about the Hematopoietic Stem Cell Transplantation (HSCT) market competitors better. It covers Regional Segment Analysis, Type, Application, Major Manufactures, Hematopoietic Stem Cell Transplantation (HSCT) Industry Chain Analysis, Competitive Insights and Macroeconomic Analysis.

Get Free Sample PDF (including COVID19 Impact Analysis, full TOC, Tables and Figures)of Hematopoietic Stem Cell Transplantation (HSCT)[emailprotected]https://www.researchmoz.us/enquiry.php?type=S&repid=2276986

Hematopoietic Stem Cell Transplantation (HSCT) Market report offers comprehensive assessment of 1) Executive Summary, 2) Market Overview, 3) Key Market Trends, 4) Key Success Factors, 5) Hematopoietic Stem Cell Transplantation (HSCT) Market Demand/Consumption (Value or Size in US$ Mn) Analysis, 6) Hematopoietic Stem Cell Transplantation (HSCT) Market Background, 7) Hematopoietic Stem Cell Transplantation (HSCT) industry Analysis & Forecast 20202026 by Type, Application and Region, 8) Hematopoietic Stem Cell Transplantation (HSCT) Market Structure Analysis, 9) Competition Landscape, 10) Company Share and Company Profiles, 11) Assumptions and Acronyms and, 12) Research Methodology etc.

Scope of Hematopoietic Stem Cell Transplantation (HSCT) Market:In 2019, the market size of Hematopoietic Stem Cell Transplantation (HSCT) is million US$ and it will reach million US$ in 2025, growing at a CAGR of from 2019; while in China, the market size is valued at xx million US$ and will increase to xx million US$ in 2025, with a CAGR of xx% during forecast period.

In this report, 2018 has been considered as the base year and 2019 to 2025 as the forecast period to estimate the market size for Hematopoietic Stem Cell Transplantation (HSCT).

On the basis on the end users/applications,this report focuses on the status and outlook for major applications/end users, shipments, revenue (Million USD), price, and market share and growth rate foreach application.

Peripheral Blood Stem Cells Transplant (PBSCT) Bone Marrow Transplant (BMT) Cord Blood Transplant (CBT)

On the basis of product type, this report displays the shipments, revenue (Million USD), price, and market share and growth rate of each type.

Allogeneic Autologous

Do You Have Any Query Or Specific Requirement? Ask to Our Industry[emailprotected]https://www.researchmoz.us/enquiry.php?type=E&repid=2276986

Geographically, the report includes the research on production, consumption, revenue, Hematopoietic Stem Cell Transplantation (HSCT) market share and growth rate, and forecast (2020-2026) of the following regions:

Important Hematopoietic Stem Cell Transplantation (HSCT) Market Data Available In This Report:

Strategic Recommendations, Forecast Growth Areasof the Hematopoietic Stem Cell Transplantation (HSCT) Market.

Challengesfor the New Entrants,TrendsMarketDrivers.

Emerging Opportunities,Competitive Landscape,Revenue Shareof Main Manufacturers.

This Report Discusses the Hematopoietic Stem Cell Transplantation (HSCT) MarketSummary; MarketScopeGives A BriefOutlineof theHematopoietic Stem Cell Transplantation (HSCT) Market.

Key Performing Regions (APAC, EMEA, Americas) Along With Their Major Countries Are Detailed In This Report.

Company Profiles, Product Analysis,Marketing Strategies, Emerging Market Segments and Comprehensive Analysis of Hematopoietic Stem Cell Transplantation (HSCT) Market.

Hematopoietic Stem Cell Transplantation (HSCT) Market ShareYear-Over-Year Growthof Key Players in Promising Regions.

What is the (North America, South America, Europe, Africa, Middle East, Asia, China, Japan)production, production value, consumption, consumption value, import and exportof Hematopoietic Stem Cell Transplantation (HSCT) market?

To Get Discount of Hematopoietic Stem Cell Transplantation (HSCT) Market:https://www.researchmoz.us/enquiry.php?type=D&repid=2276986

Contact:

ResearchMozMr. Rohit Bhisey,Tel: +1-518-621-2074USA-Canada Toll Free: 866-997-4948Email:[emailprotected]

Browse More Reports Visit @https://www.mytradeinsight.blogspot.com/

Read the original here:
Hematopoietic Stem Cell Transplantation (HSCT) Market Trends 2020: In-Depth Analysis of Industry Growth & Forecast Up To 2026 - Cole of Duty

To Read More: Hematopoietic Stem Cell Transplantation (HSCT) Market Trends 2020: In-Depth Analysis of Industry Growth & Forecast Up To 2026 – Cole of Duty
categoriaBone Marrow Stem Cells commentoComments Off on Hematopoietic Stem Cell Transplantation (HSCT) Market Trends 2020: In-Depth Analysis of Industry Growth & Forecast Up To 2026 – Cole of Duty | dataJune 10th, 2020
Read All

Major skin cancer research study to begin at The Hormel Institute – Austin Daily Herald – Austin Herald

By daniellenierenberg

Dr. Rebecca Morris, leader of the Stem Cells and Cancer lab at The Hormel Institute, received a multi-year grant to study stem cells originating in adult bone marrow and their possible effects on skin diseases, including cancer. The grant, from the Nation Institute of Healths National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), awarded Morris with $373,688 over two years for her research project Identification of Novel Epidermal Progenitors.

Morris said this research is significant because it will contribute new understanding of epithelial biology, and blood and bone marrow in general, provide possible new targets for epithelial cancer prevention and control, validate liquid biopsy of blood as a diagnostic tool, and help her and her team to achieve their goal of preventing and alleviating chronic skin diseases including cancer, psoriasis, and epidermolysis bullosa.

Many years ago, I contributed basic research on identification and isolation of adult tissue stem cells from skin epidermis, and demonstrated their role in skin cancer initiation and promotion, Morris said. Now, I am again thrilled to be on the edge of discovery of a new population of epithelial stem cells and have the opportunity to determine their roles in regeneration and cancer.

Cells in the body that cover surfaces (like the epidermis, or top layer of skin) or line spaces (like ducts in mammary gland or lining of the colon) are called epithelial cells. In adults, most cancers originate from these epithelial cells. However, new research has identified certain bone marrow derived epithelial cells (BMDECs) in normal, healthy human subjects.

Morris and her team do not believe anyone has yet described the features and nature of these cells, or analyzed their function.

The research team has hypothesized that the epithelial cells from the bone marrow are epithelial stem cells. They therefore hope to demonstrate that BMDECs include a novel population of adult tissue stem cells that can be gathered to chronically compromised epithelium, such as skin cancer or psoriasis, and regenerate it.

Skin cancer is by far the most common type of cancer in the United States, with millions of people diagnosed each year. As we enter summer, it is important to remember simple steps like staying out of the sun during the middle of the day, staying in the shade, and wearing sunscreen can help reduce your skin cancer risk.

Next steps for Morriss research include determining how these blood borne epithelial cells are recruited to the skin, the recruiting molecules, how the recruitment can be good or bad, and how to modulate their recruitment to alleviate disease.

Follow this link:
Major skin cancer research study to begin at The Hormel Institute - Austin Daily Herald - Austin Herald

To Read More: Major skin cancer research study to begin at The Hormel Institute – Austin Daily Herald – Austin Herald
categoriaSkin Stem Cells commentoComments Off on Major skin cancer research study to begin at The Hormel Institute – Austin Daily Herald – Austin Herald | dataJune 10th, 2020
Read All

Microneedling therapeutic stem cells into damaged tissues – Science Codex

By daniellenierenberg

(LOS ANGELES) -- Mesenchymal stem cells (MSCs) are multipotent in that they naturally replenish the cell types that build our bone, cartilage and adipose tissues. However, their much broader regenerative potential, based on their capacity to migrate and engraft in injured tissues and secrete factors that enhance the formation of new blood vessels, suppress inflammation and cell death, and promote healing, makes them exquisite candidates for cell-based therapies for diseases as varied as cardiovascular, liver, bone and cartilage diseases, lung and spinal cord injuries, autoimmune diseases and even cancer and skin lesions.

MSCs provoke no or negligible adverse reactions in patients that receive them from healthy donors, and can be easily isolated from human tissues, expanded to clinical scales, biopreserved, and stored for point-of-care delivery. This efficiency in preparing medical grade MSCs contrasts with the relative inefficiency with which they currently can be delivered to target tissues in patients. Clinicians often need to administer massive numbers of MSCs with high precision to reach sufficient numbers of cells that successfully engraft and remain functional over time.

To overcome this bottleneck, researchers have developed materials-based approaches in which MSCs are embedded in biomaterial scaffolds that then can be implanted as "patches" in minimally invasive procedures into damaged tissues. However, those cells are often limited in their ability to migrate, overcome tissue barriers, and successfully engraft in tissue microenvironments where their action is needed most. In principle, injection approaches can introduce MSCs into tissues via hypodermic needles in a more targeted manner, but any direct injection to the tissue is invasive and can cause inadvertent tissue damage and side effects like the formation of scar tissue.

Now, a new study reported in Advanced Functional Materials by a team at the Terasaki Institute for Biomedical Innovation in Los Angeles and the University of California, Los Angeles (UCLA) has developed a minimally invasive approach, which deploys "microneedles" that provide a bioactive depot of MSCs. By embedding comparatively low numbers of MSCs in a gel-like material that prolongs their viability and functionality, and targeting damaged tissues with high spatial precision, the researchers showed their approach to accelerate wound healing in a mouse model with excised skin segments.

"Microneedles have been successfully used in the past to painlessly deliver drugs to target tissues such as skin, blood vessels and eyes. We demonstrate here with 'Detachable Microneedle Depots' that an analogous approach can deploy therapeutic cells at target sites," said co-corresponding author Ali Khademhosseini, the Director and CEO of the Terasaki Institute who was previously Director of the UCLA Center for Minimally Invasive Therapeutics. "To achieve this, we developed an entirely new microneedle patch that supports stem cells' viability, responsiveness to wound stimuli, and ability to accelerate wound healing."

At the beginning of their study, Khademhosseini and his co-workers hypothesized that embedding MSCs in a biocompatible and biodegradable biomaterial matrix could help create a hydrated environment with the mechanical properties that stem cells need in order to remain alive and functioning over a longer time. The researchers started by engineering a matrix of gelatin fibers that are cross-linked to each other into a network that could accommodate MSCs. The biomaterial mimicked the normal extracellular environment of tissues that MSCs normally reside in, and it helped to remodel the specific matrix environment in a way that allowed MSCs to take up nutrients and communicate with damaged tissue via soluble factors that they normally receive and dispatch.

The other part of the challenge was to introduce the literal "needle" quality into the cell-delivering device that would enable it to gently penetrate tissues in order to reach their target sites. To this aim, the researcher encased the softer MSC-containing gelatin matrix with a second, much harder biomaterial known as poly(lactic-co-glycolic)acid, in short PLGA. Once the needles were brought into place in a wound bed, the "PLGA shell", which also is biocompatible and biodegradable, slowly degraded, but during the process kept the MSC-containing gelatin matrix in place, allowing MSCs to release their therapeutic factors through emerging gaps in the shell into the damaged tissue. The team showed that in the composite microneedle 90% of MSCs were kept viable for 24 hours, and that, importantly the cells did not lose their potential as stem cells ("stemness"), which was critical for their healing properties.

Finally, the team set out to investigate their microneedle concept in a mouse skin wound model in which a defined excision is made in the epidermal tissue layers. To be able to strategically place individual microneedles within the wound bed, a simple and effective deployment mechanism was devised by attaching an array of microneedles on a small strip of scotch tape with their pointy ends facing away from the tape. Precisely positioning the tape with its patterned microneedle surface on the wound, allowed the individual microneedles to penetrate into the wound bed. Then, the tape was peeled off, causing the microneedles to detach and remain embedded in the wound tissue. Khademhosseini and his co-workers summarized the device's salient features by naming it: "Detachable Hybrid Microneedle Depot" (d-HMND).

In the mouse model, the MSC-loaded d-HMND device indeed stimulated a number of critical parameters associated with wound healing. Compared to an equal number of MSCs injected directly into wounded skin, and a version of the d-HMND device that did not contain any MSCs (cell-free), the MSC-containing d-HMND accelerated the contraction of the wound and re-growth of the epidermal skin layers (re-epithelialization). The researchers used a panel of histological and molecular markers to confirm over a period of 14 days that the device suppressed inflammation, and stimulated tissue remodeling, the formation of new blood vessels, and re-growth of hair - all vital signs of a robust wound healing response.

"In future scenarios, d-HMNDs could be rapidly fabricated in clinical laboratories shortly before use, applied to treat skin injuries, and explored more broadly as treatments for a variety of other disorders, including melanoma and other dermatological disorders that could benefit from the power of MSC cells," said Khademhosseini. "The concept would even be compatible with using patient-derived cells in more personalized device approaches." Khademhosseini and his colleagues are exploring further uses of this technology as part of the Terasaki Institute's research program.

Go here to read the rest:
Microneedling therapeutic stem cells into damaged tissues - Science Codex

To Read More: Microneedling therapeutic stem cells into damaged tissues – Science Codex
categoriaSkin Stem Cells commentoComments Off on Microneedling therapeutic stem cells into damaged tissues – Science Codex | dataJune 10th, 2020
Read All

Pressure Tools Boost Collagen – Truth In Aging

By daniellenierenberg

Recently, I have been impressed by the unlikely efficacy of pressure tools such as the Pause Fascia StimulatingTool ($115 in the shop) and the KNESKO Quartz Roller and mask set ($115 in the shop). I say unlikely because these tools have no underlying technology and require only a little pressure as you move them over the skin. They really appear to firm and rejuvenate, but there was no research to back this up. Until now.

I was super excited to come across some research conducted by beauty giant, Shiseido and Jichi University in Japan. Their studies revealed that the application of pressure to the skin stimulates the proliferation of stem cells and ultimately boosts collagen.

The research noted that stem cells are more prolific near the sebaceous glands in the skin and dubbed these stem cell reservoirs. When they applied pressure to the skin, the stem cells in the reservoirs proliferated. And not just by a few, the number of stem cells was increased significantly.

Thats all well and good, but does an increased number of stem cells result in better and/or younger looking skin? So the team then investigated whether the cells proliferated by pressure would function in the dermal layer.

For dermal cells to function properly, they need to connect to each other and reconstruct a network. When the researchers observed the cells in pressurized skin, they did indeed connect to each other and they reconstructed a network.

And the really good news is that cells that have reconstructed a network produce collagen. The the production of collagen allows the dermis to regain its elasticity and firmness.

So now we have it, tools that allow us to apply gentle pressure to our skin are helping us stimulate collagen production.

Become a member to read this article in full

Your membership includes:

Read the original:
Pressure Tools Boost Collagen - Truth In Aging

To Read More: Pressure Tools Boost Collagen – Truth In Aging
categoriaSkin Stem Cells commentoComments Off on Pressure Tools Boost Collagen – Truth In Aging | dataJune 10th, 2020
Read All

Senolytic drugs: can this antibiotic treat symptoms of ageing? – Health Europa

By daniellenierenberg

Professor Michael P Lisanti, Chair in Translational Medicine at the University of Salford, has been an active research scientist for more than 30 years and is an expert in the field of cellular senescence. In 2018 Lisanti, along with his wife and research partner Professor Federica Sotgia, co-authored a paper entitled Azithromycin and Roxithromycin define a new family of senolytic drugs that target senescent human fibroblasts, which identified the FDA-approved antibiotic azithromycin as a senolytic drug: a compound which can be used to treat the symptoms of ageing.

Their research was made possible through generous funding contributions from Lunella Biotech, Inc, a Canadian-based pharmaceutical developer which fosters medical innovation; the Foxpoint Foundation, also based in Canada; and the Healthy Life Foundation, a UK charity which funds research into ageing and age-related conditions. Lisanti speaks to HEQ about his work and the future of senescence studies.

We started out focusing on cancer, but the relationship between cancer and ageing led us to shift our focus towards senescence, the process by which cells chronologically age and go into cell cycle arrest. Senescence leads to chronic inflammation: the cells secrete a lot of inflammatory mediators, which allows the cells to become almost infectious; so then neighbouring normal cells become senescent it has a kind of cataclysmic effect. As you age especially as you approach around 50 you begin to accumulate more senescent cells, which are thought to be the root cause of ageing; this then leads to various ageing-associated diseases, such as heart disease, diabetes, dementia and cancer, the most life threatening conditions in the Western world.

The goal, therefore, would be to remove the senescent cells. It is possible to use a genetic trick to remove senescent cells from mice: this causes them to live longer by preventing ageing-associated diseases; but it is not possible to use the same genetic trick for humans. We would therefore need a drug that only kills or removes senescent cells; and that could then potentially lead to rejuvenation, thereby extending the patients healthy lifespan.

We set up a drug assay using normal, commercially available, human fibroblasts: MRC-5, which comes from the lungs, and BJ-1, which comes from the skin. The idea was to artificially induce ageing, which we did using a compound called BrdU. This compound is a nucleoside: it incorporates into the DNA and that leads to DNA damage; and the DNA damage in turn induces the senescence phenotype. The overarching concept was to create a population of cells artificially that were senescent; and then to compare primary cells that were normal with cells which were senescent, with the goal of identifying drugs which could only selectively kill the senescent cells and not harm the normal cells.

We had previously observed positive results in tests on the metabolic effects of antibiotics, so our drug screening identified two drugs called azithromycin and roxithromycin, which constitute a new family of senolytic drugs. Theyre both clinically approved drugs azithromycin has been around longer; and has a strong safety profile and we looked at other members of the same drug family such as erythromycin, which is the parent compound, but erythromycin has no senolytic activity. The characteristics we were looking for appeared to be relatively restricted to azithromycin, which in our observation was very efficiently killing the senescent cells. As we reported in the paper, it had an efficacy of approximately 97%, meaning that it was able to facilitate the growth of the normal cells, while concurrently selectively killing the senescent cells.

We tested the drug on normal and senescent cells which were otherwise identical. The senescent cells underwent apoptosis programmed cell death so that led us to the conclusion that the drug selectively kills the senescent cells, while at the same time the normal cells are able to continue to proliferate. That selective effect of removing exclusively the senescent cells is what we were searching for; because in this instance we would want a drug that could potentially be used in humans and which would only kill senescent cells.

Obviously, we would have to do clinical trials going forward, but the first step should be to identify the pharmaceutical application. Given that this drug appears to selectively kill and remove the senescent cells, it could be used potentially to prevent ageing-associated disease; and it could therefore potentially extend the human lifespan, especially in terms of reducing diseases and conditions like diabetes, heart disease, dementia and even cancer.

Cystic fibrosis is the most common genetic disease in humans; patients with cystic fibrosis are prone to bacterial lung infections. Researchers started to explore the possibility of using azithromycin preventatively in patients with cystic fibrosis; and they found that, while it didnt necessarily affect patients susceptibility to infection, it did prevent lung fibrosis where the lungs become stiff and the patient is unable to breathe and in doing so, extended the patients lifespan. These studies were focused on myofibroblasts, which at the time werent really seen as senescent; whereas the literature now acknowledges a general consensus that myofibroblasts are indeed senescent cells.

We havent specifically examined anything relating ageing to antimicrobial resistance; but azithromycin is an antibiotic, which is not ideal within the context of AMR. Potentially in the future, once researchers identify what it is about the azithromycin that is causing the senescent cells to die, they could develop future drugs azithromycin is a stepping stone in this context, but what it shows is proof of principle that a drug can be identified which selectively kills senescent cells. This indicates that senescent cells are clearly biochemically distinct from the normal cells, and that it is possible to find a drug that selectively kills them and that is relatively safe. It provides a starting point for further new drug discovery to identify other drugs which might also be selective.

Ideally, we would want a drug which is not an antibiotic; but that means further research will be necessary to find additional drugs or to refine the senolytic activity which weve discovered in this drug. We are in the early stages; the point is that it is experimentally feasible and this would then lend itself to doing new clinical trials in the future, because azithromycin is relatively safe and it probably wont need to be administered over a long period of time to remove senescent cells you might not need to use it for any longer than you would as an antibiotic.

This research has been supported by the Foxpoint Foundation (Canada), the Healthy Life Foundation (UK), and Lunella Biotech, Inc. (Canada).

Professor Michael P Lisanti is Chair of Translational Medicine at the University of Salford School of Science, Engineering & Environment, UK. His current research programme is focused on eradicating cancer stem cells (CSCs); and anti-ageing therapies, in the context of age-associated diseases, such as cancer and dementia.

Lisanti began his education at New York University, US, graduating magna cum laude in chemistry (1985); before completing an MD-PhD in cell biology and genetics at Cornell University Medical College, US (1992). In 1992, he moved to MIT, US, where he worked alongside Nobel laureate David Baltimore and renowned cell biologist Harvey Lodish as a Whitehead Institute fellow (1992-96).

His career has since taken him to the Albert Einstein College of Medicine, US (1997-2006), the Kimmel Cancer Center, US (2006-12), and the University of Manchester, UK (2012-16), where he served as the Muriel Edith Rickman chair of breast oncology, director of the Breakthrough Breast Cancer and the Breast Cancer Now Research Units, and founder and director of the Manchester Centre for Cellular Metabolism.

Lisanti has contributed to 564 publications in peer-reviewed journals and been cited more than 90,000 times. A list of his works can be found at: https://pubmed.ncbi.nlm.nih.gov/?term=lisanti+mp&sort=date

Professor Federica Sotgia currently serves as chair in cancer biology and ageing at the University of Salford School of Science, Engineering and Environment, UK, where she focuses on, inter alia, the role of the tumour microenvironment in cancer and the metabolic requirements of tumour-initiating cells.

Sotgia graduated magna cum laude with an MS in biological sciences (1996) from the University of Genova, Italy, where she later completed a PhD in medical genetics (2001). She moved to the Albert Einstein College of Medicine, US, in 1998, originally as a visiting student and then postdoctoral fellow, and she was appointed an instructor in 2002.

Sotgia has since worked as an assistant professor at the Kimmel Cancer Center, US (2006-12), a senior lecturer at the University of Manchester, UK (2012-16), and a Professor in biomedical science at the University of Salford (2016-present).

She has contributed to 206 publications in peer-reviewed journals and been cited upwards of 27,000 times.

A list of her works can be found at: https://pubmed.ncbi.nlm.nih.gov/?term=sotgia+f&sort=date

Professor Michael P Lisanti, MD-PhD, FRSA, FRSBChair in Translational MedicineSchool of Science, Engineering & EnvironmentUniversity of Salford+44 (0)1612 950 240M.P.Lisanti@salford.ac.uk

This article is from issue 13 of Health Europa. Clickhere to get your free subscription today.

View post:
Senolytic drugs: can this antibiotic treat symptoms of ageing? - Health Europa

To Read More: Senolytic drugs: can this antibiotic treat symptoms of ageing? – Health Europa
categoriaSkin Stem Cells commentoComments Off on Senolytic drugs: can this antibiotic treat symptoms of ageing? – Health Europa | dataJune 10th, 2020
Read All

Doctors revealed details of the new rescue of Michael Schumacher – The Times Hub

By daniellenierenberg

Legendary German racing driver expects to implement the next batch of stem cells into heart tissue

Sevenfold champion of Formula 1 Michael Schumacher will have to go through another operation, according to GrandPX with reference to the Italian source Contro Copertina. As noted cardiac surgeon, Dr. Phillip Menashe, who was already engaged in treatment of the legendary German racer earlier, Schumacher will conduct the experimental operation on the introduction of stem cells into heart tissue.

Last year it was reported that Michael has already passed a similar procedure. The goal is to restore the nervous system Michael, said Menashe.

Neurosurgeon Dr. Nikola Acciari told that a famous former pilot Ferrari also suffers from muscle atrophy and osteoporosis. Over the last 20 years science has made enormous progress in the field of stem cell treatment. But it doesnt change the fact that we still know little about the human brain. We cant tell what results it will bring, said the doctor.

Michael Schumacher. Photo skysports.com

Recall Michael Schumacher suffered a severe head injury in December 2013 in the result of a fall at a ski resort in France. Since then Schumacher, who in January turned 51, never appeared in public.

About the state of his health there is no reliable information because the family prefers to keep it a secret. However, last fall it became known that Michael Schumacher is secretly transported to a clinic in Paris. In this case an unnamed member of the medical personnel told reporters: He is conscious.

Subscribe to our telegram

Only the most important and interesting

Subscribe

Read more from the original source:
Doctors revealed details of the new rescue of Michael Schumacher - The Times Hub

To Read More: Doctors revealed details of the new rescue of Michael Schumacher – The Times Hub
categoriaCardiac Stem Cells commentoComments Off on Doctors revealed details of the new rescue of Michael Schumacher – The Times Hub | dataJune 10th, 2020
Read All

Merck Provides Update on Phase 3 KEYNOTE-361 Trial Evaluating KEYTRUDA (pembrolizumab) as Monotherapy and in Combination with Chemotherapy in Patients…

By daniellenierenberg

KENILWORTH, N.J.--(BUSINESS WIRE)--Merck (NYSE: MRK), known as MSD outside the United States and Canada, today announced that the Phase 3 KEYNOTE-361 trial evaluating KEYTRUDA, Mercks anti-PD-1 therapy, in combination with chemotherapy for the first-line treatment of patients with advanced or metastatic urothelial carcinoma (bladder cancer) did not meet its pre-specified dual primary endpoints of overall survival (OS) or progression-free survival (PFS), compared with standard of care chemotherapy. In the final analysis of the study, there was an improvement in OS and PFS for patients treated with KEYTRUDA in combination with chemotherapy (cisplatin or carboplatin plus gemcitabine) compared to chemotherapy alone; however, these results did not meet statistical significance per the pre-specified statistical plan. The monotherapy arm of the study was not formally tested, since superiority was not reached for OS or PFS in the KEYTRUDA combination arm. The safety profile of KEYTRUDA in this trial was consistent with previously reported studies, and no new safety signals were identified. Results will be presented at an upcoming medical meeting and will be discussed with regulatory authorities.

In this study, KEYTRUDA in combination with chemotherapy in previously untreated patients with advanced or metastatic bladder cancer was rigorously tested against an active control of the current standard of care chemotherapy combination regimen, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. While we are disappointed in these study results, KEYTRUDA has been established as an important option in the treatment of metastatic bladder cancer, and we are committed to continuing our research to help more patients with this disease. We are grateful to the patients and investigators for their participation in this study.

KEYTRUDA has three FDA-approved bladder cancer indications across multiple types and stages of bladder cancer. Additionally, Merck has an extensive clinical development program in bladder cancer and is continuing to evaluate KEYTRUDA as monotherapy and in combination with other anti-cancer therapies across several disease settings (i.e., metastatic, muscle invasive bladder cancer, and non-muscle invasive bladder cancer).

About KEYNOTE-361

KEYNOTE-361 (ClinicalTrials.gov, NCT02853305) is a randomized, open-label, Phase 3 trial evaluating KEYTRUDA as monotherapy and in combination with chemotherapy versus chemotherapy alone, the current standard of care, for the first-line treatment of advanced or metastatic urothelial carcinoma. The dual primary endpoints are OS and PFS. Secondary endpoints include duration of response, disease control rate, overall response rate and safety. The study enrolled 1,010 patients who were randomized to receive:

About Bladder Cancer

Bladder cancer begins when cells in the urinary bladder start to grow uncontrollably. As more cancer cells develop, they can form a tumor and spread to other areas of the body. Urothelial carcinoma, the most common type of bladder cancer, starts in the urothelial cells that line the inside of the bladder. It is estimated there were more than 549,000 new cases of bladder cancer and nearly 200,000 deaths from the disease globally in 2018. In the United States, it is estimated there will be more than 81,000 new cases of bladder cancer and nearly 18,000 deaths from the disease in 2020. The five-year survival rate for advanced or metastatic bladder cancer (stage IV) is estimated to be approximately 5%.

About KEYTRUDA (pembrolizumab) Injection, 100 mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,200 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patient's likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least 1 other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10], as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

KEYTRUDA is indicated for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause adrenal insufficiency (primary and secondary), hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Adrenal insufficiency occurred in 0.8% (22/2799) of patients, including Grade 2 (0.3%), 3 (0.3%), and 4 (<0.1%). Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of adrenal insufficiency, hypophysitis (including hypopituitarism), thyroid function (prior to and periodically during treatment), and hyperglycemia. For adrenal insufficiency or hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 adrenal insufficiency or hypophysitis and withhold or discontinue KEYTRUDA for Grade 3 or Grade 4 adrenal insufficiency or hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients with advanced NSCLC; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those 2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those 2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

In KEYNOTE-057, KEYTRUDA was discontinued due to adverse reactions in 11% of 148 patients with high-risk NMIBC. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.4%). Serious adverse reactions occurred in 28% of patients; those 2% were pneumonia (3%), cardiac ischemia (2%), colitis (2%), pulmonary embolism (2%), sepsis (2%), and urinary tract infection (2%). The most common adverse reactions (20%) were fatigue (29%), diarrhea (24%), and rash (24%).

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 3-4) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 3-4) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Originally posted here:
Merck Provides Update on Phase 3 KEYNOTE-361 Trial Evaluating KEYTRUDA (pembrolizumab) as Monotherapy and in Combination with Chemotherapy in Patients...

To Read More: Merck Provides Update on Phase 3 KEYNOTE-361 Trial Evaluating KEYTRUDA (pembrolizumab) as Monotherapy and in Combination with Chemotherapy in Patients…
categoriaCardiac Stem Cells commentoComments Off on Merck Provides Update on Phase 3 KEYNOTE-361 Trial Evaluating KEYTRUDA (pembrolizumab) as Monotherapy and in Combination with Chemotherapy in Patients… | dataJune 10th, 2020
Read All

Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea – Labmate Online

By daniellenierenberg

Nanion Technologies and Nexel are pleased to announce a partnership, focused on combining Nanions CardioExcyte 96 and FLEXcyte 96 cell monitoring technology with Nexels hiPSC-derived cells for demonstration purposes. Bringing together the two companies infrastructure and expertise serves to meet the growing demand for a reliable, high throughput cell monitoring technology in Asia.

The Nanion- Nexel partnership brings together profound skills in comprehensivein vitroelectrophysiology technology and development of human induced pluripotent stem cells (hiPSCs), with focus on cardiomyocytes. Under the partnership, Nexel opens a reference demonstration laboratory for Nanions systems at Nexels headquarters in Seoul, whereby both companies aim to significantly upscale support of their clients in Asia.

Dr Choong-Seong Han, CEO of Nexel, said: Nexel is proud to start this partnership with Nanion Technologies. We believe it will further build on the excellent relationship we have developed together in the last year. The Cardiosight-S cardiomyocytes have been fully validated on the CardioExcyte 96 and FLEXcyte 96 systems and our expert scientists are dedicated to provide the best demo settings as well as product experience for customers, as part of the collaboration. We hope interest in both Nanions and Nexels offerings will increase with our collaborative efforts.

Frank Henrichsen, Director of Global Sales of Nanion Technologies added: We are very eager to strengthen our position in the Asian market and especially in Korea. In Nexel, we see a valuable partner to help us develop our presence, in this case through opening their laboratories and enabling the use Nanions technology for demo purposes at their premises. Combining Nexels hiPSC-derived cardiomyocytes and cardiacin vitroassays with Nanions CardioExcyte 96 and FLEXcyte 96 systems, we are confident that our customers will get an excellent package solution for use in safety pharmacology and toxicology assays. We are also very happy that Nexel has already implemented the systems into their quality control procedure of Cardiosight-S cardiomyocytes.

See the article here:
Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea - Labmate Online

To Read More: Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea – Labmate Online
categoriaCardiac Stem Cells commentoComments Off on Nanion Technologies and Nexel Partner to Open a New Reference Demonstration Laboratory in South Korea – Labmate Online | dataJune 10th, 2020
Read All

Here Are a Bunch of Photos of Cops Not Wearing Masks – Futurism

By daniellenierenberg

At a protest in Queens, I asked a police officer why he wasnt wearing a mask.

Coronas over, he replied.

As Black Lives Matter protests against police violence and systematic racism erupted across the country, an unfortunate trend has emerged: while police often show up heavily armed and wearing riot gear, they seldom wear medical masks or other face coverings to prevent COVID-19 from spreading.

By not wearing masks, police are putting themselves and others at a greater risk of catching the coronavirus, experts told Time.

If a state, if a county, if a city is telling the general public to wear masks, Johns Hopkins health researcher Amesh Adalja told Time, then the police officers must follow that same law.

While a number of public health experts have argued that protestors are unlikely to cause a huge explosion in coronavirus infections, that assumes that everyone takes basic common-sense measures like keeping distance where possible and wearing a medical mask that keeps them from spreading pathogens.

Some cops are skipping masks entirely. Others are wearing them wrong, by pulling them down to expose their noses or mouths.

And while being outdoors likely reduces the risk of transmission, tightly clustered police and the protestors they arrest become public health hazards. Meanwhile, as of May 4, the NYPD had spent $12 million on medical masks this year alone, pointing to a major waste of time and resources given how few cops actually wore them.

I attended multiple protests and vigils throughout New York City. At all of them, the majority of police opted to skip the face mask or wear it improperly.

Videos from other protests, like this one of Austin police opening fire on a crowd of peaceful protestors, highlight that the problem of police ignoring their masks is a national issue.

Original post:
Here Are a Bunch of Photos of Cops Not Wearing Masks - Futurism

To Read More: Here Are a Bunch of Photos of Cops Not Wearing Masks – Futurism
categoriaSkin Stem Cells commentoComments Off on Here Are a Bunch of Photos of Cops Not Wearing Masks – Futurism | dataJune 9th, 2020
Read All

The Bio Revolution is changing business and society – STAT – STAT

By daniellenierenberg

Imagine a world in which we can produce meat without animals, cure previously incurable diseases by editing an individuals genetic fabric, and manufacture industrial chemicals in yeast factories. The foundational technologies that could make all this possible largely exist. Rapid and ever-cheaper DNA sequencing has deepened our understanding of how biology works and tools such as CRISPR are now being used to recode biology to treat diseases or make crops less vulnerable to climate change. This is what we call the Bio Revolution.

Explored in a new McKinsey Global Institute research report, which we helped co-author, the Bio Revolution is already benefiting society. A confluence of breakthroughs in biological science and ever faster and more sophisticated computing, data analytics, and artificial intelligence technologies has powered scientific responses to the Covid-19 pandemic. Scientists sequenced the virus genome in weeks rather than months, as was the case in previous outbreaks. Bio innovations are enabling the rapid introduction of clinical trials of vaccines, the search for effective therapies, and a deep investigation of the transmission patterns of the virus.

The report estimates that bio innovations could alleviate between 1% and 3% of the total global burden of disease in the next 10 to 20 years from these applications roughly the equivalent of eliminating the global disease burden of lung cancer, breast cancer, and prostate cancer combined. Over time, if the full potential is captured, 45% of the global disease burden could be addressed using science that is conceivable today.

advertisement

As much as 60% of the physical inputs to the global economy today are either biological (such as wood for construction or animals bred for food) or nonbiological (such as cement or plastics) but could, in principle, be produced over time using biology. Nylon can already be made using genetically engineered yeast instead of petrochemicals, for instance, leather is being made from mushroom roots, and bacteria have made a type of cement.

This Bio Revolution has the potential to be as transformative to business and economies as the Digital Revolution that proceeded it, creating value in every sector, disrupting value chains, and creating new business opportunities. Businesses clearly see the potential investment in a new generation of biological technologies had already surged to more than $20 billion by 2018.

advertisement

Many applications are being commercialized. We identified a visible initial pipeline of about 400 use cases, almost all scientifically feasible today, that could create a direct economic impact of $2 trillion to $4 trillion in the next 10 to 20 years more than half of which is outside health, in sectors as diverse as agriculture and textile manufacturing.

The confluence of biology and computing is already creating new capabilities. Computing is accelerating discovery and throughput in biology. An explosion of biological data due to cheaper sequencing is being used by biotech companies and research institutes that are increasingly using robotic automation and sensors in labs. Biotech company Zymergen, for example, has found that throughput in biological screening can be increased up to 10 times. Advanced analytics, more powerful computational techniques, and AI are also being deployed to generate more acute insights during the R&D process.

New biology-based manufacturing is already cutting costs, improving performance, and reducing the impact on the environment and the natural world. In cosmetics, for instance, Amyris is now making squalane, a moisturizing oil used in many skin-care products, by fermenting sugars using genetically engineered yeast instead of processing liver oil from deep-sea sharks, which was not only expensive but threatened the species with extinction. In textiles, U.S. startup Tandem Repeat is producing self-repairing, biodegradable, and recyclable fabric using proteins encoded by squid genes.

The Bio Revolution could utterly change the food business as plant-based proteins and lab-grown meat gain popularity and in the process cut greenhouse gas emissions from deforestation and animal husbandry. One study found that cultured meat could reduce greenhouse gas emissions by 80% or more compared with conventional meat if all of the energy used in manufacturing comes from carbon-free sources.

Cultured meat and seafood are made using tissue-culture technology, a lab process by which animal cells are grown in vitro. Producers still face a major technical challenge in finding a cost-effective way of growing cells. New players such as Finless Foods, Mosa Meat, Memphis Meats, and Meatable are experimenting with different approaches, including using synthetic molecules and pluripotent stem cells to replace expensive growth factors. Cultured meat and seafood could be cost-competitive with conventional animal production systems within 10 years.

In agriculture, greater understanding of the role of the microbiome offers opportunities to improve operational efficiency and output. By profiling bacteria and fungi in the soil, Trace Genomics, for one, produces insights that help choose tailored seeds and nutrients, and enables early prediction of soil diseases. In consumer markets, ongoing research into the relationship between the gut microbiome and the skin is being used to personalize skin care. Singapore-based genomics firm Imagene Lab, for instance, offers a personalized serum based on the results of its skin DNA tests that assess traits such as premature collagen breakdown.

Such examples give a sense of the breadth of applicability of bio innovation, but there is a significant caveat: risk. Biology will preserve life through innovative treatments tailored to our genomes and microbiomes, but biology could also be the greatest threat to life if it is used to create bioweapons or genetically engineered viruses that can do lasting damage to the health of humans or ecosystems. The CRISPR gene-editing tool is revolutionizing medicine and is being applied to agriculture with great effect. But consider that CRISPR kits are now available to buy on the Internet for $100 and so-called biohackers are using them at home.

Like the Digital Revolution, the Bio Revolution comes with risks but of a different order of magnitude. If citizens already have misgivings about data being gathered about their shopping habits, how much more nervous will they be about genetic data gathered from their bodies for medical treatment or ancestry tracing data that couldnt be more personal.

Another risk is that biological organisms are, by their nature, self-sustaining and self-replicating. Genetically engineered microbes, plants, and animals may be able to reproduce and sustain themselves over the long term, potentially affecting entire ecosystems. Once Pandoras box is opened and we have already cracked the lid we may have little control over what happens next.

Unless such risks are managed, it is possible that the full potential of the Bio Revolution may not materialize. We estimate that about 70% of the total potential impact could hinge on societal attitudes and the way innovation is governed under existing regulatory regimes. Yet if the risks can be managed and mitigated, the Bio Revolution can reshape our world. Scientists, in conjunction with forward-thinking companies, are now harnessing the power of nature to solve pressing problems in medicine, agriculture, and beyond, and helping craft a response to global challenges from pandemics to climate change.

Matthias Evers is a senior partner and global leader of research and development in McKinsey & Companys pharmaceuticals and medical products practice. Michael Chui is a partner at the McKinsey Global Institute, McKinseys business and economics research arm.

See the original post here:
The Bio Revolution is changing business and society - STAT - STAT

To Read More: The Bio Revolution is changing business and society – STAT – STAT
categoriaSkin Stem Cells commentoComments Off on The Bio Revolution is changing business and society – STAT – STAT | dataJune 9th, 2020
Read All

Aplastic anemia: Heres what to know about Stephanie Mattos life-threatening illness – Monsters and Critics

By daniellenierenberg

Stephanie Matto suffers from a rare and life-threatening disease. Pic credit: @stepankamatto/Instagram.

Stephanie Matto has one of the most interesting storylines on this season of 90 Day Fiance: Before the 90 Days.

Matto and Erika Owens made headlines as the first same-sex couple on the TLC show, but its Stephanies personal battle with a rare illness that caught viewers by surprise.

The 29-year-old New Yorker was diagnosed with the disease only two years ago.

Get our 90 Day Fiance newsletter!

Throughout the show, Stephanie has shared information about her battle and how it has affected her.

She has spoken about the limitations it has put on her life, which we saw during an episode of the show, as she prepared to make the long journey to Australia to meet Erika.

Clad in a surgical mask while equipped with hand sanitizers and a bag full of medication viewers got a glimpse of the seriousness of Stephanies illness.

Matto is battling this rare blood disorder that occurs when the bone marrow does not make enough new blood cells for the body to work in a normal way.

It means that the stem cells inside the bone marrow are damaged, thus restricting the ability to make enough white blood cells, red blood cells, and platelets.

The bone marrow can become damaged due to a variety of different diseases and conditions, but the most common cause is when the immune system attacks and destroys the stem cells in the bone marrow.

The symptoms can range from mild to severe and cause the sufferer to bruise and bleed easier than the average person. It can also cause infections to last longer than normal. When the blood cell levels are low it can increase the risks for leukemia, blood disorders, and other complications.

Furthermore, when left untreated, it can lead to very serious issues such as arrhythmia and even heart failure.

The disease can be treated via blood and bone marrow transplants and blood transfusions.

As for Matto, she needs a bone marrow transplant, which has been known to cure the disease in some people.

So far, her search has been futile and she recently shared an update on Instagram about how rare it is for patients like her to find a match.

Did you know that less than 30% of patients seeking a bone marrow transplant have a full match? I remember meeting my transplant doctor last year and hearing from him that I had absolutely no matches in the registry.

She added, I am lucky, however. My immunosuppressive therapy has bought me time and so the urgency for transplant has faded away.

The TLC alum also shared in the post that the relapse rate is high for people who battle aplastic anemia, I have already suffered one complete relapse since my diagnosis.

Matto urged her followers to join the Be The Match Registry in order to get tested and become a donor for people battling the deadly disease.

90 Day Fiance: Before the 90 Days airs Sundaya at 8/7c on TLC.

Follow this link:
Aplastic anemia: Heres what to know about Stephanie Mattos life-threatening illness - Monsters and Critics

To Read More: Aplastic anemia: Heres what to know about Stephanie Mattos life-threatening illness – Monsters and Critics
categoriaBone Marrow Stem Cells commentoComments Off on Aplastic anemia: Heres what to know about Stephanie Mattos life-threatening illness – Monsters and Critics | dataJune 9th, 2020
Read All

Immune system, COVID 19 infection, and building up immunity – By Dr Edward Nazareth – Daijiworld.com

By daniellenierenberg

By Dr Edward Nazareth

Jun 9: During our school days, most of us had learnt in biology classes that we have a cardiovascular system, a respiratory system, a digestive system, a reproductive system and a nervous system but had not learnt about the immune system. With COVID 19 infection spreading everywhere, a lot of discussion about the immune system is going on. People with a good immune system are unlikely to get the disease and those with a poor immune system may be unlucky to get a fatal version of the disease from the same virus. Meanwhile there are a lot of promotions for immune boosters, which are supposed to make our immune system strong. It is worthwhile to understand the basics of the immune system and learn how to make it strong naturally.

Military of the body

The immune system is a defense system of body. It can be compared to the military of any nation. Each nations military system is unique, it has its own mechanisms to identify the enemy, remember who its enemy is and, fight to protect the nation from any attack. Every individuals immune system is unique and works similarly.

In general, the immune system is made up of special organs, cells and chemicals that fight infection (microbes) and the toxins that may be produced by them. The main parts of the immune system are: white blood cells, antibodies, the complement system, the lymphatic system, the spleen, the thymus, and the bone marrow. These are the parts of the immune system that actively fight infection. These different systems and cell types work in perfect synchrony (most of the time) throughout the body to fight off pathogens and clear up dead cells. However the front line soldiers of this system are lymphocytes, a type of white blood cells.

Identify, destroy and remember

Our immune system has different wings similar to a military system - a surveillance wing to identify the enemy, a destroyer (fighter) wing to eliminate the enemy and an intelligence wing to remember the enemy. All these different wings are managed by lymphocytes.

Whenever a foreign material - such as bacteria, virus, fungi or any other matter with protein or, the toxins produced by these organisms enter the body, the immune system identifies it as foreign. The immune system is able to identify self from non-self. This is done by detecting the proteins that are found on the surface of the cells or by the chemicals produced by the organisms. Like the defense personnel, the immune system learns to ignore its own or self-proteins and identify the intruder. The intruder is now known as antigen. An antigen is any substance that can spark an immune response.

In many cases, an antigen is a bacterium, fungus, virus, toxin, or foreign body. But it can also be one of our own cells that are faulty or dead (like our own people turning as terrorists).

In the immune system we have two important types of white blood cells- B lymphocytes and T lymphocytes.

The B lymphocytes spot the antigen and they begin to secrete antibodies. The antibodies are special proteins (called immunoglobulins) that lock on to specific antigens. Antibodies are the ammunition to eliminate a particular antigen. The specialty of the immune system is that it produces specific ammunition to kill a particular enemy. For example to eliminate COVID 19 viruses the antibodies produced can eliminate only COVID 19 viruses and cannot act against the viruses that produce common cold, even though both the viruses belong to the same family of corona viruses.Antibodies lock onto the antigen, but they do not kill it, only mark it for death. (B lymphocytes arrest the enemy). There are three main types of T lymphocytes: Helper T cells, killer T cells and memory T cells. Helper T cells they coordinate the immune response and stimulate B cells to produce more antibodies. Killer T cells (cytotoxic T lymphocytes) as the name suggests, these T cells attack the antigen. They are particularly useful for fighting viruses. They work by recognizing small parts of the virus on the outside of infected cells and destroy the infected cells. The memory T cells are produced following an infection; they are antigen-specific and live long. Memory T cells are important because they can quickly respond to re-exposure to the antigen. They provide the immune system with memory against previously encountered antigens. Once an antibody has been produced, a copy remains in the body system, and should the same antigen invade again, it can be dealt with more swiftly. That is why with some diseases, such as measles or chickenpox we only get infected once as the body has the measles or the chickenpox antibodies stored, ready and waiting to destroy them next time when they attack. This is called immunity.

In COVID 19 infections it takes about two to four weeks for the human body to eliminate all the viruses by producing specific antibodies against them. Then these antibodies remain in the system and will not allow the virus to multiply in the body. But here two issues are to be understood. We are not yet sure if the antibodies will remain forever or disappear after a few months or years. Another point is the virus changes its protein component called genome and can attack in a new form. This is exactly like terrorists who keep on changing the names of their organization, but have the same motto.

Immunization, infection and immunity

Before the advent of immunization many people used to die from infective diseases as it happens in COVID 19 infection now. Thousands of people have died due to small pox. Babies used to die due to measles, whooping cough, tetanus and similar other illnesses. The babies are now immunized using vaccines. A particular vaccine against an infective organism is produced using the same organism. The disease causing pathogens are attenuated (weakened) or part of their protein is extracted and introduced into the healthy individual. This material is termed as vaccine. Once the vaccine enters the system, it produces antibodies and when the real organism, invades the system it is eliminated. By immunization, deadly diseases like small pox have been totally eliminated and poliomyelitis is now almost removed completely.

As we are exposed to certain other organisms, we get infected and then our system develops antibodies and we remain immune thereafter. For example most of us were infected by chickenpox when we were children. As we had been infected by the chickenpox virus once, we will not get it again. In this way we build up a store house of antibodies to different pathogens. This protection from pathogens develops as we go through life. This is also referred to as immunological memory because our immune system remembers its previous enemies.

Elderly and immunity

As humans age, the immune response becomes weak, which leads to more infections. This is again comparable to a nation with a weak military system which can be attacked and defeated easily. It is a known fact that compared with younger people, the elderly are more likely to contract infectious diseases and, more likely to die from them. Respiratory infections, influenza and the COVID 19 causes pneumonia which are a leading cause of death in people over the age of 65 worldwide. It is now known that this increased risk correlates with a decrease in T cells, because as we age fewer T cells are produced to fight off infection. It is believed that the bone marrow becomes less efficient at producing stem cells that give rise to the cells of the immune system.

Immune deficiency

In some individuals the immune system may be weak. The most common causes for deficiency of immunity worldwide include malnutrition, poor sanitary conditions and human immune deficiency virus (HIV) infection. Other causes of temporary or permanent damage to the immune system include old age, medications (e.g. cortisone, cytostatic drugs used to treat malignancies), radiotherapy, stress after surgery and malignant tumors of the bone marrow and the lymph nodes. Innate deficiencies of the immune system are comparatively rare.

This is the reason people with these diseases, probably with deficient immune system are required to be cautious of contracting the COVID 19 infection. If they are infected, their immune system may not be able to eliminate the virus and they might get severe illness.

Herd immunity

When most of the members of a community are immune to an infectious disease, it is known as herd immunity (also called herd protection). For example, if 80% of people in a community are immune to COVID 19 virus, eight out of every ten people who get infected will not become sick from the disease. In this way, the spread of infectious diseases is kept under control. Depending on how contagious an infection is, usually 70% to 90% of a population needs immunity to achieve herd immunity.

Small pox, measles, mumps and polio are examples of infectious diseases that were once very common but are now rare in our region because vaccines helped to establish herd immunity. For infections without a vaccine, even if many adults have developed immunity because of prior infection, the disease can still circulate among children and can still infect those with weakened immune systems. Chickenpox is an example for this.

Can we achieve herd immunity against COVID 19 infection? As with any other infection, there are two ways to achieve herd immunity: A large proportion of the people either gets infected or gets a protective vaccine. Based on early estimates of this viruss infectiousness, we will likely need at least 70% of the population to be immune to have herd protection. As we do not have vaccine against COVID 19 infection now, it may take years for us to develop herd immunity for it.

Can medicines boost the immune system?

As the COVID 19 infection is spreading widely and people with good immunity are reported as unaffected, a lot of information about boosting immunity is circulated in the media.

Many products claim to boost or support immunity. But the concept of boosting immunity makes little sense scientifically. Boosting immunity actually means boosting the lymphocytes (the soldiers of immune system, as explained above). In fact, boosting the number of cells in the body immune cells or others is impossible. What is known is that the body is continually generating immune cells. In fact, it produces many more lymphocytes than it can possibly use. The extra cells remove themselves through a natural process of cell death called apoptosis.

As already stated above, efficacy of herbs or any substance enhancing the immunity is a highly complicated matter. There is no research supporting that any herb or substance can increase the levels of antibodies in the body.

Healthy ways to strengthen the immune system

The best way to improve the immune system is to choose a healthy life style. A healthy life style has to be followed from a young age and attempts should be made to maintain good health naturally. Immunity depends on general health and general health depends on good immunity. Every part of the body, including the immune system, functions better when protected and improved by healthy-living strategies such as these:

Smoking has to be stopped. Smoking is bad for overall health. Many elderly who have succumbed to COVID 19 infection were chronic smokers. A diet high in fruits and vegetables is good for health. The deficiencies of zinc, selenium, iron, copper, folic acid, and vitamins A, B6, C, and E alter immune responses in experimental animals. These micronutrients are commonly present in fruits and vegetables. If not possible to consume the fruits or vegetables, dietary supplements may be used. Regular exercise is a boost to health, it is one of the pillars of healthy living. It improves cardiovascular health, helps to control body weight, and protects against a variety of diseases. Just like a healthy diet, exercise can contribute to general good health and therefore to a healthy immune system. It may contribute even more directly by promoting good circulation, which allows the cells and substances of the immune system to move through the body freely and do their job efficiently. Adequate sleep is also a natural immune booster. The human body prepares and releases cytokines, a type of protein that targets infection effectively creating an immune response. It is proved that chronic deficiency of sleep reduces bodys ability to respond to infection. Try to reduce stress. When a person is stressed, the immune system's ability to fight off antigens is reduced. That is why humans are more susceptible to infections during stressful situations. The stress hormone corticosteroid can suppress the effectiveness of the immune system (e.g. lowers the number of lymphocytes).

Read the rest here:
Immune system, COVID 19 infection, and building up immunity - By Dr Edward Nazareth - Daijiworld.com

To Read More: Immune system, COVID 19 infection, and building up immunity – By Dr Edward Nazareth – Daijiworld.com
categoriaBone Marrow Stem Cells commentoComments Off on Immune system, COVID 19 infection, and building up immunity – By Dr Edward Nazareth – Daijiworld.com | dataJune 9th, 2020
Read All

Who’s to blame? These three scientists are at the heart of the Surgisphere COVID-19 scandal – Science Magazine

By daniellenierenberg

By Charles PillerJun. 8, 2020 , 7:00 PM

Sciences COVID-19 reporting is supported by the Pulitzer Center.

Three unlikely collaborators are at the heart of the fast-moving COVID-19 research scandal, which led to retractions last week by The Lancet and The New England Journal of Medicine (NEJM), and the withdrawal of an online preprint, after the trove of patient data they all relied on was challenged. The three physician-scientists never were at the same institution nor had they ever before written together, but they are the only authors in common on the disputed papers, and the other co-authors all have ties to at least one of them. Their partnership, which seized a high-impact role during a global public health crisis, has now ended disastrously.

The first author for both retracted papers was cardiac surgeon Mandeep Mehra, an eminent Harvard University professor who works at Brigham and Womens Hospital (BWH) and is known internationally for cardiovascular medicine and heart transplants. He provided the kind of gravitas that can fast-track papers to leading journals. In a statement provided by BWH, Mehra said he had met another of the trio, cardiac surgeon Amit Patel, in academic and medical circles, and that Patel had introduced him to Sapan Desai, a vascular surgeon and founder of Surgisphere, the tiny company that supplied the data. Journal disclosures, however, also indicate Mehra received compensation from Triple-Gene, a gene therapy company Patel co-founded to develop cardiovascular treatments.

Desai publicly aspired to combine big data and artificial intelligence (AI) in ways that he said can replace randomized controlled clinical trials. For a brief moment, it seemed that Surgispheres enticing data set, said to include nearly 100,000 detailed patient records from about 700 hospitals on six continents, would settle questions about the possible benefits of various drugsincluding the controversial antimalarial hydroxychloroquinefor COVID-19 patients.

Patel once apparently headed cardiac surgery at the University of Miami Miller School of Medicine. A university press release announcing his arrival in 2016 is no longer posted on the university website, however, and the school has not confirmed his job duties there. More recently, he has been a volunteer adjunct professor at the University of Utah. But, as STAT first reported yesterday, Patel tweeted on Friday that he had severed his relationship with the university, which a school spokesperson confirmed. In recent years Patel has developed and commercialized experimental stem cell therapies purported to cure heart problems, reverse aging, or treat sexual dysfunction. He is also part of a network of physicians that just launched a trial to use stem cells from umbilical cord blood to treat COVID-19 patients.

Normally co-authors of high-profile papers share subject area expertise or have clear professional ties, says Jerome Kassirer, chief editor ofNEJMduring the 1990s. He calls the collaboration of the apparently disparate individuals completely bizarre, and a red flag that the studies warranted intensive scrutiny that the journals failed to provide.

None of the three co-authors responded to requests for comment. Patel spoke with aSciencereporter initially but said he wanted to wait for audits of the Surgisphere data to comment, and Desais spokesperson stopped communicating after the retractions. Still, interviews with former colleagues and a long paper trail shed some light on each of them.

Desai had a history of convincing respected researchers of his skill and integrity. One of them, Gilbert Upchurch, department of surgery chair at the University of Florida, wrote last year in a journal commentary that he had never met Desai but had nonetheless mentored him remotely and developed an online friendship with him. Upchurch placed the scientist in a group of amazing and talented young vascular surgeons.

Illinois court records show Desai is facing two medical malpractice lawsuits filed last year. He told The Scientist that he deems any lawsuit naming him to be unfounded.

Desai has a history of big aspirations and entrepreneurial venturessome short-lived. His science-fiction blog, corewardfront.com, was meant to find the most parsimonious route for mankind to establish a meaningful presence in space. In 2009, he wrote that the site would publish fiction grounded in facts and reality, adding, the scientific method must be followed religiously. The blog is no longer published.

As a student, Desai won several small National Institutes of Health (NIH) grants for studies of the vestibular system. He started Surgisphere in 2007, when he was a medical resident at Duke University. Surgispheres initial products were medical guides and textbooks, although Desai has said he was working on big data projects for the company from its birth. In 2010, under the firms auspices, he founded the Journal of Surgical Radiologywhose editors included researchers with well-established publishing records. It folded in January 2013. Articles from the journal were cited only 29 times in its history, according to Scimago, a journal rating service. Yet an undated Surgisphere web page, no longer accessible online, said the online-only publication had 50,000 subscribers and nearly 1 million page views monthlywhich would have placed it in elite company in academic publishing.

Surgisphere appears over time to have shifted its efforts into developing a database of hospital records that could be used for research. When the pandemic erupted, Desai declared that his data set could answer key questions about the efficacy and safety of treatments. Speaking about the finding that hydroxychloroquine increases mortality in COVID-19 patients, the main finding from the now retracted Lancet paper, he told a Turkish TV reporter, with data like this, do we even need a randomized controlled trial? Soon after, the World Health Organization temporarily suspended enrolling patients for its COVID-19 trial of the drug.

Immediately after the Lancet and NEJM studies appeared, however, critics identified anomalies in the data. And they doubted that a tiny firmwith a scant public track record in AI, few employees, and no publicly named scientific boardcould convince hundreds of unidentified hospitals in dozens of nations to share complex, protected, and legally fraught patient data. Ultimately, despite Desai promising repeatedly to allow an independent audit of Surgisphere, the firm refused to release the raw patient data and agreements with hospitals for an audit, so no one could validate the authenticity of its database.

No hospitals have come forward to acknowledge working with Surgisphere. Indeed, NHS Scotland, which is mentioned as a case study on the companys website, says none of its hospitals worked with Surgisphere and that it would ask the firm to remove an image of a Glasgow hospital from its website.

Science contacted several of Desais current or former employees or colleagues. Most would not comment. But Fred Rahimi, an Illinois podiatrist and co-author of a paper with Desai, praises the surgeon as highly capable for salvaging limbs, and easy to work with. Through his publicist, Desai cited Mark Melin, a University of Minnesota, Twin Cities, vascular surgeon, as a supporter. Before the retractions, Melin called Desai a gentleman of the highest integrity who has nothing to cover up.

But one physician-scientist who worked closely with Desai several years ago, says, Just about everyone who knew him would say: I just didnt have a good feeling about him. After theyd been with him, most people dissociated themselves from him, the scientist says, declining to be named to avoid personal and institutional embarrassment.

In the decade since completing his medical residency, Desai moved from job to jobat Duke, the University of Texas, Southern Illinois University, and two private Illinois hospitals, according to his LinkedIn profile. You might say we should have stopped him, which now seems obvious, Desais former colleague says. We should have found a way to get together and say, Whats going on here? rather than allowing him to move from place to place. We should have done better as a medical community. We looked the other way.

Before and after his stint at the University of Miami, which appears to have started in late 2016 or early 2017, Patels academic home was the University of Utah. He started as a full-time faculty member at Utah in 2008 and kept that position until he left for Miami. The website for Foldax, a heart valve company that he serves as medical adviser, describes him as a Tenured Professor of Surgery in the Division of Cardiothoracic Surgery at the University of Utah School of Medicine and Director of Clinical Regenerative Medicine and Tissue Engineering at the University of Utah.

The university confirmed Patel had tenure there, but says the directorship was an unofficial title. And among more than 100 publications listed on his University of Utah profile, nearly two-thirds were actually co-authored by other scientists who share the same surname. The page was removed from the university website after inquiries from Science.

According to the NIH database, Patel has never received funding from the agency. Before the recent COVID-19 papers, one of his most notable publications was a 2016 paper in The Lancet, which reported that extracting stem cells from the bone marrow of a person with end-stage heart failure and then reinjecting them could reduce the number of cardiac events that produced deaths or hospital admissions by 37%. The 126 patient, 31-site, phase II trial was billed in a press release, now not available on the University of Utah website but stored elsewhere, as the largest cell therapy trial for heart failure to date. Despite the apparent positive results, the sponsoring company Vericel no longer is developing stem cells for heart disease and, according to its webpage, is focused on advanced cell therapies for the sports medicine and severe burn care markets.

Patel left Miami under unclear circumstances, but has retained ties with Camillo Ricordi, an influential stem cell researcher at the University of Miami School of Medicine who is also the founder of a nonprofit called the Cure Alliance. The alliance previously focused on testing whether stem cells derived from umbilical cord blood could treat diabetes or Alzheimers, but has now pivoted to fighting COVID-19, according to its website. Ricordi is the principal investigator on a multisite trial to see whether the stem cells can treat lung inflammation in severe COVID-19 patients and Patel is listed in various references to the trial as a key contributor or coprincipal investigator. Ricordi did not reply to requests for comments on his relationship with Patel.

Patel recently tweeted that he is related to Dr. Desai by marriage but called that old news and added, Despite this I still do not have the information of what happened at Surgisphere. In addition to apparently connecting Mehra and Desai, Patel had prior connections with other authors of the NEJM paper and the preprint. David Grainger, co-author of the preprint, is a professor of biomedical engineering at the University of Utah and also works with Foldax. Grainger declined to comment.

Timothy Henry, a cardiovascular clinician and scientist at the Christ Hospital in Cincinnati and a co-author on the NEJM article, has written several scholarly articles with Patel, including the 2016 Lancet paper. Henry, who also declined to comment, advises Patels Triple-Gene, which develops cardiovascular gene therapy treatments. Henry and Patel adviseand Patel is a board member ofCreative Medical Technology Holdings, a Phoenix company that develops and markets stem cell therapies, including treatments purported to reverse aging and cure sexual disfunction.

Creative Medicals CaverStem and FemCelz kits are distributed to physicians who use them to extract stem cells from a patients bone marrow, then inject the cells into the penis or clitoral area to stimulate blood flow, according to a statement filed with the U.S. Securities and Exchange Commission. (As of the market close Friday, the publicly traded firms shares were valued at one-third of 1 cent.) The CaverStem treatments are advertised by the company as successful in more than 80% of patients, based on a 40-person phase I clinical trial that was not randomized or controlled, and on observations of 100 other patients. Phase I trials typically measure safety, not health benefits of a potential treatment.

Science contacted multiple colleagues or co-authors of Patel. None would comment. Before the retractions, two high-profile researchersDeepak Bhatt, who directs interventional cardiovascular programs at BWH; and Peter Gruber, a pediatric cardiothoracic surgeon at Yale Universityendorsed Patel on his LinkedIn page. Bhatt says he doesnt know Patel and attempted to remove his endorsement after being contacted by Science. Gruber says he overlapped with Patel at the University of Utah about a decade ago, but doesnt know his work in detail.

In contrast, Mehraauthor of more than 200 scholarly articles, editor of The Journal of Heart and Lung Transplantation, and head of the cardiology division of theUniversity of Maryland before moving to BWH in 2012enjoys considerable support even after the unraveling of the recent studies. Obviously, you dont rise to the position hes risen to without being ambitious, but Ive never had any indication whatsoever that he would do anything unethical, says Keith Aaronson, a cardiologist at the University of Michigan, Ann Arbor, who collaborated with Mehra on several studies, including a clinical trial of a mechanical pump for heart failure patients.

Mehra, the first author on both retracted papers, was the only one to issue a personal statement of apology, for failing to ensure that the data source was appropriate for this use. BWH and Harvard declined to say whether further investigation of Mehras roles in the papers would occur. (Mehra has written papers recently with another co-author of the Lancet paper, Frank Ruschitzka of University Hospital Zrich.)

I think he just fell into thisperhaps a little navely, says another former collaborator, cardiothoracic surgeon Daniel Goldstein of the Albert Einstein College of Medicine. Given the amount of data that was in the [Surgisphere] database, its just hard to believe someone would [fabricate] something like this.

Kassirer offers a harsher view: If youre a scientist and youre going to sign on to a project, by God you should know what the data are.

With reporting by Kelly Servick and John Travis.

This story was supported by theScienceFund for Investigative Reporting.

See the original post:
Who's to blame? These three scientists are at the heart of the Surgisphere COVID-19 scandal - Science Magazine

To Read More: Who’s to blame? These three scientists are at the heart of the Surgisphere COVID-19 scandal – Science Magazine
categoriaCardiac Stem Cells commentoComments Off on Who’s to blame? These three scientists are at the heart of the Surgisphere COVID-19 scandal – Science Magazine | dataJune 9th, 2020
Read All

Sickle cell treatment then and now – SCNow

By daniellenierenberg

Five years ago, we had only one treatment for sickle cell disease, a disease that should not be taken lightly.

This disease can be a pain-generating disease that actually affects all organs of the body. This can start at the heart, blood vessels, brain, joints, bones and also the lungs.

Sickle cell is due to a mutation of a tiny gene that leads to an unstable hemoglobin. The sickles in the hemoglobin, when stressed, deprive tissue from oxygen that can lead to what we call crisis.

Crisis starts with pain, but it can also lead to stroke, heart attack and limb loss. Sickle cell crisis is when the abnormal cell gets stuck in the small blood vessels.

Sickle cell disease affects approximately 100,000 people in the United States. For years, the only therapeutic option was Hydroxyurea. This drug has been in existence since 1984. We know that this drug works, since it has proved to be effective in increasing hemoglobin, reducing pain and acute chest syndrome.

This drug has also decreased the number of blood transfusions in patients who suffer from sickle cell disease. Unfortunately, Hydroxyurea is chemotherapy and requires close monitoring. This therapy works over time with each patient; therefore, not all patients will respond equally. Since Hydroxyurea was introduced, there has been a need for new treatments. For the past several years, more therapies have started to emerge.

The first notable drug that has been FDA approved in 2017, since Hydroxyurea, is L-glutamine (Endari). This drug works on the inflammatory part of the disease. It has also proved to decrease the number of pain crisis and lessen acute chest syndrome.

The second drug is Voxelotor. This drug is a once-daily pill that stabilizes the oxygenated hemoglobin. Trials have proved to make patients less anemic, but events are not necessarily less painful. More long-term studies are looking at this issue. This drug is available, and FDA approved, through an accelerated program.

The third drug is Crizanlizumab. This drug helps with the stickiness of the red blood cells against the sticky vessel wall. This is one of the detrimental aspects of this disease. A randomized study called SUSTAIN proved that this intravenous drug decreases the number of painful crisis. This drug was FDA approved through a breakthrough therapy program.

Lastly, there is gene therapy. This type of treatment consists of an auto stem cell transplant of a viral infected, anti-sticking hemoglobin. This therapy still requires chemotherapy to wipe out the bone marrow so that space can be made for the transplant. The results of this treatment have been very successful.

Many promising therapies are seeing the light and are changing the care of this complex disease so that patients with sickle cell disease can lead a semi-normal lifestyle.

Dr. Ziad Skaff is board certified in hematology and oncology. He serves as chief of staff of MUSC Health-Florence Medical Center and Medical Director of Oncology Services. Dr. Skaff is associated with MUSC Health Hematology & Oncology, located at 805 Pamplico Highway, Medical Pavilion A, Suite 315. To schedule an appointment, call 843-674-6460.

Read more from the original source:
Sickle cell treatment then and now - SCNow

To Read More: Sickle cell treatment then and now – SCNow
categoriaBone Marrow Stem Cells commentoComments Off on Sickle cell treatment then and now – SCNow | dataJune 8th, 2020
Read All

Vowing to never go back, Ex-con seeks to improve intolerable conditions in Israeli jails – Haaretz

By daniellenierenberg

Yoni Yahav, 43, has been in prison five times. When he was released for the fifth time about two weeks ago, after nine months imprisonment, he swore that it would also be his last time. Despite his lengthy history behind bars, what broke him was actually a few months in Sharon prison. Conditions there are intolerable, he said. Its terribly overcrowded, eight in a cell. People were worried during the coronavirus.

Yahav decided not to remain silent. Already in prison he started a Facebook page called Protest of the Prisoners describing the tough conditions in Israeli prisons. Since his release he has gone public, and demonstrates with families of prisoners against the overcrowded cells and the poor living conditions.

LISTEN: Annexation vexation comes between Bibi and the settlersHaaretz

Prisoners are afraid to unite because its easy for the Israel Prison Service to separate them, he says. Theyre in charge of everything family visits, conjugal visits. A prisoner knows that if he opposes the system he wont be able to embrace his child. Prisoners have no lobby and no elected official wants to help them. To date he has organized demonstrations in front of the Knesset and the home of Public Security Minister Amir Ohana, against the proposed law to prevent attorneys visits to prison.

The prisoners stories led him to an awakening years after he became debt-ridden and entered the world of crime. He describes his time in crime organizations, when he was involved in fraud, money laundering and extortion, as a horrible life. Its a life of greed and wars of survival. Youre always looking who has a more expensive car, who lives on a higher floor but its also living all day looking behind your shoulder, sideways, checking the bottom of your car and your wifes car. It means switching cars and being afraid of the police.

He adds that prison doesnt do its job of rehabilitation just the opposite. You enter prison and leave twice as much a criminal, because you connect to people there, and if you take sides, immediately youre the enemy of the other camp and youre marked. He says, The IPS isnt interested in people, or in prisoner rehabilitation, because fewer prisoners means less money. For them were a money factory, were returning clients, and they make sure to maintain us.

Instead of the therapy he didnt receive, hes trying now to help prisoners who were left behind. I realized that I can take care of myself only if I help others, those who ate from the same plate as me. He recruited lawyers and prisoner activists, and last week they demonstrated in front of the Knesset during an Internal Affairs Committee meeting about prison living conditions.

They are planning additional demonstrations against the IPS commissioner and legal adviser, and meanwhile Yahav wants one other thing: For the public to know what happens in prison. How the fleas take over the cells, mice, inferior conditions. Arent people in prison human beings? So theyll say Im a criminal, but this criminal is now speaking for the others who cant speak, and he wont rest until the criminals with rank obey the [Basic] Law on Human Dignity and Freedom, just as I paid my debt to society when I broke the law and went to prison. I wont let them get away with it.

The system may be able to easily dismiss Yahavs complaints because of his serious crimes, and the IPS believes that all he wants is revenge. But hes right: Already in 2017 the High Court of Justice decided that the government must provide every prisoner with living space of at least 4.5 square meters, but although this was supposed to happen by May 2020, the IPS claimed that the space is available to only 40 percent of prisoners. In Europe the average is 8 square meters. In the end the court postponed implementation to an unknown date.

Previously, in an attempt to carry out the ruling, the government took several steps: First, building a state-of-the-art prison in Megiddo with 2,000 places, in a project including tourism initiatives. The second important step was moving releases through expanded administrative release, in which prisoners are sometimes released even six months early, regardless of their crimes or whether theyre still considered dangerous.

Former Public Security Minister Gilad Erdan decided that expanded administrative release should apply as long as there are over 14,000 prisoners. But the coronavirus reduced the number of arrests to 70 percent of their number in the same period last year, leaving the lowest number of prisoners in Israel in the past 20 years. The number is now 13,800 (compared to 18,000 in 2010). So the early releases were halted and construction of the new prison was frozen.

We've got more newsletters we think you'll find interesting.

Please try again later.

The email address you have provided is already registered.

The Finance Ministry said that due to the low number of inmates there is no longer a need for a new, spacious prison, adding that the IPS can observe the court rulings without it. The law enforcement system claimed that the number of prisoners who receive the required space is greater than the IPS claims.

The decline in the number of prisoners is now resulting in complaints about the inflated manpower in the IPS, with the treasury demanding that the agency most of whose budget is invested in salaries and pensions streamline its operations. But that wont improve the poor conditions of the prisoners: The prisons are obsolete, there are fleas everywhere and crowded conditions are still prevalent.

The small number of prisoners is a problem for the IPS: On one hand, the fewer the prisoners, the lower the budgets. That means that no new prisons will be built and there will be less manpower. On the other hand, a decline in the number of prisoners would increase the living space per prisoner. Ohana now has to decide whether to restore the early releases by lowering the maximum number to 13,000, which would mean fewer prisoners and less money.

Its a cynical battle between the treasury and the IPS, says Avi Himi, chairman of the Israel Bar Association. He said the expanded administrative releases should be instituted immediately, because of the poor prison conditions.

Acting IPS Commissioner Asher Vaknin said the numbers will increase to 17,000, and even if there are 1,000 vacant places designated for Palestinian security prisoners, he cant put regular criminals there. He insisted that only the IPS can plan prison arrangements. However, the enforcement authorities says that the IPS wants as many prisoners as possible, but we have dropped to 13,000 prisoners, and the crime situation hasnt worsened.

The IPS stated: The IPS is responsible only for the supply of places in prison, and not for populating them. The IPS takes care of prisoner welfare and security and is constantly trying to improve the treatment and rehabilitation of criminal prisoners, prevent recidivism and help prisoners return to the community. In the past two years millions of shekels were invested in improving living conditions and increasing living space. The first stage of the High Court decision has been completed and we are beginning the second stage.

Continued here:
Vowing to never go back, Ex-con seeks to improve intolerable conditions in Israeli jails - Haaretz

To Read More: Vowing to never go back, Ex-con seeks to improve intolerable conditions in Israeli jails – Haaretz
categoriaIPS Cell Therapy commentoComments Off on Vowing to never go back, Ex-con seeks to improve intolerable conditions in Israeli jails – Haaretz | dataJune 8th, 2020
Read All

Scientists Grow Tiny Human Livers, Changing the Course of Organ Transplants – Yahoo News

By daniellenierenberg

Photo credit: University of Pittsburgh

From Prevention

Scientists have grown tiny human livers that functioned after transplant into rats.

Trying to improve transplant numbers and outcomes is a major research area for biologists.

The scientists began by making "decellularized scaffolds" on which human stem cells were grown into liver cells.

Scientists from the University of Pittsburgh and their colleagues have grown tiny human livers and successfully implanted them into rats. The livers began as stem cells that are cultivated into skin and vascular cells that form a complete microenvironment. The organ-like microenvironment further matures some liver functions and produces tissue structures similar to those found in human livers, their paper in Cell Reports explains.

In their summary, the scientists say previous research has mostly used existing structures of rat cells to grow their organlike environments. They explain:

Whereas previous studies recellularized liver scaffolds largely with rodent hepatocytes, we repopulated not only the parenchyma with human iPSC-hepatocytes but also the vascular system with human iPS-endothelial cells, and the bile duct network with human iPSC-biliary epithelial cells. The regenerated human iPSC-derived mini liver containing multiple cell types was tested in vivo and remained functional for 4 days after auxiliary liver transplantation in rats.

This cutting-edge science begins with human volunteers who gave skin cell samples. These were reverse engineered into stem cells and then redirected to become different needed cells to form a liver. From there, the scientists seeded a liver scaffolda rat-based extracellular matrix (ECM) structure with, miraculously, its cells removedwith their new human liver cells.

The goal of decellularization is to remove cells while maintaining the structural, mechanical, and biochemical properties of the ECM scaffold, the researchers explain.

There were traces of DNA left in the rat scaffolds, though. DNA content, a commonly used marker of decellularization, was 3 [to] 10 times higher than in previous studies, which may lead to an adverse immune response if animal-derived scaffolds are to be used in humans, however, this remains to be tested.

Story continues

Inverse reports that while the resulting liver-growing process has taken 10 years to perfect, this batch of miniature livers took under a month to growcompared with two years in the human body. The team then transplanted the livers into a small group of specially prepared rats, which had their immune systems suppressed to encourage the transplant and their liver lobes removed to encourage regeneration.

Five is a tiny sample, to be sure, but all five livers worked during the four-day experimental period, producing and secreting bile and urea. Some had problems around the graft site, which makes sense for an almost completely human organ transplanted into a rat.

Harvested human iPSC-liver grafts measure 2.5 [to] 3 [centimeters] and showed liver-like tissue texture, the scientists say. Despite a handful of understandable problems, they feel optimistic about the future of lab-grown human livers on decellularized scaffolds. They conclude:

Future studies should concentrate on procedures to allow continued vascular development using, for instance, nanoparticles and growth-factor-hydrogel modification of acellular scaffolds. The strategy shown here represents a significant advance toward our understanding of the production of bioengineered autologous human-liver grafts for transplantation.

You Might Also Like

Read this article:
Scientists Grow Tiny Human Livers, Changing the Course of Organ Transplants - Yahoo News

To Read More: Scientists Grow Tiny Human Livers, Changing the Course of Organ Transplants – Yahoo News
categoriaSkin Stem Cells commentoComments Off on Scientists Grow Tiny Human Livers, Changing the Course of Organ Transplants – Yahoo News | dataJune 6th, 2020
Read All

Myeloproliferative Disorders Drugs Market Industry Trends and Developments Through 2026 – Cole of Duty

By daniellenierenberg

Myeloproliferative disorders are disease of blood and bone marrow which have unknown cause and there are wide range of symptoms. The treatment of myeloproliferative disorders generally depends on the type and presence of symptoms. Myeloproliferative disorders is generally considered as clonal disorder which begins with one or more change in the DNA of a single stem cells in the bone marrow. The changes to the hematopoietic stem cell cause the cell to reproduce repeatedly, creating more abnormal stem cells and these abnormal cells become one or more types of blood cells. Myeloproliferative disorders gets worst with time as the number of extra blood cells build up in the bone marrow and bloodstream.

To remain ahead of your competitors, request for a sample [emailprotected] https://www.persistencemarketresearch.com/samples/27949

Emergence of new treatment for the myeloproliferative disorders and availability of novel drug drive the market for myeloproliferative disorders drugs market in the near future. Rising incidence of myeloproliferative disorders and presence of strong product pipeline spur the myeloproliferative disorders drugs market. Growing geriatric population, change in lifestyle and growing awareness among general population is expected to drive the market of myeloproliferative disorders in the forecast period.

Advancement in the treatment for oncology further expand the treatment option for myeloproliferative disorders. Various clinical trial undergoing for the treatment of myeloproliferative disorders which further drive the growth of the myeloproliferative disorders drugs market. However, high cost of drug and treatment along with the lack of awareness among the population in developing and under developed nations hinder the growth of myeloproliferative disorders drugs market.

The global myeloproliferative disorders drugs market is segmented on basis of Type, Drug Type, Distribution Channel, End User and Geography.

Improvement in the symptoms and reduction of in splenomegaly among patients receiving available therapy is expected to boost the market of myeloproliferative disorders. Development in new therapeutic drug and target therapy further drive the market growth of myeloproliferative disorders. Increased research and development and increased funding by the government towards the development of novel therapy spur the market growth. With the discovery of specific gene mutations in myeloproliferative disorders the market is expected to grow in the forecast period owing to increased adoption of new drugs and increased awareness along with the favorable reimbursement scenarios for the treatment of myeloproliferative disorders.

How the Coronavirus Threat has Taken Global Business into Uncharted Waters

The North America market holds the largest revenue share for myeloproliferative disorders drugs, due to presence of major pharmaceutical players undergoing various clinical innovation, government initiative and increase research and development funding for the Myeloproliferative disorders. Europe is expected to contribute for the second largest revenue share after North America in the global myeloproliferative disorders drugs market, owing to merging treatment option and development of oncology drug discovery and rising prevalence of myeloproliferative disorders.

Asia Pacific is expected to show rapid growth, due to increasing number of vascular surgeons and low cost of peripheral interventions. China is expected to register fast growth, due to significant increase in the number of innovative firm and research organization and increasing importance of pharmaceutical research & development activities and investments in research for developing new drugs. Latin America and Middle East & Africa are projected to exhibit sluggish growth in myeloproliferative disorders Drugs market, due to proper healthcare systems and adoption of new drug and therapy.

To receive extensive list of important regions, ask for TOC here @ https://www.persistencemarketresearch.com/toc/27949

Examples of some of the key manufacturer present in the global myeloproliferative disorders drugs market are,

Our unmatched research methodologies set us apart from our competitors. Heres why:

For in-depth competitive analysis, Check Pre-Book here @ https://www.persistencemarketresearch.com/checkout/27949

Follow this link:
Myeloproliferative Disorders Drugs Market Industry Trends and Developments Through 2026 - Cole of Duty

To Read More: Myeloproliferative Disorders Drugs Market Industry Trends and Developments Through 2026 – Cole of Duty
categoriaBone Marrow Stem Cells commentoComments Off on Myeloproliferative Disorders Drugs Market Industry Trends and Developments Through 2026 – Cole of Duty | dataJune 5th, 2020
Read All

Market Analysis and Technological Opportunities of Cell Therapy Manufacturing Market till 2030 – Cole of Duty

By daniellenierenberg

Prophecy Market Insights Cell Therapy Manufacturing market research report provides a comprehensive, 360-degree analysis of the targeted market which helps stakeholders to identify the opportunities as well as challenges. The research report study offers keen competitive landscape analysis including key development trends, accurate quantitative and in-depth commentary insights, market dynamics, and key regional development status forecast 2020-2029. It incorporates market evolution study, involving the current scenario, growth rate, and capacity inflation prospects, based on Porters Five Forces and DROT analyses.

Get Sample Copy of This Report @ https://www.prophecymarketinsights.com/market_insight/Insight/request-sample/21

An executive summary provides the markets definition, application, overview, classifications, product specifications, manufacturing processes; raw materials, and cost structures.

Market Dynamics offers drivers, restraints, challenges, trends, and opportunities of the Cell Therapy Manufacturing market

Segment Level Analysis in terms of types, product, geography, demography, etc. along with market size forecast

Regional and Country- level Analysis different geographical areas are studied deeply and an economical scenario has been offered to support new entrants, leading market players, and investors to regulate emerging economies. The top producers and consumers focus on production, product capacity, value, consumption, growth opportunity, and market share in these key regions, covering

The comprehensive list of Key Market Players along with their market overview, product protocol, key highlights, key financial issues, SWOT analysis, and business strategies. The report dedicatedly offers helpful solutions for players to increase their clients on a global scale and expand their favour significantly over the forecast period. The report also serves strategic decision-making solutions for the clients.

Competitive landscape Analysis provides mergers and acquisitions, collaborations along with new product launches, heat map analysis, and market presence and specificity analysis.

Segmentation Overview:

Cell Therapy ManufacturingMarket Key Companies:

harmicell, Merck Group, Dickinson and Company, Thermo Fisher, Lonza Group, Miltenyi Biotec GmBH, Takara Bio Group, STEMCELL Technologies, Cellular Dynamics International, Becton, Osiris Therapeutics, Bio-Rad Laboratories, Inc., Anterogen, MEDIPOST, Holostem Terapie Avanazate, Pluristem Therapeutics, Brammer Bio, CELLforCURE, Gene Therapy Catapult EUFETS, MaSTherCell, PharmaCell, Cognate BioServices and WuXi AppTec.

The Cell Therapy Manufacturing research study comprises 100+ market data Tables, Graphs & Figures, Pie Chat to understand detailed analysis of the market. The predictions estimated in the market report have been resulted in using proven research techniques, methodologies, and assumptions. This Cell Therapy Manufacturing market report states the market overview, historical data along with size, growth, share, demand, and revenue of the global industry.

Request [emailprotected] https://www.prophecymarketinsights.com/market_insight/Insight/request-discount/21

The study analyses the manufacturing and processing requirements, project funding, project cost, project economics, profit margins, predicted returns on investment, etc. This report is a must-read for investors, entrepreneurs, consultants, researchers, business strategists, and all those who have any kind of stake or are planning to foray into the Cell Therapy Manufacturing industry in any manner.

Key Questions Answered in Report:

Stakeholders Benefit:

About us:

Prophecy Market Insights is specialized market research, analytics, marketing/business strategy, and solutions that offers strategic and tactical support to clients for making well-informed business decisions and to identify and achieve high-value opportunities in the target business area. We also help our clients to address business challenges and provide the best possible solutions to overcome them and transform their business.

Contact Us:

Mr. Alex (Sales Manager)

Prophecy Market Insights

Phone: +1 860 531 2701

Email: [emailprotected]

Read more from the original source:
Market Analysis and Technological Opportunities of Cell Therapy Manufacturing Market till 2030 - Cole of Duty

To Read More: Market Analysis and Technological Opportunities of Cell Therapy Manufacturing Market till 2030 – Cole of Duty
categoriaBone Marrow Stem Cells commentoComments Off on Market Analysis and Technological Opportunities of Cell Therapy Manufacturing Market till 2030 – Cole of Duty | dataJune 5th, 2020
Read All

Page 112«..1020..111112113114..120130..»


Copyright :: 2024