Page 122«..1020..121122123124..130140..»

Gamida Cells Bone Marrow Transplant Cuts Treatment Time in Phase… – Labiotech.eu

By daniellenierenberg

A rapid-acting bone marrow transplant developed by the Israeli biotech Gamida Cell was engrafted in blood cancer patients 10 days faster than standard umbilical cord blood transplants in a phase III trial.

The trial recruited 125 blood cancer patients in more than 50 clinical centers globally. One group received a standard transplant of donor umbilical cord blood cells and another group received Gamidas treatment omidubicel, which consists of umbilical cord blood cells that are expanded and cultured in the lab.

According to the trial results, omidubicel established itself in the patients and started making healthy new immune cells after around 12 days, measured by counting cells called neutrophils in the blood. This was significantly faster than the 22 days it took in patients given a regular umbilical cord blood transplant.

Blood cancer patients often receive stem cell transplants to replace bone marrow cells that are damaged by chemotherapy or radiation therapy. Donor stem cell transplants can come from adult bone marrow cells, stem cells in the blood, or umbilical cord blood stem cells.

A common problem with bone marrow transplants is compatibility, where the donors cells could fail to engraft or even attack the recipient if the cell types dont match properly. This problem is less common in umbilical cord blood transplants than other sources, but this type of transplant also provides a lower dose of stem cells, which can delay the engraftment process.

To solve this issue, Gamida Cells treatment is designed to take donor umbilical cord cells and boost their stem cell count in the lab prior to administering the treatment to patients.

These results have the potential to substantially move the field forward and represent an important step toward making stem cell transplantation more accessible and more successful for patients with lethal blood cancers, stated Mitchell Horwitz, Principal Investigator and Professor of Medicine at the Duke Cancer Institute, USA.

Shortening the time to engraftment is clinically meaningful, as it can reduce a patients time in the hospital and decrease the likelihood of infection.

The company aims to apply for FDA approval in late 2020, with a potential commercial launch in 2021. According to a conference call today, Gamida Cell had completed its phase III enrollment in December. This meant that the trial was luckily unaffected by the onset of the Covid-19 pandemic, which has delayed clinical trials for many companies worldwide.

Image from Shutterstock

See original here:
Gamida Cells Bone Marrow Transplant Cuts Treatment Time in Phase... - Labiotech.eu

To Read More: Gamida Cells Bone Marrow Transplant Cuts Treatment Time in Phase… – Labiotech.eu
categoriaBone Marrow Stem Cells commentoComments Off on Gamida Cells Bone Marrow Transplant Cuts Treatment Time in Phase… – Labiotech.eu | dataMay 14th, 2020
Read All

Australia’s Mesoblast raises $90M to scale up stem cell therapy manufacturing to treat COVID-19 ARDS – BioWorld Online

By daniellenierenberg

PERTH, Australia Australian stem cell company Mesoblast Ltd. completed a capital raising of AU$138 million (US$90 million) to scale up manufacturing of its allogeneic cell therapy, remestemcel-L, to treat COVID-19 acute respiratory distress syndrome (ARDS).

The Melbourne-headquartered company is currently enrolling patients in a randomized placebo-controlled phase II/III trial in up to 300 patients across 30 sites in the U.S. The trial is evaluating whether remestemcel-L can reduce the high mortality in COVID-19 patients with moderate to severe ARDS.

Patients are being dosed, and were really pleased how fast enrollment is growing, Mesoblast CEO Silviu Itescu told BioWorld. Were right on target and hope to update the market soon.

The phase II/III trial was initiated after promising results were seen with remestemcel-L under an emergency compassionate-use protocol in COVID-19 ARDS at Mount Sinai Hospital in New York, where nine of 12 (75%) ventilator-dependent patients were able to come off ventilators within 10 days.

Under the compassionate-use protocol, patients in intensive care units received standard-of-care treatment. Once they were intubated on a ventilator, they were treated within 72 hours with two infusions of Mesoblasts remestemcel-L cells within five days.

Once youre ventilated when you have acute respiratory distress syndrome in the lungs, your likelihood of coming off a ventilator is 9%, and your survival is 12%, Itescu said.

Whats exciting is that our patients in the same epicenter of this disease with the same treatment everyone else is getting, suddenly 75% are coming off of ventilators within 10 days, and weve got 83% survival, Itescu said.

The compassionate-use treatment experience informed the design of the phase II/III trial, and the FDA approved the same protocol, but it is powered so that results will be self-evident, Itescu said.

The phase II/III trial will randomize up to 300 ventilator-dependent patients in intensive care units to either remestemcel-L or placebo on top of standard of care, in line with guidance provided by the FDA. The primary endpoint is all-cause mortality within 30 days of randomization, with the key secondary endpoint being the number of days alive and off mechanical support.

What people are dying of is acute respiratory distress syndrome, which is the bodys immune response to the virus in the lungs, and the immune system goes haywire, and in its battle with the virus it overreacts and causes severe damage to the lungs, he said.

Capital raise allows scale up for COVID-19 and influenza

The capital raise consisted of a placement of 43 million shares to existing and new institutional investors at a price of AU$3.20 per share, representing a 7% discount to the five-day volume-weighted average price (VWAP) at the close of trading May 8. The placement was conducted with Bell Potter Securities as lead manager and underwriter. Settlement is expected to occur on Friday, May 15.

Most of the funds raised will be used to scale up manufacturing of remestemcel-L for the treatment of critically ill patients suffering with diseases causing ARDS, including COVID-19 and influenza.

Were in the middle of a pandemic, and people are talking about opening up, and theyre talking about a potential second wave, Itescu said. Its too early to talk about projections, but we need to at least be in a position to make more product in an additional facility, so that requires technology transfer and certain process improvements.

Remestemcel-L is Mesoblasts lead product, and it is currently being studied in multiple indications so the move to ramp up manufacturing is a good strategic move regardless of COVID-19, he said.

There are at least 125,000 patients every year in the United States with influenza-related acute respiratory distress syndrome in intensive care units, and those patients have got about a 40% fatality rate. Up to about 60,000 patients die per year due to influenza ARDS, so even if COVID-19 magically disappears, which we could only hope, influenza is here to stay despite vaccines being available, the CEO said.

This product would work in the same way for influenza-related ARDS as it would for COVID-19-related ARDS, he said.

The ability to build out manufacturing capacity is part of an FDA requirement to be able to demonstrate it can make product for patients in the U.S.

The company already has a manufacturing facility in Singapore, and the additional site in the U.S. would give the company the ability to provide product globally.

Were putting our strategic plan into play. You need to have multiple geographies, especially in this kind of environment, Itescu said.

Without the cash, we wouldnt have been able to deliver on this, but we now can execute.

Mesoblast's allogeneic candidates are based on mesenchymal lineage cells collected from the bone marrow of healthy adult donors.

Remestemcel-L is currently being reviewed by the FDA for potential approval in the treatment of children with steroid-refractory acute graft-vs.-host disease (aGVHD). The company submitted the final module of a rolling BLA in January. The FDA has set a PDUFA date of Sept. 30 for the product branded as Ryoncil.

The clinical data submitted with the BLA showed a survival rate of 79% compared to an expected 30% survival rate in the pediatric phase III trial in aGVHD.

Remestemcel-L is also being developed for other rare diseases. Mesoblast is completing phase III trials in advanced heart failure and chronic low back pain.

Mesoblast shares (ASX:MSB) were down 1.45% on the news, trading at AU$3.39 per share by market close May 13. On Nasdaq (MESO), shares closed at $12.15.

Go here to read the rest:
Australia's Mesoblast raises $90M to scale up stem cell therapy manufacturing to treat COVID-19 ARDS - BioWorld Online

To Read More: Australia’s Mesoblast raises $90M to scale up stem cell therapy manufacturing to treat COVID-19 ARDS – BioWorld Online
categoriaBone Marrow Stem Cells commentoComments Off on Australia’s Mesoblast raises $90M to scale up stem cell therapy manufacturing to treat COVID-19 ARDS – BioWorld Online | dataMay 14th, 2020
Read All

New hybrid embryos are the most thorough mixing of humans and mice yet – Science News

By daniellenierenberg

Scientists have made embryosthat are a lot mouse and a little bit human.

With a little help, human stem cells can knit themselves into growingmouse embryos, populating thedeveloping liver, heart, retina and blood, researchers report May 13 in Science Advances.

Finicky human cells dont tend to grow well in other animals. But in one of the new mouse embryos, 4 percent of its cells were human the most thorough mixing between human and mouse yet.

That level of integration isquite striking to me, says Juan Carlos Izpisua Belmonte, a stem cell anddevelopmental biologist at the Salk Institute for Biological Studies in LaJolla, Calif. If other scientists can replicate the findings, it potentiallyrepresents a major advance, says Izpisua Belmonte, who was not involved in thestudy.

Headlines and summaries of the latest Science News articles, delivered to your inbox

Such chimeras could helpreveal how a single cell can give rise to an entire organism. More humanizedanimals could also prove valuable in studying diseases such as malaria that affectpeople more than other animals. And with more advances, chimeras couldultimately turn out to be a source of human organs.

Many scientists have hitroadblocks in growing human stem cells in mice or other animals, including pigs and cows(SN: 1/26/17). We have analyzedthousands of embryos but never saw robust chimeric contribution of human stemcells to mouse embryos beyond day 12, says stem cell and developmentalbiologist Jun Wu of the University of Texas Southwestern Medical Center inDallas, who wasnt involved in the study.

The new methods success comes down to timing, says neuroscientist and stem cell biologist Jian Feng. To grow and thrive in a mouse embryo, human stem cells developmental clocks must be turned back to an earlier phase called the nave stage. You need to basically push the human cells back to that phase, says Feng, of the University at Buffalo in New York.

Feng and his colleagues resetthe stem cells clocks by silencing a protein called mTOR for three hours. Thisbrief treatment shocked the cells back to their nave stage, presumably restoringtheir ability to turn into any cell in the body.

Researchers injected batchesof 10 to 12 of these more youthful human stem cells into mouse embryos containingabout 60 to 80 mouse cells, and allowed the embryos to develop for 17 days.

To outward appearances, these embryos grew normally despite harboring human cells. By tallying DNA that was specific to either mouse or human, the researchers found that human cells accounted for between 0.1 and 4 percent of the total cells in the embryos.

Human cells knittedthemselves into most developing tissues of the mouse, destined to become theliver, heart, bone marrow and blood. Human red blood cells were particularlyabundant in these mouse embryos, the researchers found. A small number of humancells showed up in tissue that will form a brain; one embryo had a swarm of humanphotoreceptors, eye cells that help detect light.

As far as the researcherscould tell, no human cells were among the cells that go on to form sperm andegg. The capacity of chimeras to reproduce is one of the worrisome ethicalquestions surrounding the organisms that scientists are still trying to figureout.

Once inside a mouse embryo, the normally sluggish developmental pace of the human cells sped up to match their hosts. Human stem cells typically are slow to turn into certain types of mature photoreceptors, liver cells or red blood cells, Feng says, but not when the human cells are inside a mouse embryo. You put the same human cells in a mouse embryo, [and] they go fast, Feng says. In 17 days, you get all these mature cells that would otherwise take months to get in a normal human embryo.

Other scientists emphasize that different laboratories need to repeat the results. But if it works a big if here this has big implications, Wu says.

Here is the original post:
New hybrid embryos are the most thorough mixing of humans and mice yet - Science News

To Read More: New hybrid embryos are the most thorough mixing of humans and mice yet – Science News
categoriaBone Marrow Stem Cells commentoComments Off on New hybrid embryos are the most thorough mixing of humans and mice yet – Science News | dataMay 14th, 2020
Read All

Tolero Pharmaceuticals Announces Expansion of the Zella 102 Study in Patients with Intermediate and High-Risk Myelodysplastic Syndromes (MDS) -…

By daniellenierenberg

SALT LAKE CITY, Utah, May 14, 2020 /PRNewswire/ --Tolero Pharmaceuticals, Inc., a clinical-stage company focused on developing novel therapeutics for hematological and oncological diseases, today announced that the first patient has been dosed with a one-hour dosing schedule for investigational agent alvocidib, a potent CDK9 inhibitor, administered in sequence after azacitidine, in the expansion of the Phase 1b/2 Zella 102 study in patients with myelodysplastic syndromes (MDS).

The Zella 102 study is being conducted in patients with previously untreated MDS and patients with MDS who have received fewer than six cycles of treatment with a hypomethylating agent. The initial study design was to evaluate the safety and efficacy of alvocidib using a 30-minute bolus followed by a four-hour intravenous infusion (IVI), in combination with decitabine. An amendment was made to the study design to include treatment with azacitidine, in sequence before a one-hour infusion of alvocidib.

"We are pleased that this study now includes both standard of care hypomethylating agents for patients with myelodysplastic syndromes. In addition, the expansion of this study offers an alternative alvocidib dosing schedule, which reduces the amount of time patients spend in infusion," said David J. Bearss, Ph.D., Chief Executive Officer, Tolero Pharmaceuticals, and Chief Scientific Officer and Global Head of Research, Global Oncology. "Preclinical research suggests that treatment with hypomethylating agents may sensitize MDS blast cells to suppression of MCL-1 through alvocidib. We look forward to building our understanding of the potential role of alvocidib in this patient population."

MDS is a form of cancer that can occur when cells in the bone marrow are abnormal and create defective blood cells, which often die earlier than normal cells. In one of three patients, MDS can progress into AML, a rapidly growing cancer of bone marrow cells.1

About the Zella 102 Study

The Zella 102 study is an open-label, dose-escalation Phase 1b/2 study evaluating the safety and efficacy of alvocidib, when administered in sequence after eitherdecitabine or azacitidine, in patients with previously untreated MDS and patients with MDS who have received fewer than six cycles of treatment with hypomethylating agents. The primary objective of the Phase 1b portion of the study is to determine the maximum tolerated dose and recommended Phase 2 dose of alvocidib, when administered in these regimens. Secondary objectives are to determinethe complete response rate and if treatment with alvocidib, administered in sequence after decitabine or azacitidine,results in improvements in transfusion dependence and/or hemoglobin level.

The primary objective of the Phase 2 portion of the study will be to determine the objective response rate of alvocidib, when administered to untreated patients with de novo or secondary MDS in sequence after a hypomethylating agent, using revised International Working Group (IWG) criteria.

The trial is being conducted at sites in the United States. Additional information on this trial, including comprehensive inclusion and exclusion criteria, can be accessed at http://www.ClinicalTrials.gov (NCT03593915).

About Alvocidib

Alvocidib is an investigational small molecule inhibitor of cyclin-dependent kinase 9 (CDK9) currently being evaluated in the Phase 2 studies Zella 202, in patients with acute myeloid leukemia (AML) who have either relapsed from or are refractory to venetoclax in combination with decitabineor azacitidine(NCT03969420)and Zella 201, in patients with relapsed or refractory MCL-1 dependent AML, in combination with cytarabine and mitoxantrone(NCT02520011). Alvocidib is also being evaluated in Zella 101, a Phase 1 clinical study evaluating the maximum tolerated dose, safety and clinical activity of alvocidib in combination with cytarabine and daunorubicin (7+3) in newly diagnosed patients with AML(NCT03298984), and Zella 102, a Phase 1b/2 study in patients with myelodysplastic syndromes (MDS) in combination with decitabine or azacitidine(NCT03593915). In addition, alvocidib is being evaluated in a Phase 1 study in patients with relapsed or refractory AML in combination with venetoclax(NCT03441555).

About CDK9 Inhibition and MCL-1

MCL-1 is a member of the apoptosis-regulating BCL-2 family of proteins.2 In normal function, it is essential for early embryonic development and for the survival of multiple cell lineages, including lymphocytes and hematopoietic stem cells.3 MCL-1 inhibits apoptosis and sustains the survival of leukemic blasts, which may lead to relapse or resistance to treatment.2,4 The expression of MCL-1 in leukemic blasts is regulated by cyclin-dependent kinase 9 (CDK9).5,6 Because of the short half-life of MCL-1 (2-4 hours), the effects of targeting upstream pathways are expected to reduce MCL-1 levels rapidly.5 Inhibition of CDK9 has been shown to block MCL-1 transcription, resulting in the rapid downregulation of MCL-1 protein, thus restoring the normal apoptotic regulation.2

About Tolero Pharmaceuticals, Inc.

Tolero Pharmaceuticals is a clinical-stage biopharmaceutical company researching and developing treatments to improve and extend the lives of patients with hematological and oncological diseases. Tolero has a diverse pipeline that targets important biological drivers of blood disorders to treat leukemias, anemia, and solid tumors, as well as targets of drug resistance and transcriptional control.

Tolero Pharmaceuticals is based in the United States and is an indirect, wholly owned subsidiary of Sumitomo Dainippon Pharma Co., Ltd., a pharmaceutical company based in Japan. Tolero works closely with its parent company, Sumitomo Dainippon Pharma, and Boston Biomedical, Inc., also a wholly owned subsidiary, to advance a pipeline of innovative oncology treatments. The organizations apply their expertise and collaborate to achieve a common objective - expediting the discovery, development and commercialization of novel treatment options.

Additional information about the company and its product pipeline can be found atwww.toleropharma.com.

Tolero Pharmaceuticals Forward-Looking Statements

This press release contains "forward-looking statements," as that term is defined in the Private Securities Litigation Reform Act of 1995 regarding the research, development and commercialization of pharmaceutical products. The forward-looking statements in this press release are based on management's assumptions and beliefs in light of information presently available, and involve both known and unknown risks and uncertainties, which could cause actual outcomes to differ materially from current expectations. Any forward-looking statements set forth in this press release speak only as of the date of this press release. We do not undertake to update any of these forward-looking statements to reflect events or circumstances that occur after the date hereof. Information concerning pharmaceuticals (including compounds under development) contained within this material is not intended as advertising or medical advice.

View original content:http://www.prnewswire.com/news-releases/tolero-pharmaceuticals-announces-expansion-of-the-zella-102-study-in-patients-with-intermediate-and-high-risk-myelodysplastic-syndromes-mds-301058970.html

SOURCE Tolero Pharmaceuticals, Inc.

Read the original here:
Tolero Pharmaceuticals Announces Expansion of the Zella 102 Study in Patients with Intermediate and High-Risk Myelodysplastic Syndromes (MDS) -...

To Read More: Tolero Pharmaceuticals Announces Expansion of the Zella 102 Study in Patients with Intermediate and High-Risk Myelodysplastic Syndromes (MDS) -…
categoriaBone Marrow Stem Cells commentoComments Off on Tolero Pharmaceuticals Announces Expansion of the Zella 102 Study in Patients with Intermediate and High-Risk Myelodysplastic Syndromes (MDS) -… | dataMay 14th, 2020
Read All

Intellia Therapeutics Reports Progress on CRISPR/Cas9 AML Cancer Therapy Using Proprietary Cell Engineering Process at the 23rd Annual Meeting of the…

By daniellenierenberg

DetailsCategory: DNA RNA and CellsPublished on Thursday, 14 May 2020 10:13Hits: 234

CAMBRIDGE, MA, USA I May 12, 2020 I Intellia Therapeutics, Inc. (NASDAQ:NTLA), a leading genome editing company focused on developing curative therapeutics using CRISPR/Cas9 technology bothin vivoandex vivo,is presenting three oral presentations and two poster presentations at the 23rd Annual Meeting of the American Society of Gene and Cell Therapy (ASGCT), taking place virtually from May 12-15, 2020. Intellia researchers are presenting new data in support of NTLA-5001, the companys engineered cell therapy candidate for the treatment of acute myeloid leukemia (AML). Intellia is also providing an update on NTLA-2002, its newest development candidate for the treatment of hereditary angioedema (HAE).

At Intellia, we are applying our CRISPR/Cas9 technology to develop new processes that can produce enhanced engineered cell therapies to treat severe cancers, such as AML, that traditional approaches cannot address. Our proprietary platform provides a powerful tool to generate more potent TCR-directed cells, that can treat blood cancers initially and potentially solid tumors. The data being presented today validate Intellias approach of reducing AML tumor cell blasts, and our plans to enter the clinic with NTLA-5001 next year, said Intellia President and CEO John Leonard, M.D. We are also pleased to present data that support our recently announced HAE development candidate, NTLA-2002, Intellias second systemic therapy employing our in vivo knockout approach and modular delivery platform.

Data Presentations on Intellias First Engineered Cell Therapy Development Candidate, NTLA-5001 for the Treatment of AML, and Proprietary Cell Engineering Process

NTLA-5001 is Intellias first engineered T cell receptor (TCR) T cell therapy development candidate, which targets the Wilms Tumor 1 (WT1) intracellular antigen for the treatment of AML. NTLA-5001 is being developed in collaboration with Chiara Boninis team at IRCCS Ospedale San Raffaele to treat AML patients regardless of the genetic subtype of a patients leukemia. AML is a cancer of the blood and bone marrow that is rapidly fatal without immediate treatment and is the most common type of acute leukemia in adults(Source:NIH SEER Cancer Stat Facts: Leukemia AML).

Intellias proprietary process is a significant improvement over standard engineering processes commonly used to introduce nucleic acids into cells. Intellias process enabled multiple gene edits using CRISPR/Cas9, while maintaining cell products with high expansion potential and minimal undesirable chromosomal translocations. CRISPR/Cas9 was used to insert a WT1-directed TCR in locus, while eliminating the expression of the endogenous TCRs, with the goal of producing homogeneous T cell therapies like NTLA-5001.

Intellias novel approach with NTLA-5001 can overcome the challenges of standard T cell therapy, including risks of reduced specificity associated with mixed expression and mispairing of endogenous and transgenic TCRs (tgTCRs); graph-versus-host disease (GvHD) risks, which could lead to an attack on the patients healthy cells; and reduced efficacy tied to lower tgTCR expression per T cell. Intellias unprecedented process is expected to streamline cell engineering and manufacturing, yielding a homogenous product comprising WT1-targeted T cells with high anti-tumor activity. Data highlights from todays presentation include the following:

Intellias cell engineering efforts are focused on its initial clinical investigation of NLTA-5001 on AML, while continuing preclinical studies exploring the potential for targeting WT1 in solid tumors. The company confirmed plans last week to submit an IND or IND-equivalent for NTLA-5001 for the treatment of AML in the first half of 2021.

The presentation titled, Enhanced tgTCR T Cell Product Attributes Through Process Improvement of CRISPR/Cas9 Engineering, will be made today by Aaron Prodeus, Ph.D., senior scientist, Cell Therapy, and can be found here, on the Scientific Publications & Presentations page of Intellias website. These data were a follow-on to the study presented at Keystone Symposias Engineering the Genome Conference from this past February.

In Vivo Data Supports Intellias Novel TCR Candidate

A second presentation on engineered cell therapy progress, in collaboration with IRCCS Ospedale San Raffaele, showed in vivo data demonstrating the potential of TCR-edited T cells to effectively target WT1 tumor cells in AML. In addition to the previously disclosed results of effective in vitro recognition of primary AML tumor cells by edited WT1-specific cytotoxic T cells (CD8 T cells), new data indicate that the selected TCR also enables T helper cells (CD4 T cells) to react to WT1-expressing tumor cells, providing cytokine support. This distinguishes Intellias TCR from other therapeutic TCR candidates, which either exclusively activate toxic CD8 T cells or require the co-transfection of CD8 into CD4 T cells to render them functional.

Using a mouse model carrying disseminated human primary AML, researchers observed a significant therapeutic effect, including decreased AML tumor burden. In addition, no signs of GvHD were observed in mice treated with the WT1-specific T cells. The data show that tgTCR-engineered cells have targeted anti-cancer activity in a challenging model of systemic AML, demonstrating the therapeutic potential of Intellias engineered TCR T cell approach.

The presentation titled, Exploiting CRISPR-Genome Editing and WT1-Specific T Cell Receptors to Redirect T Lymphocytes Against Acute Myeloid Leukemia, will be given today by Eliana Ruggiero, Ph.D., Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Italy. Notably, ASGCT meeting organizers selected this presentation as one of six to receive the ASGCT Excellence in Research Award this year.

Continued Progress on Intellias Second In Vivo Development Candidate, NTLA-2002 for the Treatment of HAE

Intellia is presenting development data updates on its potential HAE therapy, NTLA-2002, which utilizes the companys systemic in vivo knockout approach, including its proprietary lipid nanoparticle (LNP) system. HAE is a rare genetic disorder characterized by recurring and unpredictable severe swelling attacks in various parts of the body, and is significantly debilitating or even fatal in certain cases. NTLA-2002 aims to prevent unregulated production of bradykinin by knocking out the prekallikrein B1 (KLKB1) gene through a single course of treatment to ameliorate the frequency and intensity of these swelling attacks.

The KLKB1 gene knockout in an ongoing non-human primate (NHP) study resulted in a sustained 90% reduction in kallikrein activity, a level that translates to a therapeutically meaningful impact on HAE attack rates(Source: Banerji et al., NEJM, 2017). This kallikrein activity reduction was sustained for at least six months, demonstrating the same high level of efficacy and durability seen in earlier rodent studies.

The short talk titled, CRISPR/Cas9-Mediated Gene Knockout of KLKB1 to Treat Hereditary Angioedema, will be given by Jessica Seitzer, director, Genomics, Intellia on Fri., May 15, 2020, when it will be made available here, on the Scientific Publications & Presentations page of Intellias website. The presented data include results from ongoing collaborations with researchers at Regeneron, and the program is subject to an option by Regeneron to enter into a Co/Co agreement, in which Intellia would remain the lead party. Intellia expects to submit an IND or IND-equivalent to initiate a Phase 1 trial for NTLA-2002 in the second half of 2021.

About Intellia Therapeutics

Intellia Therapeuticsis a leading genome editing company focused on developing proprietary, curative therapeutics using the CRISPR/Cas9 system. Intellia believes the CRISPR/Cas9 technology has the potential to transform medicine by permanently editing disease-associated genes in the human body with a single treatment course, and through improved cell therapies that can treat cancer and immunological diseases, or can replace patients diseased cells. The combination of deep scientific, technical and clinical development experience, along with its leading intellectual property portfolio, puts Intellia in a unique position to unlock broad therapeutic applications of the CRISPR/Cas9 technology and create a new class of therapeutic products. Learn more aboutIntellia Therapeuticsand CRISPR/Cas9 atintelliatx.comand follow us on Twitter @intelliatweets.

SOURCE: Intellia Therapeutics

Go here to read the rest:
Intellia Therapeutics Reports Progress on CRISPR/Cas9 AML Cancer Therapy Using Proprietary Cell Engineering Process at the 23rd Annual Meeting of the...

To Read More: Intellia Therapeutics Reports Progress on CRISPR/Cas9 AML Cancer Therapy Using Proprietary Cell Engineering Process at the 23rd Annual Meeting of the…
categoriaBone Marrow Stem Cells commentoComments Off on Intellia Therapeutics Reports Progress on CRISPR/Cas9 AML Cancer Therapy Using Proprietary Cell Engineering Process at the 23rd Annual Meeting of the… | dataMay 14th, 2020
Read All

PMR : Spinal Cord Trauma Treatment Market Worth Will Reach US$ 3000 Mn According To Forecast By 2025 – Cole of Duty

By daniellenierenberg

Spinal Cord Trauma Treatment Market: Global Industry Analysis 2012 2016 and Forecast 2017 2025is the recent report of Persistence Market Research that throws light on the overall market scenario during the period of eight years, i.e. 2017-2025. According to this report, Globalspinal cord trauma treatment marketis expected to witness significant growth during the forecast period.

This growth is expected to be primarily driven by increasing incidence of spinal cord trauma, and increasing government support to reduce the burden of spinal cord injuries. Additionally, development of nerve cells growth therapy is expected to boost the market in near future.

Report To Be Covered

Sales Revenue:Market Share, Growth Rate, Current Market Analysis.Product Revenue for Top Players: Market Share, Growth Rate, Current Market Situation Analysis.Industry Trends: United States and Other Regions Revenue, Status and Outlook.Market Segment: By Types, By Applications, By Regions/ Geography.Market Environment: Government Policies, Technological Changes, Market Risks.Market Drivers: Growing Demand, Reduction in Cost, Market Opportunities and Challenges.Competitive Landscape: By Manufacturers, Development Trends, Marketing Area

Get Sample Copy of Report @https://www.persistencemarketresearch.com/samples/17353

Company Profiles

Get To Know Methodology of Report @https://www.persistencemarketresearch.com/methodology/17353

The global market for spinal cord trauma treatment is is estimated to be valued atUS$ 2,276.3 Mnin terms of value by the end of 2017. The global spinal cord trauma treatment market is expected to expand at aCAGR of 3.7%over the forecast period to reach a value ofUS$ 3,036.2 Mnby 2025end.

Global Spinal Cord Trauma Treatment Market: Trends

Global Spinal Cord Trauma Treatment Market: Forecast by End User

On the basis of end user, the global spinal cord trauma treatment market is segmented into hospitals and trauma centers. Hospitals segment dominated the global spinal cord trauma treatment market in revenue terms in 2016 and is projected to continue to do so throughout the forecast period.

Hospitals and trauma centers segments are expected to approximately similar attractive index. Hospitals segment accounted for53.2%value share in 2017 and is projected to account for52.5%share by 2025 end.

Access Full Report @https://www.persistencemarketresearch.com/checkout/17353

Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape

Proton Therapy Systems Market

Proton Therapy Market Segmented By Single Room, Multiple Room Set up Type with Head and Neck Cancer, Brain Cancer, Sarcoma Pediatric Cancer, Gastro-intestinal Cancer, Prostate Cancer, Lung Cancer Indication.For More Information

Trauma Fixation Devices Marketglobal trauma fixation devices market is estimated to represent more than US$ 450 Mn of the total market in 2017 and is estimated to reach little more than US$ 800 Mn by 2025 end, expanding at CAGR of 7.5% over the forecast period of 20172025.For More Information

About us:

Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.

To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.

Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.

Contact us:

Ashish KoltePersistence Market ResearchAddress 305 Broadway, 7th FloorNew York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com

Read the original:
PMR : Spinal Cord Trauma Treatment Market Worth Will Reach US$ 3000 Mn According To Forecast By 2025 - Cole of Duty

To Read More: PMR : Spinal Cord Trauma Treatment Market Worth Will Reach US$ 3000 Mn According To Forecast By 2025 – Cole of Duty
categoriaSpinal Cord Stem Cells commentoComments Off on PMR : Spinal Cord Trauma Treatment Market Worth Will Reach US$ 3000 Mn According To Forecast By 2025 – Cole of Duty | dataMay 14th, 2020
Read All

Doctors just discovered another promising coronavirus therapy – BGR

By daniellenierenberg

The novel coronavirus cant be killed or stopped with the current drugs that we have, the WHO said earlier this week. Dr. Anthony Fauci said separately that its virtually impossible to eradicate the virus. But there are plenty of therapies that can be used to reduce the severity of COVID-19 and shorten the recovery period.

The WHO is studying four or five of the best drugs for the new illness, but there are plenty of new lines of therapy that are discovered on a regular basis. The latest one consists of a treatment thats usually given to Duchenne muscular dystrophy patients.

Cedars-Sinai doctors have given six patients an experimental treatment consisting of cells grown from human heart tissues, according to ABC7. This therapy improved the overall condition of all patients, each of whom were critically ill before the Hail Mary treatment was administered. Four of them have come off ventilators and were discharged, while the other two are still in the hospital, but theyre alive.

Dr. Eduardo Marban and his colleagues were using the treatment for muscular dystrophy patients with heart failure before considering it for COVID-19. The novel coronavirus can do severe damage to the heart, and that may have been the reason why the doctors attempted this novel therapy.

This can only be considered anecdotal evidence at best, but the doctors are hoping that the FDA can approve a more extensive study that can evaluate the benefits of the therapy. The doctors have additional doses available in the freezer for the research.

Cells grown from human heart tissues sound a lot like stem cells, although the report doesnt refer to them as such. This wouldnt be the first time that stem cell use would prove to be helpful in COVID-19 cases. A few weeks ago, doctors from Mount Sinai reported theyve treated 12 patients using stem cells derived from bone marrow, and the therapy allowed 10 of them to come off ventilators. Those physicians also noted that further study is required.

Marban and his colleagues detailed the benefits of injections of cardiac progenitor cells (cardiosphere-derived cells or CDCs) for patients with muscular dystrophy in February 2018. Cardiosphere-derived cells are stem cells derived from cardiac tissue.

We unexpectedly found that treating the heart made the whole body better, Marban said at the time. These basic findings, which have already been translated to clinical trials, rationalize why treating the heart may also benefit skeletal muscle function in boys and young men with Duchenne.

The study showed the stem cells acted not just on the heart tissue, but also on skeletal muscle, and that the benefits persisted. We found that within a few weeks, the injected cells were undetectable, Marban said, but the benefits persisted for at least three months, which led us to discover that exosomes secreted by CDCs are responsible.

The same type of therapy was likely used to treat COVID-19 patients.

Image Source: John Minchillo/AP/Shutterstock

Chris Smith started writing about gadgets as a hobby, and before he knew it he was sharing his views on tech stuff with readers around the world. Whenever he's not writing about gadgets he miserably fails to stay away from them, although he desperately tries. But that's not necessarily a bad thing.

Read the original here:
Doctors just discovered another promising coronavirus therapy - BGR

To Read More: Doctors just discovered another promising coronavirus therapy – BGR
categoriaCardiac Stem Cells commentoComments Off on Doctors just discovered another promising coronavirus therapy – BGR | dataMay 14th, 2020
Read All

Cardio Stem Cell Therapy Used to Treat Critically Ill Covid-19 Patients – Physician’s Weekly

By daniellenierenberg

Four of six patients in case series were weaned off respiratory support

An investigational allogeneic cell therapy using cardiosphere-derived cells (CDC) showed an acceptable safety profile with early evidence of efficacy in the treatment of very severe Covid-19 in a case series involving six patients treated at Cedars-Sinai Medical Center in Los Angeles.

All six patients treated with the intravenous allogeneic CDC formulation CAP-1002 (Capricor Therapeutics) as a compassionate therapy required respiratory support prior to treatment, with five on mechanical ventilation.

No adverse events related to the treatment were reported, and four of the six patients were successfully weaned from respiratory support and were discharged from the hospital as of late April.

The other two patients are still alive, but remain intubated, Cedars-Sinai cardiologist Raj Makkar, MD, confirmed to BreakingMED Wednesday, May 13.

While we are encouraged by these findings, it is important to point out that the only way that we can assess the efficacy of this treatment in a definitive way is with a randomized clinical trial, and that is what we intend to do, Makkar said.

He added that the clinical trial, which is in the planning stages, is likely to include Covid-19 patients who are not as critically ill as the six in the case series.

All of these patients required respiratory support and they were all on a downward trajectory when treated, he said. They were getting worse and we had nothing else to offer them.

Cardiosphere-derived cells are stromal/progenitor cells from heart tissue with a distinctive antigenic profile (CD105+, CD45-, CD90low).

In their case series, published in the journal Basic Research in Cardiology, Makkar and colleagues noted that the cells are entirely distinct from the controversial c-kit+ putative cardiac progenitors, which have been the subject of various retracted studies.

Since CDCs were first isolated in 2007, the cells have been tested in more than 200 patients in clinical trials for a variety of conditions with a good safety profile, including in young boys with Duchenne muscular dystrophy.

Makkar said the anti-inflammatory and antifibrotic properties of CDCs in animal models make them a possible target therapy for Covid-19.

The prior testing gave us reasonable confidence that this treatment was safe, he said, adding that there is also evidence of a favorable effect on the same type of proinflammatory cytokines that are up-regulated in Covid-19.

Comparisons to mesenchymal stem cells (MSCs) in pre-clinical models suggest that CDCs may also be more effective for paracrine factor secretion and myocardial remodeling.

Given the safety record of CDCs in humans, and the substantial body of evidence confirming relevant disease-modifying bioactivity, applicability to Covid-19 seemed compelling, particularly in the hyperinflammatory stage of the illness, the researchers wrote.

All six patients treated with the intravenous CDC formulation had severe, confirmed Covid-19 with respiratory failure and they were not receiving any other experimental agent, with the exception of hydroxychloroquine and tocilizumab.

Lack of clinical improvement or deterioration despite standard care was the primary reason for considering patients for treatment with CAP-1002. Exclusion criteria included known hypersensitivity to DMSO, which is a component of CAP-1002; prior stem cell therapy; pre-existing terminal illness; and need for mechanical circulatory support and dialysis.

In general, patients with multi-organ failure who were deemed to be too sick for any intervention were excluded from the study, Makkar and colleagues wrote.

All patients had acute respiratory distress syndrome (ARDS) prior to infusion, with decreased PaO2/FiO2 ratios (range 69-198; median 142), diffuse bilateral pulmonary infiltrates on chest imaging and evidence of preserved cardiac function on transthoracic echocardiography (LVEF range, 50-75%). SOFA scores ranged from 2 to 8 prior to stem cell treatment.

The six patients (age range, 19-75 years) had IV infusions of CAP-1002 containing 150 million allogeneic CDCs, and two of the six had a second dose of the treatment.

Following treatment, four patients (67%) were weaned from respiratory support and discharged from the hospital.

A contemporaneous control group of critically ill Covid-19 patients (n = 34) at our institution showed 18% overall mortality at a similar stage of hospitalization, the researchers wrote.

Ferritin was elevated in all patients at baseline (range of all patients 605.43-2991.52 ng/ml) and decreased in five of the six patients (range of all patients 252.891029.90 ng/ml).

Absolute lymphocyte counts were low in five of the six patients at baseline (range 0.260.82 103/l) but had increased in 3 of these five at last follow-up (range 0.231.02 103/l).

Administration of CAP-1002 as a compassionate therapy for patients with severe Covid-19 and significant comorbidities was safe, well tolerated without serious adverse events, and associated with clinical improvement, as evidenced by extubation (or prevention of intubation, the researchers wrote.

Stem cell therapy utilizing cardiosphere-derived cells (CDC) showed an acceptable safety profile with early evidence of efficacy in the treatment of very severe Covid-19 in an early case series involving 6 patients treated at Cedars-Sinai Medical Center, Los Angeles.

No adverse events related to the treatment were reported, and four of the six patients were successfully weaned from respiratory support and were discharged from the hospital.

Salynn Boyles, Contributing Writer, BreakingMED

Funding for this story was provided by the Smidt Family Foundation. The cell product, CAP-1002, was provided by manufacturer Capricor Therapeutics.

ResearcherEduardo Marban reported owning founders equity in Cariricor Therapeutics, and researcher Linda Marban reported being an employee and owning equity in the company.

Cat ID: 125

Topic ID: 79,125,254,930,287,728,932,570,574,730,933,125,190,926,192,927,151,928,925,934

Here is the original post:
Cardio Stem Cell Therapy Used to Treat Critically Ill Covid-19 Patients - Physician's Weekly

To Read More: Cardio Stem Cell Therapy Used to Treat Critically Ill Covid-19 Patients – Physician’s Weekly
categoriaCardiac Stem Cells commentoComments Off on Cardio Stem Cell Therapy Used to Treat Critically Ill Covid-19 Patients – Physician’s Weekly | dataMay 14th, 2020
Read All

bluebird bio to Present Data from Its Gene and Cell Therapy Programs During the Virtual Edition of the 25th European Hematology Association Annual…

By daniellenierenberg

Presentation of new and updated results from ongoing Phase 1/2 HGB-206 study of LentiGlobin for sickle cell disease will include additional patients treated in the study

New and updated data, including analysis of healthy red blood cell production in patients with transfusion-dependent -thalassemia following treatment with betibeglogene autotemcel (LentiGlobin for -thalassemia) to be shared

CAMBRIDGE, Mass. bluebird bio, Inc. (Nasdaq: BLUE) announced today that data from its gene therapy programs for sickle cell disease (SCD), transfusion-dependent -thalassemia (TDT) and its cell therapy program for relapsed and refractory multiple myeloma (RRMM) will be presented during the Virtual Edition of the 25th European Hematology Association (EHA25) Annual Congress.

New data from the companys Phase 1/2 HGB-206 study of LentiGlobin gene therapy for SCD will be presented, including updated data from patients in Group C.

bluebird bio will also present data from its ongoing clinical studies of betibeglogene autotemcel (formerly LentiGlobin gene therapy for -thalassemia), including the Phase 3 Northstar-2 (HGB-207) study in patients who do not have a 0/0 genotype and the Phase 3 Northstar-3 (HGB-212) study in patients who have 0/0, 0/+IVS-I-110, or +IVS-I-110/+IVS-I-110 genotypes.

Data from studies of idecabtagene vicleucel (ide-cel; bb2121), the companys anti-B-cell maturation antigen (BCMA) chimeric antigen receptor (CAR) T cell therapy in development with Bristol Myers Squibb, will be presented, including an encore presentation of results from the pivotal Phase 2 KarMMa study.

Sickle Cell Disease Data at EHA25

Oral Presentation: Outcomes in patients treated with LentiGlobin for sickle cell disease (SCD) gene therapy: Updated results from the Phase 1/2 HGB-206 group C study Presenting Author: Julie Kanter, M.D., University of Alabama at Birmingham, Birmingham, Ala.

Transfusion-Dependent -Thalassemia Data at EHA25

Oral Presentation: Improvement in erythropoiesis in patients with transfusion-dependent -thalassemia following treatment with betibeglogene autotemcel (LentiGlobin for -thalassemia) in the Phase 3 HGB-207 study Presenting Author: John B. Porter, MA, M.D., FRCP, FRCPath, University College London Hospital, London, UK

Poster: Betibeglogene autotemcel (LentiGlobin) in patients with transfusion-dependent -thalassemia and 0/0, +IVS-I-110/+IVS-I-110, or 0/+IVS-I-110 genotypes: Updated results from the HGB-212 study Presenting Author: Evangelia Yannaki, M.D., George Papanicolaou Hospital, Thessaloniki, Greece

Multiple Myeloma Data at EHA25

Oral Presentation:Phase II KarMMa study: Idecabtagene vicleucel (ide-cel; bb2121), a BCMA-targeted CAR T cell therapy, in patients with relapsed and refractory multiple myeloma Presenting Author: Jesus San-Miguel, M.D., Ph.D., Clinica Universidad de Navarra, Navarra, Spain

Poster: Quality of life in patients with relapsed and refractory multiple myeloma treated with the BCMA-targeted CAR T cell therapy Idecabtagene vicleucel (ide-cel; bb2121): results from the KarMMa Trial Presenting Author: Michel Delforge, M.D., Ph.D., Leuven University College, Brussels, Belgium

Poster: Matching-adjusted indirect comparisons of efficacy outcomes for idecabtagene vicleucel from the KarMMa study vs selinexor PLUS dexamethasone (STORM part 2) and belantamab mafodotin (DREAMM-2) Presenting Author: Paula Rodriguez-Otero, M.D., Clinica Universidad de Navarra, Navarra, Spain

Poster: Baseline and postinfusion pharmcodynamic biomarkers of safety and efficacy in patients treated with idecabtagene vicleucel (ide-cel; bb2121) in the KarMMa study Presenting Author: Justine DellAringa, Bristol Myers Squibb, Seattle, Wash.

Poster: Correlation of tumor BCMA expression with response and acquired resistance to idecabtagene vicleucel in the KarMMa study in relapsed and refractory multiple myeloma Presenting Author: Nathan Martin, Bristol Myers Squibb, Seattle, Wash.

Abstracts outlining bluebird bios accepted data at the EHA25 Virtual Congress have been made available on the EHA25 conference website. On Friday, June 12 at 8:30 AM CEST, the embargo will lift for poster and oral presentations accepted for EHA25.

About betibeglogene autotemcel The European Commission granted conditional marketing authorization (CMA) for betibeglogene autotemcel, marketed as ZYNTEGLO gene therapy, for patients 12 years and older with TDT who do not have a 0/0 genotype, for whom hematopoietic stem cell (HSC) transplantation is appropriate, but a human leukocyte antigen (HLA)-matched related HSC donor is not available. On April 28, 2020, the European Medicines Agency (EMA) renewed the CMA for ZYNTEGLO, supported by data from 32 patients treated with ZYNTEGLO including three patients with up to five years of follow-up.

TDT is a severe genetic disease caused by mutations in the -globin gene that result in reduced or significantly reduced hemoglobin (Hb). In order to survive, people with TDT maintain Hb levels through lifelong chronic blood transfusions. These transfusions carry the risk of progressive multi-organ damage due to unavoidable iron overload.

Betibeglogene autotemcel adds functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once a patient has the A-T87Q-globin gene, they have the potential to produce HbAT87Q, which is gene therapy-derived hemoglobin, at levels that may eliminate or significantly reduce the need for transfusions.

Non-serious adverse events (AEs) observed during the clinical studies that were attributed to betibeglogene autotemcel were abdominal pain, thrombocytopenia, leukopenia, neutropenia, hot flush, dyspnoea, pain in extremity, and non-cardiac chest pain. One serious adverse event (SAE) of thrombocytopenia was considered possibly related to LentiGlobin for -thalassemia for TDT.

Additional AEs observed in clinical studies were consistent with the known side effects of HSC collection and bone marrow ablation with busulfan, including SAEs of veno-occlusive disease.

The CMA for ZYNTEGLO is only valid in the 28 member states of the EU as well as Iceland, Liechtenstein and Norway. For details, please see the Summary of Product Characteristics (SmPC).

The U.S. Food and Drug Administration granted betibeglogene autotemcel Orphan Drug status and Breakthrough Therapy designation for the treatment of TDT. Betibeglogene autotemcel is not approved in the United States.

Betibeglogene autotemcel continues to be evaluated in the ongoing Phase 3 Northstar-2 and Northstar-3 studies. For more information about the ongoing clinical studies, visit http://www.northstarclinicalstudies.com or clinicaltrials.gov and use identifier NCT02906202 for Northstar-2 (HGB-207), NCT03207009 for Northstar-3 (HGB-212).

About LentiGlobin for Sickle Cell Disease LentiGlobin for sickle cell disease is an investigational gene therapy being studied as a potential treatment for SCD. bluebird bios clinical development program for LentiGlobin for SCD includes the ongoing Phase 1/2 HGB-206 study and the ongoing Phase 3 HGB-210 study.

SCD is a serious, progressive and debilitating genetic disease caused by a mutation in the -globin gene that leads to the production of abnormal sickle hemoglobin (HbS), causing red blood cells (RBCs) to become sickled and fragile, resulting in chronic hemolytic anemia, vasculopathy and painful vaso-occlusive crises (VOCs). For adults and children living with SCD, this means unpredictable episodes of excruciating pain due to vaso-occlusion as well as other acute complicationssuch as acute chest syndrome (ACS), stroke, and infections, which can contribute to early mortality in these patients.

LentiGlobin for SCD received Orphan Medicinal Product designation from the European Commission for the treatment of SCD.

The U.S. Food and Drug Administration (FDA) granted Orphan Drug status and Regenerative Medicine Advanced Therapy designation for LentiGlobin for the treatment of SCD.

LentiGlobin for SCD is investigational and has not been approved by the European Medicines Agency (EMA) or FDA.

bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-303) for people who have participated in bluebird bio-sponsored clinical studies of betibeglogene autotemcel and LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT02633943 for LTF-303.

About idecabtagene vicleucel (ide-cel; bb2121) Ide-cel is a B-cell maturation antigen (BCMA)-directed genetically modified autologous chimeric antigen receptor (CAR) T cell immunotherapy. The ide-cel CAR is comprised of a murine extracellular single-chain variable fragment (scFv) specific for recognizing BCMA, attached to a human CD8 hinge and transmembrane domain fused to the T cell cytoplasmic signaling domains of CD137 4-1BB and CD3- chain, in tandem. Ide-cel recognizes and binds to BCMA on the surface of multiple myeloma cells leading to CAR T cell proliferation, cytokine secretion, and subsequent cytolytic killing of BCMA-expressing cells.

In addition to the pivotal KarMMa trial evaluating ide-cel in patients with relapsed and refractory multiple myeloma, bluebird bio and Bristol Myers Squibbs broad clinical development program for ide-cel includes clinical studies (KarMMa-2, KarMMa-3, KarMMa-4) in earlier lines of treatment for patients with multiple myeloma, including newly diagnosed multiple myeloma. For more information visit clinicaltrials.gov.

Ide-cel was granted Breakthrough Therapy Designation (BTD) by the U.S. Food and Drug Administration (FDA) and PRIority Medicines (PRIME) designation, as well as Accelerated Assessment status, by the European Medicines Agency for relapsed and refractory multiple myeloma.

Ide-cel is being developed as part of a Co-Development, Co-Promotion and Profit Share Agreement between Bristol Myers Squibb and bluebird bio.

Ide-cel is not approved for any indication in any geography.

About KarMMa KarMMa (NCT03361748) is a pivotal, open-label, single-arm, multicenter, multinational, Phase 2 study evaluating the efficacy and safety of ide-cel in adults with relapsed and refractory multiple myeloma in North America and Europe. The primary endpoint of the study is overall response rate as assessed by an independent review committee (IRC) according to the International Myeloma Working Group (IMWG) criteria. Complete response rate is a key secondary endpoint. Other efficacy endpoints include time to response, duration of response, progression-free survival, overall survival, minimal residual disease evaluated by Next-Generation Sequencing (NGS) assay and safety. The study enrolled 140 patients, of whom 128 received ide-cel across the target dose levels of 150-450 x 10P6P CAR+ T cells after receiving lymphodepleting chemotherapy. All enrolled patients had received at least three prior treatment regimens, including an immunomodulatory agent, a proteasome inhibitor and an anti-CD38 antibody, and were refractory to their last regimen, defined as progression during or within 60 days of their last therapy.

About bluebird bio, Inc. bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.

bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders including cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma, using three gene therapy technologies: gene addition, cell therapy and (megaTAL-enabled) gene editing.

bluebird bio has additional nests in Seattle, Wash.; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.

Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.

ZYNTEGLO, LentiGlobin, and bluebird bio are trademarks of bluebird bio, Inc.

Forward-Looking Statements This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: regarding the potential for betibeglogene autotemcel to treat transfusion-dependent -thalassemia and the potential for LentiGlobin for sickle cell disease (SCD) to treat SCD; and the risk that the efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated in our ongoing or planned clinical trials. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200514005234/en/

Contacts

Media: Catherine Falcetti, 339-499-9436 cfalcetti@bluebirdbio.com Victoria von Rinteln, 617-914-8774 vvonrinteln@bluebirdbio.com

Investors: Ingrid Goldberg, 410-960-5022 Ingrid.goldberg@bluebirdbio.com Elizabeth Pingpank, 617-914-8736 epingpank@bluebirdbio.com

#distro

View post:
bluebird bio to Present Data from Its Gene and Cell Therapy Programs During the Virtual Edition of the 25th European Hematology Association Annual...

To Read More: bluebird bio to Present Data from Its Gene and Cell Therapy Programs During the Virtual Edition of the 25th European Hematology Association Annual…
categoriaCardiac Stem Cells commentoComments Off on bluebird bio to Present Data from Its Gene and Cell Therapy Programs During the Virtual Edition of the 25th European Hematology Association Annual… | dataMay 14th, 2020
Read All

Surplus antioxidants are pathogenic for hearts and skeletal muscle – The Mix

By daniellenierenberg

This discovery may have clinical importance in management of heart failure.

This discovery may have clinical importance in management of heart failure.Many heart diseases are linked to oxidative stress, an overabundance of reactive oxygen species. The body reacts to reduce oxidative stress where the redox teeter-totter has gone too far up through production of endogenous antioxidants that reduce the reactive oxygen species. This balancing act is called redox homeostasis.

But what happens if the redox teeter-totter goes too far down, creating antioxidative stress, also known as reductive stress? Rajasekaran Namakkal-Soorappan, Ph.D., associate professor in the University of Alabama at Birmingham Department of Pathology, and colleagues have found that reductive stress, or RS/AS, is also pathological. This discovery, they say, may have clinical importance in management of heart failure.

They report that RS causes pathological heart enlargement and diastolic dysfunction in a mouse model. This study, published in the journal Antioxidants and Redox Signaling, was led by Namakkal-Soorappan and Pei Ping, Ph.D., David Geffen School of Medicine at the University of California-Los Angeles.

Antioxidant-based therapeutic approaches for human heart failure should consider a thorough evaluation of antioxidant levels before the treatment, they said. Our findings demonstrate that chronic RS is intolerable and adequate to induce heart failure.

The study used transgenic mice that had upregulated genes for antioxidants in the heart, which increased the amounts of antioxidant proteins and reduced glutathione, creating RS. One mouse line had low upregulation, and one had high upregulation, creating chronic low RS and chronic high RS, respectively, in the hearts of the mice.

The mice with high RS showed pathological heart changes called hypertrophic cardiomyopathy, and had an abnormally high heart ejection fraction and diastolic dysfunction at 6 months of age. Sixty percent of the high-RS mice died by 18 months of age.

The mice with low RS had normal survival rates, but they developed the heart changes at about 15 months of age, suggesting that even moderate RS can lead to irreversible damage in the heart over time.

Giving high-RS mice a chemical that blocked biosynthesis of glutathione, beginning at about 6 weeks of age, prevented RS and rescued the mice from pathological heart changes.

Gobinath Shanmugam, Ph.D., postdoctoral fellow in the UAB Department of Pathology, and Namakkal-Soorappan point out that a 2019 survey found about 77 percent of Americans are consuming dietary supplements every day, and within this group, about 58 percent are consuming antioxidants as multivitamins. Thus, a chronic consumption of antioxidant drugs by any individual without knowing their redox state might result in RS, which can induce pathology and slowly damage the heart.

In a related study, published in the journal Redox Biology, Namakkal-Soorappan looked at the impact of RS on myosatellite cells, which are also known as muscle stem cells. These cells, located near skeletal muscle fibers, are able to regenerate and differentiate into skeletal muscle after acute or chronic muscle injury. The regulation of myosatellite cells is of interest given the loss of skeletal muscle mass during aging or in chronic conditions like diabetes and AIDS.

Recently, Namakkal-Soorappan reported that tilting the redox teeter-totter to oxidative stress impaired regeneration of skeletal muscle. Now, in the Redox Biology paper, he has shown that tilting the redox to RS also causes significant inhibition of muscle satellite cell differentiation.

Rather than genetic manipulation to induce RS, as was done in the heart study, the researchers used the chemical sulforaphane or direct augmentation of intracellular glutathione to induce RS in cultured mouse myoblast cells. Both treatments inhibited myoblast differentiation. Finally, authors attempted to withdraw antioxidative stress by growing cells in medium without sulforaphane, which removes the RS and accelerates the differentiation. Namakkal-Soorappan and colleagues found that a pro-oxidative milieu, through a mild generation of reactive oxygen species, was required for myoblast differentiation.

The researchers also showed that genetic silencing of a negative regulator of the antioxidant genes also inhibited myoblast differentiation.

Co-authors with Namakkal-Soorappan and Ping, and first-author Shanmugam, in the Antioxidants and Redox Signaling study, Reductive stress causes pathological cardiac remodeling and diastolic dysfunction, are Silvio H. Litovsky and Rajesh Kumar Radhakrishnan, UAB Department of Pathology; Ding Wang, UCLA; Sellamuthu S. Gounder, Kevin Whitehead, Sarah Franklin and John R. Hoidal, University of Utah School of Medicine; Jolyn Fernandes and Dean P. Jones, Emory University, Atlanta, Georgia; Thomas W. Kensler, Fred Hutch Cancer Research Center, Seattle, Washington; Louis DellItalia, UAB Department of Medicine; Victor Darley-Usmar, UAB Department of Pathology; and E. Dale Abel, University of Iowa.

In the Redox Biology study, Reductive stress impairs myogenic differentiation, co-authors with Namakkal-Soorappan are Sandeep Balu Shelar, UAB Department of Pathology; Dean P. Jones, Emory University; and John R. Hoidal, University of Utah School of Medicine.

Support for both studies came from National Institutes of Health grants HL118067 and AG042860, American Heart Association grant BGIA 0865015F, the University of Utah, and UAB.

In the two studies, Namakkal-Soorappans name is listed as Namakkal S. Rajasekaran.

See original here:
Surplus antioxidants are pathogenic for hearts and skeletal muscle - The Mix

To Read More: Surplus antioxidants are pathogenic for hearts and skeletal muscle – The Mix
categoriaCardiac Stem Cells commentoComments Off on Surplus antioxidants are pathogenic for hearts and skeletal muscle – The Mix | dataMay 14th, 2020
Read All

The Cell Therapy Industry to 2028: Global Market & Technology Analysis, Company Profiles of 309 Players (170 Involved in Stem Cells) -…

By daniellenierenberg

DUBLIN--(BUSINESS WIRE)--The "Cell Therapy - Technologies, Markets and Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.

The cell-based markets was analyzed for 2018, and projected to 2028. The markets are analyzed according to therapeutic categories, technologies and geographical areas. The largest expansion will be in diseases of the central nervous system, cancer and cardiovascular disorders. Skin and soft tissue repair as well as diabetes mellitus will be other major markets.

The number of companies involved in cell therapy has increased remarkably during the past few years. More than 500 companies have been identified to be involved in cell therapy and 309 of these are profiled in part II of the report along with tabulation of 302 alliances. Of these companies, 170 are involved in stem cells.

Profiles of 72 academic institutions in the US involved in cell therapy are also included in part II along with their commercial collaborations. The text is supplemented with 67 Tables and 25 Figures. The bibliography contains 1,200 selected references, which are cited in the text.

This report contains information on the following:

The report describes and evaluates cell therapy technologies and methods, which have already started to play an important role in the practice of medicine. Hematopoietic stem cell transplantation is replacing the old fashioned bone marrow transplants. Role of cells in drug discovery is also described. Cell therapy is bound to become a part of medical practice.

Stem cells are discussed in detail in one chapter. Some light is thrown on the current controversy of embryonic sources of stem cells and comparison with adult sources. Other sources of stem cells such as the placenta, cord blood and fat removed by liposuction are also discussed. Stem cells can also be genetically modified prior to transplantation.

Cell therapy technologies overlap with those of gene therapy, cancer vaccines, drug delivery, tissue engineering and regenerative medicine. Pharmaceutical applications of stem cells including those in drug discovery are also described. Various types of cells used, methods of preparation and culture, encapsulation and genetic engineering of cells are discussed. Sources of cells, both human and animal (xenotransplantation) are discussed. Methods of delivery of cell therapy range from injections to surgical implantation using special devices.

Cell therapy has applications in a large number of disorders. The most important are diseases of the nervous system and cancer which are the topics for separate chapters. Other applications include cardiac disorders (myocardial infarction and heart failure), diabetes mellitus, diseases of bones and joints, genetic disorders, and wounds of the skin and soft tissues.

Regulatory and ethical issues involving cell therapy are important and are discussed. Current political debate on the use of stem cells from embryonic sources (hESCs) is also presented. Safety is an essential consideration of any new therapy and regulations for cell therapy are those for biological preparations.

Key Topics Covered

Part I: Technologies, Ethics & Regulations

Executive Summary

1. Introduction to Cell Therapy

2. Cell Therapy Technologies

3. Stem Cells

4. Clinical Applications of Cell Therapy

5. Cell Therapy for Cardiovascular Disorders

6. Cell Therapy for Cancer

7. Cell Therapy for Neurological Disorders

8. Ethical, Legal and Political Aspects of Cell therapy

9. Safety and Regulatory Aspects of Cell Therapy

Part II: Markets, Companies & Academic Institutions

10. Markets and Future Prospects for Cell Therapy

11. Companies Involved in Cell Therapy

12. Academic Institutions

13. References

For more information about this report visit https://www.researchandmarkets.com/r/7h12ne

Read more:
The Cell Therapy Industry to 2028: Global Market & Technology Analysis, Company Profiles of 309 Players (170 Involved in Stem Cells) -...

To Read More: The Cell Therapy Industry to 2028: Global Market & Technology Analysis, Company Profiles of 309 Players (170 Involved in Stem Cells) -…
categoriaSkin Stem Cells commentoComments Off on The Cell Therapy Industry to 2028: Global Market & Technology Analysis, Company Profiles of 309 Players (170 Involved in Stem Cells) -… | dataMay 14th, 2020
Read All

Stem cells therapy A prospective treatment against coronavirus? – Daily Excelsior

By daniellenierenberg

Dr Shikha Sharma

Coronavirus disease (COVID-19) is an unforgettable word in 2020. World health organization has declared COVID-19 as pandemic and according to the Worldometer site, it has affected 212 countries and territories and has caused approximately 2.8 lakhs deaths so far. According to the various published scientific evidences COVID-19 is an infectious disease caused by new coronavirus that can lead to lung dysfunction. There are 7 coronaviruses that are known to cause disease in humans and among these 3 can cause the severe respiratory infection. These are severe acute respiratory syndrome coronavirus (SARS-CoV) identified in 2002 in China, Middle East respiratory syndrome coronavirus (MERS-CoV) identified in 2012 in Saudi Arabia and severe acute respiratory syndrome coronavirus2 (SARS-CoV2) commonly called COVID-19 identified in late 2019 in Wuhan, China. SARS-CoV, MERS-CoV and COVID-19 are closely related but COVID-19 spread more quickly than the other two. Over 8000 people from 29 different countries were affected with SARS-CoV epidemic during 2002-2004 while 40.78 lakhs people are affected with COVID-19 so far. In most cases, immune response (bodys defence system) triggered by the COVID-19 infection is sufficient to combat its pathogenesis leads to the recovery of patient. However, in some cases, COVID-19 infection causes highly inflammatory form of lung cells death and injury as the most dangerous phase of its pathogenesis which leads to the overproduction of inflammatory cytokines by bodys own immune cells creating cytokine storm that results in damage to the lung tissues causing pneumonia, acute respiratory distress syndrome (ARDS) and sepsis. In Pneumonia and ARDS air sac of lungs fill with fluid or pus. These complications lead to severe condition such as shortness of breath that require treatment with oxygen and ventilator. Therefore controlling inflammatory response is utmost important to prevent coronavirus lethality rate and for the longer life of a patient. Currently no specific treatment is available for COVID-19 infection but several vaccines, drugs and stem cells testing in various countries has generated hope to combat its pathogenesis. Recent breakthrough has demonstrated mesenchymal stem cells (MSCs) as cell medicine therapy to reduce COVID-19 infection.What are MSCsMSCs are multipotent adult stem cells that are capable of differentiating into various cell types such as fat cells, bone cells, liver cells, pancreatic cells, brain cells, heart cells and skin cells thus can participate in the repair and regeneration of various tissues and organs of the body. Inside the body, upon injury, MSCs migrate to the injured site and participate in the regeneration and repair of the organ either by differentiation or by paracrine secretion or both. In addition MSCs possess immunomodulatory and anti-inflammatory properties that contributes to its cell medicinal properties. MSCs can be isolated from various tissues such as bone marrow, peripheral blood, body fat, muscle, placenta, umbilical cord, umbilical cord blood, teeth and hair follicles and can be expanded ex vivo and used for transplantation for treating disease and disorders after genetic stability test.How MSCs reduce COVID-19pathogenesisAs reported by various research groups that upon intravenous injection or through mist inhalation the significant population of MSCs migrate to the lung and secrete various immunomodulatory and anti-inflammatory factors to cure lung dysfunction by normalizing immune response altered by COVID-19 and stimulate lung repair. Moreover MSCs are resistant to COVID-19 infection and can be used for autologous and allogenic transplantation.Clinical trial with MSCs for COVID-19There are several clinical trials registered with MSCs for the treatment of COVID-19 from various countries such as China, USA, UK, Germany, UAE, Jordan and Iran and some reports have been published. Approximately 100 patients have been treated with MSCs therapy from moderate to critical conditions within 10-15 days of transplantation. A first case treated with MSCs showed the recovery of 65 year old critical ill patient in Baoshan Peoples Hospital, Longling County, China. Initially the patient was treated with antiviral therapy and immunomodulator thymosin alpha1 but hasnt shown any recovery. Later after 10 days patient was diagnosed with severe pneumonia, acute respiratory distress syndrome, multiorgan injury, type2 diabetes, moderate anaemia, electrolyte disturbance, immunosuppression, acute gastrointestinal bleeding and other symptom was shifted to ICU and on ventilator. They showed that after three MSCs injections along with thymosin alpha1 lead to the recovery of patient from COVID-19 infection. FDA has approved 24 patient clinical trial in USA to test safety and efficacy of MSCs from umbilical cord to prevent COVID-19 infection. Recently, in USA three critically ill patients in ICU and on ventilator recovered from COVID-19 infection with MSCs treatment. An Israeli pharmaceutical company Pluristem therapeutics have tested MSCs therapy on 7 critically ill patient and found positive results. More recently, UAE also reported the treatment of 73 COVID-19 infected patients with stem cells. They have developed the technology to isolate the stem cells from patient blood, activate them and reintroduce them by mist inhalation. These reports are indicative that MSCs hold the potential to treat the COVID-19 infection by preventing bodys own defense system from overreacting and normalise its response to fight against COVID-19 infection. Many companies from different countries are seeking approval to begin clinical trial with stem cells against COVID-19 infection.Why are we lagging behind when we have stem cell companies/labs/facility in our country? We also produce GMP grade stem cells for transplantation. China tested the stem cell therapy on first patient when all other therapies failed and stem cells was one of option left to save the life of the patient. In India also so many deaths are happening due to COVID-19 we can also check if stem cells can reduce the mortality rate. Moreover as per some reports MSCs dont stay inside the body for more than 1-3 months and they eventually die and dont result in teratoma formation. Our government along with doctors and scientist can also formulate committee on stem cells and begin such initiative to test MSCs for the treatment of COVID-19 infection. Nevertheless, MSCs has joined the army along with the other possible interventions to prevent the COVID-19 illness.(The author is (PhD and Postdoc in Stem Cells)feedbackexcelsior@gmail.com

Read the original here:
Stem cells therapy A prospective treatment against coronavirus? - Daily Excelsior

To Read More: Stem cells therapy A prospective treatment against coronavirus? – Daily Excelsior
categoriaSkin Stem Cells commentoComments Off on Stem cells therapy A prospective treatment against coronavirus? – Daily Excelsior | dataMay 14th, 2020
Read All

The Latest In Stem Cell Therapy After SCI

By daniellenierenberg

Stem cells have long-held hope for many people with spinal cord injuries. Since their discovery in 1998, they have been used in thousands of studies to one day cure paralysis, but there is still no cure for those with chronic injuries. Despite this, scientists have come a long way, especially in recent years. You have likely heard about some of the research in the news, stirring more hope than ever before.

And the hope is not unfounded. The hard work and the millions of dollars going into this research is finally seeing results. Stem cells may not be the only key to finding a cure for a spinal cord injury, but they arent going anywhere and are being used in hundreds of studies around the world. Here are the ones you should know about.

The human body has millions of stem cells that can be found all over the body. Researchers at the Mayo Clinic were recently in the news for their results using fat-derived adult stem cells from the patients own body. This study recruited 10 individuals with traumatic spinal cord injuries. Each was injected with stem cells taken from the fat in their stomachs and was expanded in the lab for eight weeks. The injection was then in the lower lumbar area.

This treatment is brand new and has not been approved by the FDA, however, the study was granted special clearance. One individual in the study, a man in his fifties with an incomplete injury who had leg return and was able to walk slightly post-injury without treatment, saw a nearly 50% increase in his abilities after receiving the injection.

Researchers also made sure to wait until each person in the study had plateaued after their injuries to be sure that the results from the treatment were not results from the body still having a new injury. There is currently no further news on whether the FDA will approve this treatment for the general population.

Nearly a year ago, Japan's Health Ministry approved a trial that will involve four people with complete injuries. This stem cell trial uses induced pluripotent stem cells (IPS) taken from embryos and will be grown into two million nerve cells for each patient. These cells will then be injected into the injury site. This trial comes from Masaya Nakamura, a professor at Okano and Keio University, who saw improvements in animals after they underwent the procedure. There has that no updates on this trial since it was approved.

In Spain, a clinical trial has been underway for the last few years that uses stem cells taken from the patient's bone marrow and injected into their injury site. This research comes from Dr. Vaquero at the Puerta de Hierro University Hospital in Spain. His first trial in 2016 included people with complete injuries and his second trial in 2017 included people with incomplete injuries. Almost all patients who underwent the procedure saw some improvement, with some seeing more improvement than others. The trial is currently seeking 30 people with incomplete injuries for its next phase.

Dr. Steven Levy of MD Stem Cells is launching the SciExVR trial using a patient's stem cells from their bone marrow as well. This study is currently recruiting patients in the United States and will involve exoskeleton rehab as part of the trial. Learn more:http://mdstemcells.com/sciexvr

Dr. Wise Young, along with Rutgers University and his organization SCINetChina, has been approved for a study in the United States that will involve umbilical cord blood stem cells and oral lithium. This study will involve 27 people with complete chronic injuries levels C5-T11. You must be able to be in New Jersey for six months is chosen.

Six years ago in 2014, Dr. Raisman from Poland pioneered a study using nerve stem cells taken from the nose. These stem cells were taken from the olfactory bulb deep in the brain and were transplanted into the injury site along with nerve tissue taken from the patient ankle. This study is recruiting one person for the trial who has a perfectly severed spinal cord (by a knife or similar). The person recruited will also have to spend several years in Poland. To learn more, contacthttps://walk-again-project.org/#/en

Keep in mind that all the above stem cell trials are still trials and that they cannot promise any return of movement or sensation. It is always in your best interest to go into a trial with an open mind and to be hopeful, but be realistic at all times.

Read more from the original source:
The Latest In Stem Cell Therapy After SCI

To Read More: The Latest In Stem Cell Therapy After SCI
categoriaSpinal Cord Stem Cells commentoComments Off on The Latest In Stem Cell Therapy After SCI | dataMay 13th, 2020
Read All

Spinal Cord Injury Recovery Through Stem Cell Therapy

By daniellenierenberg

Bioscience Americas and the Global Institute of Stem Cell Therapy and Research would like to extend a special thank you to the Christopher and Dana Reeve Foundation for their support relating to our work at the University California Irvin and the Anderson Laboratory. We have made exciting progress using stem cells to treat cervical spinal cord injuries because of their generosity.

Now, based on the results of Dr. Andersons Phase I/II clinical trial, our research partners are conducting a Phase II proof of concept trial using HuCNS-SC in cervical spinal cord injury. In this study, research participants are being treated between 10 to 23 months post-injury.

Spinal Cord Injury (SCI) is damage to the human spinal cord into three different segments of the neural tissue leading to a severe form of motor and sensory loss. The kind of damage can be differentiated as:

In most of the reported cases of SCI, damage can be due to trauma or disease. Apart from the physical damage and complete dependency on caregivers, SCI can be emotionally damaging as well. Due to dependency even on basic mobility, negative attitudes of suffering trauma forever and frequent mood swings can lead suffers to remove themselves from social participation. Thus more than 30% of the reported cases of SCI showed significant signs of depression and negative impact on the functional improvement of overall health.

How prevalent is SCI?

Since SCI is associated with the loss of mobility, paralysis, and mortality due to other opportunistic infections, it is known as one of the most critical and disastrous medical conditions. Every year around 2 million to 5 million people are reported to suffer from spinal cord injury. On an average, middle-aged and young adult males are more susceptible to SCI mainly due to avoidable causes such as road accidents, injury, falls or violence. Mortality associated with SCI has been observed to be the highest immediately after the injury than in later years. The risk of mortality doubles with the severity level and is observed to be strongly influenced by the immediate availability of the best medical care. Preventable secondary opportunistic infections are also reported to be a major cause of death in many SCI patients, especially in the lower income groups.

About 90% of patients in the age group of 20-45 have been reported to face other complications such as limited employment, decreased quality of life, and severe depression.

Factors responsible for SCI.

In general, a spinal cord injury is a result of to the severe damage to different parts of the spinal cord such as the vertebral column, ligaments or the spinal disks. This typically originates from sudden trauma to the spinal cord such as fracturing, crushing or dislocating one or more vertebrae. Additional damage has been reported due to excessive bleeding, swelling, inflammation as well as other opportunistic infections. The most common reported causes of Spinal Cord Injury are:

Symptoms Associated with SCI

In general, the severity, as well as the area of injury, are the factors to be of concern in most of the cases of Spinal Cord Injury. On the basis of severity of injury, SCI is classified as:

What goes wrong in Spinal Cord Injury?

The human spinal cord is a fragile bridge connecting the brain to the other organs of the body. The spinal cord is encased in a protective covering of spinal vertebrae of the spinal column to prevent its damage from shock or injury. Our central nervous system, i.e., brain and spinal cord, is made up of millions of cells which coordinate and communicate to pass on the information from the brain to the other organs of the body via the spinal cord. This information is passed in the form of electrical signals which are then decoded by the specific organ.

Each neuron is made up of a cellular body with a long slender projection called the nerve fiber. These fibers are attached to other fibers to form a dense network of cells. In general, neurons carrying messages down the cord from the brain to other organs of the body are known as Motor Neurons. These neurons control the muscles of some of the important internal organs of the body such as heart, stomach, intestine, etc. The neurons traveling up the cord to the brain are known as Sensory Neurons, carrying sensory information from skin, joints, and muscles to control our ability to sense, touch and regularize temperature.

These neurons are insulated from the outer side by the coating of Oligodendrocytes and myelin sheath. These cells insulate the neuron to protect them from sudden damage and shock.

If any of the above types of cells are affected due to sudden damage such as shearing, laceration, stretching or shock, then the network of cells is disturbed due to which the passage of information from the brain to the spinal cord and vice versa is halted.

How Stem Cells treatment can help.

Stem cells are the mother cells that are responsible for developing an entire human body from tiny two-celled embryos. Due to their unlimited divisions and strong power to differentiate into all the cells of different lineage, the power of stem cells has been harnessed by our technology to isolate them outside the human body, concentrate in a clean environment, and implant back.

Thus stem cells treatment involves administration of concentrated cells in the targeted area, wherein they can colonize in the damaged area, adapt the properties of resident stem cells and initiate some of the lost functions that have been compromised by the disease or injury.

Thus with our standardized, broad-based and holistic approach, it is now possible to obtain noticeable improvements in SCI cases, in the symptoms as well as their functional abilities.

Continue reading here:
Spinal Cord Injury Recovery Through Stem Cell Therapy

To Read More: Spinal Cord Injury Recovery Through Stem Cell Therapy
categoriaSpinal Cord Stem Cells commentoComments Off on Spinal Cord Injury Recovery Through Stem Cell Therapy | dataMay 13th, 2020
Read All

When Will Stem Cells Heal Spinal Cord Damage?

By daniellenierenberg

They hold huge promise, but stem cell-based spinal cord treatments wont be clinically available in the near future

My three-year-old son was born with a very large spinal lipoma. He was considered quadriplegic. Through conventional physical and occupational therapies and surgery to remove some of the lipoma he has gained enough function to walk with a walker and use his arms. However, he is experiencing some regression as his nerves are dying.

I have saved the cord blood from his younger brother and sister. New research where mice are being paralyzed and then injected with stem cells looks very promising to us. The mice nerves that are sick or weak are being protected and strengthened. Our son needs his nerves protected from degeneration.

Conventional surgery is no longer an option because the nerve roots travel in and out of the lipoma and cannot be separated from the lipoma. Our only hope is to protect and strengthen what function he currently has.

My question is: How long before this type of stem cell therapy will be used on humans, more specifically children? And how do we get to be first in line? If it is 10 or 20 years away, there may be no way to save the function our son has worked so hard to gain. I havent read anything about risks or side effects. There have to be some, what are they? Also, are there other countries that are more aggressive in their use of stem cells on humans for treating paralysis resulting from spinal cord injury?

Barbara BourgeoisCentreville, Virginia, USA

There isnt an easy answer here, and Im not clear as to why function is being lost at this pointin particular, whether the lipoma is recurring. If this is the case, resolution of the lipoma is the main issue. In some instances, it is impossible to completely remove the tumor, severely limiting the potential benefits of secondary therapeutics (such as stem cells). However, on the topic of stem cells in particular, there are several issues to discuss.

First, there are many sources of stem cells, and this affects their potential clinical use. Cord blood-derived stem cells are probably the farthest away from potential clinical use for spinal cord injury at this point, because there has been less basic research done with them so far. Human embryonic and adult stem cell lines may be somewhat closer, but research on these in the laboratory has been somewhat mixedsome very promising results with regaining motor function, and some big potential concerns, such as causing tumor formation.

As a result, we are most likely still years away from testing these treatments in patients, even to establish safety. Some other kinds of cell treatments, such as ensheathing glial cells, are being tried in the clinic in China, Russia and Portugal based on previous laboratory research in the US. However, none of these overseas trials has been designed in accordance with US standards to rigorously test safety and efficacy, and it is very difficult to evaluate the patchy data coming out so far.

To sum up, as a researcher, I think stem cells hold a huge amount of promise, but we arent yet at a point where this work will be translated to the clinic in the immediate future.

Answered by Aileen J. Anderson ~ 1/22/2004

Posted on January 27th, 2004 in General SCI and Human Interest. Tagged: stem cells

Go here to see the original:
When Will Stem Cells Heal Spinal Cord Damage?

To Read More: When Will Stem Cells Heal Spinal Cord Damage?
categoriaSpinal Cord Stem Cells commentoComments Off on When Will Stem Cells Heal Spinal Cord Damage? | dataMay 13th, 2020
Read All

Precision therapy approach secures small biotech $42M haul to combat disease that inspired the Ice Bucket Challenge – Endpoints News

By daniellenierenberg

Akin to cystic fibrosis (CF), scientists understand that certain mutations contribute to the development of the fatal neurological disorder amyotrophic lateral sclerosis (ALS). And much like CF drugmaker Vertex, a small Cambridge, Massachusetts-based biotech is forging a path to engineering precision therapies to treat the disease that killed visionary physicist Stephen Hawking.

The company, christened QurAlis, now has $42 million in its coffers with three preclinical programs and 5 employees (including senior management) to combat an illness that has long flummoxed researchers, resulting in a couple of approved therapies over the course of decades, neither of which attacks the underlying cause of the rare progressive condition that attacks nerve cells located in the brain and spinal cord responsible for controlling voluntary muscles.

ALS garnered international attention when New York Yankees player Lou Gehrig abruptly retired from baseball in 1939, after being diagnosed with the disease. In 2014, ALS returned to the spotlight with the Ice Bucket Challenge, which involved people pouring ice-cold water over their heads, posting a video on social media, and donating funds for research on the condition.

QurAlis chief Kasper Roet, whose interest in ALS was piqued while he was working on his PhD at the Netherlands Institute for Neuroscience focusing on a treatment for spinal cord paralysis and moonlighting at the Netherlands Brain Bank as an ad-hoc autopsy team coordinator, saw an opportunity to combat ALS when Harvard scientists Kevin Eggan and Clifford Woolf pioneered some new stem cell technology.

Essentially, they found a way to take skin cells from a patient, turn them into stem cells, and turn those into the nerve cells that are degenerating. Thats the missing link, Roet said. So now we can finally use patients own cells to both do target discovery and develop potential therapeutics.

So Roet packed up his things and shifted base to Boston to learn more, with plans to head back to Europe to start a company. He never left. QurAlis was born in 2016, working out of a co-working space called LabCentral after winning a spot via an Amgen-sponsored innovation competition. The company was carved out of a collaboration with Eggans startup Q-State Biosciences, which developed laser technology to examine cell behavior examining how a neuron fires was imperative in the drug discovery process for ALS.

QurAlis, which counts Vertexs founding scientist Manuel Navia as an advisor, now has three preclinical programs. The furthest along is a therapy designed to target a specific potassium channel that is implicated in certain ALS patients the plan is to take that small molecule into the clinic next year, Roet said.

It has become really clear that if you understand why a specific tumor is developing you can develop very specific targeted therapies, he explained in an interview drawing a parallel between ALS and oncology. Thats exactly the same strategy that we are following for ALS. The genetics have shown that over 25 genes are causing the (ALS) mutations. Some of them work together, some of them are very dominant and work alone what we are doing is trying to get those specific proteins that are tied to very specific ALS populations, where we know that that specific target plays a very important and crucial role in the development of the disease.

In 2018, QurAlis scored seed funding from Amgen, Alexandria, and MP Healthcare Venture Management. The Series A injection was led by LS Polaris Innovation Fund, lead seed investor Mission BioCapital, INKEF Capital and the Dementia Discovery Fund, and co-led by Droia Ventures. Additional new investors include Mitsui Global Investment and Dolby Family Ventures, and existing investors Amgen Ventures, MP Healthcare Venture Management, and Sanford Biosciences also chipped in.

Roet is not sure how long these funds will last, particularly given the uncertainty of the coronavirus pandemic. But some of the capital will be used in hiring, given that the QurAlis team is comprised of a mere five people, including Roet.

Weve been very productive, he said. But we can definitely use some extra hands.

Read more:
Precision therapy approach secures small biotech $42M haul to combat disease that inspired the Ice Bucket Challenge - Endpoints News

To Read More: Precision therapy approach secures small biotech $42M haul to combat disease that inspired the Ice Bucket Challenge – Endpoints News
categoriaSpinal Cord Stem Cells commentoComments Off on Precision therapy approach secures small biotech $42M haul to combat disease that inspired the Ice Bucket Challenge – Endpoints News | dataMay 13th, 2020
Read All

Global Stem Cell Therapy Market Forecast & Opportunities, 2025 – ResearchAndMarkets.com – Business Wire

By daniellenierenberg

DUBLIN--(BUSINESS WIRE)--The "Global Stem Cell Therapy Market By Type (Allogeneic, Autologous, Syngeneic), By Source of Stem Cells (Adipose Tissue, Bone Marrow, Neural, Embryo/Cord Blood derived, iPSCs, Others), By Application, By End Users, By Region, Forecast & Opportunities, 2025" report has been added to ResearchAndMarkets.com's offering.

The Global Stem Cell Therapy Market is expected to grow at a formidable rate of around 12% during the forecast period. The industry is segmented based on type, source of stem cells, application, end-users, company and region.

The market is driven by the growing popularity and awareness pertaining to the use of stem cells for the prevention and cure of certain life threatening diseases. Additionally, increase in number of stem cell banks and growing investments by the government and private organizations for the development of stem cell preservation infrastructure is further propelling the market across the globe.

Based on type, the market can be categorized into allogeneic, autologous and syngeneic. The allogenic type segment is expected to register the highest growth during forecast period attributable to the rising commercialization of allogeneic stem cell therapy products, wider therapeutic applications of allogeneic stem cells, easy production scale-up process, growing number of clinical trials related to allogeneic stem cell therapies, among others.

Based on end-users, the market can be bifurcated into hospitals and clinics. The hospitals segment is expected to dominate the market during the forecast years. This can be accredited to the rising preference for stem cell therapies offered by hospitals proves beneficial for the business growth. Hospitals have affiliations with research laboratories and academic institutes that carry out research activities for developing stem cell therapies. On introduction and approval of any novel stem therapy, hospitals implement it immediately.

Regionally, the stem cell therapy market has been segmented into various regions namely Asia-Pacific, North America, South America, Europe, and Middle East & Africa. Among these regions, North America is expected to dominate the overall stem cell therapy market during the next five years on account of the increasing number of clinical trials for stem cell-based products and increasing public-private funding & research grants.

Major players operating in the Global Stem Cell Therapy Market include Osiris Therapeutics, Inc., MEDIPOST Co., Ltd., Anterogen Co., Ltd., Pharmicell Co., Ltd., Holostem Terapie Avanzate S.r.l., JCR Pharmaceuticals Co., Ltd., NuVasive, Inc., RTI Surgical, Inc., AlloSource, Thermo Fisher Scientific and others. The companies are developing advanced technologies and launching new services in order to stay competitive in the market.

Years considered for this report:

Objective of the Study

Key Topics Covered

1. Product Overview

2. Research Methodology

3. Executive Summary

4. Voice of Customer

5. Global Stem Cell Therapy Market Outlook

5.1. Market Size & Forecast

5.1.1. By Value

5.2. Market Share & Forecast

5.2.1. By Type (Allogeneic, Autologous, Syngeneic)

5.2.2. By Source of Stem Cells (Adipose Tissue, Bone Marrow, Neural, Embryo/Cord Blood Derived, iPSCs, Others)

5.2.3. By Application (Musculoskeletal, Wound & Injury, Cardiovascular Disease (CVD), Surgery, Acute Graft-Versus-Host Disease, Drug Discovery & Development, Others)

5.2.4. By End Users (Hospitals v/s Clinics)

5.2.5. By Company (2019)

5.2.6. By Region

5.3. Product Market Map

6. Asia-Pacific Stem Cell Therapy Market Outlook

7. Europe Stem Cell Therapy Market Outlook

8. North America Stem Cell Therapy Market Outlook

9. South America Stem Cell Therapy Market Outlook

10. Middle East and Africa Stem Cell Therapy Market Outlook

11. Market Dynamics

11.1. Drivers

11.2. Challenges

12. Market Trends & Developments

13. Competitive Landscape

13.1. Osiris Therapeutics, Inc.

13.2. MEDIPOST Co. Ltd.

13.3. Anterogen Co. Ltd.

13.4. Pharmicell Co. Ltd.

13.5. Holostem Terapie Avanzate S.r.l.

13.6. JCR Pharmaceuticals Co. Ltd.

13.7. NuVasive, Inc.

13.8. RTI Surgical, Inc.

13.9. AlloSource

13.10. Thermo Fisher Scientific

14. Strategic Recommendations

For more information about this report visit https://www.researchandmarkets.com/r/hmawq6

See original here:
Global Stem Cell Therapy Market Forecast & Opportunities, 2025 - ResearchAndMarkets.com - Business Wire

To Read More: Global Stem Cell Therapy Market Forecast & Opportunities, 2025 – ResearchAndMarkets.com – Business Wire
categoriaBone Marrow Stem Cells commentoComments Off on Global Stem Cell Therapy Market Forecast & Opportunities, 2025 – ResearchAndMarkets.com – Business Wire | dataMay 13th, 2020
Read All

Mum’s brutal stem cell treatment has ‘all been worth it’ as she enjoys time with family – Grimsby Live

By daniellenierenberg

A Scunthorpe mum who underwent 'brutal' stem cell treatment says the hardest part was not being able to see her daughters.

Joanne While has recently passed the six month anniversary of the treatment to wipe out and then regrow her immune system.

The mum-of-three was diagnosed with Multiple Sclerosis (MS) at the age of 31, and wasn't eligible for trial treatments in the UK.

The HSCTtreatment in Mexico saw her undergo chemotherapy and then have stem cells transplanted in the hopes of stopping the damage that the MS was causing. Some MS patients have also seen their symptoms be reversed from this.

"It was a very harsh, brutal treatment. I had to be kept in a special apartment where I protected from all germs. There was a lot of sickness and just getting out of bed some days was difficult," Joanne said.

"The hardest part was being away from my family. My ex-partner was very kind in taking a months unpaid leave to come to Mexico and help me through the treatment.

"At the end of the day, all of the treatment has been worth it.

"I had a brain MRI scan two months ago which showed that the MS lesions hadnt grown since last time. My body is still recovering, so time will tell exactly how good the news is."

The HSCT (haematopoietic stem cell transplantation) treatment cost the family 45,000 including flights and visas. They launched an online fundraising page last year to help cover the costs.

With her weak immune system still being rebuilt, Joanne has been shielding since before the coronavirus outbreak began.

Her family have adopted extremely strict hygiene measures at the Scunthorpe home to keep her healthy during this critical time.

HSCT is a chemotherapy-based medical procedure that wipes out the immune system and reboots it using a patient's own stem cells, which are harvested from their blood or bone marrow,

The aim is to reset the immune system to stop it attacking the rest of the body, therefore halting the progression of the MS.

It is the only medical procedure currently available that has halted the progression of the majority of patients undertaking it.

HSCT is currently available only on a trial basis in the UK, and only for individuals who have been unsuccessful with the range ofdisease modifying therapies. Each time it fails, irreparable damage is being done and the disease continues to progress.

"Before the outbreak, it had just gotten to the point where I was able to venture out for a coffee, but of course all of that has stopped now," Joanne said.

"I had to pull my daughters out of school early to minimise the risk of them bringing the virus home. Now we regularly sanitise the house and change clothes whenever we have to enter or leave in order to keep it as clean as possible.

"My eldest daughter, who is 24, has been wonderful as my carer. She has stopped work to prevent her from catching any infections.

"Im often tired and need a three hour nap in the afternoon, which can be difficult with a five-year-old in the house. Its been a balancing act, but Im so grateful to everyone who helped me during or since the treatment.

"Shielding can be frustrating, but its all about your mindset when you look at it. Its not that I cant go outside I get to be at home in my favourite place with my daughters."

Due to her compromised immune system, Joanne has had to start her vaccinations again and has just been given those that are usually given to babies.

Tests have also shown that her white blood count has recently decreased to the point it was in Mexico, although Joanne has hopeful it will recover.

Subscribe to our newsletter: Get the top local stories delivered straight to your email. Just scroll to the top of this page and below the first picture or video is a box marked 'Sign up to FREE email alerts from GrimsbyLive'.

Contact the reporter who wrote this story by Email

Follow ScunthorpeLive on Facebook - Like our Facebook page to get the latest news in your feed and join in the lively discussions in the comments. Click here to give it a like or message us with a comment or story

Follow us on Twitter

Follow us on Instagram - On our Instagram page we like to feature great pictures from our area - and if you tag us in your posts, we could repost your picture on our page! Click here to follow us on Instagram

HSCT can initially cause mobility issues and stiffness in muscles, which Joanne is having physio to manage.

She is documenting her recovery on her Facebook page 'Jo's HSCT Journey'.

More:
Mum's brutal stem cell treatment has 'all been worth it' as she enjoys time with family - Grimsby Live

To Read More: Mum’s brutal stem cell treatment has ‘all been worth it’ as she enjoys time with family – Grimsby Live
categoriaBone Marrow Stem Cells commentoComments Off on Mum’s brutal stem cell treatment has ‘all been worth it’ as she enjoys time with family – Grimsby Live | dataMay 13th, 2020
Read All

COVID-19 Impact on STEM CELL THERAPY MARKET 2020 TO 2027-EXPANDING WORLDWIDE WITH TOP PLAYERS FUTURE BUSINESS SCOPE AND INVESTMENT ANALYSIS REPORT -…

By daniellenierenberg

The Covid-19 (coronavirus) pandemic is impacting society and the overall economy across the world. The impact of this pandemic is growing day by day as well as affecting the supply chain. The COVID-19 crisis is creating uncertainty in the stock market, massive slowing of supply chain, falling business confidence, and increasing panic among the customer segments. The overall effect of the pandemic is impacting the production process of several industries including Life science Industry, and many more. Trade barriers are further restraining the demand- supply outlook. As government of different regions have already announced total lockdown and temporarily shutdown of industries, the overall production process being adversely affected; thus, hinder the overall Stem Cell Therapy market globally. This report on Stem Cell Therapy market provides the analysis on impact on Covid-19 on various business segments and country markets. The report also showcase market trends and forecast to 2027, factoring the impact of Covid -19 Situation.

To get sample Copy of the report, along with the TOC, Statistics, and Tables please visit @https://www.theinsightpartners.com/sample/TIPHE100000991/

Stem cell therapy is a technique which uses stem cells for the treatment of various disorders. Stem cell therapy is capable of curing broad spectrum of disorders ranging from simple to life threatening. These stem cells are obtained from different sources, such as, adipose tissue, bone marrow, embryonic stem cell and cord blood among others. Stem cell therapy is enables to treat more than 70 disorders, including degenerative as well as neuromuscular disorders. The ability of a stem cell to renew itself helps in replacing the damaged areas in the human body.

MARKET DYNAMICSIncrease in the number of stem cell banking facilities and rising awareness on the benefits of stem cell for curing various disorders are expected to drive the market during the forecast period. Rise in number of regulations to promote stem cell therapy and increase in number of funds for research in developing countries are expected to offer growth opportunities to the market during the coming years.

Key Players

The research provides answers to the following key questions:

The study conducts SWOT analysis to evaluate strengths and weaknesses of the key players in the Stem Cell Therapy market. Further, the report conducts an intricate examination of drivers and restraints operating in the market. The report also evaluates the trends observed in the parent market, along with the macro-economic indicators, prevailing factors, and market appeal according to different segments. The report also predicts the influence of different industry aspects on the Stem Cell Therapy market segments and regions.

Our reports will help clients solve the following issues:

Insecurity about the future:

Our research and insights help our clients anticipate upcoming revenue compartments and growth ranges. This will help our clients invest or divest their assets.

Understanding market opinions:

It is extremely vital to have an impartial understanding of market opinions for a strategy. Our insights provide a keen view on the market sentiment. We keep this reconnaissance by engaging with Key Opinion Leaders of a value chain of each industry we track.

Understanding the most reliable investment centers:

Our research ranks investment centers of market by considering their future demands, returns, and profit margins. Our clients can focus on most prominent investment centers by procuring our market research.

Evaluating potential business partners:

Our research and insights help our clients identify compatible business partners.

Interested in purchasing this Report? Click here @https://www.theinsightpartners.com/buy/TIPHE100000991/

Stem Cell Therapy Market Segmented by Region/Country: North America, Europe, Asia Pacific, Middle East & Africa, and Central & South America

About Us:

The Insight Partnersis a one stop industry research provider of actionable intelligence. We help our clients in getting solutions to their research requirements through our syndicated and consulting research services. We are committed to provide highest quality research and consulting services to our customers. We help our clients understand the key market trends, identify opportunities, and make informed decisions with our market research offerings at an affordable cost.

We understand syndicated reports may not meet precise research requirements of all our clients. We offer our clients multiple ways to customize research as per their specific needs and budget

Contact Us:

The Insight Partners,

Phone: +1-646-491-9876

Email:[emailprotected]

Originally posted here:
COVID-19 Impact on STEM CELL THERAPY MARKET 2020 TO 2027-EXPANDING WORLDWIDE WITH TOP PLAYERS FUTURE BUSINESS SCOPE AND INVESTMENT ANALYSIS REPORT -...

To Read More: COVID-19 Impact on STEM CELL THERAPY MARKET 2020 TO 2027-EXPANDING WORLDWIDE WITH TOP PLAYERS FUTURE BUSINESS SCOPE AND INVESTMENT ANALYSIS REPORT -…
categoriaBone Marrow Stem Cells commentoComments Off on COVID-19 Impact on STEM CELL THERAPY MARKET 2020 TO 2027-EXPANDING WORLDWIDE WITH TOP PLAYERS FUTURE BUSINESS SCOPE AND INVESTMENT ANALYSIS REPORT -… | dataMay 13th, 2020
Read All

Augustinus Bader Launches The Hand Treatment in Response to COVID-19 Pandemic Exclusive Details – Allure

By daniellenierenberg

As a skin-care brand, Augustinus Bader prides itself on releasing products not out of frivolity or trying to up its bottom line, but out of necessity. As Charles Rosier, cofounder and CEO of Augustinus Bader, puts it: "We want to only add product when we feel we are relevant," he tells Allure via phone from Paris, France, where he is currently self-isolating. "Our latest initiative was a reaction to something that we felt was needed by the consumer by everyone."

The brand's newest offering, The Hand Treatment, is meant to be just that. As it stands, given the current COVID-19 situation, we are all washing our hands (or should be) much more than we might otherwise normally do so. However, as you've also likely experienced dry skin and flaking cuticles, just as is the case with everywhere else on the body, overwashing the skin on our hands can bring on a host of issues all their own. Even if you forgo washing for an alcohol-based hand sanitizer, the effects can be just as profound if not more so.

"We are seeing more and more hand dermatitis," explains New York City-based board-certified dermatologist Dhaval Bhanusali, who is not affiliated with Augustinus Bader. "By overwashing, we strip the good oils from our skin and leave it dry and susceptible to breakdown."

Our skin's moisture barrier is responsible for keeping the good things in (like hydration and natural oils) and the bad things out (like allergens and bacteria). When the lipid barrier on the hands (or anywhere on the body) becomes too dried out, it can literally start to break down and lose functionality. Simply put, in order for our skin to function and remain healthy, its barrier must be intact. However, we're not saying that you should stop washing your hands just that it's equally important to replenish hydration after doing so.

That's where Augustinus Bader's new Hand Treatment comes into play. It's formulated with a blend of ultra-nourishing ingredients, including vitamin E, glycerin, and shea butter, as well as honey and white peony extract both of which also have natural antibacterial properties. However, as with all Bader products, the key ingredient is something called TFC8, which stands for its proprietary Trigger Factor Complex-8.

For those unfamiliar with the brand, TFC8 is not one singular ingredient but rather, a proprietary blend of "natural amino acids, high-grade vitamins, and synthesized molecules naturally found in skin," cosmetic chemist Ginger King (who is not affiliated with the brand) previously told Allure. In a nutshell, TFC8 provides an ideal environment in which our skin's stem cells can naturally regenerate it acts as a sort of guide, helping to set the skin's inherent repair system back on track.

"The TCF8 technology focuses on intrinsic repair processes based in intrinsic repair cells, which we call stem cells," Bader explains. "We wanted to develop a hand cream with our technology, which helps to protect and care for the skin."

The results of using TFC8 topically, according to Augustinus Bader himself, a German stem-cell scientist, and his many devotees (our own editor in chief among them), read like a laundry list of skin-care goals: Increased hydration, a strengthened skin barrier, faded fine lines, and dark spots. The proprietary ingredient is, of course, also formulated into the brand's other offerings: two creams for the face, one for the body, and most recently, a makeup primer collaboration with Victoria Beckham Beauty.

Follow this link:
Augustinus Bader Launches The Hand Treatment in Response to COVID-19 Pandemic Exclusive Details - Allure

To Read More: Augustinus Bader Launches The Hand Treatment in Response to COVID-19 Pandemic Exclusive Details – Allure
categoriaSkin Stem Cells commentoComments Off on Augustinus Bader Launches The Hand Treatment in Response to COVID-19 Pandemic Exclusive Details – Allure | dataMay 13th, 2020
Read All

Page 122«..1020..121122123124..130140..»


Copyright :: 2025