Update on stem cell treatment cost for 2018 from ongoing …
By daniellenierenberg
I get asked many questions about stem cell therapies, but one of the most common over the years has been about the stem cell treatment cost. For instance, a reporter might ask, How much does a stem cell treatment for MS cost? and a patient might ask me, How much is a fair cost for a stem cell therapy for arthritis? Or, patients will voluntarily tell me what they paid or mention it in the comments. We hear various numbers thrown around about costs so I decided to do a poll on this. I even did an early update on the results of this poll, voicing my skepticism that the costs paid were worth it.
But the poll has gotten well over 500 responses now so I thought I would revisit it and what it might mean.
You can see a screenshot of the images. Its fair to say, as much as Internet polls arent considered particularly accurate, that this one largely fits with what is reported out in the field.
(On a side note, I wish there was such a thing as going out into the field for stem cell scientists as Ive always been a bit jealous of scientists who really do go out in the field. What do we do, go out in the wild and catch wild or feral stem cells in the bush?)
Patients self-reported most often paying between $2,500 and $7,500 for their stem cell therapy so if we take the average of those we get that $5,000 figure that is what I hear most often from others. Yes, not necessarily very rigorous, but the result makes good sense. Not far behind though were responses in the $7,500-20,000 range.
About 1 in 10 respondents reported paying $20,000 or more, including some beyond $100,000. Thats a whopping stem cell treatment cost, especially for something most often unproven and unapproved by the FDA.
If we consider these responses, the average cost may be more like $7,500-$10,000.
Notably, about 1/16 respondents indicated their stem cells were free. Im not sure what that means in terms of how that came to be.
Interestingly, most respondents who also went on to answer a 2nd poll in that post about where they got the treatment indicate it was at a stem cell clinic (scroll down in that Oct. 2017 post and youll see the 2nd poll). This 2nd poll has about 200 responses.
So today buying a simple stem cell treatment, most often unproven and non-FDA approved, is often not so different in cost than buying a 10-year old used car, while less often it is similar to buy various new cars including at the high end of stem cell therapy cost, some very expensive new cars. This cost and the risks involved are why I have suggested to patients in the past to be assertive when considering a stem cell treatment, ask questions, dont just accept too good to be true kinds of answers, etc. In short, be at least (or ideally much more) rigorous about unproven stem cell treatments as you are about buying a car.
Related
Go here to read the rest:
Update on stem cell treatment cost for 2018 from ongoing ...
Hyperbaric oxygen therapy can improve cardiac function in healthy, aging – The Jerusalem Post
By daniellenierenberg
Hyperbaric oxygen therapy (HBOT) can improve heart functionality in healthy aging humans, according to a study by the Sagol Center for Hyperbaric Medicine and Research at Shamir Medical Center in Beer Yaacov.In this study, director of the Sagol Center for Hyperbaric Medicine and Research at Shamir Medical Center Prof. Shai Efrati and Dr. Marina Leitman, head of the Echocardiography Unit and Noninvasive Cardiology Service at Shamir Medical Center, turned their attention to HBOTs impact on cardiac function.According to the center, the study of HBOT for cardiac function has been limited, mostly evaluating patients during and after short-term exposures. However, for the first time, the study was conducted in humans and it demonstrated that repetitive HBOT protocols have a sustained effect on heart function.Healthy patients receiving HBOT to improve cognitive function underwent a 60-session treatment course using the Sagol Centers regenerative HBOT protocols. Using a high-resolution echocardiography, 31 patients were evaluated before HBOT was administered and three weeks after treatment concluded to identify the sustained effect of the treatment.HBOT includes the inhalation of 100% oxygen at pressures exceeding one atmosphere absolute [ATA], which is the average atmospheric pressure exerted at sea level, in order to increase the amount of oxygen dissolved in the body tissues, Efrati told The Jerusalem Post.Efrati, who has been pioneering new approaches for the application of HBOT treatments that specifically focus on HBOTs ability to trigger regeneration in the body, said that in the past HBOT was used mostly to treat chronic non-healing wounds.In recent years, there is growing evidence on the regenerative effects of HBOT, he said. We have now realized that the combined action of both hyperoxia (an excess of oxygen in the body) and hyperbaric pressure, leads to significant improvement in tissue oxygenation while targeting both oxygen and pressure sensitive genes, resulting in improved mitochondrial metabolism with anti-apoptotic (anti-cell death) and anti-inflammatory effects.According to Efrati, the newly developed protocols used in this study, which includes the intermittent increasing and decreasing of oxygen concentration, induces what is known as the Hyperoxic Hypoxic Paradox.This, he said induces stem cells proliferation and mobilization, leading to the generation of new blood vessels (angiogenesis) and tissue regeneration.Efrati said that during the first studies they conducted at the Sagol Center, they evaluated the beneficial effects of HBOT in treating traumatic brain injury and stroke. However, in this study we evaluated for the first time the effect of these new regenerative HBOT protocols on the normal aging heart. For the first time in humans we have demonstrated that HBOT can improve cardiac function.Efrati said for the last 12 years his team has developed an ongoing research program that investigates the regenerative effects of HBOT on different issues and degrees of damage. At the beginning we were focused on non-healing peripheral wounds. Then, we turned our focus to certain types of brain injuries.However, once the researchers found that HBOT induced many of the essential elements crucial to repairing almost any mechanism, we initiated a complementary research program that targets other organs such as the heart and other elements related to expected age-related functional decline.Along with normal aging, there is typically a decrease in cardiac function particularly in the mitochondrial cells of the heart, Efrati said.The mitochondria are the powerhouse of the cell [and] this is where we create energy, he said. HBOTs ability to improve mitochondrial function may explain the beneficial effects that we saw in the cardiac function of this normal aging population.By exposing the mitochondria to the fluctuations in oxygen by the use of HBOT, the team observed an improvement in contractility function of the heart meaning, the heart muscle contracted more efficiency over the course of the 60-session protocol.Efrati said the effect was particularly evident in the left ventricle, which is the chamber responsible for pumping oxygenated blood to the rest of the body.This is only the beginning of our understanding of the impact of HBOT on cardiac function in a normally aging population, and a larger and more diverse cohort will be required to further evaluate our initial findings, he said.Asked whether this treatment could also be used on people who are predisposed to heart conditions, Efrati said the short answer is yes, but he stressed that more research is needed.As far as we know, we are the first to identify HBOTs ability to improve cardiac function, Efrati said. Our study was on a group of 31 asymptomatic normal aging heart patients.We believe it is important to expand the scope of this study to a larger group, with both symptomatic and asymptomatic patients to understand the possibilities for HBOT as a treatment for patients with heart-related diseases, he said.The Sagol Center has also been studying the impact of HBOT on a variety of cognitive conditions.We have also conducted studies which showed positive results for the treatment of post-concussion syndrome as a result of traumatic brain injury, post-stroke recovery, fibromyalgia, Efrati said, adding that today, medical professionals understand that fibromyalgia is linked to issues in the brain center responsible for pain interpretation.Not every patient will benefit from HBOT, which is why patient selection should be done very carefully based on the damage seen in brain imaging assessments, he said.For example, if someone has a stroke, some of the tissue at the core of the stroke will die we will not be able to recover this tissue, Efrati said. But, other tissue that is damaged but not fully dead... is where HBOT can help.This damaged tissue, known as the metabolic dysfunction tissue (penumbra), is where we can have an impact and help recover lost function, he said.On the time line as to when using HBOT protocols may be put into effect on healthy aging patients in Israel, Efrati said these studies are already ongoing.I cant speak too much about this, as we are in the process of developing the results of the first study for publication, he said. However, we believe HBOT can positively impact both cognitive and physical performance in aging adults based on what we have seen at this point.Efrati said they will continue pursuing this line of research as it has the ability to transform how we look at aging.A number of research collaborations are ongoing, including research on cognitive decline, fibromyalgia and PTSD, he said.In addition, we have an ongoing research program on athletic performance both in professional and amateur level athletes, which looks at how HBOT may further improve performance, he said. Finally, we are studying the impact of HBOT on healthy aging adults to understand how HBOT may improve our health and cognitive performance as we age.When you look at aging as a disease that can be measured, then it can be treated, and this is a serious area of investigation for us, Efrati said.The study, led by Dr. Marina Leitman, Dr. Shmuel Fuchs, Dr. Amir Hadanny, Dr. Zvi Vered and Efrati, was published in the International Journal of Cardiovascular Imaging.
Follow this link:
Hyperbaric oxygen therapy can improve cardiac function in healthy, aging - The Jerusalem Post
Striving for higher res imaging of cells, Harvard team debuts startup with backing from ARCH, Northpond – Endpoints News
By daniellenierenberg
When the tech VCs at Andreessen Horowitz entered biotech 4.5 years ago with the $200 million bio fund I, the idea was simple and hubristic: Were not going to do biotech, Vijay Pande said at the time, keeping a16zs longtime stance. Instead, the bio fund is really about funding software companies in the bio space.
In the near-half decade since, they havent softened their rhetoric. Pande and general partner Jorge Condes frequent blog posts often have the tone ofBurning Man technofuturists. Talking of a foundational shift in biology, bio-revolution, and the meaning of life, and dropping koans like what is medicine? has turned them into the well-financed New Age mystics of an AI-driven and bioengineered future.
Today, Andreessen Horowitz is launching bio fund III and putting $750 million behind it more than funds I and II combined. Theyve added new partners, as they did before fund I and II, picking up technologist and entrepreneur Julie Yoo and Vineeta Agarwala, a GV and Broad Institute alumn. Itll take much of the same tack as the earlier funds, investing early and occasionally up to Series B, and pouring funds not only into therapeutics, but also diagnostics, synthetic biology and startups bringing biological advances into other sectors, such as agriculture.
But Conde tells Endpoints News that the group has learned a thing or two since fund I. Pande had talked about extending Moores law to biology through digital therapeutics but they were wrong. It wasnt just about software and artificial intelligence. It was about the long list of ways how biology was done, how drugs were discovered and how the whole healthcare system functions. It was biotechs that worked both with machine learning and wet labs, and founders conversant in both.
Since then, theyve invested in companies like Insitro that integrate AI as a core but not sole part of a drug development chain and Asimov, which is trying to use AI and other tech systems to design a genome from scratch. They even invested in EQRx, Alexander Boriseys startup trying to use me-too drugs to change pricing.
In October, Conde, Pande and Yoo published their most soaring blog post yet: Biology is Eating the World: A Manifesto. They wrote: We are at the beginning of a new era, where biology has shifted from an empirical science to an engineering discipline.
Before the funds launch, though, Conde told Endpoints were at the end of the beginning for that era.
He talked about what theyve learned since bio I, where biology and biotech is headed and how well know when the convergence between engineering and biology hes been prophesizing has arrived.
You called this the end of the beginning for a new era. What does that mean?
Unlock this story instantly and join 71,300+ biopharma pros reading Endpoints daily and it's free.
SUBSCRIBE SIGN IN
AskBio Announces First Patient Dosed in Phase 1 Trial Using AAV Gene Therapy for Congestive Heart Failure – BioSpace
By daniellenierenberg
RESEARCH TRIANGLE PARK, N.C. , Feb. 04, 2020 (GLOBE NEWSWIRE) -- Asklepios BioPharmaceutical (AskBio), a clinical-stage adeno-associated virus (AAV) gene therapy company, and its NanoCor Therapeutics subsidiary today announced that the first patient has been dosed in a Phase 1 clinical trial of NAN-101. NAN-101 is a gene therapy that aims to activate protein phosphatase inhibitor 1 (I-1c) to inhibit the activity of protein phosphatase 1 (PP1), a substance that plays an important role in the development of heart failure.
Congestive heart failure (CHF) is a condition in which the heart is unable to supply sufficient blood and oxygen to the body and can result from conditions that weaken the heart muscle, cause stiffening of the heart muscles, or increase oxygen demand by the body tissues beyond the hearts capability.
"Dosing the first patient using gene therapy to target I-1c to improve heart function is a tremendous milestone not only for the AskBio and NanoCor teams but, more importantly, for patients whose quality of life is negatively affected by CHF, said Jude Samulski, PhD, Chief Scientific Officer and co-founder of AskBio. We initially developed this gene therapy as treatment for late-stage Duchenne muscular dystrophy patients who typically die from cardiomyopathy. Following preclinical studies, we observed that heart function improved, which led us to investigate treatment for all types of heart failure.
Were excited to be involved in this novel approach for patients with Class III heart failure, said Timothy Henry, MD, FACC, MSCAI, Lindner Family Distinguished Chair in Clinical Research and Medical Director of The Carl and Edyth Lindner Center for Research at The Christ Hospital in Cincinnati, Ohio, and principal investigator for the study. These patients currently have no other options besides transplant and left ventricular assist devices (LVAD). Today, we started to explore the potential of gene therapy to change their outcomes.
Heart disease is the leading cause of death worldwide, with CHF affecting an estimated 1% of the Western world, including over six million Americans. There is no cure, and medications and surgical treatments only seek to relieve symptoms and slow further damage.
Research by many investigators around the world has been trying to understand what exactly goes wrong in the heart and weakens its pumping activity until it finally fails, said Evangelia (Litsa) Kranias, PhD, FAHA, Hanna Professor, Distinguished University Research Professor and Director of Cardiovascular Biology at the University of Cincinnati College of Medicine. The aim has been to identify potential therapeutic targets to restore function or prevent further deterioration of the failing heart. Along these lines, research on the role of I-1c started over two decades ago, and it moved from the lab bench to small and large animal models of heart failure. The therapeutic benefits at all levels were impressive. It is thrilling to see I-1c moving into clinical trials with the hope that it also improves heart function in patients with CHF.
About the NAN-101 Clinical Trial NAN-CS101 is a Phase 1 open-label, dose-escalation trial of NAN-101 in subjects with NYHA Class III heart failure. NAN-101 is administered directly to the heart via an intracoronary infusion by cardiac catheterization in a process similar to coronary angioplasty, commonly used to deliver treatments such as stem cells to patients with heart disease. The primary objective of the study is to assess the safety of NAN-101 for the treatment of NYHA Class III heart failure, as well as assess the impact of this treatment on patient health as measured by changes in exercise capacity, heart function and other factors including quality of life.
AskBio is actively enrolling patients with NYHA Class III heart failure to assess three doses of NAN-101. Please refer to clinicaltrials.gov for additional clinical trial information.
Would you like to receive our AskFirst patient engagement program newsletter? Sign up at https://www.askbio.com/patient-advocacy.
About The Christ Hospital Health Network The Christ Hospital Health Network is an acute care hospital located in Mt. Auburn with six ambulatory centers and dozens of offices conveniently located throughout the region. More than 1,200 talented physicians and 6,100 dedicated employees support the Network. Its mission is to improve the health of the community and to create patient value by providing exceptional outcomes, the finest experiences, all in an affordable way. The Network has been recognized by Forbes Magazine as the 24th best large employer in the nation in the magazines Americas 500 Best Large Employers listing and by National Consumer Research as the regions Most Preferred Hospital for more than 22 consecutive years. The Network is dedicated to transforming care by delivering integrated, personalized healthcare through its comprehensive, multi-specialty physician network. The Christ Hospital is among only eight percent of hospitals in the nation to be awarded Magnet recognition for nursing excellence and among the top five percent of hospitals in the country for patient satisfaction. For more than 125 years, The Christ Hospital has provided compassionate care to those it serves.
About AskBioFounded in 2001, Asklepios BioPharmaceutical, Inc. (AskBio) is a privately held, clinical-stage gene therapy company dedicated to improving the lives of children and adults with genetic disorders. AskBios gene therapy platform includes an industry-leading proprietary cell line manufacturing process called Pro10 and an extensive AAV capsid and promoter library. Based in Research Triangle Park, North Carolina, the company has generated hundreds of proprietary third-generation AAV capsids and promoters, several of which have entered clinical testing. An early innovator in the space, the company holds more than 500 patents in areas such as AAV production and chimeric and self-complementary capsids. AskBio maintains a portfolio of clinical programs across a range of neurodegenerative and neuromuscular indications with a current clinical pipeline that includes therapeutics for Pompe disease, limb-girdle muscular dystrophy type 2i/R9 and congestive heart failure, as well as out-licensed clinical indications for hemophilia (Chatham Therapeutics acquired by Takeda) and Duchenne muscular dystrophy (Bamboo Therapeutics acquired by Pfizer). For more information, visit https://www.askbio.com or follow us on LinkedIn.
Chinese New Year babys B.C. family gives gift of life in cord-blood donation – Vancouver Sun
By daniellenierenberg
Jack Chieh and Yinnie Wong with their baby boy, born last Friday (Chinese New Year). The couple donate her baby's cord blood to the cord blood bank at B.C. Womens Hospital & Health Centre.Handout
Yinnie Wong and Jack Chiehs six-pound, 13-ounce baby boy as yet unnamed was born on an auspicious day, Jan. 24, Chinese New Year, and hes already doing good in the world.
Everyone was really happy, it is supposed to be a lucky day, said Wong.
Although the birth was a planned C-section, Wong had no control over the date hospital administrators chose for the birth. What she did have control over was the choice to donate her babys cord blood to the cord blood bank at B.C. Womens Hospital & Health Centre, which has just celebrated its fifth anniversary.
Cord blood is blood that is taken from the umbilical cord and placenta immediately after the birth of a healthy infant. Cord blood is rich in stem cells, and can be used to treat over 80 diseases, including leukemia.
According to Canadian Blood Services, ethnically diverse donors are especially needed because although Stats Canada data shows 67.7 per cent of Canadians consider their ethnic origin to be diverse, only 31 per cent of Canadians with blood in Canadas stem-cell registry are from ethnically diverse backgrounds.
Crystal Nguyen, 20, is a former B.C. Childrens Hospital patient whose life was saved by a stem-cell transplant from donated cord blood. Nguyen was first diagnosed with acute myeloid leukemia at age 12. After chemo, she went into remission for almost three years. Then the cancer returned. She was told she needed a bone-marrow transplant.
Crystal Nguyen, now 20, was first diagnosed with acute myeloid leukemia at age 12. She found a stem-cell match for a needed bone-marrow transplant through the international cord blood bank.Handout
When I relapsed I was very confused, it was kind of surreal. The main thing about being told I needed the bone-marrow stem-cell transplant was confusion, fear and anxiety.
Nguyen is of Vietnamese descent and needed a match to survive. No one in her family was a match, nor was there a stem-cell match in the Canadian cord blood bank, but a match was found thanks to the Canadian Blood Services partnerships with 47 international blood banks.
I was told it came through the international cord blood bank from somewhere very far away, said Nguyen, who has been in remission since the transplant.
When she learned the stem-cell transplant had been successful, Nguyen, who is now studying to become a pediatric oncology nurse, said it felt too good to be true.
There was a lot of happiness, joy, excitement. Donating cord blood is such a simple way to save a life.
Although cord blood can be collected and stored for a fee by private companies and reserved for the donor familys use, cord blood donated through Canadian Blood Services is available free to the public whoever needs the match.
Wong didnt hesitate when her son was born. I felt like I wanted to do it if it helps someone in the public, and if it could save lives I would have been very happy to help another child, said Wong, who is a nurse at B.C. Womens hospital.
CLICK HERE to report a typo.
Is there more to this story? Wed like to hear from you about this or any other stories you think we should know about. Email vantips@postmedia.com.
See the article here:
Chinese New Year babys B.C. family gives gift of life in cord-blood donation - Vancouver Sun
Blocking Bone Marrow Cell Movement May Be Non-Hormonal Treatment… – Endometriosis News Today
By daniellenierenberg
Blocking the movement of cells from the bone marrow by inhibiting the CXCL12/CXCR4/CXCR7 signaling axis is a potential strategy for treating endometriosis, a recent study done in mice suggests.
The study, titled CXCR4 or CXCR7 antagonists treat endometriosis by reducing bone marrow cell trafficking, was published in theJournal of Cellular and Molecular Medicine.
Bone marrow-derived cells (BMDCs) play important roles in the normal functioning of the endometrium. For instance, stem cells from the bone marrow are involved in endometrial regeneration. But BMDCs also are involved in the formation of lesions in endometriosis.
The movement of BMDCs to uterine tissue whether for normal physiological reasons or as part of disease development is driven in large part by the signaling protein CXCL12. It acts through two protein receptors: CXCR4 and CXCR7. This CXCL12/CXCR4/CXCR7 signaling axis has been shown to be overactive in women with endometriosis.
Given the central role of the CXCL12/CXCR4/CXCR7 axis on BMDCs trafficking and in the pathogenesis [development] of endometriosis, we hypothesized that blocking CXCR4 or CXCR7 in endometriosis would inhibit the growth of endometriosis, the researchers said.
The scientists first used mouse models of endometriosis in which BMDCs were labeled with a fluorescent marker to confirm the presence of these cells in endometriotic lesions.
The BMDCs made up just over 10% of the total number of cells in lesions. Further, BMDCs that expressed CXCR4 represented about 4.4% of total lesion cells, while BMDCs expressing CXCR7 made up about 1.4%. CXCL12 also was highly expressed within the lesions.
The researchers then pharmacologically blocked each of the receptors, using Plerixafor (AMD3100) against CXCR4, and CCX771 against CXCR7. Plerixafor is used in stem cell transplants given to treat certain types of blood cancer. CCX771 is a small molecule without currently approved clinical uses.
Both treatments significantly reduced the percentage of BMDCs in lesions, suggesting that blocking this signaling axis did indeed stop the movement of these cells.
In addition, when either Plerixafor or CCX771 was given immediately after endometriosis establishment, the size of the endometriotic lesions was reduced by more than half compared with control mice. Blood vessel density also was significantly reduced, by about 40% for both receptors.
The treatments also reduced the expression of inflammatory signaling molecules known to be elevated in endometriosis, such as interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFalpha).
In a separate experiment to further test the treatments potential, Plerixafor and CCX771 were administered a few weeks after the endometriosis lesions developed. This more closely models the preexisting lesions found in humans at the time of endometriosis diagnosis, the researchers said.
The results were similar to those seen in the earlier model: there were significant decreases in lesion size by about 60% as well as in levels of inflammatory signaling molecules.
Notably, neither drug had any detectable effect on hormone cycling in the mice, demonstrating that the effects of these agents worked [through] a hormone independent pathway, the researchers said.
Based on the data, the researchers concluded that blocking the CXCL12/CXCR4/CXCR7 signaling axis may treat endometriosis. However, these results alone do not demonstrate that this effect is directly because of reduced BMDC recruitment. It would be equally plausible to postulate that the effect is due to blocking CXCL12/CXCR4/CXCR7 signaling in the endometrial cells themselves, not BMDCs, the investigators said.
To test this idea, the team established endometriosis models in mice that were engineered so that the cells in their uteruses could not make CXCL12. There were no detectable differences between these endometriosis lesions and lesions in mice that could make CXCL12 in their uteruses. Further, Plerixafor had no detectable effect on human endometrial cells taken from people with endometriosis and treated in a dish.
This suggests that the beneficial effect induced by blocking CXCL12/CXCR4/CXCR7 signaling is due to an effect on cells outside of the uterus. Due to their prevalence in lesions, this most likely means BMDCs, the researchers said.
Clinical use [of these therapies] will likely depend on side effect profile; the effects of prolonged use are not well characterized, the team said. They added that future studies evaluating such drugs safety profiles and off-target effects, particularly with long-term use, will be needed before these results can be translated into clinical application.
CXCR4 and CXCR7 antagonists are promising novel, nonhormonal therapies for endometriosis, the researchers concluded.
Marisa holds an MS in Cellular and Molecular Pathology from the University of Pittsburgh, where she studied novel genetic drivers of ovarian cancer. She specializes in cancer biology, immunology, and genetics. Marisa began working with BioNews in 2018, and has written about science and health for SelfHacked and the Genetics Society of America. She also writes/composes musicals and coaches the University of Pittsburgh fencing club.
Total Posts: 146
Margarida graduated with a BS in Health Sciences from the University of Lisbon and a MSc in Biotechnology from Instituto Superior Tcnico (IST-UL). She worked as a molecular biologist research associate at a Cambridge UK-based biotech company that discovers and develops therapeutic, fully human monoclonal antibodies.
Excerpt from:
Blocking Bone Marrow Cell Movement May Be Non-Hormonal Treatment... - Endometriosis News Today
Stem Cell Regeneration for Spinal Cord injuries
By daniellenierenberg
Spinal cord injuries can result in severe neurological dysfunction, including motor, sensory, and autonomic paralysis, and up until now there has been no cure or effective treatment for such injuries.
But the first human trial based on Nobel Prize winning induced pluripotent stem cells (IPSC) technology, is due to start in Japan, giving hope to hundreds of thousands of paralysed patients, that there might be light at the end of their tunnel.
The spinal cord is responsible for relaying signals up and down the body from the brain to the nervous system. The spinal cord is a bundle of nerves contained in the spinal canal, which is cocooned in the spinal column (not to be confused with the spinal cord they are two very separate entities).
The spinal cord itself has a protective sheath wrapped around it which acts as insulation whilst allowing nerve signals from the brain to travel even faster to where they need to go.
The spinal column is divided into five distinct sections:
The site of the spinal cord injury will determine the severity of the injury and injuries are classified as either:
The higher up the spinal cord the injury occurs, the more function and feeling will be lost. It is estimated that approximately every year there are between 8 to 246 cases per million incidences of spinal cord injuries worldwide.
Stem cell therapy is amongst the most exciting ongoing research for people with spinal cord injuries, in modern medicine. Because whilst the research is still in its infancy, legitimate trials are showing promising results.
According to the Journal of the American Academy of Orthopedic Surgeons, there are different stem cells which have varying abilities to restore certain functions.
Stem cells are self-renewing cells that can differentiate into one or more specific cell types. For people with spinal cord injuries, stem cells could prevent further cell death, stimulate cell growth from the existing cells and even replace the injured cells, restoring the communication channels between the body and the brain.
Until recently, stem cell research has involved looking at:
It is research into these induced pluripotent stem cells that the team in Japan are currently laying down the groundwork for. They are planning to conduct a first-in-human study of an induced pluripotent stem cell-based intervention, for subacute spinal cord injury.
Not only that, but it is the first such therapy to look into treating this kind of injury, that has ever received government approval for sale to patients.
However there are concerns by those who work in the field, but arent working on this particular project, that the evidence to support the suggestion that the treatment works, is insufficient. They state that the approval for the research was based on a small, poorly designed clinical trial.
Like the majority of scientific breakthroughs that have gone before, there will always be naysayers we used to think the world was flat and the sun orbited Earth, that the body was composed of four humours and an imbalance in those made us sick.
Those theories were disproved, and look how far weve come since then. Now imagine if we could make a paralysed person walk again. It will happen. But for now, lets celebrate and support this team for trying.
Because whilst there have been multiple attempts to develop stem cell transplantation approaches with the aim to regenerate damaged spinal cords before, this multicentre team is planning the first that might actually work, and be ethical to boot.
Read the original here:
Stem Cell Regeneration for Spinal Cord injuries
Chinese New Year babys B.C. family gives gift of life in cord – The Province
By daniellenierenberg
Jack Chieh and Yinnie Wong with their baby boy, born last Friday (Chinese New Year). The couple donate her baby's cord blood to the cord blood bank at B.C. Womens Hospital & Health Centre.Handout
By Denise Ryan
Yinnie Wong and Jack Chiehs six-pound, 13-ounce baby boy as yet unnamed was born on an auspicious day, Jan. 24, Chinese New Year, and hes already doing good in the world.
Everyone was really happy, it is supposed to be a lucky day, said Wong.
Although the birth was a planned C-section, Wong had no control over the date hospital administrators chose for the birth. What she did have control over was the choice to donate her babys cord blood to thecord blood bank at B.C. Womens Hospital & Health Centre, which has just celebrated its fifth anniversary.
Cord blood is blood that is taken from the umbilical cord and placenta immediately after the birth of a healthy infant. Cord blood is rich in stem cells, and can be used to treat over 80 diseases, including leukemia.
According to Canadian Blood Services, ethnically diverse donors are especially needed because although Stats Canada data shows 67.7 per cent of Canadians consider their ethnic origin to be diverse, only 31 per cent of Canadians with blood in Canadas stem-cell registry are from ethnically diverse backgrounds.
Crystal Nguyen, 20, is a former B.C. Childrens Hospital patient whose life was saved by a stem-cell transplant from donated cord blood. Nguyen was first diagnosed with acute myeloid leukemia at age 12. After chemo, she went into remission for almost three years. Then the cancer returned. She was told she needed a bone-marrow transplant.
When I relapsed I was very confused, it was kind of surreal. The main thing about being told I needed the bone-marrow stem-cell transplant was confusion, fear and anxiety.
Nguyen is of Vietnamese descent and needed a match to survive. No one in her family was a match, nor was there a stem-cell match in the Canadian cord blood bank, but a match was found thanks to the Canadian Blood Services partnerships with 47 international blood banks.
I was told it came through the international cord blood bank from somewhere very far away, said Nguyen, who has been in remission since the transplant.
When she learned the stem-cell transplant had been successful, Nguyen, who is now studying to become a pediatric oncology nurse, said it felt too good to be true.
There was a lot of happiness, joy, excitement. Donating cord blood is such a simple way to save a life.
Although cord blood can be collected and stored for a fee by private companies and reserved for the donor familys use, cord blood donated through Canadian Blood Services is available free to the public whoever needs the match.
Wong didnt hesitate when her son was born. I felt like I wanted to do it if it helps someone in the public, and if it could save lives I would have been very happy to help another child, said Wong, who is a nurse at B.C. Womens hospital.
View post:
Chinese New Year babys B.C. family gives gift of life in cord - The Province
Dr. Kenneth Pettine Announces Verification of Clinical Safety Trial – Yahoo Finance
By daniellenierenberg
Kenneth Pettine's stem cell product to treat OA was tested on retired Navy SEALs
FORT COLLINS, CO / ACCESSWIRE / February 3, 2020 / Kenneth Pettine is proud to announce that his revolutionary mesenchymal stem cell product to treat osteoarthritis was recently tested on 33 former Navy SEALs (one is a medal of honor recipient).
Kenneth Pettine is co-founder of Paisley Laboratories and a co-developer of a bone marrow-derived mesenchymal stem cell active growth factor and exosome product that is anticipated to revolutionize regenerative medicine.
In this study, Extracellular Vesicle Isolate Product (EVIP) was injected into 33 retired Navy SEALs to assist with knee, shoulder, elbow, ankle, and wrist osteoarthritis. At three-month follow-up, the injection appeared both safe and effective, with improvements ranging from 40% to as high as 98%. The average improvement is over 70%.
"This is extremely promising and we are motivated to continue our clinical studies to improve the quality of life for patients," says Kenneth Pettine.
Kenneth Pettine notes in his study that over 50 million Americans require daily treatment for disability and pain associated with OA. Every year, over one million total hip and knee replacements are performed in the U.S. with direct costs of over $30 billion and indirect costs of over $200 billion, with these numbers expected to double in the next three years.
In addition to this trial, Kenneth Pettine has three additional clinical studies planned to evaluate his stem cell products to treat erectile dysfunction, chronic obstructive pulmonary disease (COPD), and chronic lower back pain from painful discs.
For more information, visit https://www.kenneth-pettine.com/
About Kenneth Pettine
Dr. Kenneth Pettine is a serial entrepreneur and published clinical researcher with over 30 years of experience as an orthopedic surgeon. He holds a medical degree from the University of Colorado School of Medicine and completed his master's degree in orthopedic surgery and residency at the Mayo Clinic in Rochester, Minnesota.
In 1991, Dr. Pettine founded the Rocky Mountain Associates in Orthopedic Medicine. Kenneth Pettine is also the founder of Paisley Laboratories and the co-founder of the Society for Ambulatory Spine Surgery. In addition, he co-invented the Prestige cervical artificial disc and the Maverick Artificial Disc. Dr. Pettine is the principal investigator of 18 FDA studies involving non-fusion implants, biologics, and stem cells. He holds the only two issued U.S. patents for performing stem cell joint and spinal injections and currently has 21 additional patents pending for bone marrow derived mesenchymal stem cell applications. Kenneth Pettine is also a philanthropist and currently has a scholarship program underway to help students fund their education.
For more information, visit https://www.kenneth-pettine.com/ or https://www.kennethpettinescholarship.com/
Contact
https://www.kenneth-pettine.com/
SOURCE: Kenneth Pettine
View source version on accesswire.com: https://www.accesswire.com/574987/Dr-Kenneth-Pettine-Announces-Verification-of-Clinical-Safety-Trial
Link:
Dr. Kenneth Pettine Announces Verification of Clinical Safety Trial - Yahoo Finance
Chinese New Year babys B.C. family gives gift of life in cord-blood donation – The Province
By daniellenierenberg
Jack Chieh and Yinnie Wong with their baby boy, born last Friday (Chinese New Year). The couple donate her baby's cord blood to the cord blood bank at B.C. Womens Hospital & Health Centre.Handout
Yinnie Wong and Jack Chiehs six-pound, 13-ounce baby boy as yet unnamed was born on an auspicious day, Jan. 24, Chinese New Year, and hes already doing good in the world.
Everyone was really happy, it is supposed to be a lucky day, said Wong.
Although the birth was a planned C-section, Wong had no control over the date hospital administrators chose for the birth. What she did have control over was the choice to donate her babys cord blood to the cord blood bank at B.C. Womens Hospital & Health Centre, which has just celebrated its fifth anniversary.
Cord blood is blood that is taken from the umbilical cord and placenta immediately after the birth of a healthy infant. Cord blood is rich in stem cells, and can be used to treat over 80 diseases, including leukemia.
According to Canadian Blood Services, ethnically diverse donors are especially needed because although Stats Canada data shows 67.7 per cent of Canadians consider their ethnic origin to be diverse, only 31 per cent of Canadians with blood in Canadas stem-cell registry are from ethnically diverse backgrounds.
Crystal Nguyen, 20, is a former B.C. Childrens Hospital patient whose life was saved by a stem-cell transplant from donated cord blood. Nguyen was first diagnosed with acute myeloid leukemia at age 12. After chemo, she went into remission for almost three years. Then the cancer returned. She was told she needed a bone-marrow transplant.
Crystal Nguyen, now 20, was first diagnosed with acute myeloid leukemia at age 12. She found a stem-cell match for a needed bone-marrow transplant through the international cord blood bank.Handout
When I relapsed I was very confused, it was kind of surreal. The main thing about being told I needed the bone-marrow stem-cell transplant was confusion, fear and anxiety.
Nguyen is of Vietnamese descent and needed a match to survive. No one in her family was a match, nor was there a stem-cell match in the Canadian cord blood bank, but a match was found thanks to the Canadian Blood Services partnerships with 47 international blood banks.
I was told it came through the international cord blood bank from somewhere very far away, said Nguyen, who has been in remission since the transplant.
When she learned the stem-cell transplant had been successful, Nguyen, who is now studying to become a pediatric oncology nurse, said it felt too good to be true.
There was a lot of happiness, joy, excitement. Donating cord blood is such a simple way to save a life.
Although cord blood can be collected and stored for a fee by private companies and reserved for the donor familys use, cord blood donated through Canadian Blood Services is available free to the public whoever needs the match.
Wong didnt hesitate when her son was born. I felt like I wanted to do it if it helps someone in the public, and if it could save lives I would have been very happy to help another child, said Wong, who is a nurse at B.C. Womens hospital.
CLICK HERE to report a typo.
Is there more to this story? Wed like to hear from you about this or any other stories you think we should know about. Email vantips@postmedia.com.
See the article here:
Chinese New Year babys B.C. family gives gift of life in cord-blood donation - The Province
Global Stem Cell Banking Market Analysis, Trends, and Forecasts 2019-2025 – ResearchAndMarkets.com – Business Wire
By daniellenierenberg
DUBLIN--(BUSINESS WIRE)--The "Stem Cell Banking - Market Analysis, Trends, and Forecasts" report has been added to ResearchAndMarkets.com's offering.
The global market for Stem Cell Banking is projected to reach US$9.9 billion by 2025, driven by their growing importance in medicine given their potential to regenerate and repair damaged tissue.
Stem cells are defined as cells with the potential to differentiate and develop into different types of cells. Different accessible sources of stem cells include embryonic stem cells, fetal stem cells, peripheral blood stem cells, umbilical cord stem cells, mesenchymal stem cells (bmMSCs) and induced pluripotent stem cells. Benefits of stem cells include ability to reverse diseases like Parkinsons by growing new, healthy and functioning brain cells; heal and regenerate tissues and muscles damaged by heart attack; address genetic defects by introducing normal cells; reduce mortality among patients awaiting donor organs for transplant by regenerating healthy cells and tissues as an alternative to donated organs. While currently valuable in bone marrow transplantation, stem cell therapy holds huge potential in treating a host of common chronic diseases such as diabetes, heart disease (myocardial infarction), Parkinsons disease, spinal cord injury, arthritis, and amyotrophic lateral sclerosis. The technology has the potential to revolutionize public health.
The growing interest in regenerative medicine which involves replacing, engineering or regenerating human cells, tissues or organs, will push up the role of stem cells. Developments in stem cells bioprocessing are important and will be key factor that will influence and help regenerative medicine research move into real-world clinical use. The impact of regenerative medicine on healthcare will be comparable to the impact of antibiotics, vaccines, and monoclonal antibodies in current clinical care. With global regenerative medicine market poised to reach over US$45 billion 2025, demand for stem cells will witness robust growth.
Another emerging application area for stem cells is in drug testing in the pharmaceutical field. New drugs in development can be safely, accurately, and effectively be tested on stem cells before commencing tests on animal and human models. Among the various types of stem cells, umbilical cord stem cells are growing in popularity as they are easy and safe to extract. After birth blood from the umbilical cord is extracted without posing risk either to the mother or the child. As compared to embryonic and fetal stem cells which are saddled with safety and ethical issues, umbilical cord is recovered postnatally and is today an inexpensive and valuable source of multipotent stem cells. Until now discarded as waste material, umbilical cord blood is today acknowledged as a valuable source of blood stem cells. The huge gap between newborns and available cord blood banks reveals huge untapped opportunity for developing and establishing a more effective banking system for making this type of stem cells viable for commercial scale production and supply. Umbilical cord and placenta contain haematopoietic blood stem cells (HSCs). These are the only cells capable of producing immune system cells (red cells, white cells and platelet).
HSCs are valuable in the treatment of blood diseases and successful bone marrow transplants. Also, unlike bone marrow stem cells, umbilical cord blood has the advantage of having 'off-the-shelf' uses as it requires no human leukocyte antigen (HLA) tissue matching. Developments in stem cell preservation will remain crucial for successful stem cell banking. Among the preservation technologies, cryopreservation remains popular. Development of additives for protecting cells from the stresses of freezing and thawing will also be important for the future of the market. The United States and Europe represent large markets worldwide with a combined share of 60.5% of the market. China ranks as the fastest growing market with a CAGR of 10.8% over the analysis period supported by the large and growing network of umbilical cord blood banks in the country. The Chinese government has, over the years, systematically nurtured the growth of umbilical cord blood (UCB) banks under the 'Developmental and Reproductive Research Initiation' program launched in 2008. Several hybrid public-private partnerships and favorable governmental licensing policies today are responsible for the current growth in this market.
Companies Mentioned
Key Topics Covered:
I. METHODOLOGY
II. EXECUTIVE SUMMARY
1. MARKET OVERVIEW
2. FOCUS ON SELECT PLAYERS
3. MARKET TRENDS & DRIVERS
4. GLOBAL MARKET PERSPECTIVE
III. MARKET ANALYSIS
GEOGRAPHIC MARKET ANALYSIS
UNITED STATES
CANADA
JAPAN
CHINA
EUROPE
FRANCE
GERMANY
ITALY
UNITED KINGDOM
REST OF EUROPE
ASIA-PACIFIC
REST OF WORLD
IV. COMPETITION
V. CURATED RESEARCH
For more information about this report visit https://www.researchandmarkets.com/r/9b2ra3
See the article here:
Global Stem Cell Banking Market Analysis, Trends, and Forecasts 2019-2025 - ResearchAndMarkets.com - Business Wire
Mobility Devices Market to Reach $14.86 Billion by 2026; Rising Incidence of Physical Disabilities Worldwide to Favor Growth of the Market: Fortune…
By daniellenierenberg
Pune, Feb. 03, 2020 (GLOBE NEWSWIRE) -- The global Mobility Devices Market size is projected to reach USD 14.86 billion by 2026, exhibiting a CAGR of 6.9% during the forecast period. Staggering rate of growth of geriatric population across the globe will be one of the crucial factors driving this market in the upcoming decade. Old age entails a plethora of disorders that generally restrict mobility in aged individuals and render them helpless. Given the rate at which the world population is ageing, the demand for devices aiding mobility is likely to spike. According the UNs Population Division, DESA, people at or above 60 years of age are currently numbered at 962 million. In the next three decades, the global geriatric population will reach 2.1 billion, predicts the DESA. Furthermore, old people are more susceptible to accidents associated deteriorating motor functions. For instance, the National Council of Aging estimates about 2.8 million aged Americans are rushed to hospital emergency rooms annually as a result of falling. Thus, a combination of aging and mishaps associated with the process will fuel the Mobility Devices Market trends during the forecast period.
For more information in the analysis of this report, visit: https://www.fortunebusinessinsights.com/industry-reports/mobility-devices-market-100520
Fortune Business Insights shares the above and other valuable market information in its recent report, titled Mobility Devices Market Size, Share & Industry Analysis, By Product (Wheelchairs, Mobility Scooters, Walking Aids, and Others); By End-user (Personal Users and Institutional Users); and Regional Forecast, 2019-2026, which states that the value of this market was at USD 8.75 billion in 2018. The report also provides:
Growing Aging Population and Rise in Mobility Impairment Disorders to Drive the Market
The older population around the globe is continuously growing at an unprecedented rate. Aging decreases the ability to move and reduces the ability to perform physical tasks to maintain independent functioning among the elderly population. The growing older population count is likely to increase the percentage usage of mobile devices during the forecast period. According to the World Health Organization (WHO), in 2017, the global population aged 60 years or over was around 962 million and is projected to reach about 2.1 billion by 2050. Rising prevalence of chronic conditions such as arthritis, cerebral palsy, and muscular dystrophy among every age group is expected to increase the demand for highly advanced mobility aid devices during the forecast period.
Request a Sample Copy of the Research Report: https://www.fortunebusinessinsights.com/enquiry/request-sample-pdf/mobility-devices-market-100520
North America to Lead the Pack; Europe to Follow Closely
Among regions, North America is set to dominate the Mobility Devices Market share owing to the rising prevalence mobility-related disorders in the region. Coupled with this is the increasing number of aged people in the region, which will propel the regional market.
Europe is anticipated to be the second most dominant region in this market on account of high proportion of aged people with mobility impairment. Asia-Pacific is touted to be the most promising region as geriatric population in the region is growing, while unmet needs of the people in Latin America, the Middle East, and Africa will create lucrative market opportunities.
Focus on Patient Safety and Comfort to Drive Innovation Among Players
Strengthening market position is expected to be the primary focus of key players in this market, says one of our lead analysts. One of the leading strategies adopted is increasing investment in innovation to come up with novel solutions, keeping patient comfort and safety in mind. Some players are also expanding their global presence through collaborations and acquisitions.
Industry Developments:
List of Top Players Profiled in the Mobility Devices Market Report:
Have Any Query? Ask Our Experts: https://www.fortunebusinessinsights.com/enquiry/speak-to-analyst/mobility-devices-market-100520
Detailed Table of Content:
TOC Continued.!
Request for Customization: https://www.fortunebusinessinsights.com/enquiry/customization/mobility-devices-market-100520
Have a Look at Related Reports:
Wheelchair Market Size, Share & Industry Analysis, By Type (Manual & Powered), By Application (Standard Wheelchair, Bariatric Wheelchair, Sports Wheelchair, and Others) End-user (Personal User and Institutional User) and Regional Forecast, 2019-2026
Blood Pressure Monitoring Market Size, Share and Industry Analysis By Product Type (Sphygmomanometers, Digital Blood Pressure Monitors, Ambulatory Blood Pressure Monitors), By End User (Hospitals, Ambulatory Surgery Centers & Clinics, Home Healthcare & Others), and Regional Forecast 2018-2025
Advanced Wound Care Market Size, Share and Industry Analysis, By Product (Advanced Wound Dressings, Wound Care Devices & Active Wound Care), By Indication (Diabetic Foot Ulcers, Pressure Ulcers, Surgical Wounds, Others), By End User, and Regional Forecast 2018-2025
Magnetic Resonance Imaging (MRI) Systems Market Size, Share and Industry Analysis By Strength (Less than 1.5 T, 1.5 T & More than 1.5 T), By Application (Musculoskeletal, Neurology, Cardiology, Body Imaging), By End User (Hospitals, Ambulatory Surgical Centers, Diagnostic Centers), and Regional Forecast 2018-2025
Molecular Diagnostics Market Size, Share and Industry Analysis By Product Type (Instruments Reagents & Consumables), By Application (Infectious Disease, Blood Screening, Histology & Oncology), By Technique (Hospitals Amplification, Hybridization & Sequencing Techniques), End User (Hospitals, Clinical & Pathology Labs), and Regional Forecast 2018-2025
Hemostatic Agents Market Size, Share and Global Trend By Product Type (Active Hemostats, Passive Hemostats, Combination Hemostats), Application (Trauma, Cardiovascular Surgery, General Surgery, Plastic Surgery, Orthopedic Surgery & Neurosurgery), End User (Hospitals, Ambulatory Surgical Centers, Tactical Combat Casualty Care Centers) and Geography Forecast till 2025
Digital Radiography Market Size, Share and Global Trend By Product Type (Computed Radiography, Direct Digital Radiography), Application (General, Radiography Dentistry, Oncology, Orthopedic) End User (Hospital, Clinics, Diagnostic Centers) and Geography Forecast till 2026
Medical Imaging Equipment Market Size, Share and Global Trend by Type (Magnetic Resonance Imaging Equipment, Computed Tomography Equipment, X-ray Equipment, Ultrasound Equipment Molecular Imaging Equipment), By Application (Cardiology, Neurology, Orthopedics, Gynecology, Oncology), By End User (Hospitals, Specialty Clinics, Diagnostic Imaging Centers, Others) and Geography Forecast till 2026
Cardiac Rhythm Management (CRM) Devices Market Size, Share and Global Trend Product By (Cardiac Pacemakers, Defibrillators, Cardiac Resynchronization Therapy Devices) By End User (Hospitals & Clinics, Ambulatory Surgery Centers), and Geography Forecast to 2026
Transrectal Ultrasound (TRUS) Market Size, Share and Industry Analysis By Product (Systems, Transducers), Type (Cart/Trolley Based, Portable), Application (Diagnostic, Image-guided Treatment), End User (Diagnostic Laboratories, Hospitals) and Regional Forecast, 2018 - 2025
Orthobiologics Market Size, Share and Industry Analysis by Product Type (Viscosupplements, Bone Growth Stimulators, Demineralized Bone Matrix, Synthetic Bone Substitutes, Stem Cells, Allografts), By Application (Spinal Fusion, Maxillofacial & Dental, Soft Tissue Repair, Reconstructive & Fracture Surgery), By End User (Hospitals, Ambulatory Surgical Centers, Speciality Clinics), and Regional Forecast 2019-2026
Dental Implants Market Size, Share and Industry Analysis By Material (Titanium Implants, Zirconium Implants), By Type (Endosteal Implants, Subperiosteal Implants, Transosteal Implants), By Design (Tapered Implants, Parallel Implants), By End-user (Hospitals, Dental Clinics, Academic & Research Institutes) and Regional Forecast, 2019 2026
Immunodiagnostics Market Size, Share and Industry Analysis By Product Instruments, Reagents & Consumables), By Application (Oncology & Endocrinology, Hepatitis & Retrovirus, Cardiac Markers, Infectious Diseases), By End user (Clinical Laboratories, Hospitals, Physicians Offices), By End-user(Hospitals, Dental Clinics, Academic & Research Institutes) and Regional Forecast, 2019 2026
About Us:
Fortune Business Insights offers expert corporate analysis and accurate data, helping organizations of all sizes make timely decisions. We tailor innovative solutions for our clients, assisting them to address challenges distinct to their businesses. Our goal is to empower our clients with holistic market intelligence, giving a granular overview of the market they are operating in.
Our reports contain a unique mix of tangible insights and qualitative analysis to help companies achieve sustainable growth. Our team of experienced analysts and consultants use industry-leading research tools and techniques to compile comprehensive market studies, interspersed with relevant data.
At Fortune Business Insights we aim at highlighting the most lucrative growth opportunities for our clients. We, therefore, offer recommendations, making it easier for them to navigate through technological and market-related changes. Our consulting services are designed to help organizations identify hidden opportunities and understand prevailing competitive challenges.
Contact Us:Fortune Business Insights Pvt. Ltd. 308, Supreme Headquarters, Survey No. 36, Baner, Pune-Bangalore Highway, Pune - 411045, Maharashtra, India.Phone:US :+1 424 253 0390UK : +44 2071 939123APAC : +91 744 740 1245Email: sales@fortunebusinessinsights.comFortune Business InsightsLinkedIn | Twitter | Blogs
Press Release https://www.fortunebusinessinsights.com/press-release/mobility-devices-market-9550
Read the original post:
Mobility Devices Market to Reach $14.86 Billion by 2026; Rising Incidence of Physical Disabilities Worldwide to Favor Growth of the Market: Fortune...
UAB: 50 years of Improving Birmingham, Alabama and the World – Birmingham Times
By daniellenierenberg
UAB Magazine
Written by Charles Buchanan, Brett Bralley and Jay Taylor with editorial contributions from Matt Windsor and UAB Public Relations. Images from UAB Archives, Rachel Hendrix, Andrea Mabry, Sarah Parcak, Steve Wood and Getty Images. Web design by Tyler Bryant. Reprinted by permission of UAB Magazine.
UABs birth was like a ray of sunlight punching through the smog.
In 1969 the newly independent university, uniting a pioneering academic medical center and a growing extension center, brought the promise of a brighter future to a city eager for change.
Birmingham is better because of UAB. So are Alabama, America, and the world. In the following pages, discover some of the many ways that UAB has fulfilled its promiseby saving lives, solving problems, expanding knowledge, and opening doorsover 50 years.
1
Best of the best
UABs accolades shine a global spotlight on Birmingham and Alabama:
2
A way to retrain the brain
Most scientists once believed that neuroplasticitythe brains ability to grow or repair itselfended in childhood. But research by UAB neuroscientist Edward Taub, Ph.D., contributed to a shift in thinking, and in the 1990s he developed constraint-induced (CI) therapy for stroke patients with poorly functioning limbs. As the intensive training helps patients learn to accomplish tasks with their affected limbs, the brain adapts by strengthening communication with those parts of the body. And the results have been remarkable: Most patients see a clinically significant level of improvement in their ability to use their affected limbs, and brain scans have shown an increase in gray matter. Taub and UAB clinical psychologist Gitendra Uswatte, Ph.D., have used CI therapy to help thousands of stroke patientsand adapted it for patients impacted by cerebral palsy, traumatic brain injury, multiple sclerosis, and spinal cord injury. Today CI therapy is in use worldwide.
3
Discoveries on ice
UAB scientists conduct a lot of research in the fieldbut none may go as far afield as James McClintock, Ph.D.; Charles Amsler, Ph.D.; and Maggie Amsler. Their investigations take place at Palmer Station, Antarctica6,898 miles from their campus offices. For two decades, the biologists have led teams that dive into the frigid waters surrounding the icy continent to study the chemical ecology of the unique marine algae and invertebrates living there. What theyve discovered could aid the search for new drugs to help humans. The group also chronicles the dramatic impact of climate change, such as ocean acidification, on Antarctic marine life. You can see climate change happening there like no other place on earth, says McClintock.
4
A pinch of prevention
UAB endocrinologist Constance Pittman, M.D., turned her research passioniodines impact on thyroid functioninto a global mission. In the 1990s and 2000s, she teamed up with Kiwanis International and UNICEF to help eradicate iodine deficiency disorders (IDD), a prevalent cause of cognitive disabilities. Pittman traveled the world to convince companies to add iodine to table saltthe simplest solution for preventing IDD. And her work helped make a lasting impact.
5
Target: Diabetes
In 1973, UAB opened the nations first public diabetes hospitaland the first linked with an academic medical center. Today physicians on the front lines of the diabetes epidemic have an exciting new option to help their patients, thanks to breakthrough research from UABs Comprehensive Diabetes Center.
6
Sharing stories that matter
WBHM 90.3 FM radio went on the air in 1976 as the 200th National Public Radio (NPR)-affiliated station. A member-supported service of UAB, WBHM provides global news and award-winning local coverage to Birmingham and the surrounding region. The station also recently welcomed StoryCorps, an NPR-affiliated initiative, to collect stories from the Birmingham community that will be housed at the Library of Congress in Washington, D.C.
7
Book of Life
Its tough to find a physician anywhere in the world who hasnt learned a few things from Tinsley Harrison, M.D. The legendary School of Medicine cardiologist and dean created and edited Harrisons Principles of Internal Medicine, which has been reprinted 20 times, translated into 14 languages, and become arguably the most recognized book in all of medicine, according to the Journal of the American Medical Association.
8
Foresight
The School of Optometry has been a pioneer since it opened in 1969 as the nations first optometry school associated with an academic medical center. Three years later, it became the first optometry teaching program affiliated with a Veterans Administration (VA) hospital, establishing a national model. Today more than 2,500 optometry staff and students from various schools work in the VA system nationwide.
9
Helping our hometown
Living and working in the heart of the city, UAB students, faculty, and staff cant help but feel a connection to Birmingham. Here are just a few ways Blazers have volunteered to support their neighbors:
10
A whole new ball game
Gene Bartow Mens basketball coach1977-1996
UAB started a winning tradition in 1977 when it hired coach Gene Bartow away from powerhouse UCLA to start a mens basketball program. He created a legendary team able to topple top rivals and reach the NCAA Tournament in just its third seasonthe first of 15 NCAA Tournament and 12 National Invitational Tournament appearances on its record. As UABs first athletic director, Bartow also helped UAB compete in other arenas. Today student-athletes in 18 sports give Birmingham reasons to cheer. Take a spin through some of the Blazers most memorable moments:
11
New views of history
Its as if Indiana Jones and Google Earth had a love child. Thats how UAB anthropology faculty member and National Geographic fellow Sarah Parcak, Ph.D., described space archaeology to Stephen Colbert on The Late Show in 2016. She has pioneered the use of high-resolution satellite imagery to search for the buried remains of lost civilizations. And her discoveries have thrilled people worldwide, including Colbert. She was even mentioned in a Jeopardy! answer earlier this year.
12
Defense team
UAB immunologists have been among the first to shed light on the mechanisms powering our bodys defenses:
13
Game changers
Future football helmets may better protect athletes thanks to mechanical engineering professor Dean Sicking, Ph.D. (Before coming to UAB, he developed the lifesaving SAFER barriers used on NASCAR and IndyCar courses.) Analyzing data from thousands of helmet-to-helmet impacts in football, Sicking has developed designs for a new helmet that could address concussionsabsorbing as much energy of the impact as possible so that the athlete has less risk of brain injury.
14
The dividends of discovery
In 2018-2019, UAB received $602 million in research grants and awardsjust one year after surpassing the $500-million milestone for the first time. We are aiming high and exceeding our goals, and it is a testament to the UAB research communitys great ideas, hard work, and will to succeed, says Christopher Brown, Ph.D., vice president for research. A rise in research funding means more opportunities to explore the frontiers of knowledgebut it also enables UAB to attract top minds from around the country in health care, engineering, the sciences, and more, plus create new jobs that boost the local economy. Want to ensure that UAB continues its upward trajectory? Philanthropic support helps position the university to attain competitive research grants.
15
Giant leaps
Space is the place for UAB people and technology:
Researcher Larry DeLucas, O.D., Ph.D., became the first optometrist in orbit with a 1992 mission aboard the shuttle Columbia. There he conducted experiments to grow protein crystals, which give scientists a 3D view of protein structuresand a greater understanding of the roles they play in disease. DeLucas also served as chief scientist for the International Space Station in 1994-1995.
Astrophysicist Thomas Wdowiak, Ph.D., passed away in 2013, but his name lives onon Mars. The Red Planets Wdowiak Ridge honors the physics faculty members role in NASAs Mars Exploration Project. Wdowiak was in charge of operating the Mossbauer spectrometers onboard the Spirit and Opportunity rovers that helped uncover firm evidence that water once existed on Mars.
16
Focus on finances
Would you like to get better at saving, budgeting, or investing? Or do you dream of launching a business? The Regions Institute for Financial Education in the Collat School of Business has been helping people throughout the community develop practical, lifelong financial management skills since 2015. Some of its programs include a Money Math Camp for middle schoolers, a College Bridge Camp to prepare high schoolers for life after graduation, and for adults, a Do-It-Yourself Credit Repair Workshop.
17
Going green
Campus expansions have reshaped Birminghams Southside, and UAB works hard to be a good steward of that spaceand set a sustainable example. In 2008, UAB brought open green space into the heart of Birmingham by converting a city street into the Campus Green. Now UAB is aiming to reduce its greenhouse gas emissions by 20 percent and establish a clean energy standard of 20-percent renewable energy by 2025.
18
Ingenuity vs. Infection
Virus vanguards
Antiviral therapies are essential for treating everything from influenza to HIV. In 1977, UAB pediatrics experts Richard Whitley, M.D., and Charles Alford, M.D., helped spark the antiviral revolution by developing vidarabine, the first drug to treat encephalitis caused by the herpes simplex virus. In the 1990s, Whitley and his team transformed the herpes virus into a genetically engineered weapon against tumors.
Vaccines for everyone
The laboratory of Moon Nahm, M.D., is a national treasure, notes the National Institutes of Health. But its discoveries could help protect millions of children worldwide threatened by S. pneumoniae infections, the leading cause of pneumonia. (Nahms lab also is designated a World Health Organization Pneumococcal Reference Laboratory.) His mission is to make pneumonia vaccines more affordable for use in developing countries.
Global guardian
GeoSentinel is a worldwide network of clinics watching for potential pandemics in an increasingly interconnected world, ready to relay information quickly about new disease outbreaks and effective treatments. And it has Alabama roots. UAB travel medicine expert David Freedman, M.D., cofounded GeoSentinel, a collaboration between the International Society for Travel Medicine and the Centers for Disease Control and Prevention, in the 1990s. He also directed the network for 20 years.
19
Staying safe on the road
In 2002, UAB public health researchers unveiled the Digital Childa pioneering computer model evaluating the physical consequences of car crashes on young passengers at various stages of developmentto generate data that could lead to improved child safety devices. Shift gears to today, and researchers in UABs TRIP (Translational Research for Injury Prevention) Lab use virtual realitya first-of-its-kind SUV simulator built with Honda Manufacturing of Alabamato study distracted driving in an effort to save lives. The TRIP Lab also has a portable simulator for schools and community events to help educate students and others on the dangers of distracted driving.
20
A home for Birmingham history
Odessa WoolfolkEducator and civic leader
When Birmingham first dreamed of developing a civil rights museum and research center, UABs Odessa Woolfolk, then special assistant to the president and director of community relations, and Horace Huntley, Ph.D., a historian and first director of the African American studies program, helped lead efforts to turn that idea into a reality. The Birmingham Civil Rights Institute opened in 1992, with Woolfolk as president of its board of directors. Huntley also directed the institutes Oral History Project, which preserves the accounts of foot soldiers and other witnesses to the Birmingham campaign. Today the BCRI attracts visitors from around the world and is a key component of the Birmingham Civil Rights National Monument.
21
Invention in action
Faculty, staff, and students are designing the future for the rest of us. Preview some of their ingenious solutions:
Each year, biomedical engineering and business students develop technologies to help people overcome physical limitations. Examples include a joystick-controlled wheelchair for toddlerswhich won an international awardbuilt for the Bell Center for Early Intervention Programs, and a special scale to help wheelchair users monitor their weight, used by the Lakeshore Foundation. Another design, a mechanical umbrella to protect power wheelchair users from rainy weather, scored second place at the 2018 World Congress on Biomechanics.
Graphic design students in UABs Bloom Studio unleash their talents to support local nonprofits and underserved communities. You can spot their work on license plates and signs that promote and protect the Cahaba Riverpart of a collaboration with the Cahaba River Society.
Solution Studios pairs Honors College, engineering, and nursing students with UAB health professionals to tackle everyday problems affecting patient care. One team has designed a device prototype that could improve quality of life for patients wearing ostomy bags to expel waste. Another has focused on new, more comfortable methods of applying wires to the skin in settings such as intensive care units.
22
Spreading the word
Low literacy levels translate into increased high school dropout rates, a lower-performing workforce, and higher rates of social problems, say UAB School of Education experts. For years UABs Maryann Manning, Ed.D., led the charge to improve literacy across Alabama, launching programs such as a conference that attracted thousands of local schoolchildren to share their writing with authors and illustrators. Today the Maryann Manning Family Literacy Center continues her legacy, providing enrichment activities in reading, writing, math, arts, and science for children and helping teachers across Alabama learn innovative strategies to foster literacy skills in their classrooms.
23
The heart of innovation
John Kirklin, M.D.Surgery superstar
John Kirklin, M.D., helped put Birmingham on the medical map when he was recruited in 1966 to chair the Department of Surgery. He already was a superstar at the Mayo Clinic, where he had revolutionized cardiovascular surgery by improving the heart-lung machine and performing the first operations for a variety of congenital heart malformations. At UAB he continued to pursue new methods and techniques, such as the development of a computerized intensive care unit with continuous monitoring of vital functions, which became a model for ICUs worldwide.
When Kirklin passed away in 2004, colleagues estimated his medical innovations had saved millions of lives. And his legacy thrives in other ways: UAB is a world-class medical center in part because of Kirklins work behind the scenes, where he championed the combination of public and private investments to foster growth. His textbook, Cardiac Surgery, remains a must-read for anyone in the field. His name lives on in The Kirklin Clinic of UAB Hospital, which opened in 1992. And his son, cardiothoracic surgeon James Kirklin, M.D., directs UABs James and John Kirklin Institute for Research in Surgical Outcomes.
24
Birthplace of new businesses
UABs ideas and energy are an engine for entrepreneurship. The university was a founder of Birminghams Innovation Depot, where start-up companiessome born from UAB research breakthroughsfind the resources they need to grow. Today Innovation Depot is the Southeasts largest high-tech business incubator, home to more than 100 companies.
25
University of opportunity
In the fall of 2019, underrepresented students made up nearly 42 percent of UABs enrollment, and 20.5 percent of undergraduates were first-generation students. UAB has a long history of widening access to higher educationand potential careers in science and health careamong diverse students. Back in 1978, the Minority High School Research Apprentice Program began matching local students with faculty members for summer research experiences. Today, initiatives such as the Department of Surgerys Pre-College Internship for Students from Minority Backgrounds and the Neuroscience Roadmap Scholars program offer similar opportunities for students along their educational journeys.
26
Successful careers begin here
More than 135,000 alumni call UAB their alma mater. Today youll find them across the United States and around the world, working as leaders in health care, science, business, art, engineering, government, education, and other fields. Many stay connected with UAB through the National Alumni Society, which was established in 1979 and has 63 chapters in locations ranging from Washington, D.C., to Taiwan.
27
Read more from the original source:
UAB: 50 years of Improving Birmingham, Alabama and the World - Birmingham Times
The low-down on plant stem cells in skin care | Well+Good
By daniellenierenberg
I think it was around the time I was in high school that I learned that people were using stem cells to repair otherwise diseased organs. Science is crazy, right? But now, I see plant stem cells touted as skin-care ingredients in beauty productsall the timeand immediately my mind goes back to the laboratories. WTF are they actually?
The term stem cells is a generic phrase which refers to a special type of cell in an organism that can develop into many different types of cells, explains cosmetic chemist Perry Romanowski. Embryonic stem cells can be developed into all types of human cells like nerve cells, skin cells, muscle cells, etc. Its important to know that these are human cells that are specific to an individual.
In laymans terms, theyre undifferentiated cells that have not chosen a path as to what cells they are going to be yet, adds Purvisha Patel, MD, board-certified dermatologist and founder of Visha Skincare. More specifically, however, Im looking at plant stem cellswhich are different, but have somewhat similar functions. In plants, these cells live in the meristems of plants, says Dr. Patel. They help and regenerate live plants after they have an injury.
The similarity comes in how the cells act, though. Stem cells have the ability to self renew and self repair, just like human stem cells, says Ginger King, cosmetic chemist. The difference is that the plant ones actually have stronger antioxidant properties than human cells because plants are stationary. They have to protect themselves from the insults of weather.
Thats where the benefits to your skin come into playthese cellular components of plants are packed with antioxidants, which helps your skin to fend off free radicals that might otherwise aim to damage it. Plant stem cell benefits to the skin include anti-aging, antioxidant, and anti-inflammatory properties, says King.
These cellular components of plants are protective, and that translates when you apply one to your face.
But while we use the term stem cell it doesnt necessarily mean theyre alive like in the lab. When in skin-care products, the stem cells are not live, but you get the same benefits of antioxidants, amino acid content, and ability to boost collagen synthesis from these stem cell extracts, says King.
Original studies on plant stem cells on skin came using Swiss apple stem cells, according to Dr. Patel. Stem cell extracts were found to reverse the aging process of cultured fibroblasts, she explains. One of the first specific studies showed a decrease in the appearance of crows feet after extract administration. Other studies have followed, and it seems that the major benefit of plant stem cells is in the repair of the skin. These extracts may be beneficial as an anti-aging agent, especially if mixed with tissue exfoliating agents such as retinol, bakuchiol and alpha-hydroxy acids.
That said, even though experts affirm the skin benefits of plant stem cells, Romanowski says to take it with a grain of salt: In my opinion, stem cells are put into cosmetics because consumers hear the words stem cells and think it must refer to some type of advanced biomedical technology, he says. In reality, theyre just plant extracts, albeit super potent ones in many cases.
To find them on beauty product labels, King says to look for the words cell culture extract. Or the packaging will market it as a main ingredient. Product labels will usually have words stem cell on the product to show that they have the extract in them, says Dr. Patel. Other words such as phyto cells, plant extracts, and fruit extracts may be used on the label as well. Remember as with all skin-care ingredients, not all products are created equal and not all plants show efficacy with their stem cells. Look for brands that have clinical trials and results to back up the claims.
To shop the plant stem cell extracts for your own regimen, Ive rounded up some of the most noteworthy products, below.
Other ingredients to add to your skin-care regimen include some form of retinol, along with a trusty vitamin C serum.
Original post:
The low-down on plant stem cells in skin care | Well+Good
Stressful situations cause grey hair – CMU The Tartan Online
By daniellenierenberg
Legends from around the world feature characters whose sadness turns their hair grey overnight. Bizarre as they appear to be, those stories actually include an element of truth. Researchers at Harvard University confirmed that stress can indeed lead to grey hair and discovered the reasons behind it.
In a study published in Nature, the authors found that the nerve cells involved in the fight-or-flight response cause permanent damage to the pigment-regenerating stem cells in hair follicles in mice. This finding advances our understanding of how stress impacts the hair, moving researchers one step closer to blocking its negative effects.
To discover the cause of grey hair, researchers tested and eliminated different possible sources. They initially hypothesized immune attacks on pigment-producing cells were the cause, but mice without immune cells were still susceptible to grey hair.
They proceeded to other theories such as cortisol, the hormone elevated by stress. The theory of cortisol was disproved by further experiments on mice. After the mice lost their abilities to produce cortisol, they could still grow grey hairs under stress.
After several rounds of the process of elimination, the scientists landed on the sympathetic nerve system, which is responsible for the body's fight-or-flight response, as the culprit. Sympathetic nerves branch out into every hair follicle on the skin. When stressed, the nerves will release chemicals that are taken up by nearby stem cells, activating them into pigment-generating cells used to color the hair. An excess amount of pigment-generating cells will be activated when under stress, and the pigment reservoirs of these cells will be prematurely depleted. Once depleted, there are no longer cells that can color ones hair.
This finding helps scientists move towards moderating or blocking the effects of stress. In stressful environments, people are going to get grey hair at an earlier age. Currently, there are over 1.5 million posts with the hashtag #Greyhair on Instagram, and research in 2018 shows that 32 percent of British women under the age of 30 have already started to go grey. Indeed, grey hair is beginning to impact even those in their 20s. Even though factors like nutrition, medication, and genetics also play essential roles in greying hair, stress might have the greatest impact overall.
The relationship between stress, hair, and stem cells could also lead to new discoveries about how stress affects organ functions and blood vessels in comparison to stem cells. Scientists across many disciplines hope to ultimately exploit this relationship to find a way to control stem cells.
The rest is here:
Stressful situations cause grey hair - CMU The Tartan Online
College student from Longview seeks to make the grade with skin-care startup – Longview News-Journal
By daniellenierenberg
During his teen years, Longview native Heath Jordan said, he struggled with skin problems such as rosacea and acne.
Ive always had fair skin, he said, and he sought treatment at a dermatologist. I had a lot of blemishes and outbreaks.
He didnt let his conditions get under his skin. Jordan, 25, said challenges with his own skin inspired him to launch Tend + Temple out of his home in Forth Worth while pursuing a business degree at Texas Christian University.
That was a natural choice for me, he said of the business idea. I learned about skin care.
Jordan, son of Charlotte Hatley and the late Ken Jordan, said he came up with the name for his fledgling business after consulting a branding company that also devised a marketing plan.
He has developed three products with a chemist and dermatologist: a moisturizer, retinol mask (with a Vitamin A formula) and a facial cleanser.
All the products are contained in a tube and use plant stem cells and organic aloe, Jordan said. He also uses exotic ingredients such as snow algae and sea buckthorn oil.
Jordan said his skin-care line will be helpful for both men and women, athletes and people with a variety of skin types.
He plans to market the products at first to three target demographic groups: active-military or veterans (Jordan served in the Air Force), people on the go such as millennials and members of the LGBTQ community. He said he will offer discounts to teachers, active-duty military, veterans and first responders.
Im already talking to some businesses about eventually carrying the brand, he said. Online marketing will come later, then theyll be going into independent pharmacies and medical spas.
Jordan said he plans to formally launch Tend + Temple in June, but first he has to raise financing. Hes launched a campaign on the online fundraising tool Kickstarter that closes at 11:59 p.m. Feb. 29. His goal is raising $60,000.
That will complete the launch and get everything ready and stuff, Jordan said. Ive been using my own money.
If he does not raise the full amount through Kickstarter, Jordan said he would return the money to the contributors. However, he is determined to get his business going, and cited growing up with parents who encouraged ambitions.
There was nothing I could never do, they always kind of instilled in me and my sister (Mackenzie), he said.
His Spanish teacher at Pine Tree High School, Jenny Enriquez, said she recalls Jordan as being a hard worker.
I do not think Spanish was his favorite subject, said Enriquez, now a stay-at-home mom who has remained in touch with Jordan. Even if he struggled with the materials, he was always one of those students who was determined. He was going to get the grade he wanted.
Enriquez said Jordan stayed after class and sought extra credit.
And he remains determined. He joined the Air Force four days after graduating from high school and served six and a half years as a medic before his discharge. He now is a sophomore at TCU.
Once launched, he said, his plan is to expand the skin-care line over the next five years.
Id eventually like to branch off into other product categories such as food and beverages, Jordan said.
View original post here:
College student from Longview seeks to make the grade with skin-care startup - Longview News-Journal
Efficacy and Safety of Sonidegib in Adult Patients with Nevoid Basal C | CCID – Dove Medical Press
By daniellenierenberg
John T Lear,1 Axel Hauschild,2 Eggert Stockfleth,3 Nicholas Squittieri,4 Nicole Basset-Seguin,5 Reinhard Dummer6
1Manchester Royal Infirmary, Manchester, UK; 2Klinik Fr Dermatologie, Venerologie Und Allergologie Universittsklinikum Schleswig-Holstein, Kiel, Germany; 3Universittshautklinik Bochum, Bochum, Germany; 4Sun Pharmaceutical Industries, Inc., Princeton, NJ, USA; 5Department of Dermatology, Hpital Saint Louis, Paris, France; 6Skin Cancer Center University Hospital, Zrich, Switzerland
Correspondence: John T LearUniversity of Manchester, 46 Grafton Street, Manchester M13 9NT, UKTel +44 161 276 4173Fax +44 161 276 8881Email john.lear@srft.nhs.uk
Nevoid basal cell carcinoma syndrome (NBCCS), or Gorlin syndrome, is a rare hereditary disease characterized by the development of multiple cutaneous basal cell carcinomas (BCCs) from a young age.1 Loss-of-function germline mutations in the hedgehog-related patched 1 (PTCH1) tumor suppressor gene are the most common cause of NBCCS.1 The hedgehog signaling pathway plays a major role in embryonic development, and in adulthood, is involved in the renewal and maintenance of distinct tissues, including hair follicles, muscle stem cells, and gastric epithelium.2 Its abnormal activation is thought to drive the formation of both sporadic BCCs and those resulting from NBCCS.1 Patients with NBCCS inherit one inactive copy of PTCH1 and then acquire a second-hit mutation, resulting in hedgehog pathway activation and BCC formation.1 Mutations in Suppressor of fused (SUFU) or the PTCH1 homolog PTCH2 have also been found in a subset of patients meeting criteria for NBCCS.1,3
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.
View post:
Efficacy and Safety of Sonidegib in Adult Patients with Nevoid Basal C | CCID - Dove Medical Press
Cosmetic Skin Care Market Enhancement And Its growth prospects forecast 2019 to 2026 – Dagoretti News
By daniellenierenberg
The market analysis and insights included in the Cosmetic Skin Care market report presents key statistics on the market status of global and regional manufacturers and is an essential source of guidance which provides right direction to the companies and individuals interested in the industry. To prosper in this competitive market place, businesses are highly benefited if they adopt innovative solutions such as this Cosmetic Skin Care market research report. This wide-ranging market research report acts as a backbone for the success of business in any sector. The market drivers and restraints have been explained in the report with the use of SWOT analysis.
Global cosmetic skin care market is set to witness a substantial CAGR of 5.5% in the forecast period of 2019- 2026. The report contains data of the base year 2018 and historic year 2017. Increasing self-consciousness among population and rising demand for anti- aging skin care products are the factor for the market growth.
Global Cosmetic Skin Care Market By Product (Anti-Aging Cosmetic Products, Skin Whitening Cosmetic Products, Sensitive Skin Care Products, Anti-Acne Products, Dry Skin Care Products, Warts Removal Products, Infant Skin Care Products, Anti-Scars Solution Products, Mole Removal Products, Multi Utility Products), Application (Flakiness Reduction, Stem Cells Protection against UV, Rehydrate the skins surface, Minimize wrinkles, Increase the viscosity of Aqueous, Others), Gender (Men, Women), Distribution Channel (Online, Departmental Stores and Convenience Stores, Pharmacies, Supermarket, Others), Geography (North America, Europe, Asia-Pacific, South America, Middle East and Africa) Industry Trends and Forecast to 2026 ;
Complete report on Global Cosmetic Skin Care Market Research Report 2019-2026 spread across 350 Pages, profiling Top companies and supports with tables and figures
Market Definition: Global Cosmetic Skin Care Market
Cosmetic skin care is a variety of products which are used to improve the skins appearance and alleviate skin conditions. It consists different products such as anti- aging cosmetic products, sensitive skin care products, anti- scar solution products, warts removal products, infant skin care products and other. They contain various ingredients which are beneficial for the skin such as phytochemicals, vitamins, essential oils, and other. Their main function is to make the skin healthy and repair the skin damages.
Key Questions Answered in Global Cosmetic Skin Care Market Report:-
Our Report offers:-
Top Key Players:
Market Drivers:
Market Restraints:
Key Developments in the Market:
Customize report of Global Cosmetic Skin Care Market as per customers requirement also available.
Market Segmentations:
Global Cosmetic Skin Care Market is segmented on the basis of
Market Segmentations in Details:
By Product
By Application
By Gender
By Distribution Channel
By Geography
North America
Europe
Asia-Pacific
South America
Middle East & Africa
Competitive Analysis: Global Cosmetic Skin Care Market
Global cosmetic skin care market is highly fragmented and the major players have used various strategies such as new product launches, expansions, agreements, joint ventures, partnerships, acquisitions, and others to increase their footprints in this market. The report includes market shares of cosmetic skin care market for Global, Europe, North America, Asia-Pacific, South America and Middle East & Africa.
About Data Bridge Market Research:
Data Bridge Market Researchset forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.
Contact:
Data Bridge Market Research
Tel: +1-888-387-2818
Email: [emailprotected]
Go here to read the rest:
Cosmetic Skin Care Market Enhancement And Its growth prospects forecast 2019 to 2026 - Dagoretti News
SASpine to offer Stem Cell Therapy – Yahoo Finance
By daniellenierenberg
SAN ANTONIO, Feb. 3, 2020 /PRNewswire/ -- SASpine is now offering cutting edge Stem Cell Treatments to patients. For the past several years Dr. Steven Cyr, Mayo Clinic Trained Spine Surgeon, has been researching the benefits of stem cells in the treatment of multiple medical conditions including spinal disorders, specifically, conditions which involve spinal cord injury, degenerative disc disease, herniated discs, and as a supplement to enhance the success of Spinal fusions when treating instability, deformity, and fractures of the spine.
Steven J. Cyr, M.D., is a spine surgeon who has gained a reputation for surgical excellence in Texas, throughout the nation, and abroad.
Dr. Steven Cyr has been treating patients using growth factors and stem cells contained in amniotic tissue and bone marrow aspirate to provide a potential for improved success with fusion procedures, when treating herniated discs, and for arthritic or damaged joints, with remarkable success. "The goal of any medical intervention is to yield improved outcomes with the ideal result of returning a patient to normal function, when possible," states Dr Cyr. He went on to elaborate that there are times when only a structural solution can solve problems related to spinal disorders, but even in that scenario, the use of stem cells or growth factors derived from stem cell products can possibly improve the success of surgical procedures. "I have patients previously unable to jog or run return to normal function and athletic ability after injections of growth factors and stem cell products into the knee joints, hip joints, and shoulder joints," he said. "This includes high-level athletes, professional dancers, and the average weekend warrior."
There may be promise in treating patients with spinal cord injury as well. SASpine CEO, LeAnn Cyr, states, "There are reports of patients gaining significant neurological improvement after being treated with stem cells." Dr Cyr continues, "Most patients with spinal cord injuries resulting from trauma also have mechanical pressure on the nerves that result either from bone fragments or disc material compressing the spinal cord that needs to be removed along with surgical stabilization of the spinal bones. There's significant potential that stem cells bring to the equation when treating these types of patients, and I am excited about the potential that these products offer to the host of treatments to address spinal conditions and arthritic joints."
For more information about SASpine's Stem Cell Treatment Program, visit http://www.saspine.com or call (210) 487-7463 in San Antonio or (832) 919-7990 in Houston.
Related Linkswww.facebook.com/saspinewww.instagram.com/surgical.associates.in.spine
If you've been living with back pain, you're not alone. Here at SASpine, we have experienced spine specialists who are committed to improving your quality of life. (PRNewsfoto/SASpine)
View original content to download multimedia:http://www.prnewswire.com/news-releases/saspine-to-offer-stem-cell-therapy-300997355.html
SOURCE SASpine
See the rest here:
SASpine to offer Stem Cell Therapy - Yahoo Finance
Patient in Japan 1st to have iPS cell heart muscle transplant : The Asahi Shimbun – Asahi Shimbun
By daniellenierenberg
A patient who received the worlds first transplant of cardiac muscle cells using artificially derived stem cells known as iPS cells this month is in stable condition, an Osaka University team said Jan. 27.
After surgery, doctors closely monitored the patient, who had ischemic cardiomyopathy, a condition in which clotted arteries cause heart muscles to malfunction. But the patient has been moved toa general hospital ward, the team said.
Yoshiki Sawa, a professor of cardiovascular surgery at the university, who led the team that conducted the transplant, said the team aims to put the technique into practical use.
Sawa said the team hopestransplants of heart muscle tissues derived from induced pluripotent stem cellswill be used to save many patients who have heart conditions.
In the clinical trial, three sheets of heart muscle tissues made from iPS cells stocked at Kyoto Universitys Center for iPS Cell Research and Application were attached to affected parts of the patients heart. The iPS cells were created from tissues provided by a healthy donor.
The sheets were 4 to 5 centimeters in diameter and 0.1 millimeter thick.
The transplant's goal is to regenerate cardiac blood vessels using a substance secreted by the sheets of muscle cells. The sheets are degradable and disappear from the body several months after they secrete the substance, according to the team.
The university plans to perform similar transplants on nine other patients who have serious heart problems.
The Osaka University team had planned to conduct the clinical trial of the transplant earlier after the government approved the plan in May 2018.
But it was postponed due to damage from a powerful earthquake that hit Osaka Prefecture the following month that rendered its facility to cultivate cells unusable.
The trial is part of the process toward the future distribution of medical products using cells.
Osaka Universitys announcement of the successful transplant of tissues created from iPS cells marked the fourth such transplantation.
Including Osaka University's trial, Japanese surgeons have now successfully transplanted tissues created from iPS cells four times.
The world's first transplant of iPS-derived cells was conducted in 2014 whenthe Riken research institute transplanted retina cells for a patient with age-related macular degeneration.
In 2018, Kyoto University transplanted nerve cells for a Parkinson disease patient. Osaka University transplanted cornea cells into a patient with a disease of the cornea in 2019.
Patients who undergo transplants using iPS-derived cell must accept the risk that the cells may become cancerous.
The moreiPS-derived cells a patient receives, the higher their risk.
Hundreds of thousands of retina cells were used in the 2014 retina transplant. In the 2018 and 2019 transplants, the number of nerve and cornea cells used soared to between 5 million to 6 million.
Osaka University's latest transplant utilized roughly 100 milliontissues made from iPS cells.
Sawa acknowledged the transplanted heart muscle tissues could turn cancerous, but said the teamhas made great efforts to remove potentially cancerous cells.
Hideyuki Okano, professor of molecular neurobiology at Keio University, who is researching the application of iPS-derived nerve cells to treat patients with spinal cord damage, said the risk was worth it.
Okano said the Osaka University's transplant, using tissues made from iPS cells from a donor, could be more effective than the existing therapy, which uses the patients own muscle tissues.
I understand that the transplanted tissues might become cancerous or cause an erratic heart rhythm, but the transplantation of the iPS-derived heart muscle tissues can be more effective than muscle tissue sheets made from the patients leg, Okano said.
Keio University is also planning to conduct clinical research using iPS-derived cells to regenerate heart tissues.
Read more:
Patient in Japan 1st to have iPS cell heart muscle transplant : The Asahi Shimbun - Asahi Shimbun