Page 138«..1020..137138139140..150160..»

Graft-Versus-Host Disease (GVHD) Market Insights, Future Trends, On-going Demand, Opportunities, Segmentation, and Forecast till 2027 – WhaTech…

By daniellenierenberg

The graft-versus-host disease (GVHD) market is segmented on the basis of product type, treatment type, and end user. Based on product type the market is segmented as corticosteroids, ATG therapies, IL2R (CD25) inhibitors, TNF inhibitors, Calcineurin inhibitors, mTOR inhibitors, SOT therapies, anti-neoplastic therapies, stem cell treatments, extracorporeal photophoresis and other biologics. On the basis of treatment type the market is segmented into prophylaxis GVHD, chronic GVHD, acute GVHD. The end user segment is classified into hospital pharmacies, retail pharmacies, and online pharmacies.

An off-the-shelf report onGraft-Versus-Host Disease (GVHD) Marketwhich has been compiled after an in-depth analysis of the market trends prevailing across five geographies (North America, Europe, Asia-Pacific, Middle-East and Africa, and South America). Various segments of the market such as type/components/ application/industry verticals/ end-users are analyzed with robust research methodology which includes three step process starting with extensive secondary research to gather data from company profiles, global/regional associations, trade journals, technical white papers, paid databases.

followed by primary research (interviews) with industry experts/KOLs to gain their insights and views on current scenarios and future scope of the market as well as validating the secondary information, further internal statistical model is used to estimate the market size and forecasts till 2027.

Graft-versus-host disease (GVHD) is a medical condition which occurs after transplant surgeries where the immune cells from the donor attack on the recipients organ tissues. This condition is a common side effect that is observed after an allogeneic bone marrow transplant (stem cell transplant).

The symptoms of the disease can be from mild to severe and life-threatening and often causes diseases like jaundice, skin inflammation and others.

Get sample PDF copy at:www.theinsightpartners.com/sample/dium=10271

The key players influencing the market are:

This report contains:

Graft-Versus-Host Disease (GVHD) Market- Global Analysis to 2027 is an expert compiled study which provides a holistic view of the market covering current trends and future scope with respect to product/service, the report also covers competitive analysis to understand the presence of key vendors in the companies by analyzing their product/services, key financial facts, details SWOT analysis and key development in last three years. Further chapter such as industry landscape and competitive landscape provides the reader with recent company level insights covering mergers and acquisitions, joint ventures, collaborations, new product developments/strategies taking place across the ecosystem.

The chapters also evaluate the key vendors by mapping all the relevant products and services to exhibit the ranking/ position of top 5 key vendors.

Graft-Versus-Host Disease (GVHD) Market is a combination of qualitative as well as quantitative analysis which can be broken down into 40% and 60% respectively. Market estimation and forecasts are presented in the report for the overall global market from 2018 2027, considering 2018 as the base year and 2018 2027 forecast period.

Global estimation is further broken down by segments and geographies such as North America, Europe, Asia-Pacific, Middle East & Africa and South America covering major 16 countries across the mentioned regions. The qualitative contents for geographical analysis will cover market trends in each region and country which includes highlights of the key players operating in the respective region/country, PEST analysis of each region which includes political, economic, social and technological factors influencing the growth of the market.

Key Benefits

AccessThis Report @www.theinsightpartners.com/buy/TIPdium=10271

This email address is being protected from spambots. You need JavaScript enabled to view it.

Continue reading here:
Graft-Versus-Host Disease (GVHD) Market Insights, Future Trends, On-going Demand, Opportunities, Segmentation, and Forecast till 2027 - WhaTech...

To Read More: Graft-Versus-Host Disease (GVHD) Market Insights, Future Trends, On-going Demand, Opportunities, Segmentation, and Forecast till 2027 – WhaTech…
categoriaSkin Stem Cells commentoComments Off on Graft-Versus-Host Disease (GVHD) Market Insights, Future Trends, On-going Demand, Opportunities, Segmentation, and Forecast till 2027 – WhaTech… | dataMarch 13th, 2020
Read All

HIV patient appears to be cured after stem cell treatment – New York Post

By daniellenierenberg

A 40-year-old HIV patient has been declared cured after a promising treatment has left him with no active virus. The man, Adam Castillejo, was the subject of extensive research in early 2019 after doctors failed to find HIV in his body over an 18-month period after previously being diagnosed in 2003.

Castillejo, known by the nickname London Patient lived with the disease for many years, taking medicine to manage it since 2012. That same year he was diagnosed with Hodgkins Lymphoma and later endured a bone marrow transplant. That operation may have ultimately cured him of HIV and appears to have made him only the second person to ever be cured of the disease that causes AIDS.

As ScienceAlert reports, the bone marrow transplant that doctors performed on Castillejo used cells from a donor with a very special genetic quirk. The cells are thought to work against HIV in the body, but there was no guarantee that the transplant would provide any concrete benefits beyond treating the cancer.

However, it appears as though the decision to treat Castillejo with the unique stem cells worked in more ways than one and last year doctors announced they couldnt find the virus in his body after 18 months. At the time, they were hesitant to declare the London Patient cured, but after a new round of testing returned the same results, they are more confident that the active form of the virus has indeed been defeated.

This is a unique position to be in, a unique and very humbling position, Castillejo told the New York Times. I want to be an ambassador of hope.

While this sounds like incredible news and for Castillejo, it certainly is the treatment is not an option for everyone. With cancer limiting their options, doctors used the stem cell transplant as a last resort to keep him alive. Its a serious operation and one that was only performed because Castillejos condition was so dire.

Castillejo and the other HIV patient who had similar results, known as the Berlin Patient, may be uniquely fortunate. The doctors note that there are others who have had the same transplant performed but did not improve as rapidly as the others. There are obviously many factors at work here and as exciting as it is to see a second person cured of this terrible disease, theres a lot more work to be done before we can say HIV has been truly beaten.

See the original post:
HIV patient appears to be cured after stem cell treatment - New York Post

To Read More: HIV patient appears to be cured after stem cell treatment – New York Post
categoriaBone Marrow Stem Cells commentoComments Off on HIV patient appears to be cured after stem cell treatment – New York Post | dataMarch 13th, 2020
Read All

Cancer and COVID-19: What you should know – Newswise

By daniellenierenberg

Newswise The number of COVID-19 cases are expected to continue to grow across the globe in the upcoming months and that means more people will have to take extra measures to help protect themselves and reduce the transmission of the disease. This is particularly important for people with cancer, whose immune systems have often been weakened by their cancer treatments.

But does that mean people with cancer should stockpile hand sanitizer and face masks?

Oncologists Gary Schiller, MD, and Joshua Sasine, MD, PhD, help explain what cancer patients need to know about COVID-19.

Dr. Schiller is a professor of hematology/oncology at the David Geffen School of Medicine at UCLA and director of the hematological malignancies/stem cell transplantation unit, and Dr. Sasine is an assistant professor of medicine and director of the CAR T cell program at the UCLA Jonsson Comprehensive Cancer Center.

Which cancer patients should be concerned about coronavirus?

Sasine: The patients most at risk are those with bone marrow cancers or who have had a bone marrow transplant within the last 12 months. If patients have cancer and are on active chemotherapy, they are also at a higher risk than the general population. This is especially true if they are over the age of 60.

Schiller: Bone marrow transplant recipients who received bone marrow from other people are the most immunocompromised patients we take care of and the group at greatest risk for sustaining a life-threatening complication from an infection.

What does it mean to have a compromised immune system?

Sasine: The body's white blood cells normally clear out infections, like bacteria, viruses, and fungi. When the cells have either decreased in number, function, or both, the immune system is compromised. This can be due to having cancer, HIV, getting chemotherapy, and many other situations. This means that a person is more likely than others to contract an infection and the infection is likely to do more harm than average. It might also last longer.

Are there precautions cancer patients should be taking?

Schiller: Patients who are immunocompromised need to be wary of going into crowds, should maintain good hand washing techniques and should stay away from individuals who have a cough.

Sasine: For most events, canceling plans is ideal. However, sometimes one must weigh the risks and benefits. If there is a very important event (son or daughter is getting married, etc.) this might be a risk worth taking.

Should cancer patients delay travel plans?

Schiller: For patients with malignancies of the blood and bone marrow, and patients who had bone marrow transplants, I absolutely tell them to delay travel. Dont travel right now.

Is it safe for patients to come to the hospital and clinics for treatment?

Schiller: Yes. Weve been working to develop better isolation procedures and policies to isolate the potentially sick patients from our immunocompromised patients. For example, bringing the potentially sick patients in through a different entrance to isolate them in the waiting room and put them in an isolation room for evaluation.

Should patients be wearing a mask or stockpile hand sanitizer?

Schiller: A mask is not sufficient protection and were concerned that if you wear a mask, especially one that is insufficiently protective, then you have a false sense of security and you may put yourself in a position that might compromise your safety. In regards to hand sanitizer, I would like my patients to stockpile on soap and water. That would be more effective than using hand sanitizer repeatedly.

Read more here:
Cancer and COVID-19: What you should know - Newswise

To Read More: Cancer and COVID-19: What you should know – Newswise
categoriaBone Marrow Stem Cells commentoComments Off on Cancer and COVID-19: What you should know – Newswise | dataMarch 13th, 2020
Read All

A Second Person Has Been Cured of HIV – Nerdist

By daniellenierenberg

Although most of the news from the world of health and medicine has been quite bleak lately, there are still major strides being made in the sector in an effort to combat the worst illnesses that plague humankind. One such stride was just announced, and its certainly worth celebrating: A second person has been cured of HIV.

In a study published in the medical journal, The Lancet, which comes via Medical News Daily, researchers in London say theyve been able to cure a patient of HIV; meaning the patient tested negative for HIV for an extended period of time (30 months as of March, 2020) despite the lack of antiretroviral therapy.

The person whos been cured, Adam Castillejo, was formerly known only as the London patient in order to protect his identity. But Castillejo, who lives in London, came forward recently, and said that he aims to be an ambassador of hope.

The first person to be cured of HIV, Timothy Ray Brown, an American known originally as the Berlin patient, revealed his identity in 2010, saying that I wanted to do what I could to make [a cure] possible. My first step was releasing my name and image to the public. Brown lived and was treated in Berlin. Incidentally, he is technically the second Berlin patient because the results from treatment of the first one are debatable.

AIDS Policy Project with Timothy Ray Brown (third from left with sunglasses). Griffin Boyce.

Castillejo, as well as Brown, were cured of HIV not by antiretroviral medications, which are often able to drastically mitigate the effects, and transmission rate of, HIV, but rather by stem cell transplants from donor bone marrow. Both Castillejo and Brown hadand may still have, that is unclearcancer along with HIV, and were treated with the stem cell transplants primarily to tackle the former disease. (It seems in Castillejos case doctors and researchers were hoping to cure both simultaneously.)

Both Brown and Castillejo underwent a procedure known as a Hematopoietic stem cell transplantation (or HSCT), which involves injecting bone marrow stem cells from a donor, whos often times a parent or sibling, into the recipients bloodstream. Castillejos HSCT treatment was different from Browns, as well as many others, because it was performed with cells that expressed the CCR5 gene.

A video from the MD Anderson Cancer Center that gives a brief outline of how bone marrow stem cell transplants work.

In Castillejos case, stem cells with genomes that express the CCR5 gene were selected because of the fact that it allows for the production of the CCR5 protein: a protein that makes people far more resistant to HIV-1, which accounts for the vast majority of global HIV infections.

While Castillejo received stem cells that did express the CCR5 gene, Brown did notat least according to the study in The Lancet. In fact, according to a 2017 article in New Scientist (which says that Brown received cells with a mutated CCR5 gene, rather than an unexpressed CCR5 gene), some experts believe the curing of Browns HIV was actually due to a potential side effect of his procedure, known as graft-versus-host disease. According to New Scientist, these experts believe that the donor cells attacked Browns native, HIV-infected immune cells, subsequently killing off the virus.

In Castillejos case, on the other hand, it seems there was no graft-versus-host issue that could account for his diminishment of HIV infection levels beyond whats expected to be detectable. Instead, the authors of the study say that one of the implications here is that the Long-term remission of HIV-1 can be achieved utilizing these kinds of cells. The authors also say this method does not require total body irradiation, which would usually be required in cases like these to weaken a recipients immune system in order to allow them to accept donor cells.

An HIV-infected T cell. NIAID

Unfortunately, it seems the treatment that cured Castillejo of HIV is a nonstarter when it comes to mass deployment. There are fatal side effects associated with HSCT, with host-versus-graft chief among them, and doctors say that it should only be performed when there are no other options left.

Prof. Ravindra Kumar Gupta from the University of Cambridge in the U.K., the lead author of the study, told Medical News Daily that [Its] important to note that this curative treatment is high risk and only used as a last resort for patients with HIV who also have life threatening hematological [blood] malignancies.

But Gupta and the other authors of the study still appear to be optimistic that this stands as a proof-of-concept for the idea of using CCR5 gene editing to cure HIV on a larger scale. They warn in their study, however, that several barriers, including the need for increased gene editing efficiency and a lack of robust safety data, still stand in the way of something that could be used as a scalable strategy for tackling HIV.

What do you think about this method of treating HIV? Do you think gene editing will play a big role in curing HIV, or do you think there are other, more promising treatments worth pursuing instead? Let us know your thoughts in the comments.

Feature image: C. Goldsmith / Eliot Lash

Read this article:
A Second Person Has Been Cured of HIV - Nerdist

To Read More: A Second Person Has Been Cured of HIV – Nerdist
categoriaBone Marrow Stem Cells commentoComments Off on A Second Person Has Been Cured of HIV – Nerdist | dataMarch 13th, 2020
Read All

Mesoblast To Evaluate Anti-Inflammatory Cell Therapy Remestemcel-L For Treatment Of COVID-19 Lung Disease – BioSpace

By daniellenierenberg

NEW YORK, March 10, 2020 (GLOBE NEWSWIRE) -- Mesoblast Limited(Nasdaq: MESO; ASX:MSB) today announced that it plans to evaluate its allogeneic mesenchymal stem cell (MSC) product candidate remestemcel-L in patients with acute respiratory distress syndrome (ARDS) caused by coronavirus (COVID-19) in the United States, Australia, China and Europe. The Company is in active discussions with various government and regulatory authorities, medical institutions and pharmaceutical companies to implement these activities.

Mortality in COVID-19 infected patients with the inflammatory lung condition acute respiratory distress syndrome (ARDS) is reported to approach 50%, and is associated with older age, co-morbidities such as diabetes, higher disease severity, and elevated markers of inflammation.1 Current therapeutic interventions do not appear to be improving in-hospital survival.1

Remestemcel-L has potential for use in the treatment of ARDS, which is the principal cause of death in COVID-19 infection.1 This is supported by recently published results from an investigator-initiated clinical study conducted in China which reported that allogeneic MSCs cured or significantly improved functional outcomes in all seven treated patients with severe COVID-19 pneumonia.2

Additionally, in post-hoc analyses of a 60-patient randomized controlled study in chronic obstructive pulmonary disease (COPD), remestemcel-L infusions were well tolerated, significantly reduced inflammatory biomarkers, and significantly improved pulmonary function in those patients with elevated inflammatory biomarkers. Since the same inflammatory biomarkers are also elevated in COVID-19, these data suggest that remestemcel-L could be useful in the treatment of patients with ARDS due to COVID-19.The COPD study results have been submitted for presentation at an international conference, with full results to be submitted for publication shortly.

Remestemcel-L is being studied in numerous clinical trials across several inflammatory conditions, including in elderly patients with lung disease and adults and children with steroid-refractory acute graft versus host disease (aGVHD).3-5 This product candidate is currently being reviewed by the United States Food and Drug Administration (FDA) for potential approval in the treatment of children with steroid-refractory aGVHD.

Remestemcel-L Remestemcel-L is being developed for rare pediatric and adult inflammatory conditions. It is an investigational therapy comprising culture-expanded MSCs derived from the bone marrow of an unrelated donor and is administered in a series of intravenous infusions. Remestemcel-L is believed to have immunomodulatory properties to counteract the inflammatory processes that are implicated in several diseases by down-regulating the production of pro-inflammatory cytokines, increasing production of anti-inflammatory cytokines, and enabling recruitment of naturally occurring anti-inflammatory cells to involved tissues.

Intellectual PropertyMesoblasts intellectual property (IP) portfolio encompasses over 1,000 patents or patent applications in all major markets and includes the use of MSCs obtained from any source for patients with acute respiratory distress syndrome (ARDS),and for inflammatory lung disease due to coronavirus (COVID-19), influenza and other viruses. Additionally, these patents cover Mesoblasts manufacturing processes that yield industrial-scale cellular medicines.This IP position is expected to provide Mesoblast with substantial commercial advantages as it develops its product candidates for these conditions.

References1. Liu Y et al. Clinical features and progression of acute respiratory distress syndrome in coronavirus disease 2019. Medrxiv 2020; https://doi.org/10.1101/2020.02.17.200241662. Leng Z, et al. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia[J]. Aging and Disease, 10.14336/AD.2020.02283. Kurtzberg J et al. Annual Meeting of the American Society for Transplantation Cell Therapy, 2020.4. Chaudhury S et al. A Phase 3 Single-Arm, Prospective Study of Remestemcel-L, Ex-Vivo Cultured Adult Human Mesenchymal Stromal Cells, for the Treatment of Steroid Refractory Acute GVHD in Pediatric Patients. Biol Blood Marrow Transplant 2018; 24:S119S290.5. Kurtzberg J et al. Allogeneic human mesenchymal stem cell therapy (remestemcel-L, Prochymal) as a rescue agent for severe refractory acute graft-versus-host disease in pediatric patients. Biol Blood Marrow Transplant. 2014 Feb;20(2):229-35.

About MesoblastMesoblast Limited (Nasdaq: MESO; ASX: MSB) is a world leader in developing allogeneic (off-the-shelf) cellular medicines. The Company has leveraged its proprietary mesenchymal lineage cell therapy technology platform to establish a broad portfolio of commercial products and late-stage product candidates. Mesoblasts proprietary manufacturing processes yield industrial-scale, cryopreserved, off-the-shelf, cellular medicines. These cell therapies, with defined pharmaceutical release criteria, are planned to be readily available to patients worldwide.

Mesoblast has filed a Biologics License Application to the United States Food and Drug Administration (FDA) to seek approval of its product candidate RYONCIL (remestemcel-L) for steroid-refractory acute graft versus host disease (acute GvHD). Remestemcel-L is also being developed for other rare diseases. Mesoblast is completing Phase 3 trials for its product candidates for advanced heart failure and chronic low back pain. If approved, RYONCIL is expected to be launched in the United States in 2020 for pediatric steroid-refractory acute GVHD. Two products have been commercialized in Japan and Europe by Mesoblasts licensees, and the Company has established commercial partnerships in Europe and China for certain Phase 3 assets.

Mesoblast has locations in Australia, the United States and Singapore and is listed on the Australian Securities Exchange (MSB) and on the Nasdaq (MESO). For more information, please see http://www.mesoblast.com, LinkedIn: Mesoblast Limited and Twitter: @Mesoblast

Forward-Looking StatementsThis announcement includes forward-looking statements that relate to future events or our future financial performance and involve known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to differ materially from any future results, levels of activity, performance or achievements expressed or implied by these forward-looking statements. We make such forward-looking statements pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995 and other federal securities laws. Forward-looking statements should not be read as a guarantee of future performance or results, and actual results may differ from the results anticipated in these forward-looking statements, and the differences may be material and adverse. Forward- looking statements include, but are not limited to, statements about: the initiation, timing, progress and results of Mesoblasts preclinical and clinical studies, and Mesoblasts research and development programs; Mesoblasts ability to advance product candidates into, enroll and successfully complete, clinical studies, including multi-national clinical trials; Mesoblasts ability to advance its manufacturing capabilities; the timing or likelihood of regulatory filings and approvals, manufacturing activities and product marketing activities, if any; the commercialization of Mesoblasts product candidates, if approved; regulatory or public perceptions and market acceptance surrounding the use of stem-cell based therapies; the potential for Mesoblasts product candidates, if any are approved, to be withdrawn from the market due to patient adverse events or deaths; the potential benefits of strategic collaboration agreements and Mesoblasts ability to enter into and maintain established strategic collaborations; Mesoblasts ability to establish and maintain intellectual property on its product candidates and Mesoblasts ability to successfully defend these in cases of alleged infringement; the scope of protection Mesoblast is able to establish and maintain for intellectual property rights covering its product candidates and technology; estimates of Mesoblasts expenses, future revenues, capital requirements and its needs for additional financing; Mesoblasts financial performance; developments relating to Mesoblasts competitors and industry; and the pricing and reimbursement of Mesoblasts product candidates, if approved. You should read this press release together with our risk factors, in our most recently filed reports with the SEC or on our website. Uncertainties and risks that may cause Mesoblasts actual results, performance or achievements to be materially different from those which may be expressed or implied by such statements, and accordingly, you should not place undue reliance on these forward-looking statements. We do not undertake any obligations to publicly update or revise any forward-looking statements, whether as a result of new information, future developments or otherwise.

Release authorized by the Chief Executive.

For further information, please contact:

Read the original post:
Mesoblast To Evaluate Anti-Inflammatory Cell Therapy Remestemcel-L For Treatment Of COVID-19 Lung Disease - BioSpace

To Read More: Mesoblast To Evaluate Anti-Inflammatory Cell Therapy Remestemcel-L For Treatment Of COVID-19 Lung Disease – BioSpace
categoriaBone Marrow Stem Cells commentoComments Off on Mesoblast To Evaluate Anti-Inflammatory Cell Therapy Remestemcel-L For Treatment Of COVID-19 Lung Disease – BioSpace | dataMarch 13th, 2020
Read All

Using Single Cells To Get the Whole Picture of the Epigenome – Technology Networks

By daniellenierenberg

Genes may determine what characteristics are passed down from parent to offspring, but each cell expresses these genes differently based on external epigenetic modifications. Epigenetics dont alter the gene sequence (genotype), but they do influence cell behavior and function (phenotype). The study of epigenetics helps us understand how phenotypic changes lead to disease, stem cell differentiation, and essentially, what drives the fate of every cell in the human body.The epigenome is not consistent between cells, or even between cells of the same type. Individual modifications come and go throughout a cells lifetime. Therefore, scientists are faced with the steep challenge as they try to decipher the role of epigenetics in disease and development.[i] Understanding intercellular heterogeneity is key here. The epigenome must be examined at single-cell resolution.

Now, with the advancement of single-cell sequencing methods like the single-cell assay for transposase accessible chromatin (scATAC-seq), researchers have access to sophisticated techniques to map large cell populations, one cell at a time. The resulting epigenomic information provides unprecedented insight into the different cell types that come together to form organs and organ systems, as well as pathogenic modifications associated with disease.

Every single cell has unique epigenomic instructions that guide how it expresses its genes and these instructions are subject to change. A map locating epigenetic modifications in the genome would help scientists understand how epigenetics drives cellular differentiation. But until recently, epigenetic assays mainly focused on select regions of DNA or gave bulk results across an entire sample of cells.[ii] These assays were not designed to detect epigenetic patterns in individual cells.

Single-cell tools like scATAC-seq help us get a grasp on intracellular heterogeneity, differentiate between cell populations and map the role of epigenetics in the larger context of an organism. By building a collection of scATAC-seq data, scientists have begun generating a cell atlas to provide insight into the role of epigenetics during the intricate biological processes that occur throughout the human lifetime.

During ATAC-seq, a hyperactive transposase mutant, Tn5, binds to open chromatin (euchromatin) regions. Wherever Tn5 binds, it cleaves the DNA and attaches sequencing adapters. Then, after PCR amplification, ATAC fragments are sequenced to identify open chromatin regions. ATAC results indicate where nucleosomes are typically positioned in the cell sample and which regions of the genome are open for transcription factors to bind. As such, scientists use ATAC-Seq as a first-pass screening approach to identify changes in chromatin accessibility between samples.

ATAC-seq has many practical applications, but it cant account for the cell-to-cell variability thats often an important aspect of developmental processes and disease. So, researchers developed a new assay in which microfluidic technology is used to isolate individual cells before ATAC-seq.[iv] This assay provides epigenomic information at single cell resolution, earning it the name scATAC-seq.

The key to the scATAC-seq method is that it isolates genomes of individual cells early on to perform a separate ATAC-seq reaction on each individual cell. Then, open regions of the genome are cleaved by the Tn5 transposase, tagged with sequencing adapters and amplified with barcoded cell-identifying primers. Subsequently, the barcoded libraries of ATAC fragments, (each representing an individual cell) are pooled together and sequenced to reveal open chromatin regions of thousands of individual cells.

The first droplet-based iteration of the scATAC-seq method (dscATAC-seq) uses a single cell isolator to encapsulate thousands of individual nuclei in nanoliter-sized droplets for ATAC sequencing. It uses a custom Tn5 transposase to enhance library complexity and signal resolution. Compared to the original microfluidic method, the new workflow is faster and yields greater biological insight with less time and effort spent on sequencing. To demonstrate its power and potential, this technique has been used to conduct an unbiased analysis of the many different cell types and regulatory elements in a mouse brain. [v]

Figure 1:In scATAC-seq, droplet-based technology partitions thousands of whole cells or nuclei into individual nanoliter-sized droplets, enabling researchers to prepare a library of ATAC fragments for sequencing to reveal open chromatin regions. Credit:Bio-Rad Laboratories.

To capture single cell data on a truly massive scale, combinatorial indexing was next introduced into the dscATAC-seq workflow. This new method, called dsciATAC-seq, enables researchers to assess up to 50,000 cells in a single assay. Assaying a large volume of cells is possible because, in dsciATAC-seq, the hyperactive mutant transposase integrates a first set of barcodes as it cleaves open regions of chromatin in each nucleus. Because every cells DNA already carries a barcode, multiple cells can be loaded into a single droplet. Then, as usual, ATAC fragments are amplified with a second set of barcoded primers. After sequencing these fragments, the two sets of barcodes are used to derive epigenomic profiles for tens of thousands of cells.

Putting the dsciATAC-seq method to the test, researchers have studied immune cell clusters from human bone marrow derived cells to illustrate how the chromatin accessibility landscape in these cells changes according to different stimulants at the single cell level.5Although the number of cells that a single scATAC-seq experiment can evaluate has grown dramatically, it will take a continued concerted effort from scientists across many disciplines to create a comprehensive map of the human epigenome, encompassing data from trillions of cells.[vi] Furthermore, to help decode the patterns we find in the human epigenome, it may be valuable to gather information about the epigenomes of animals commonly used as research models. As each of these maps become increasingly detailed, scientists will gain a more thorough understanding of how biological process work and may apply this knowledge towards developing better treatments for complex diseases.

Reference:

[i] Egger, G., et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004, 429, 457463. doi:10.1038/nature02625[ii] DeAngelis, J. T., Farrington, W. J., & Tollefsbol, T. O. An overview of epigenetic assays. Molecular biotechnology, 2008, 38(2), 179183. doi:10.1007/s12033-007-9010-y[iii] Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 2013, 10(12):1213-8. doi: 10.1038/nmeth.2688.[iv] Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY, Greenleaf WJ. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature, 2015, 523(7561):486-90. doi: 10.1038/nature14590.[v] Lareau, C.A., Duarte, F.M., Chew, J.G. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nature Biotechnology 37, 916924 (2019) doi:10.1038/s41587-019-0147-6.[vi] Bianconi, E., Piovesan, A., Facchin F., Beraudi, A., Casadei. R., Frabetti, F., Vitale, L., Pelleri, M., Tassani. S., Piva, F., Perez-Amodio, S, Strippoli, P. & Canaider, S. An estimation of the number of cells in the human body. Annals of Human Biology, 2013, 40:6, 463-471. doi: 10.3109/03014460.2013.807878.

Go here to read the rest:
Using Single Cells To Get the Whole Picture of the Epigenome - Technology Networks

To Read More: Using Single Cells To Get the Whole Picture of the Epigenome – Technology Networks
categoriaBone Marrow Stem Cells commentoComments Off on Using Single Cells To Get the Whole Picture of the Epigenome – Technology Networks | dataMarch 13th, 2020
Read All

Stem Cell Therapy Market Report on Recent Adoption 2025 – 3rd Watch News

By daniellenierenberg

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Know the Growth Opportunities in Emerging Markets

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

The regional analysis covers:

Order this Report TOC for Detailed Statistics

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Read the original:
Stem Cell Therapy Market Report on Recent Adoption 2025 - 3rd Watch News

To Read More: Stem Cell Therapy Market Report on Recent Adoption 2025 – 3rd Watch News
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Therapy Market Report on Recent Adoption 2025 – 3rd Watch News | dataMarch 13th, 2020
Read All

My Flu Symptoms Turned Out To Be Acute Myeloid Leukemia – Women’s Health

By daniellenierenberg

In early September 2017, my daughters came home from daycare with a stomach bug that made its way around the house. Everyone else got over it pretty quickly, but I didnt. Instead, I became the sickest Ive ever been in my life with a high fever, relentless cough, chills, and vomiting to the point where I couldnt even keep down a few sips of water.

Before this, Id been in relatively good health. At 32, Id just returned to work as an attorney in the Dallas, Texas, area after maternity leave (I'm a mom of three) and I never took sick days. But for three days, I stayed home.

All I could really do was lay in bed under the blankets, hoping whatever illness I had would pass. After several days of not being able to keep any food or water down, I finally went to urgent care. There, a doctor ran blood work, gave me Zofran (an anti-nausea med), and sent me home.

Two days later, I received a call from the urgent care office.

They wouldnt tell me anything specific about my blood work but they advised me to schedule an appointment with my primary care doctor. As I didnt have one, I scheduled an appointment with a new doctor who wouldnt be able to see me for several weeks.

As the days went on, I still couldnt keep any food down and I started researching my symptoms to try to figure out what was wrong with me. I thought maybe I had a vitamin B12 deficiency and headed into urgent care again. There, the doctor advised me to go straight to the emergency room at the hospital down the street for fluids, a blood transfusion, and an appointment with a hematologist. At the ER, I did just that and was discharged with an appointment scheduled for two days later.

The next morning, a nurse from the hematologists office called and asked if I could come in that day. She told me there was a chance that the doctor might hospitalize me, so I might want to pack a bag.

I held out hope that it wasnt a big deal, but I should have realized I was seriously ill.

I was too weak to drive, so my husband took me to my appointment. There, the hematologist told me that they needed to confirm my exact diagnosis with further testing, but based on my blood panels, I had a form of blood cancer, also known as leukemia.

Although Google had told me that this was a possibility when Id begun researching my symptoms, it had seemed so imaginable. It felt surreal. People were talking around me and about me, but I dont remember much of what they were saying. I was wheeled directly to the hospital across the street and immediately admitted. The first step was to get me into a stable condition.

Leukemia causes your body to produce an abundance of white blood cells, many of which are abnormal. And the white blood cells crowd out your red blood cells and platelets, which deprives your body of oxygen and prevents blood clotting. Because I was dehydrated and dangerously anemic, I received fluids and several units of blood. Afterwards, I felt better than I had in weeks.

The doctor ran a whole host of tests to determine which type of blood cancer I had, how widespread it was, and if I had any chromosomal mutations, as those would inform the proper treatment for me.

About a week later, I was given an official diagnosis of acute myeloid leukemia.

It's also called (AML), and it's a rapidly progressive cancer of the blood and bone marrow that affects white blood cells known as myeloid cells. Within the United States, there are over 20,000 new cases every year, but the majority of those affected are older adults. When I asked how I ended up with this condition, my hematologist explained that my case wasnt genetic but probably just random bad luck.

In most cases of AML, its not clear what exactly causes the DNA damage that in turn leads to the haywire production of abnormal white blood cells. Many people who end up with this type of blood cancer, like me, have no known risk factors (some of which include being a smoker, male, and over the age of 65). Early signs of AML, including fever, body aches, and fatigue, often seem like a case of the flu or bug.

In October 2017, a month after my stomach bug first appeared, I was readmitted to the hospital and began a round of intensive remission induction chemotherapy in order to kill the leukemia cells in my blood and bone marrow.

For my first round, I stayed in the hospital for about a month. I was not allowed to leave the clean floor, where filtered air was continuously pumped into the rooms and visitors were scanned for fever and illness before they were able to be near any patients. Staff and visitors wore face masks and plastic smocks as an additional layer of protection.

The hardest part of chemo was that my daughters were not allowed on my hospital floor.

Children under 12 weren't allowed on the "clean floor," so I wasnt able to see my daughters for almost a month. We used FaceTime a few times, which was simultaneously great and excruciating because I just wanted to reach out and snuggle them but I knew I couldnt.

Every morning, my medical team would check my blood cell counts to determine if Id need a unit of blood or platelet infusion. I couldnt be discharged from the hospital until my white blood cell count had recovered enough from the chemotherapy for it to be safe for me to leave the clean floor.

After the induction round, I was discharged. Another bone marrow biopsy showed that I was in complete remission, meaning that my blast count in my bone marrow was less than 5 percent. But I wasnt totally in the clear just yet.

For my second half of treatment, I had to undergo four more rounds of consolidation chemotherapy to destroy any remaining cancer cells in order to lower my risk of relapse. While these rounds were gentler, I still struggled. Eight weeks in, my bone marrow was so severely damaged from chemotherapy it began to fail, and I had to get a transplant.

The transplant itself only took about an hour. But after that, it was a waiting game. Every day, my blood was tested, and we waited for the new stem cells to start producing new blood cells and immune system cells. I was also monitored carefully for any signs of infection, which is a huge risk after this type of procedure. My blood cell counts steadily rose, and I was discharged from the hospital after 28 days.

By August 2018, nearly a year into my journey, I went back to work and resumed my normal life.

A few months later, in October, I participated in Light the Night, a celebratory walk and fundraiser sponsored by the Leukemia & Lymphoma Society (LLS). At the event, I heard about another LLS fundraiser, The Big Climb Dallas, where participants climb the tallest building in the city: the Bank of America Tower. Its 70 flights of stairs. and I had no idea if I could do that, but Id caught the fundraising bug. I recruited about 30 friends, family members, and coworkers to climb with me, and I made it to the top.

As the leader of one of the top fundraising teams, I was asked to join the planning committee for the Big Climb 2020, which I enthusiastically accepted. This year, I was extremely grateful to be named the Honored Hero of Big Climb Dallas 2020 and to represent survivors and supporters whose lives have been touched by blood cancer.

It was a long process to get diagnosed and treated, but two and a half years later, Im in full remission.

Funny enough, Im ultimately thankful that my daughters got sick at daycare (as strange as that might sound). If they hadnt, I may have gone several more months before getting a diagnosis and treatment. Today, Im happy to share my story in the hopes that it might help even one other person.

Read more from the original source:
My Flu Symptoms Turned Out To Be Acute Myeloid Leukemia - Women's Health

To Read More: My Flu Symptoms Turned Out To Be Acute Myeloid Leukemia – Women’s Health
categoriaBone Marrow Stem Cells commentoComments Off on My Flu Symptoms Turned Out To Be Acute Myeloid Leukemia – Women’s Health | dataMarch 12th, 2020
Read All

Second Person Declared ‘Cured’ of HIV, With No Trace of Infection After Nearly 3 Years – ScienceAlert

By daniellenierenberg

A second patient has been cured of HIV after undergoing stem cell transplant treatment, doctors said Tuesday, after finding no trace of infection 30 months after he stopped traditional treatment.

The so-called "London Patient", a cancer sufferer originally from Venezuela, made headlines last year when researchers at the University of Cambridge reported they had found no trace of the AIDS-causing virus in his blood for 18 months.

Ravindra Gupta, lead author of the study published in The Lancet HIV, said the new test results were "even more remarkable" and likely demonstrated the patient was cured.

"We've tested a sizeable set of sites that HIV likes to hide in and they are all pretty much negative for an active virus," Gupta told AFP.

The patient, who revealed his identity this week as Adam Castillejo, 40, was diagnosed with HIV in 2003 and had been on medication to keep the disease in check since 2012.

Later that year, he was diagnosed with advanced Hodgkin's Lymphoma, a deadly cancer.

In 2016 he underwent a bone marrow transplant to treat blood cancer, receiving stem cells from donors with a genetic mutation present in less than one percent of Europeans that prevents HIV from taking hold.

He becomes only the second person to be cured of HIV after American Timothy Brown, known as the "Berlin Patient", recovered from HIV in 2011 following similar treatment.

Viral tests of Castillejo's cerebral fluid, intestinal tissue and lymphoid tissue more than two years after stopping antiretroviral treatment showed no active infection.

Gupta said the tests uncovered HIV "fossils" - fragments of the virus that were now incapable of reproducing, and were therefore safe.

"We'd expect that," he said.

"It's quite hard to imagine that all trace of a virus that infects billions of cells was eliminated from the body."

Researchers cautioned that the breakthrough did not constitute a generalised cure for HIV, which leads to nearly one million deaths every year.

Castillejo's treatment was a "last resort" as his blood cancer would likely have killed him without intervention, according to Gupta.

The Cambridge doctor said that there were "several other" patients who had undergone similar treatment but who were less far along in their remission.

"There will probably be more but they will take time," he said.

Researchers are currently weighing up whether or not patients suffering from drug-resistant forms of HIV might be eligible for stem cell transplants in future, something Gupta said would require careful ethical consideration.

"You'd have to weigh up the fact that there's a 10-percent mortality rate from doing a stem-cell transplant against what the risk of death would be if we did nothing," he said.

Castillejo himself said that the experience had prompted him to come forward and identify himself in order to help spread awareness of HIV.

This is a unique position to be in, a unique and very humbling position," he told The New York Times.

Sharon Lewin, an infectious disease expert at the University of Melbourne and member of the International AIDS Society, said Castillejo's case was "exciting".

"But we need to also place it in context - curing people of HIV via a bone marrow transplant is just not a viable option on any kind of scale," she said.

"We need to constantly reiterate the importance of, prevention, early testing and treatment adherence as the pillars of the current global response to HIV/AIDS."

Agence France-Presse

Original post:
Second Person Declared 'Cured' of HIV, With No Trace of Infection After Nearly 3 Years - ScienceAlert

To Read More: Second Person Declared ‘Cured’ of HIV, With No Trace of Infection After Nearly 3 Years – ScienceAlert
categoriaBone Marrow Stem Cells commentoComments Off on Second Person Declared ‘Cured’ of HIV, With No Trace of Infection After Nearly 3 Years – ScienceAlert | dataMarch 12th, 2020
Read All

CytoDyn’s First mTNBC Patient in Phase 1b/2 is in Remission and Oncologist Ordered Termination of Treatment with Carboplatin (chemotherapy drug) and…

By daniellenierenberg

VANCOUVER, Washington, March 12, 2020 (GLOBE NEWSWIRE) -- CytoDyn Inc. (OTC.QB: CYDY), (CytoDyn or the Company), a late-stage biotechnology company developing leronlimab (PRO 140), a CCR5 antagonist with the potential for multiple therapeutic indications, announced today that the FDA recommended that the Company request a preliminary Breakthrough Therapy designation meeting. Meanwhile, the Company continues reporting very positive data for its mTNBC and MBC patients.

Metastatic triple-negative breast cancer (mTNBC), an aggressive histological subtype, has a poor prognosis. In addition, metastatic breast cancer (MBC) is breast cancer that has spread beyond the breast and lymph nodes to other organs in the body (typically the bones, liver, lungs, or brain). Both types of cancer pose significant challenges for patients due to their aggressiveness and limited treatment options. An integral part of CytoDyns mission and purpose is to provide effective therapeutic solutions to these patients. Clinical results from the first cancer patient in the Companys Phase 1b/2 mTNBC trial are as follows:

Patient #1: Enrolled in mTNBC Phase 1b/2 with first treatment in late September 2019. CTC (circulating tumor cells) dropped to zero after two treatments with leronlimab and carboplatin. Total CTC and EMT (Epithelial Mesenchymal Transition in Tumor Metastasis) dropped to zero after about one month of treatment with leronlimab (once-a-week 350 mg dose). Results from the patients earlier CT scan indicated a more than 25% tumor shrinkage within the first few weeks of treatment with leronlimab and carboplatin. After approximately five months of treatment with leronlimab and carboplatin, the patient not only has zero CTC and zero EMT, but also zero detectible CAML (cancer-associated microphages like cells). The patients oncologist has now ordered this patients treatment to consist only of leronlimab and has discontinued treatment with carboplatin (a chemotherapy drug). Testimony provided to the Company from the patient stated: So far my experience with leronlimab has been very positive. I didnt expect it to be so easy and tolerable with virtually ZERO side effects. The results so far have been super impressive. Im very grateful to be part of this clinical trial study and it really makes me feel hopeful that this otherwise fatal disease can be turned into a manageable disease in the near future.

Bruce Patterson, M.D., chief executive officer and founder of IncellDx, a diagnostic partner and advisor to CytoDyn, commented, The FDA recommendation for a meeting on CytoDyns BTD application is a tremendous opportunity to further discuss the mechanism of action and to summarize the promising results from patients enrolled following the submission of the application. Included in this discussion will be the recent decision by the oncologist of Patient #1 to, based on continued unremarkable changes to her condition, remove carboplatin from the patients regimen with continued therapy with leronlimab. Nader Pourhassan, Ph.D., president and chief executive officer of CytoDyn, added: Our first patient in the Phase 1b/2 trial has shown remission of the tumor and her oncologist has attributed this primarily to leronlimab and discontinued the carboplatin (a form of chemotherapy). This patients latest results of zero CTC, EMT, and CAML is unique and we now have another patient with three zeros identical to the first patient. We are very excited to continue enrolling patients and hopeful to have our first patient treated in our basket trial for 22 solid tumor cancers very soon. We are also very hopeful to have several more patients in our Phase 1b/2 mTNBC trial before our preliminary meeting with the FDA for Breakthrough Therapy designation.

About Triple-Negative Breast CancerTriple-negative breast cancer (TNBC) is a type of breast cancer characterized by the absence of the three most common types of receptors in the cancer tumor known to fuel most breast cancer growthestrogen receptors (ER), progesterone receptors (PR) and the hormone epidermal growth factor receptor 2 (HER-2) gene. TNBC cancer occurs in about 10 to 20 percent of diagnosed breast cancers and can be more aggressive and more likely to spread and recur. Since the triple-negative tumor cells lack these receptors, common treatments for breast cancer such as hormone therapy and drugs that target estrogen, progesterone, and HER-2 are ineffective.

About Leronlimab (PRO 140) The U.S. Food and Drug Administration (FDA) have granted a Fast Track designation to CytoDyn for two potential indications of leronlimab for deadly diseases. The first as a combination therapy with HAART for HIV-infected patients and the second is for metastatic triple-negative breast cancer. Leronlimab is an investigational humanized IgG4 mAb that blocks CCR5, a cellular receptor that is important in HIV infection, tumor metastases, and other diseases including NASH. Leronlimab has successfully completed nine clinical trials in over 800 people, including meeting its primary endpoints in a pivotal Phase 3 trial (leronlimab in combination with standard antiretroviral therapies in HIV-infected treatment-experienced patients).

In the setting of HIV/AIDS, leronlimab is a viral-entry inhibitor; it masks CCR5, thus protecting healthy T cells from viral infection by blocking the predominant HIV (R5) subtype from entering those cells. Leronlimab has been the subject of nine clinical trials, each of which demonstrated that leronlimab can significantly reduce or control HIV viral load in humans. The leronlimab antibody appears to be a powerful antiviral agent leading to potentially fewer side effects and less frequent dosing requirements compared with daily drug therapies currently in use.

In the setting of cancer, research has shown that CCR5 plays an important role in tumor invasion and metastasis. Increased CCR5 expression is an indicator of disease status in several cancers. Published studies have shown that blocking CCR5 can reduce tumor metastases in laboratory and animal models of aggressive breast and prostate cancer. Leronlimab reduced human breast cancer metastasis by more than 98% in a murine xenograft model. CytoDyn is therefore conducting a Phase 1b/2 human clinical trial in metastatic triple-negative breast cancer and was granted Fast Track designation in May 2019. Additional research is being conducted with leronlimab in the setting of cancer and NASH with plans to conduct additional clinical studies when appropriate.

The CCR5 receptor appears to play a central role in modulating immune cell trafficking to sites of inflammation and may be important in the development of acute graft-versus-host disease (GvHD) and other inflammatory conditions. Clinical studies by others further support the concept that blocking CCR5 using a chemical inhibitor can reduce the clinical impact of acute GvHD without significantly affecting the engraftment of transplanted bone marrow stem cells. CytoDyn is currently conducting a Phase 2 clinical study with leronlimab to further support the concept that the CCR5 receptor on engrafted cells is critical for the development of acute GvHD and that blocking this receptor from recognizing certain immune signaling molecules is a viable approach to mitigating acute GvHD. The FDA has granted orphan drug designation to leronlimab for the prevention of GvHD.

About CytoDyn CytoDyn is a biotechnology company developing innovative treatments for multiple therapeutic indications based on leronlimab, a novel humanized monoclonal antibody targeting the CCR5 receptor. CCR5 appears to play a key role in the ability of HIV to enter and infect healthy T-cells. The CCR5 receptor also appears to be implicated in tumor metastasis and in immune-mediated illnesses, such as GvHD and NASH. CytoDyn has successfully completed a Phase 3 pivotal trial with leronlimab in combination with standard anti-retroviral therapies in HIV-infected treatment-experienced patients. CytoDyn plans to seek FDA approval for leronlimab in combination therapy and plans to complete the filing of a Biologics License Application (BLA) in the first quarter of 2020 for that indication. CytoDyn is also conducting a Phase 3 investigative trial with leronlimab as a once-weekly monotherapy for HIV-infected patients and plans to initiate a registration-directed study of leronlimab monotherapy indication, which if successful, could support a label extension. Clinical results to date from multiple trials have shown that leronlimab can significantly reduce viral burden in people infected with HIV with no reported drug-related serious adverse events (SAEs). Moreover, results from a Phase 2b clinical trial demonstrated that leronlimab monotherapy can prevent viral escape in HIV-infected patients, with some patients on leronlimab monotherapy remaining virally suppressed for more than five years. CytoDyn is also conducting a Phase 2 trial to evaluate leronlimab for the prevention of GvHD and a Phase 1b/2 clinical trial with leronlimab in metastatic triple-negative breast cancer. More information is at http://www.cytodyn.com.

Forward-Looking Statements This press release contains certain forward-looking statements that involve risks, uncertainties and assumptions that are difficult to predict. Words and expressions reflecting optimism, satisfaction or disappointment with current prospects, as well as words such as believes, hopes, intends, estimates, expects, projects, plans, anticipates and variations thereof, or the use of future tense, identify forward-looking statements, but their absence does not mean that a statement is not forward-looking. The Companys forward-looking statements are not guarantees of performance, and actual results could vary materially from those contained in or expressed by such statements due to risks and uncertainties including: (i) the sufficiency of the Companys cash position, (ii) the Companys ability to raise additional capital to fund its operations, (iii) the Companys ability to meet its debt obligations, if any, (iv) the Companys ability to enter into partnership or licensing arrangements with third parties, (v) the Companys ability to identify patients to enroll in its clinical trials in a timely fashion, (vi) the Companys ability to achieve approval of a marketable product, (vii) the design, implementation and conduct of the Companys clinical trials, (viii) the results of the Companys clinical trials, including the possibility of unfavorable clinical trial results, (ix) the market for, and marketability of, any product that is approved, (x) the existence or development of vaccines, drugs, or other treatments that are viewed by medical professionals or patients as superior to the Companys products, (xi) regulatory initiatives, compliance with governmental regulations and the regulatory approval process, (xii) general economic and business conditions, (xiii) changes in foreign, political, and social conditions, and (xiv) various other matters, many of which are beyond the Companys control. The Company urges investors to consider specifically the various risk factors identified in its most recent Form 10-K, and any risk factors or cautionary statements included in any subsequent Form 10-Q or Form 8-K, filed with the Securities and Exchange Commission. Except as required by law, the Company does not undertake any responsibility to update any forward-looking statements to take into account events or circumstances that occur after the date of this press release.

CYTODYN CONTACTS

Investors: Dave Gentry, CEO RedChip Companies Office: 1.800.RED.CHIP (733.2447) Cell: 407.491.4498 dave@redchip.com

Excerpt from:
CytoDyn's First mTNBC Patient in Phase 1b/2 is in Remission and Oncologist Ordered Termination of Treatment with Carboplatin (chemotherapy drug) and...

To Read More: CytoDyn’s First mTNBC Patient in Phase 1b/2 is in Remission and Oncologist Ordered Termination of Treatment with Carboplatin (chemotherapy drug) and…
categoriaBone Marrow Stem Cells commentoComments Off on CytoDyn’s First mTNBC Patient in Phase 1b/2 is in Remission and Oncologist Ordered Termination of Treatment with Carboplatin (chemotherapy drug) and… | dataMarch 12th, 2020
Read All

Why computers won’t be reading your mind any time soon – Wired.co.uk

By daniellenierenberg

Edward Chang can't read your thoughts. Whenever the neuroscientist's lab at the University of California publishes a new piece of research, there's always a familiar refrain: that he's created "mind-reading technology" or can "read your thoughts". He's not alone, it's a phrase that follows much of the research into brain-computer interfaces and speech decoding.

And no wonder, when Elon Musk's startup Neuralink claims it will eventually enable "consensual telepathy" and Facebook one of the funders of Chang's lab said it wants to let people send messages by just thinking the words, rather than tapping them out on a phone, an example of a brain-computer interface (BCI).

But Chang isn't trying to read minds; he's decoding speech in people who otherwise can't speak. "We're not really talking about reading someone's thoughts," Chang says. "Every paper or project we've done has been focusing on understanding the basic science of how the brain controls our ability to speak and understand speech. But not what we're thinking, not inner thoughts." Such research would have significant ethical implications, but it's not really possible right now anyway and may never be.

Even decoding speech isn't easy. His most recent paper, in Nature last year, aimed to translate brain signals produced by speech into words and sentences read aloud by a machine; the aim is to help people with diseases such as amyotrophic lateral sclerosis (ALS) a progressive neurodegenerative disease that affects nerve cells in the brain and spinal cord. "The paper describes the ability to take brain activity in people who are speaking normally and use that to create speech synthesis it's not reading someone's thoughts," he says. "It's just reading the signals that are speaking."

The technology worked to an extent. Patients with electrodes embedded in their brains were read a question and spoke an answer. Chang's system could accurately decipher what they heard 76 per cent of the time and what they said 61 per cent of the time by looking at their motor cortex to see how the brain fired up to move their mouth and tongue. But there are caveats. The potential answers were limited to a selection, making the algorithm's job a bit easier. Plus, the patients were in hospital having brain scans for epilepsy, and could therefore speak normally; it's not clear how this translates to someone who can't speak at all.

"Our goal is to translate this technology to people who are paralysed," he says. "The big challenge is understanding somebody who's not speaking. How do you train an algorithm to do that?" It's one thing to train a model using someone you can ask to read out sentences; you scan their brain signals while they read out sentences. But how do you do that if someone can't speak?

Chang's lab is currently in the middle of a clinical trial attempting to address that "formidable challenge", but it's as yet unclear how speech signals change for those unable to speak, or if different areas of the brain need to be considered. "There are these fairly substantial issues that we have to address in terms of our scientific knowledge," he says.

Decoding such signals is challenging in part because of how little we understand about how our own brains work. And while systems can be more easily trained to move a cursor left or right, speech is complicated. "The main challenges are the huge vocabulary that characterise this task, the need of a very good signal quality achieved only by very invasive technologies and the lack of understanding on how speech is encoded in the brain," says David Valeriani of Harvard Medical School. "This latter aspect is a challenge across many BCI fields. We need to know how the brain works before being able to use it to control other technologies, such as a BCI."

And we simply don't have enough data, says Mariska van Steensel, assistant professor at UMC Utrecht. It's difficult to install brain implants, so it's not frequently done; Chang used epilepsy patients because they were already having implants to track their seizures. Sitting around waiting for a seizure to strike, a handful were willing to take part in his research out of boredom. "On these types of topics, the number of patients that are going to be implanted will stay low, because it is very difficult research and very time consuming," she says, noting that fewer than 30 people have been implanted with a BCI worldwide; her own work is based on two implants. "That is one of the reasons why progress is relatively slow," she added, suggesting a database of work could be brought together to help share information.

There's another reason this is difficult: our brains don't all respond the same. Van Steensel has two patients with implants, allowing them to make a mouse click with brain signals by thinking about moving their hands. In the first patient, with ALS, it worked perfectly. But it didn't in the second, a patient with a brain-stem stroke. "Her signals were different and less optimal for this to b e reliable," she says. "Even a single mouse click to get reliable in all situations is already difficult."

This work is different than that of startups such as NextMind and CTRL-Labs that use external, non-invasive headsets to read brain signals, but they lack the precision of an implant. "If you stay outside a concert hall, you will hear a very distorted version of what's playing inside this is one of the problems of non-invasive BCIs," says Ana Matran-Fernandez, artificial intelligence industry fellow at the University of Essex. "You will get an idea of the general tempo... of the piece that's being played, but you can't pinpoint specifically each of the instruments being played. This is the same with a BCI. At best, we will know which areas of the brain are the most active playing louder, if you will but we won't know why, and we don't necessarily know what that means for a specific person."

Still, tech industry efforts including Neuralink and Facebook aren't misplaced, says Chang, but they're addressing different problems. Those projects are looking at implant or headset technology, not the hard science that's required to make so-called mind reading possible. "I think it's important to have all of these things happening," he says. "My caveat is that's not the only part of making these things work. There's still fundamental knowledge of the brain that we need to have before any of this will work."

Until then, we won't be able to read speech, let alone inner thoughts. "Even if we were perfectly able to distinguish words someone tries to say from brain signals, this is not even close to mind reading or thought reading," van Steensel says. "We're only looking at the areas that are relevant for the motor aspects of speech production. We're not looking at thoughts I don't even think that's possible."

Edward Chang will be one of the speakers at WIRED Health in London on March 25, 2020. For more details, and to book your ticket, click here

Does alcohol kill coronavirus? The biggest myths, busted

The best shows coming to Disney Plus UK

Gender neutral toilets are a massive failure (so far)

A huge Airbnb scam is taking over London

Follow WIRED on Twitter, Instagram, Facebook and LinkedIn

Get The Email from WIRED, your no-nonsense briefing on all the biggest stories in technology, business and science. In your inbox every weekday at 12pm sharp.

by entering your email address, you agree to our privacy policy

Thank You. You have successfully subscribed to our newsletter. You will hear from us shortly.

Sorry, you have entered an invalid email. Please refresh and try again.

Excerpt from:
Why computers won't be reading your mind any time soon - Wired.co.uk

To Read More: Why computers won’t be reading your mind any time soon – Wired.co.uk
categoriaSpinal Cord Stem Cells commentoComments Off on Why computers won’t be reading your mind any time soon – Wired.co.uk | dataMarch 12th, 2020
Read All

Why are Pluripotent Stem Cells Important? Boston …

By daniellenierenberg

First, by their nature, pluripotent stem cells can potentially be used to create any cell or tissue the body might need to counter a wide range of diseases, from diabetes to spinal cord injury, to childhood leukemia, to heart disease.

Second, pluripotent stem cells can potentially be customized to provide a perfect genetic match for any patient. This means that patients could receive transplants of tissue and cells without tissue matching and tissue rejection problems, and without the need to take powerful immune-suppressing drugs for the rest of their lives. Although this vision hasnt yet been achieved, researchers at Boston Childrens Hospital have successfully treated mouse models of human disease using this strategy and hope that the same can be done with patients.

Disease in a dish:Third, pluripotent stem cells make excellent laboratory models for studying how a disease unfolds, which helps scientists pinpoint and track the very earliest disease-causing events in cells. Immune deficiencies, Type 1 diabetes, muscular dystrophy, and myriad other disorders are rooted in fetal development. In the lab, researchers can recapture these early originsobserving where the first muscle cell comes from, or the first blood cell, and how this differs when the patient has a genetic disease. Using this information, doctors may be able to intervene and correct the genetic defect before the disease advances.

Unique applications:Each type of pluripotent stem cell has different characteristics that make it useful in different ways, and each has different lessons to teach.

Read this article:
Why are Pluripotent Stem Cells Important? Boston ...

To Read More: Why are Pluripotent Stem Cells Important? Boston …
categoriaIPS Cell Therapy commentoComments Off on Why are Pluripotent Stem Cells Important? Boston … | dataMarch 12th, 2020
Read All

Stem cells to help the heart – Science Magazine

By daniellenierenberg

Shinya Yamanaka's 2006 discovery of induced pluripotent stem cells (iPSCs) ignited a revolution in the field of stem cell biology (1). For the first time, nearly all human somatic tissues could be produced from iPSCs reprogrammed from blood or skin cells, in a process that took only weeks. This advance was particularly crucial for obtaining surrogate tissues from cell types that are otherwise difficult to procure and do not readily expand in vitro, such as cardiac or neural cells. Additionally, many ethical concerns are avoided, because this technology uses a patient's own genetic material to create iPSCs rather than relying on embryonic stem cells. In the aftermath of Yamanaka's discovery, entire biomedical industries have developed around the promise of using human iPSCs (hiPSCs) and their derivatives for in vitro disease modeling, drug screening, and cell therapy (2).

The hiPSC technology has had a particularly notable impact in cardiac regenerative medicine, a field where scientists and clinicians have been working to devise new methods to better understand how cardiovascular disease manifests and how to restore cardiovascular function after disease strikes (3). The heart is limited in its ability to regenerate lost cardiomyocytes (beating heart muscle cells), following an adverse event such as a heart attack (4). Cardiomyocytes derived from hiPSCs (hiPSC-CMs) may represent a potential replacement option for dead cells in such a scenario. However, certain issues remain to be addressed, such as whether hiPSC-CMs can integrate with host myocardial tissue in the long term (5).

While using hiPSC-CMs for in vivo cell therapy may become practical in the future, employing hiPSC-CMs for high-throughput drug discovery and screening is becoming a reality in the present (6). Cardiovascular diseases can be recapitulated in a dish with patient-specific hiPSC-CMs. For example, if a patient exhibits a cardiac arrhythmia caused by a genetic abnormality in a sarcomeric protein or ion channel, that same rhythm problem can be recapitulated in vitro (7). Thanks to advances in hiPSC differentiation protocols, hiPSC-CMs can now be mass-produced to study cardiovascular disease mechanisms in vitro (8).

My graduate thesis in the laboratories of Joseph Wu and Sean Wu at Stanford University focused on in vitro applications of hiPSC-CMs for cardiovascular disease modeling and for high-throughput screening of chemotherapeutic compounds to predict cardiotoxicity. I initially embarked on a project using hiPSC-CMs to model viral myocarditis, a viral infection of the heart, caused by the B3 strain of coxsackievirus (9). I began by demonstrating that hiPSC-CMs express the receptors necessary for viral internalization and subsequently found that hiPSC-CMs were highly susceptible to coxsackievirus infection, exhibiting viral cytopathic effect within hours of infection. I also identified compounds that could alleviate coxsackievirus infection on hiPSC-CMs, a translationally relevant finding, as there remains a shortage of treatments for viral myocarditis.

Using a genetically modified variant of coxsackievirus B3 expressing luciferase, I developed a screening platform for assessing the efficacy of antiviral compounds. Pretreatment with interferon-, ribavirin, or pyrrolidine dithiocarbamate markedly suppressed viral replication on hiPSC-CMs by activating intracellular antiviral response and viral protein clearance pathways. These compounds alleviated viral replication in a dose-dependent fashion at low concentrations without causing cellular toxicity.

I next sought to use hiPSC-CMs to screen anticancer chemotherapeutic compounds for their off-target cardiovascular toxicities (10). Cardiotoxicity represents a major cause of drug withdrawal from the pharmaceutical market, and several chemotherapeutic agents can cause unintended cardiovascular damage (11). Using cultured hiPSC-CMs, I evaluated 21 U.S. Food and Drug Administrationapproved tyrosine kinase inhibitors (TKIs), commonly prescribed anticancer compounds, for their cardiotoxic potential. HiPSC-CMs express the major tyrosine kinase receptor proteins such as the insulin, insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) receptors, lending validity to this cellular model.

Initially, human induced pluripotent stem cells (hiPSCs) can be produced by reprogramming skin or blood cells by nonviral or viral reprogramming methods. Cardiac differentiation protocols allow for the creation of cardiomyocytes derived from hiPSCs (hiPSC-CMs) for downstream applications, including in vitro disease modeling, drug screening, and regenerative cell therapy.

With data from a battery of cellular apoptosis, contractility, electrophysiology, and signaling assays, I generated a cardiac safety index to help align in vitro toxicity data to clinical drug safety guidelines (12). From the safety index, I determined that a subclass of VEGF receptor 2/PDGF receptorinhibiting tyrosine kinase inhibitors, some of which exhibit toxicity clinically, also elicited cardiotoxicities in hiPSC-CMs. These manifested as substantial alterations in cellular electrophysiology, contractility, and viability when administered at clinically relevant concentrations. I also discovered that cotreatment with either IGF or insulin partially rescued TKI-induced toxicity by up-regulating antiapoptotic signaling pathways. This work could prove useful for groups aiming to develop effective screening platforms to assess new chemotherapeutic compounds for cardiotoxic side effects.

I also collaborated with the Center for the Advancement of Science in Space (CASIS) to send a sample of hiPSC-CMs to the International Space Station. As humankind ventures beyond our home planet, it is imperative that we better understand how the heart functions for long periods of time in microgravity. Analysis of these hiPSC-CMs revealed microgravity-induced alterations in metabolic gene expression and calcium handling (13).

In recent years, the stem cell field has experienced an explosion of studies using hiPSC-CMs as a model cellular system to study cardiovascular biology. As improvements in hiPSC-CM mass production continue, we will see a rise in studies using these cells for disease modeling and drug screening. Thus, although hiPSC-CM technology is in its infancy, it holds great potential to improve cardiovascular health.

PHOTO: COURTESY OF A. SHARMA

FINALIST

Arun Sharma

Arun Sharma received his undergraduate degree from Duke University and a Ph.D. from Stanford University. Having completed a postdoctoral fellowship at the Harvard Medical School, Sharma is now a senior research fellow jointly appointed at the Smidt Heart Institute and Board of Governors Regenerative Medicine Institute at the Cedars-Sinai Medical Center in Los Angeles. His research seeks to develop in vitro platforms for cardiovascular disease modeling and drug cardiotoxicity assessment. http://www.sciencemag.org/content/367/6483/1206.1

Read the original here:
Stem cells to help the heart - Science Magazine

To Read More: Stem cells to help the heart – Science Magazine
categoriaSkin Stem Cells commentoComments Off on Stem cells to help the heart – Science Magazine | dataMarch 12th, 2020
Read All

New drugs are costly and unmet need is growing – The Economist

By daniellenierenberg

Mar 12th 2020

BEING ABLE to see all the details of the genome at once necessarily makes medicine personal. It can also make it precise. Examining illness molecule by molecule allows pharmaceutical researchers to understand the pathways through which cells act according to the dictates of genes and environment, thus seeing deep into the mechanisms by which diseases cause harm, and finding new workings to target. The flip side of this deeper understanding is that precision brings complexity. This is seen most clearly in cancer. Once, cancers were identified by cell and tissue type. Now they are increasingly distinguished by their specific genotype that reveals which of the panoply of genes that can make a cell cancerous have gone wrong in this one. As drugs targeted against those different mutations have multiplied, so have the options for oncologists to combine them to fit their patients needs.

Cancer treatment has been the most obvious beneficiary of the genomic revolution but other diseases, including many in neurology, are set to benefit, too. Some scientists now think there are five different types of diabetes rather than two. There is an active debate about whether Parkinsons is one disease that varies a lot, or four. Understanding this molecular variation is vital when developing treatments. A drug that works well on one subtype of a disease might fail in a trial that includes patients with another subtype against which it does not work at all.

Thus how a doctor treats a disease depends increasingly on which version of the disease the patient has. The Personalised Medicine Coalition, a non-profit advocacy group, examines new drugs approved in America to see whether they require such insights in order to be used. In 2014, it found that so-called personalised medicines made up 21% of the drugs newly approved for use by Americas Food and Drug Administration (FDA). In 2018 the proportion was twice that.

Two of those cited were particularly interesting: Vitrakvi (larotrectinib), developed by Loxo Oncology, a biotech firm, and Onpattro (patisiran), developed by Alnylam Pharmaceuticals. Vitrakvi is the first to be approved from the start as tumour agnostic: it can be used against any cancer that displays the mutant protein it targets. Onpattro, which is used to treat peripheral-nerve damage, is the first of a new class of drugssmall interfering RNAs, or siRNAsto be approved. Like antisense oligonucleotides (ASOs), siRNAs are little stretches of nucleic acid that stop proteins from being made, though they use a different mechanism.

Again like ASOs, siRNAs allow you to target aspects of a disease that are beyond the reach of customary drugs. Until recently, drugs were either small molecules made with industrial chemistry or bigger ones made with biologynormally with genetically engineered cells. If they had any high level of specificity, it was against the actions of a particular protein, or class of proteins. Like other new techniques, including gene therapies and anti-sense drugs, siRNAs allow the problem to be tackled further upstream, before there is any protein to cause a problem.

Take the drugs that target the liver enzyme PCSK9. This has a role in maintaining levels of bad cholesterol in the blood; it is the protein that was discovered through studies of families in which congenitally high cholesterol levels led to lots of heart attacks. The first generation of such drugs were antibodies that stuck to the enzyme and stopped it working. However, the Medicines Company, a biotech firm recently acquired by Novartis, won approval last year for an siRNA called inclisiran that interferes with the expression of the gene PCSK9thus stopping the pesky protein from being made in the first place. Inclisiran needs to be injected only twice a year, rather than once a month, as antibodies do.

New biological insights, new ways of analysing patients and their disease and new forms of drug are thus opening up a wide range of therapeutic possibilities. Unfortunately, that does not equate to a range of new profitable opportunities.

Thanks in part to ever better diagnosis, there are now 7,000 conditions recognised as rare diseases in America, meaning that the number of potential patients is less than 200,000. More than 90% of these diseases have no approved treatment. These are the diseases that personalised, precision medicine most often goes after. Nearly 60% of the personalised medicines approved by the FDA in 2018 were for rare diseases.

Zolgensma is the most expensive drug ever brought to market.

That might be fine, were the number of diseases stable. But precision in diagnosis is increasingly turning what used to be single diseases into sets of similar-looking ones brought about by distinctly different mechanisms, and thus needing different treatment. And new diseases are still being discovered. Medical progress could, in short, produce more new diseases than new drugs, increasing unmet need.

Some of it will, eventually, be met. For one thing, there are government incentives in America and Europe for the development of drugs for rare diseases. And, especially in America, drugs for rare diseases have long been able to command premium prices. Were this not the case, Novartis would not have paid $8.7bn last year to buy AveXis, a small biotech firm, thereby acquiring Zolgensma, a gene therapy for spinal muscular atrophy (SMA). Most people with SMA lack a working copy of a gene, SMN1, which the nerve cells that control the bodys muscles need to survive. Zolgensma uses an empty virus-like particle that recognises nerve cells to deliver working copies of the gene to where it is needed. Priced at $2.1m per patient, it is the most expensive drug ever brought to market. That dubious accolade might not last long. BioMarin, another biotech firm, is considering charging as much as $3m for a forthcoming gene therapy for haemophilia.

Drug firms say such treatments are economically worthwhile over the lifetime of the patient. Four-fifths of children with the worst form of SMA die before they are four. If, as is hoped, Zolgensma is a lasting cure, then its high cost should be set against a half-century or more of life. About 200 patients had been treated in America by the end of 2019.

But if some treatments for rare diseases may turn a profit, not all will. There are some 6,000 children with SMA in America. There are fewer than ten with Jansens disease. When Dr Nizar asked companies to help develop a treatment for it, she says she was told your disease is not impactful. She wrote down the negative responses to motivate herself: Every day I need to remind myself that this is bullshit.

A world in which markets shrink, drug development gets costlier and new unmet needs are ceaselessly discovered is a long way from the utopian future envisaged by the governments and charities that paid for the sequencing of all those genomes and the establishment of the worlds biobanks. As Peter Bach, director of the Centre for Health Policy and Outcomes, an academic centre in New York, puts it with a degree of understatement: if the world needs to spend as much to develop a drug for 2,000 people as it used to spend developing one for 100,000, the population-level returns from medical research are sharply diminishing.

And it is not as if the costs of drug development have been constant. They have gone up. What Jack Scannell, a consultant and former pharmaceutical analyst at UBS, a bank, has dubbed Erooms lawEroom being Moore, backwardsshows the number of drugs developed for a given amount of R&D spending has fallen inexorably, even as the amount of biological research skyrocketed. Each generation assumes that advances in science will make drugs easier to discover; each generation duly advances science; each generation learns it was wrong.

For evidence, look at the way the arrival of genomics in the 1990s lowered productivity in drug discovery. A paper in Nature Reviews Drug Discovery by Sarah Duggers from Columbia University and colleagues argues that it brought a wealth of new leads that were difficult to prioritise. Spending rose to accommodate this boom; attrition rates for drugs in development subsequently rose because the candidates were not, in general, all that good.

Today, enthused by their big-science experience with the genome and enabled by new tools, biomedical researchers are working on exhaustive studies of all sorts of other omes, including proteomesall the proteins in a cell or body; microbiomesthe non-pathogenic bacteria living in the mouth, gut, skin and such; metabolomessnapshots of all the small molecules being built up and broken down in the body; and connectomes, which list all the links in a nervous system. The patterns they find will doubtless produce new discoveries. But they will not necessarily, in the short term, produce the sort of clear mechanistic understanding which helps create great new drugs. As Dr Scannell puts it: We have treated the diseases with good experimental models. Whats left are diseases where experiments dont replicate people. Data alone canot solve the problem.

Daphne Koller, boss of Insitro, a biotech company based in San Francisco, shares Dr Scannells scepticism about the way drug discovery has been done. A lot of candidate drugs fail, she says, because they aim for targets that are not actually relevant to the biology of the condition involved. Instead researchers make decisions based on accepted rules of thumb, gut instincts or a ridiculous mouse model that has nothing to do with what is actually going on in the relevant human diseaseeven if it makes a mouse look poorly in a similar sort of way.

But she also thinks that is changing. Among the things precision biology has improved over the past five to 10 years have been the scientists own tools. Gene-editing technologies allow genes to be changed in various ways, including letter by letter; single-cell analysis allows the results to be looked at as they unfold. These edited cells may be much more predictive of the effects of drugs than previous surrogates. Organoidsself-organised, three-dimensional tissue cultures grown from human stem cellsoffer simplified but replicable versions of the brain, pancreas, lung and other parts of the body in which to model diseases and their cures.

Insitro is editing changes into stem cellswhich can grow into any other tissueand tracking the tissues they grow into. By measuring differences in the development of very well characterised cells which differ in precisely known ways the company hopes to build more accurate models of disease in living cells. All this work is automated, and carried out on such a large scale that Dr Koller anticipates collecting many petabytes of data before using machine learning to make sense of it. She hopes to create what Dr Scannell complains biology lacks and what drug designers need: predictive models of how genetic changes drive functional changes.

There are also reasons to hope that the new upstream drugsASOs, siRNAs, perhaps even some gene therapiesmight have advantages over todays therapies when it comes to small-batch manufacture. It may also prove possible to streamline much of the testing that such drugs go through. Virus-based gene-therapy vectors and antisense drugs are basically platforms from which to deliver little bits of sequence data. Within some constraints, a platform already approved for carrying one message might be fast-tracked through various safety tests when it carries another.

One more reason for optimism is that drugs developed around a known molecule that marks out a diseasea molecular markerappear to be more successful in trials. The approval process for cancer therapies aimed at the markers of specific mutations is often much shorter now than it used to be. Tagrisso (osimertinib), an incredibly specialised drug, targets a mutation known to occur only in patients already treated for lung cancer with an older drug. Being able to specify the patients who stand to benefit with this degree of accuracy allows trials to be smaller and quicker. Tagrisso was approved less than two years and nine months after the first dose was given to a patient.

With efforts to improve the validity of models of disease and validate drug targets accurately gaining ground, Dr Scannell says he is sympathetic to the proposal that, this time, scientific innovation might improve productivity. Recent years have seen hints that Erooms law is being bent, if not yet broken.

If pharmaceutical companies do not make good on the promise of these new approaches then charities are likely to step in, as they have with various ASO treatments for inherited diseases. And they will not be shackled to business models that see the purpose of medicine as making drugs. The Gates Foundation and Americas National Institutes of Health are investing $200m towards developing treatments based on rewriting genes that could be used to tackle sickle-cell disease and HIVtreatments that have to meet the proviso of being useful in poor-country clinics. Therapies in which cells are taken out of the body, treated in some way and returned might be the basis of a new sort of business, one based around the ability to make small machines that treat individuals by the bedside rather than factories which produce drugs in bulk.

There is room in all this for individuals with vision; there is also room for luck: Dr Nizar has both. Her problem lies in PTH1R, a hormone receptor; her PTH1R gene makes a form of it which is jammed in the on position. This means her cells are constantly doing what they would normally do only if told to by the relevant hormone. A few years ago she learned that a drug which might turn the mutant receptor off (or at least down a bit) had already been characterisedbut had not seemed worth developing.

The rabbit, it is said, outruns the fox because the fox is merely running for its dinner, while the rabbit is running for its life. Dr Nizars incentives outstrip those of drug companies in a similar way. By working with the FDA, the NIH and Massachusetts General Hospital, Dr Nizar helped get a grant to make enough of the drug for toxicology studies. She will take it herself, in the first human trial, in about a years time. After that, if things go well, her childrens pain may finally be eased.

This article appeared in the Technology Quarterly section of the print edition under the headline "Kill or cure?"

Read more:
New drugs are costly and unmet need is growing - The Economist

To Read More: New drugs are costly and unmet need is growing – The Economist
categoriaSkin Stem Cells commentoComments Off on New drugs are costly and unmet need is growing – The Economist | dataMarch 12th, 2020
Read All

Meet the women racing to save the northern white rhino from extinction – KAKE

By daniellenierenberg

(CNN) -

There are only two northern white rhinos left on the planet, and they're both female. Unless scientists can make a dramatic breakthrough, the entire species will die with those two individuals.

In a nondescript building just north of San Diego, California, the fight to save the northern white rhino is coming down to the wire. However, the battleground here looks less like a scene from a wildlife documentary and more akin to something out of a science fiction novel.

At the San Diego Zoo Institute for Conservation Research, an army of scientists armed with liquid nitrogen, microscopes, and ultrasound machines is working around the clock to create an unprecedented first in the conservation world: they are looking to turn frozen rhino skin cells into baby rhinos.

It's not just the science that is groundbreaking, but also the team looking to save this species. Composed mostly of women, the lab is a rarity in a field traditionally dominated by men.

Find out more about Call to Earth and the extraordinary people working for a more sustainable future

The first step in this conservation effort began more than four and a half decades ago in 1975 when scientists established the institute's "Frozen Zoo." In a small room measuring no more than 36 square meters the skin cells of more than 10,000 individuals across 1,100 species sit in giant steel tanks suspended in time, frozen in liquid nitrogen.

Among the collection are the skin samples of 12 northern white rhinos. These are vital to the group's efforts because there is such a small gene pool of living northern whites.

The population has been decimated by poachers, who target rhinos because of the belief in parts of Asia that their horns can cure various ailments. The two surviving females both live under guard at the Ol Pejeta Conservancy in Kenya. Even thoughembryos have been producedin an Italian lab using eggs extracted from the pair, any future descendants from this kind of embryo would carry the genes of those two females.

That may not be enough genetic diversity to maintain a stable population. The hope is that the skin samples of those 12 individuals at the Frozen Zoo contain enough diversity to sustain the northern white species long-term.

The arduous task for these scientists is to create a rhino population from those samples.

Marlys Houck is curator of the Frozen Zoo. She graduated high school in 1979, the same year the Frozen Zoo froze its very first northern white rhino skin cell. She later joined the institute to work on the rhino project.

"I was hired specifically to try to make the cells of the rhinos grow better because they were one of the most difficult to grow cell lines," she told CNN.

Since then, she's figured out how to successfully grow and freeze the skin cells of the northern white.

The impact of this work is not lost on her. "We're losing species so rapidly," she said. "One of the things we can do is save the living cells of these animals before it's too late."

"We're at the forefront of science today," she added. "If we do everything right ... these cells should be here 50 years from now being used for purposes that we can't even imagine today."

Marisa Korody is one of the four scientists tasked with turning these frozen cells into new life. They have to reprogram the frozen skin cells into pluripotent stem cells. In layman's terms, Korody explains that "stem cells can become any cell type in the body if they're given the right signals."

Read: Former war zones turn into wildlife 'paradise'

The aim is to ultimately turn the stem cells into sperm and eggs. The ambitious feat has only been achieved in animals by Japanese scientists. While Korody and her team have looked to that research as a road map, she admits that doing the same with rhinos is uncharted territory. "We don't really know what twists and turns we need to take in order to get from A to B," she said.

"They haven't even figured out how to do this in humans," she added. "We have as much information as we possibly can about humans. We have a fraction of that for rhinos."

Korody says being at the forefront of this kind of science has been a dream job. "This was really the first project that's trying to apply this type of science to conservation as a whole," she said.

She may spend most of her time at work looking through the lens of a microscope, but her mind is always on the final goal for the rhinos: "We want to be able to put them back into the wild one day and have them living free."

Because the remaining two female northern white rhinos can't carry a pregnancy, even if the team can create embryos, the last obstacle is finding rhinos who can carry them to term.

The woman tasked with that job is Barbara Durrant. As the director of reproductive sciences, she's spent four years studying the reproductive systems of six female southern white rhinos at the institute's sister facility, the Nikita Kahn Rhino Rescue Center.

Though the rhinos at the center are a different species, Durrant says they are the closest relative to the northern white. The aim is to eventually have them be surrogates for northern white embryos.

On any given day, Durrant can be found conducting ultrasounds to help her understand each rhino's distinct reproductive cycle. In 2019, two of the center's females gave birth to southern white babies. Both were conceived via artificial insemination, giving Durrant and the teams working on the rhino project hope for the future.

Durrant believes one reason the project works so well is because there are so many women involved. "Women are naturally collaborative with each other," she said. "Because we have so many obstacles along the way and challenges and setbacks, we support each other and we have sympathy for each other."

Read: Rare bird brought back from extinction in the wild

Houck says women tend to be naturally nurturing. "The cells are living little organisms that we're growing and tending almost every day, and I think women are drawn to taking care of something and growing it into something more."

"It's wonderful leading a team of women, and I really think they're changing the world," she added. "People are going to look back and see it was this amazing group of women who quietly, unrecognized, work at this and just get better and better."

Here is the original post:
Meet the women racing to save the northern white rhino from extinction - KAKE

To Read More: Meet the women racing to save the northern white rhino from extinction – KAKE
categoriaSkin Stem Cells commentoComments Off on Meet the women racing to save the northern white rhino from extinction – KAKE | dataMarch 12th, 2020
Read All

Worldwide Cell Therapy Market Projections to 2028 – The Largest Expansion Will Be in Diseases of the Central Nervous System, Cancer and Cardiovascular…

By daniellenierenberg

DUBLIN, March 12, 2020 /PRNewswire/ -- The "Cell Therapy - Technologies, Markets and Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.

The cell-based markets was analyzed for 2018, and projected to 2028. The markets are analyzed according to therapeutic categories, technologies and geographical areas. The largest expansion will be in diseases of the central nervous system, cancer and cardiovascular disorders. Skin and soft tissue repair as well as diabetes mellitus will be other major markets.

The number of companies involved in cell therapy has increased remarkably during the past few years. More than 500 companies have been identified to be involved in cell therapy and 309 of these are profiled in part II of the report along with tabulation of 302 alliances. Of these companies, 170 are involved in stem cells.

Profiles of 72 academic institutions in the US involved in cell therapy are also included in part II along with their commercial collaborations. The text is supplemented with 67 Tables and 25 Figures. The bibliography contains 1,200 selected references, which are cited in the text.

This report contains information on the following:

The report describes and evaluates cell therapy technologies and methods, which have already started to play an important role in the practice of medicine. Hematopoietic stem cell transplantation is replacing the old fashioned bone marrow transplants. Role of cells in drug discovery is also described. Cell therapy is bound to become a part of medical practice.

Stem cells are discussed in detail in one chapter. Some light is thrown on the current controversy of embryonic sources of stem cells and comparison with adult sources. Other sources of stem cells such as the placenta, cord blood and fat removed by liposuction are also discussed. Stem cells can also be genetically modified prior to transplantation.

Cell therapy technologies overlap with those of gene therapy, cancer vaccines, drug delivery, tissue engineering and regenerative medicine. Pharmaceutical applications of stem cells including those in drug discovery are also described. Various types of cells used, methods of preparation and culture, encapsulation and genetic engineering of cells are discussed. Sources of cells, both human and animal (xenotransplantation) are discussed. Methods of delivery of cell therapy range from injections to surgical implantation using special devices.

Cell therapy has applications in a large number of disorders. The most important are diseases of the nervous system and cancer which are the topics for separate chapters. Other applications include cardiac disorders (myocardial infarction and heart failure), diabetes mellitus, diseases of bones and joints, genetic disorders, and wounds of the skin and soft tissues.

Regulatory and ethical issues involving cell therapy are important and are discussed. Current political debate on the use of stem cells from embryonic sources (hESCs) is also presented. Safety is an essential consideration of any new therapy and regulations for cell therapy are those for biological preparations.

Key Topics Covered

Part I: Technologies, Ethics & RegulationsExecutive Summary 1. Introduction to Cell Therapy2. Cell Therapy Technologies3. Stem Cells4. Clinical Applications of Cell Therapy5. Cell Therapy for Cardiovascular Disorders6. Cell Therapy for Cancer7. Cell Therapy for Neurological Disorders8. Ethical, Legal and Political Aspects of Cell therapy9. Safety and Regulatory Aspects of Cell Therapy

Part II: Markets, Companies & Academic Institutions10. Markets and Future Prospects for Cell Therapy11. Companies Involved in Cell Therapy12. Academic Institutions13. References

For more information about this report visit https://www.researchandmarkets.com/r/sy4g72

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and Markets Laura Wood, Senior Manager press@researchandmarkets.com

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907 Fax (outside U.S.): +353-1-481-1716

View original content:http://www.prnewswire.com/news-releases/worldwide-cell-therapy-market-projections-to-2028---the-largest-expansion-will-be-in-diseases-of-the-central-nervous-system-cancer-and-cardiovascular-disorders-301022375.html

SOURCE Research and Markets

See more here:
Worldwide Cell Therapy Market Projections to 2028 - The Largest Expansion Will Be in Diseases of the Central Nervous System, Cancer and Cardiovascular...

To Read More: Worldwide Cell Therapy Market Projections to 2028 – The Largest Expansion Will Be in Diseases of the Central Nervous System, Cancer and Cardiovascular…
categoriaSkin Stem Cells commentoComments Off on Worldwide Cell Therapy Market Projections to 2028 – The Largest Expansion Will Be in Diseases of the Central Nervous System, Cancer and Cardiovascular… | dataMarch 12th, 2020
Read All

Made-in-space organs could soon be reality – ETHealthworld.com

By daniellenierenberg

Astronauts are growing the beginnings of new organs on board the International Space Station.

The experiment is an attempt to grow human tissue by sending adult human stem cells into space, and allowing them to grow in space.

Eventually, it is hoped, the stem cells will develop into bone, cartilage and other organs. If that is successful, the discoveries could be used to try and grow organs for transplant, the scientists involved say.

The experiment uses weightlessness as a tool, according to Cara Thiel, one of the two researchers from the University of Zurich. The lack of gravity on board the ISS will be used to encourage the stem cells to grow into tissue in three dimensions, rather than the single-layer structures that form on Earth.

It is being conducted by the astronauts on board the ISS using a mobile mini-laboratory that was sent on a SpaceX rocket last week. The experiment will last for a month, during which scientists will watch to see how the stem cells grow.

If it is successful, they hope to switch from a small laboratory to bigger production. From there, they could use the process to generate tissue for transplants by taking cells from patients, or generating organ-like material, either ensuring that it works for a specific patients or reducing the number of animals used in experiments.

On Earth, tissue grows in monolayer cultures: generating flat, 2D tissue. But investigations both in space and Earth suggest that in microgravity, cells exhibit spatially unrestricted growth and assemble into complex 3D aggregates, said Oliver Ullrich, who is also leading the research.

Previous research has involved simulated ad real experiments, mostly using tumour cells, and placing real human stem cells into microgravity simulators. But for the next stage of the research there is no alternative to the ISS, he says, as 3D tissue formation of this kind requires several days or even weeks in microgravity.

After the month-long experiment, the scientists will get the samples back and expect to see successful formation of organoids smaller, more simple versions of organs inside the test tubes.

Scientists are still not sure why the conditions of the ISS lead to the assembly of complex 3D tissue structures. Scientists are still continuing to research how the gravitational force and the molecular machinery in the cell interact to create new and different kinds of tissue on Earth and in space.

Continue reading here:
Made-in-space organs could soon be reality - ETHealthworld.com

To Read More: Made-in-space organs could soon be reality – ETHealthworld.com
categoriaSkin Stem Cells commentoComments Off on Made-in-space organs could soon be reality – ETHealthworld.com | dataMarch 12th, 2020
Read All

Forty Seven and Rocket Pharmaceuticals Announce Research Collaboration for Fanconi Anemia – BioSpace

By daniellenierenberg

MENLO PARK, Calif. and NEW YORK, March 11, 2020 (GLOBE NEWSWIRE) -- Forty Seven Inc. (Nasdaq: FTSV) and Rocket Pharmaceuticals Inc. (Nasdaq: RCKT) announced today that they have entered into a research collaboration to pursue clinical proof-of-concept for Forty Sevens novel antibody-based conditioning regimen, FSI-174 (anti-cKIT antibody) plus magrolimab (anti-CD47 antibody), with Rockets ex vivo lentiviral vector hematopoietic stem cell (LVV HSC) gene therapy, RP-L102. The initial collaboration will evaluate this treatment regimen in Fanconi Anemia (FA), a genetic disease that affects patients capacity to produce blood cells and is associated with an increased risk of leukemia and other neoplasms. RP-L102, Rockets gene therapy approach for FA, involves treatment with patients own gene-corrected blood forming stem cells (hematopoietic stem cells, or HSCs).

Gene therapies for monogenic blood disorders have broad potential. One concern associated with these treatments is the toxicity of pre-therapy conditioning regimens that utilize cytotoxic chemotherapy and/or radiation to destroy existing HSCs and facilitate engraftment of gene-corrected HSCs. Forty Sevens all-antibody based conditioning regimen is designed to address the limitations of current pre-treatment conditioning therapies. These regimens are often associated with serious side effects, including severe infection, cognitive impairment, infertility, endocrine dysfunction, secondary malignancies and organ damage. These toxicities are especially difficult for pediatric patients and are particularly severe for patients with FA, who are more sensitive to the DNA-damaging effects of traditional conditioning agents. Preliminary data demonstrate that RP-L102 may confer efficacy without pre-treatment conditioning. The combination of RP-L102 with Forty Sevens all-antibody conditioning regimen may provide patients an alternate treatment option in situations where conditioning may be advantageous.

We are pleased to enter into this collaboration with Forty Seven, said Jonathan Schwartz, M.D., Chief Medical Officer and Senior Vice President of Rocket. RP-L102 Process B is currently being evaluated in a registrational trial without the use of conditioning. In parallel, we are assessing incorporation of a non-genotoxic conditioning regimen as a part of Rockets life-cycle management strategy. Forty Sevens novelall-antibodyconditioning regimen could also beapplied to Rockets other lentiviral programs, in which conditioning is more integral to the gene therapy approach.

We are initiating our first in human healthy volunteer study of FSI-174 in the first quarter this year, and are excited to enter into a partnership with Rocket at this time. Rocket is at the forefront of developing gene therapies for high unmet-need diseases, and this collaboration will provide an opportunity to evaluate the benefit of Forty Sevens novel conditioning regimen with Rockets RP-L102 to help FA patients, says Jens-Peter Volkmer, VP of Research at Forty Seven.

This collaboration is in line with our strategy to study our anti-cKIT and anti-CD47, all-antibody conditioning regimen in combination with several different gene therapies, and to establish clinical proof-of-concept in a broad range of transplant indications, said Mukul Agarwal, VP of Corporate Development at Forty Seven.

Maria Grazia Roncarolo, M.D., Scientific Advisor to Forty Seven, commented, The goal of my lifes work is to bring pediatric patients transformative therapies for currently incurable diseases. We believe Rocket Pharmaceuticals commitment to devastating diseases, such as FA, addresses a critical unmet need and Forty Sevens antibody conditioning creates an alternative avenue to deliver this therapy to those patients. We look forward to seeing how this collaboration may help patients in need.

Under the terms of the agreement, Rocket will provide its ex vivo LVV HSC gene therapy platform and Forty Seven will contribute its innovative antibody-based conditioning regimen for the collaboration.

About FSI-174 and MagrolimabFSI-174 is a humanized monoclonal antibody targeting cKIT, which is a receptor that is highly expressed on hematopoietic stem cells. Magrolimab is a humanized monoclonal antibody targeting CD47, which is a dont eat me signal to macrophages and is expressed on all cells. Magrolimab is currently being investigated in Phase 2 clinical trials to treat cancer and has established clinical efficacy in four indications, including myelodysplastic syndrome, acute myeloid leukemia, diffuse large B cell lymphoma and follicular lymphoma, with a favorable safety profile in over 400 patients treated, including some patients treated continuously for over two years. When combined, FSI-174 sends a positive signal to macrophages to target blood forming stem cells for removal and magrolimab disengages inhibitory signals that block phagocytosis. Combination of these antibodies has shown efficient removal of blood forming stem cells, allowing for transplantation in pre-clinical models.

About Fanconi Anemia Fanconi Anemia (FA) is a rare pediatric disease characterized by bone marrow failure, malformations and cancer predisposition. The primary cause of death among patients with FA is bone marrow failure, which typically occurs during the first decade of life. Allogeneic hematopoietic stem cell transplantation (HSCT), when available, corrects the hematologic component of FA, but requires myeloablative conditioning. Graft-versus-host disease, a known complication of allogeneic HSCT, is associated with an increased risk of solid tumors, mainly squamous cell carcinomas of the head and neck region. Approximately 60-70% of patients with FA have aFANC-Agene mutation, which encodes for a protein essential for DNA repair. Mutation in theFANC-Agene leads to chromosomal breakage and increased sensitivity to oxidative and environmental stress. Chromosome fragility induced by DNA-alkylating agents such as mitomycin-C (MMC) or diepoxybutane (DEB) is the gold standard test for FA diagnosis. Somatic mosaicism occurs when there is a spontaneous correction of the mutated gene that can lead to stabilization or correction of a FA patients blood counts in the absence of any administered therapy. Somatic mosaicism, often referred to as natural gene therapy provides a strong rationale for the development of FA gene therapy because of the selective growth advantage of gene-corrected hematopoietic stem cells over FA cells1.

1Soulier, J.,et al. (2005) Detection of somatic mosaicism and classification of Fanconi anemia patients by analysis of the FA/BRCA pathway. Blood 105: 1329-1336

About Rocket Pharmaceuticals, Inc. Rocket Pharmaceuticals, Inc. (Nasdaq: RCKT) (Rocket) is advancing an integrated and sustainable pipeline of genetic therapies that correct the root cause of complex and rare childhood disorders. The companys platform-agnostic approach enables it to design the best therapy for each indication, creating potentially transformative options for patients contending with rare genetic diseases. Rocket's clinical programs using lentiviral vector (LVV)-based gene therapy are for the treatment of Fanconi Anemia (FA), a difficult to treat genetic disease that leads to bone marrow failure and potentially cancer, Leukocyte Adhesion Deficiency-I (LAD-I), a severe pediatric genetic disorder that causes recurrent and life-threatening infections which are frequently fatal, and Pyruvate Kinase Deficiency (PKD) a rare, monogenic red blood cell disorder resulting in increased red cell destruction and mild to life-threatening anemia. Rockets first clinical program using adeno-associated virus (AAV)-based gene therapy is for Danon disease, a devastating, pediatric heart failure condition. Rockets pre-clinical pipeline program is for Infantile Malignant Osteopetrosis (IMO), a bone marrow-derived disorder. For more information about Rocket, please visitwww.rocketpharma.com.

For more information, please visit http://www.rocketpharma.com or contact info@rocketpharma.com

About Forty Seven, Inc.Forty Seven, Inc.is a clinical-stage immuno-oncology company that is developing therapies targeting cancer immune evasion pathways based on technology licensed fromStanford University. Forty Sevens lead program, magrolimab, is a monoclonal antibody against the CD47 receptor, a dont eat me signal that cancer cells commandeer to avoid being ingested by macrophages. This antibody is currently being evaluated in multiple clinical studies in patients with myelodysplastic syndrome, acute myeloid leukemia, and non-Hodgkins lymphoma.

For more information, please visitwww.fortyseveninc.comor contactinfo@fortyseveninc.com.

Follow Forty Seven on social media:@FortySevenInc,LinkedIn

Rocket Cautionary Statement Regarding Forward-Looking StatementsVarious statements in this release concerning Rocket's future expectations, plans and prospects, including without limitation, Rocket's expectations regarding the safety, effectiveness and timing of product candidates that Rocket may develop, to treat Fanconi Anemia (FA), Leukocyte Adhesion Deficiency-I (LAD-I), Pyruvate Kinase Deficiency (PKD), Infantile Malignant Osteopetrosis (IMO) and Danon Disease, and the safety, effectiveness and timing of related pre-clinical studies and clinical trials, may constitute forward-looking statements for the purposes of the safe harbor provisions under the Private Securities Litigation Reform Act of 1995 and other federal securities laws and are subject to substantial risks, uncertainties and assumptions. You should not place reliance on these forward-looking statements, which often include words such as "believe," "expect," "anticipate," "intend," "plan," "will give," "estimate," "seek," "will," "may," "suggest" or similar terms, variations of such terms or the negative of those terms. Although Rocket believes that the expectations reflected in the forward-looking statements are reasonable, Rocket cannot guarantee such outcomes. Actual results may differ materially from those indicated by these forward-looking statements as a result of various important factors, including, without limitation, Rocket's ability to successfully demonstrate the efficacy and safety of such products and pre-clinical studies and clinical trials, its gene therapy programs, the preclinical and clinical results for its product candidates, which may not support further development and marketing approval, the potential advantages of Rocket's product candidates, actions of regulatory agencies, which may affect the initiation, timing and progress of pre-clinical studies and clinical trials of its product candidates, Rocket's and its licensors ability to obtain, maintain and protect its and their respective intellectual property, the timing, cost or other aspects of a potential commercial launch of Rocket's product candidates, Rocket's ability to manage operating expenses, Rocket's ability to obtain additional funding to support its business activities and establish and maintain strategic business alliances and new business initiatives, Rocket's dependence on third parties for development, manufacture, marketing, sales and distribution of product candidates, the outcome of litigation, and unexpected expenditures, as well as those risks more fully discussed in the section entitled "Risk Factors" in Rocket's Annual Report on Form 10-K for the year ended December 31, 2019, filed March 6, 2020 with the SEC. Accordingly, you should not place undue reliance on these forward-looking statements. All such statements speak only as of the date made, and Rocket undertakes no obligation to update or revise publicly any forward-looking statements, whether as a result of new information, future events or otherwise.

Forty Seven Cautionary Statement Regarding Forward-Looking StatementsStatements contained in this press release regarding matters that are not historical facts are "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. Words such as will, may, assess, could, believe, and similar expressions (as well as other words or expressions referencing future events, conditions, or circumstances) are intended to identify forward-looking statements. These statements include those related to the research and development plans for Rockets and Forty Sevens respective platforms and product candidates, the timing and success of Forty Sevens collaboration with Rocket, Forty Sevens plans to pursue clinical proof-of-concept for FSI-174 plus magrolimab with the LVV HSC gene therapy platform, the focus on diseases that have the potential to be corrected with the combination of RP-L102 and Forty Sevens all-antibody conditioning regimen, the tolerability and efficacy of RP-L102, FSI-174 and magrolimab, the timing and success of any future collaborations between Forty Seven and Rocket, Forty Sevens plans to continue development of FSI-174 plus magrolimab, as well as related timing for clinical trials of the same.

Because such statements are subject to risks and uncertainties, actual results may differ materially from those expressed or implied by such forward-looking statements. The product candidates that Forty Seven develops may not progress through clinical development or receive required regulatory approvals within expected timelines or at all.In addition, clinical trials may not confirm any safety, potency or other product characteristics described or assumed in this press release. Such product candidates may not be beneficial to patients or successfully commercialized. The failure to meet expectations with respect to any of the foregoing matters may have a negative effect on Forty Seven's stock price. Additional information concerning these and other risk factors affecting Forty Seven's business can be found in Forty Seven's periodic filings with theSecurities and Exchange Commissionatwww.sec.gov. These forward-looking statements are not guarantees of future performance and speak only as of the date hereof, and, except as required by law, Forty Seven disclaims any obligation to update these forward-looking statements to reflect future events or circumstances.

Forty SevenInvestors:Hannah Deresiewicz, (212) 362-1200hannah.deresiewicz@sternir.com

or

Media:Sarah Plumridge, (312) 506-5218fortyseven@hdmz.com

Follow this link:
Forty Seven and Rocket Pharmaceuticals Announce Research Collaboration for Fanconi Anemia - BioSpace

To Read More: Forty Seven and Rocket Pharmaceuticals Announce Research Collaboration for Fanconi Anemia – BioSpace
categoriaBone Marrow Stem Cells commentoComments Off on Forty Seven and Rocket Pharmaceuticals Announce Research Collaboration for Fanconi Anemia – BioSpace | dataMarch 12th, 2020
Read All

Five College of Engineering Faculty Win NSF CAREER Grants – UMass News and Media Relations

By daniellenierenberg

The College of Engineering for the first time has five faculty members who have been awarded National Science Foundations (NSF) Faculty Early Career Development (CAREER) grants. Four of the recipients of the five-year grants, Lauren B. Andrews,Peter J. Beltramo,Jungwoo Leeand Sarah L. Perry, are assistant proferssors in chemical engineering, while Xian Duis an assistant professor in mechanical and industrial engineering.

Sanjay Raman, dean of the College of Engineering, welcomed news of the grants. These awards are a testimony to the remarkable potential of these early-career UMass engineering faculty, he says. They are also the product of strong faculty development programs at the college and university levels, and outstanding mentorship by colleagues across the college. We look forward to the impactful research and educational innovations of these rising stars in emerging areas such as therapeutics and vaccine development, tissue engineering, biomanufacturing, biosensors and flexible electronics.

Du is the principal investigator on a $571,655 grant that focuses on improvements in roll-to-roll soft lithography. He is establishing a learning-based modeling method that guides the design and control of continuous microcontact printing processes and investigates continuous pattern formation mechanisms.

Andrews, the Marvin and Eva Schlanger Faculty Fellow in chemical engineering, will do researchstudying how communities of bacteria can be engineered to have coordinated behaviors. This will have numerous applications in biomanufacturing, cell-based therapies, and medical diagnostics. Andrewss $589,060 grant will fund research into developing a new approach for effectively programming how cells in a bacterial community work together in a predictive and highly controllable way.

Beltramos $592,332 grant will support his work on understanding the interplay between lipid composition and biomolecule transport in biological membranes. This is fundamental research that could enable the development of such breakthroughs as advanced drug delivery systems, biosensors, and other biomimetic materials.

Lee says his $549,710 grant will fund research that could lead to a greater understanding through which bone remodeling and blood forming processes are functionally coupled in porus, or trabecular bone cavities, by creating tissue engineered stem cell bone marrow models.

Perrys $657,920 grant will fund a study of a groundbreaking new approach to protein stabilization based on nature-inspired strategies. Her research has the ultimate goal of boosting the accessibility of vaccines and other therapeutics, especially in developing countries, and extending the reach of temperature-stable proteins to sensing and catalysis applications.

See more here:
Five College of Engineering Faculty Win NSF CAREER Grants - UMass News and Media Relations

To Read More: Five College of Engineering Faculty Win NSF CAREER Grants – UMass News and Media Relations
categoriaBone Marrow Stem Cells commentoComments Off on Five College of Engineering Faculty Win NSF CAREER Grants – UMass News and Media Relations | dataMarch 12th, 2020
Read All

Australia’s Mesoblast plans to evaluate its stem cell therapy in patients infected with COVID-19 – BioWorld Online

By daniellenierenberg

PERTH, Australia Australian stem cell therapy company Mesoblast Ltd. plans to evaluate its allogeneic mesenchymal stem cell (MSC) candidate, remestemcel-L, in patients with acute respiratory distress syndrome (ARDS) caused by coronavirus (COVID-19) in the U.S., Australia, China and Europe.

The company is in active discussions with various governments, regulatory authorities, medical institutions and pharmaceutical companies to implement these activities.

What people are dying of is acute respiratory distress syndrome, which is the bodys immune response to the virus in the lungs, and the immune system goes haywire, and in its battle with the virus it overreacts and causes severe damage to the lungs, Mesoblast CEO Silviu Itescu told BioWorld.

Were going to be evaluating whether an injection of our cells intravenously can tone down the immune system just enough so it gets rid of the virus but doesnt destroy your lungs at the same time.

Recently published results from an investigator-initiated clinical study conducted in China reported that allogeneic MSCs cured or significantly improved functional outcomes in all seven treated patients with severe COVID-19 pneumonia.

We have now looked at our own data in lung disease in adults where half the patients had the same kind of inflammation in the lungs as you get with coronavirus, and our cells significantly reduced the inflammation and significantly improved lung function, Itescu said, noting that he is awaiting emergency use authorization to treat patients under a clinical trial protocol.

In a post-hoc analyses of a 60-patient randomized controlled study in chronic obstructive pulmonary disease (COPD), remestemcel-L infusions were well-tolerated, significantly reduced inflammatory biomarkers, and significantly improved pulmonary function in those patients with elevated inflammatory biomarkers.

Since the same inflammatory biomarkers are also elevated in COVID-19, those data suggest that remestemcel-L could be useful in the treatment of patients with ARDS due to COVID-19. The COPD study results have been submitted for presentation at an international conference, with full results to be submitted for publication shortly.

Mortality in COVID-19-infected patients with the inflammatory lung condition is reported to approach 50% and is associated with older age, co-morbidities such as diabetes, higher disease severity, and elevated markers of inflammation.

Current therapeutic interventions do not appear to be improving in-hospital survival, and remestemcel-L has potential for use in the treatment of ARDS, which is the principal cause of death in COVID-19 infection.

Itescu said he didnt know of any other stem cell companies that were doing this. He said that other companies could try the approach from a research perspective but that Mesoblast has all the patents locked down.

The companys intellectual property portfolio encompasses more than 1,000 patents or patent applications in all major markets and includes the use of MSCs obtained from any source for patients with ARDS, and for inflammatory lung disease due to coronavirus (COVID-19), influenza and other viruses.

Remestemcel-L is being studied in numerous clinical trials across several inflammatory conditions, including in elderly patients with lung disease and adults and children with steroid-refractory acute graft-vs.-host disease (aGVHD).

Mesoblasts stem cell therapy is currently being reviewed by the FDA for potential approval in the treatment of children with steroid-refractory aGVHD. The company submitted the final module of a rolling BLA in January.

Remestemcel-L is being developed for rare pediatric and adult inflammatory conditions. It is an investigational therapy comprising culture-expanded MSCs derived from the bone marrow of an unrelated donor and is administered in a series of intravenous infusions.

The stem cell therapy is believed to have immunomodulatory properties to counteract the inflammatory processes that are implicated in several diseases by down-regulating the production of pro-inflammatory cytokines, increasing production of anti-inflammatory cytokines, and enabling recruitment of naturally occurring anti-inflammatory cells to involved tissues, according to Mesoblast.

Read more from the original source:
Australia's Mesoblast plans to evaluate its stem cell therapy in patients infected with COVID-19 - BioWorld Online

To Read More: Australia’s Mesoblast plans to evaluate its stem cell therapy in patients infected with COVID-19 – BioWorld Online
categoriaBone Marrow Stem Cells commentoComments Off on Australia’s Mesoblast plans to evaluate its stem cell therapy in patients infected with COVID-19 – BioWorld Online | dataMarch 12th, 2020
Read All

Page 138«..1020..137138139140..150160..»


Copyright :: 2024