Page 162«..1020..161162163164..170180..»

Skeletal system 1: the anatomy and physiology of bones – Nursing Times

By daniellenierenberg

Bones are an important part of the musculoskeletal system. This article, the first in a two-part series on the skeletal system, reviews the anatomy and physiology of bone

The skeletal system is formed of bones and cartilage, which are connected by ligaments to form a framework for the remainder of the body tissues. This article, the first in a two-part series on the structure and function of the skeletal system, reviews the anatomy and physiology of bone. Understanding the structure and purpose of the bone allows nurses to understand common pathophysiology and consider the most-appropriate steps to improve musculoskeletal health.

Citation: Walker J (2020) Skeletal system 1: the anatomy and physiology of bones. Nursing Times [online]; 116: 2, 38-42.

Author: Jennie Walker is principal lecturer, Nottingham Trent University.

The skeletal system is composed of bones and cartilage connected by ligaments to form a framework for the rest of the body tissues. There are two parts to the skeleton:

As well as contributing to the bodys overall shape, the skeletal system has several key functions, including:

Bones are a site of attachment for ligaments and tendons, providing a skeletal framework that can produce movement through the coordinated use of levers, muscles, tendons and ligaments. The bones act as levers, while the muscles generate the forces responsible for moving the bones.

Bones provide protective boundaries for soft organs: the cranium around the brain, the vertebral column surrounding the spinal cord, the ribcage containing the heart and lungs, and the pelvis protecting the urogenital organs.

As the main reservoirs for minerals in the body, bones contain approximately 99% of the bodys calcium, 85% of its phosphate and 50% of its magnesium (Bartl and Bartl, 2017). They are essential in maintaining homoeostasis of minerals in the blood with minerals stored in the bone are released in response to the bodys demands, with levels maintained and regulated by hormones, such as parathyroid hormone.

Blood cells are formed from haemopoietic stem cells present in red bone marrow. Babies are born with only red bone marrow; over time this is replaced by yellow marrow due to a decrease in erythropoietin, the hormone responsible for stimulating the production of erythrocytes (red blood cells) in the bone marrow. By adulthood, the amount of red marrow has halved, and this reduces further to around 30% in older age (Robson and Syndercombe Court, 2018).

Yellow bone marrow (Fig 1) acts as a potential energy reserve for the body; it consists largely of adipose cells, which store triglycerides (a type of lipid that occurs naturally in the blood) (Tortora and Derrickson, 2009).

Bone matrix has three main components:

Organic matrix (osteoid) is made up of approximately 90% type-I collagen fibres and 10% other proteins, such as glycoprotein, osteocalcin, and proteoglycans (Bartl and Bartl, 2017). It forms the framework for bones, which are hardened through the deposit of the calcium and other minerals around the fibres (Robson and Syndercombe Court, 2018).

Mineral salts are first deposited between the gaps in the collagen layers with once these spaces are filled, minerals accumulate around the collagen fibres, crystallising and causing the tissue to harden; this process is called ossification (Tortora and Derrickson, 2009). The hardness of the bone depends on the type and quantity of the minerals available for the body to use; hydroxyapatite is one of the main minerals present in bones.

While bones need sufficient minerals to strengthen them, they also need to prevent being broken by maintaining sufficient flexibility to withstand the daily forces exerted on them. This flexibility and tensile strength of bone is derived from the collagen fibres. Over-mineralisation of the fibres or impaired collagen production can increase the brittleness of bones as with the genetic disorder osteogenesis imperfecta and increase bone fragility (Ralston and McInnes, 2014).

Bone architecture is made up of two types of bone tissue:

Also known as compact bone, this dense outer layer provides support and protection for the inner cancellous structure. Cortical bone comprises three elements:

The periosteum is a tough, fibrous outer membrane. It is highly vascular and almost completely covers the bone, except for the surfaces that form joints; these are covered by hyaline cartilage. Tendons and ligaments attach to the outer layer of the periosteum, whereas the inner layer contains osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells) responsible for bone remodelling.

The function of the periosteum is to:

It also contains Volkmanns canals, small channels running perpendicular to the diaphysis of the bone (Fig 1); these convey blood vessels, lymph vessels and nerves from the periosteal surface through to the intracortical layer. The periosteum has numerous sensory fibres, so bone injuries (such as fractures or tumours) can be extremely painful (Drake et al, 2019).

The intracortical bone is organised into structural units, referred to as osteons or Haversian systems (Fig 2). These are cylindrical structures, composed of concentric layers of bone called lamellae, whose structure contributes to the strength of the cortical bone. Osteocytes (mature bone cells) sit in the small spaces between the concentric layers of lamellae, which are known as lacunae. Canaliculi are microscopic canals between the lacunae, in which the osteocytes are networked to each other by filamentous extensions. In the centre of each osteon is a central (Haversian) canal through which the blood vessels, lymph vessels and nerves pass. These central canals tend to run parallel to the axis of the bone; Volkmanns canals connect adjacent osteons and the blood vessels of the central canals with the periosteum.

The endosteum consists of a thin layer of connective tissue that lines the inside of the cortical surface (Bartl and Bartl, 2017) (Fig1).

Also known as spongy bone, cancellous bone is found in the outer cortical layer. It is formed of lamellae arranged in an irregular lattice structure of trabeculae, which gives a honeycomb appearance. The large gaps between the trabeculae help make the bones lighter, and so easier to mobilise.

Trabeculae are characteristically oriented along the lines of stress to help resist forces and reduce the risk of fracture (Tortora and Derrickson, 2009). The closer the trabecular structures are spaced, the greater the stability and structure of the bone (Bartl and Bartl, 2017). Red or yellow bone marrow exists in these spaces (Robson and Syndercombe Court, 2018). Red bone marrow in adults is found in the ribs, sternum, vertebrae and ends of long bones (Tortora and Derrickson, 2009); it is haemopoietic tissue, which produces erythrocytes, leucocytes (white blood cells) and platelets.

Bone and marrow are highly vascularised and account for approximately 10-20% of cardiac output (Bartl and Bartl, 2017). Blood vessels in bone are necessary for nearly all skeletal functions, including the delivery of oxygen and nutrients, homoeostasis and repair (Tomlinson and Silva, 2013). The blood supply in long bones is derived from the nutrient artery and the periosteal, epiphyseal and metaphyseal arteries (Iyer, 2019).

Each artery is also accompanied by nerve fibres, which branch into the marrow cavities. Arteries are the main source of blood and nutrients for long bones, entering through the nutrient foramen, then dividing into ascending and descending branches. The ends of long bones are supplied by the metaphyseal and epiphyseal arteries, which arise from the arteries from the associated joint (Bartl and Bartl, 2017).

If the blood supply to bone is disrupted, it can result in the death of bone tissue (osteonecrosis). A common example is following a fracture to the femoral neck, which disrupts the blood supply to the femoral head and causes the bone tissue to become necrotic. The femoral head structure then collapses, causing pain and dysfunction.

Bones begin to form in utero in the first eight weeks following fertilisation (Moini, 2019). The embryonic skeleton is first formed of mesenchyme (connective tissue) structures; this primitive skeleton is referred to as the skeletal template. These structures are then developed into bone, either through intramembranous ossification or endochondral ossification (replacing cartilage with bone).

Bones are classified according to their shape (Box1). Flat bones develop from membrane (membrane models) and sesamoid bones from tendon (tendon models) (Waugh and Grant, 2018). The term intra-membranous ossification describes the direct conversion of mesenchyme structures to bone, in which the fibrous tissues become ossified as the mesenchymal stem cells differentiate into osteoblasts. The osteoblasts then start to lay down bone matrix, which becomes ossified to form new bone.

Box 1. Types of bones

Long bones typically longer than they are wide (such as humerus, radius, tibia, femur), they comprise a diaphysis (shaft) and epiphyses at the distal and proximal ends, joining at the metaphysis. In growing bone, this is the site where growth occurs and is known as the epiphyseal growth plate. Most long bones are located in the appendicular skeleton and function as levers to produce movement

Short bones small and roughly cube-shaped, these contain mainly cancellous bone, with a thin outer layer of cortical bone (such as the bones in the hands and tarsal bones in the feet)

Flat bones thin and usually slightly curved, typically containing a thin layer of cancellous bone surrounded by cortical bone (examples include the skull, ribs and scapula). Most are located in the axial skeleton and offer protection to underlying structures

Irregular bones bones that do not fit in other categories because they have a range of different characteristics. They are formed of cancellous bone, with an outer layer of cortical bone (for example, the vertebrae and the pelvis)

Sesamoid bones round or oval bones (such as the patella), which develop in tendons

Long, short and irregular bones develop from an initial model of hyaline cartilage (cartilage models). Once the cartilage model has been formed, the osteoblasts gradually replace the cartilage with bone matrix through endochondral ossification (Robson and Syndercombe Court, 2018). Mineralisation starts at the centre of the cartilage structure, which is known as the primary ossification centre. Secondary ossification centres also form at the epiphyses (epiphyseal growth plates) (Danning, 2019). The epiphyseal growth plate is composed of hyaline cartilage and has four regions (Fig3):

Resting or quiescent zone situated closest to the epiphysis, this is composed of small scattered chondrocytes with a low proliferation rate and anchors the growth plate to the epiphysis;

Growth or proliferation zone this area has larger chondrocytes, arranged like stacks of coins, which divide and are responsible for the longitudinal growth of the bone;

Hypertrophic zone this consists of large maturing chondrocytes, which migrate towards the metaphysis. There is no new growth at this layer;

Calcification zone this final zone of the growth plate is only a few cells thick. Through the process of endochondral ossification, the cells in this zone become ossified and form part of the new diaphysis (Tortora and Derrickson, 2009).

Bones are not fully developed at birth, and continue to form until skeletal maturity is reached. By the end of adolescence around 90% of adult bone is formed and skeletal maturity occurs at around 20-25 years, although this can vary depending on geographical location and socio-economic conditions; for example, malnutrition may delay bone maturity (Drake et al, 2019; Bartl and Bartl, 2017). In rare cases, a genetic mutation can disrupt cartilage development, and therefore the development of bone. This can result in reduced growth and short stature and is known as achondroplasia.

The human growth hormone (somatotropin) is the main stimulus for growth at the epiphyseal growth plates. During puberty, levels of sex hormones (oestrogen and testosterone) increase, which stops cell division within the growth plate. As the chondrocytes in the proliferation zone stop dividing, the growth plate thins and eventually calcifies, and longitudinal bone growth stops (Ralston and McInnes, 2014). Males are on average taller than females because male puberty tends to occur later, so male bones have more time to grow (Waugh and Grant, 2018). Over-secretion of human growth hormone during childhood can produce gigantism, whereby the person is taller and heavier than usually expected, while over-secretion in adults results in a condition called acromegaly.

If there is a fracture in the epiphyseal growth plate while bones are still growing, this can subsequently inhibit bone growth, resulting in reduced bone formation and the bone being shorter. It may also cause misalignment of the joint surfaces and cause a predisposition to developing secondary arthritis later in life. A discrepancy in leg length can lead to pelvic obliquity, with subsequent scoliosis caused by trying to compensate for the difference.

Once bone has formed and matured, it undergoes constant remodelling by osteoclasts and osteoblasts, whereby old bone tissue is replaced by new bone tissue (Fig4). Bone remodelling has several functions, including mobilisation of calcium and other minerals from the skeletal tissue to maintain serum homoeostasis, replacing old tissue and repairing damaged bone, as well as helping the body adapt to different forces, loads and stress applied to the skeleton.

Calcium plays a significant role in the body and is required for muscle contraction, nerve conduction, cell division and blood coagulation. As only 1% of the bodys calcium is in the blood, the skeleton acts as storage facility, releasing calcium in response to the bodys demands. Serum calcium levels are tightly regulated by two hormones, which work antagonistically to maintain homoeostasis. Calcitonin facilitates the deposition of calcium to bone, lowering the serum levels, whereas the parathyroid hormone stimulates the release of calcium from bone, raising the serum calcium levels.

Osteoclasts are large multinucleated cells typically found at sites where there is active bone growth, repair or remodelling, such as around the periosteum, within the endosteum and in the removal of calluses formed during fracture healing (Waugh and Grant, 2018). The osteoclast cell membrane has numerous folds that face the surface of the bone and osteoclasts break down bone tissue by secreting lysosomal enzymes and acids into the space between the ruffled membrane (Robson and Syndercombe Court, 2018). These enzymes dissolve the minerals and some of the bone matrix. The minerals are released from the bone matrix into the extracellular space and the rest of the matrix is phagocytosed and metabolised in the cytoplasm of the osteoclasts (Bartl and Bartl, 2017). Once the area of bone has been resorbed, the osteoclasts move on, while the osteoblasts move in to rebuild the bone matrix.

Osteoblasts synthesise collagen fibres and other organic components that make up the bone matrix. They also secrete alkaline phosphatase, which initiates calcification through the deposit of calcium and other minerals around the matrix (Robson and Syndercombe Court, 2018). As the osteoblasts deposit new bone tissue around themselves, they become trapped in pockets of bone called lacunae. Once this happens, the cells differentiate into osteocytes, which are mature bone cells that no longer secrete bone matrix.

The remodelling process is achieved through the balanced activity of osteoclasts and osteoblasts. If bone is built without the appropriate balance of osteocytes, it results in abnormally thick bone or bony spurs. Conversely, too much tissue loss or calcium depletion can lead to fragile bone that is more susceptible to fracture. The larger surface area of cancellous bones is associated with a higher remodelling rate than cortical bone (Bartl and Bartl, 2017), which means osteoporosis is more evident in bones with a high proportion of cancellous bone, such as the head/neck of femur or vertebral bones (Robson and Syndercombe Court, 2018). Changes in the remodelling balance may also occur due to pathological conditions, such as Pagets disease of bone, a condition characterised by focal areas of increased and disorganised bone remodelling affecting one or more bones. Typical features on X-ray include focal patches of lysis or sclerosis, cortical thickening, disorganised trabeculae and trabecular thickening.

As the body ages, bone may lose some of its strength and elasticity, making it more susceptible to fracture. This is due to the loss of mineral in the matrix and a reduction in the flexibility of the collagen.

Adequate intake of vitamins and minerals is essential for optimum bone formation and ongoing bone health. Two of the most important are calcium and vitamin D, but many others are needed to keep bones strong and healthy (Box2).

Box 2. Vitamins and minerals needed for bone health

Key nutritional requirements for bone health include minerals such as calcium and phosphorus, as well as smaller qualities of fluoride, manganese, and iron (Robson and Syndercombe Court, 2018). Calcium, phosphorus and vitamin D are essential for effective bone mineralisation. Vitamin D promotes calcium absorption in the intestines, and deficiency in calcium or vitamin D can predispose an individual to ineffective mineralisation and increased risk of developing conditions such as osteoporosis and osteomalacia.

Other key vitamins for healthy bones include vitamin A for osteoblast function and vitamin C for collagen synthesis (Waugh and Grant, 2018).

Physical exercise, in particular weight-bearing exercise, is important in maintaining or increasing bone mineral density and the overall quality and strength of the bone. This is because osteoblasts are stimulated by load-bearing exercise and so bones subjected to mechanical stresses undergo a higher rate of bone remodelling. Reduced skeletal loading is associated with an increased risk of developing osteoporosis (Robson and Syndercombe Court, 2018).

Bones are an important part of the musculoskeletal system and serve many core functions, as well as supporting the bodys structure and facilitating movement. Bone is a dynamic structure, which is continually remodelled in response to stresses placed on the body. Changes to this remodelling process, or inadequate intake of nutrients, can result in changes to bone structure that may predispose the body to increased risk of fracture. Part2 of this series will review the structure and function of the skeletal system.

Bartl R, Bartl C (2017) Structure and architecture of bone. In: Bone Disorder: Biology, Diagnosis, Prevention, Therapy.

Danning CL (2019) Structure and function of the musculoskeletal system. In: Banasik JL, Copstead L-EC (eds) Pathophysiology. St Louis, MO: Elsevier.

Drake RL et al (eds) (2019) Grays Anatomy for Students. London: Elsevier.

Iyer KM (2019) Anatomy of bone, fracture, and fracture healing. In: Iyer KM, Khan WS (eds) General Principles of Orthopedics and Trauma. London: Springer.

Moini J (2019) Bone tissues and the skeletal system. In: Anatomy and Physiology for Health Professionals. Burlington, MA: Jones and Bartlett.

Ralston SH, McInnes IB (2014) Rheumatology and bone disease. In: Walker BR et al (eds) Davidsons Principles and Practice of Medicine. Edinburgh: Churchill Livingstone.

Robson L, Syndercombe Court D (2018) Bone, muscle, skin and connective tissue. In: Naish J, Syndercombe Court D (eds) Medical Sciences. London: Elsevier

Tomlinson RE, Silva MJ (2013) Skeletal blood flow in bone repair and maintenance. Bone Research; 1: 4, 311-322.

Tortora GJ, Derrickson B (2009) The skeletal system: bone tissue. In: Principles of Anatomy and Physiology. Chichester: John Wiley & Sons.

Waugh A, Grant A (2018) The musculoskeletal system. In: Ross & Wilson Anatomy and Physiology in Health and Illness. London: Elsevier.

More here:
Skeletal system 1: the anatomy and physiology of bones - Nursing Times

To Read More: Skeletal system 1: the anatomy and physiology of bones – Nursing Times
categoriaCardiac Stem Cells commentoComments Off on Skeletal system 1: the anatomy and physiology of bones – Nursing Times | dataJanuary 27th, 2020
Read All

StemoniX’s microBrain to be Featured in Podium Presentation at SLAS 2020 International Conference & Exhibition – Crow River Media

By daniellenierenberg

MAPLE GROVE, Minn., Jan. 27, 2020 /PRNewswire/ --StemoniX, a biotech company revolutionizing how new medicines are discovered, announced today that its Director of Applications, Oivin Guichert, Ph.D., will deliver a podium presentation highlighting the company's microBrain technology at the SLAS (Society for Laboratory Automation and Screening) 2020 International Conference & Exhibition at the San Diego Convention Center, Jan. 27-29, 2020. The presentation will be featured as part of the Assay Development and Screening Session during the annual meeting.

During the podium presentation, entitled "New innovation to solve unmet needs: Implementing human induced pluripotent stem cell-derived neural spheroids as a robust screening platform for phenotypic-based central nervous system drug discovery," Dr. Guichert will detail how performing a high-throughput functional screening assay on StemoniX's human induced pluripotent stem cell (iPSC)-derived 3D neural spheroid platform demonstrated the ability to identify a wide range of hits spanning multiple target areas. He will highlight how this model could provide relevant human platforms for disease-specific drug discovery to help overcome traditional hurdles of CNS-targeted drug discovery and development efforts.

Ping Yeh, co-founder and CEO of StemoniX, said: "The SLAS 2020 International Conference & Exhibitionis an ideal event to showcase the value potential of our microOrgan platform and AnalytiX data management and analytical software. As presented by Dr. Guichert and in the six posters, microBrain, microHeart, microPancreas and AnalytiX offer the potential to reshape how drugs are discovered and developed by providing the opportunity to go from model to molecule to validated drug in a fraction of the time and cost required with traditional methods. This includes the near-term potential to identify and advance novel therapeutic targets for Rett syndrome by leveraging our groundbreaking in vitro microBrain model in partnership with AI drug discovery pioneer, Atomwise."

Podium Presentation Details

Title:

New innovation to solve unmet needs: Implementing human induced pluripotent stem cell-derived neural spheroids as a robust screening platform for phenotypic-based central nervous system drug discovery

Session:

Assay Development and Screening

Event

SLAS 2020 International Conference & Exhibition

Date:

Tuesday, January 28, 2020

Time:

4:00 4:30 p.m. PST

Location:

San Diego Convention Center

Room/Location:

6C

Poster Presentations:

About StemoniXStemoniX is accelerating the discovery of new medicines to treat challenging diseases via the world's first ready-to-use assay plates containing living human microOrgans, including electrophysiologically active neural (microBrain) and cardiac (microHeart) cells. Predictive, accurate, and consistent, StemoniX's products combined with its proprietary data management and analytical tools (AnalytiX) are revolutionizing traditional drug discovery and development by radically improving the speed, accuracy and costs required to identify new drugs and conduct initial human cell toxicity and efficacy testing. Through its Discovery as a Service offering, the company partners with organizations to screen compounds as well as to create customized microOrgan models and assays tailored to specific discovery and toxicity needs. Visit http://www.stemonix.com to learn how StemoniX is helping global institutions humanize drug discovery and development to bring the most promising medicines to patients.

Tiberend Strategic Advisors, Inc.

Investor Contact:Maureen McEnroe, CFA+1.212.375.2664mmcenroe@tiberend.com

Media Contact:Ingrid Mezo+1.646.604.5150imezo@tiberend.com

Go here to see the original:
StemoniX's microBrain to be Featured in Podium Presentation at SLAS 2020 International Conference & Exhibition - Crow River Media

To Read More: StemoniX’s microBrain to be Featured in Podium Presentation at SLAS 2020 International Conference & Exhibition – Crow River Media
categoriaCardiac Stem Cells commentoComments Off on StemoniX’s microBrain to be Featured in Podium Presentation at SLAS 2020 International Conference & Exhibition – Crow River Media | dataJanuary 27th, 2020
Read All

Osaka University transplants iPS cell-based heart cells in world’s first clinical trial – The Japan Times

By daniellenierenberg

OSAKA An Osaka University team said it has carried out the worlds first transplant of cardiac muscle cells created from iPS cells in a physician-initiated clinical trial.

In the clinical project to verify the safety and efficacy of the therapy using induced pluripotent stem cells, Yoshiki Sawa, a professor in the universitys cardiovascular surgery unit, and colleagues aim to transplant heart muscle cell sheets into 10 patients suffering from serious heart malfunction caused by ischemic cardiomyopathy.

The cells on the degradable sheets attached to the surface of the patients hearts are expected to grow to secrete a protein that can regenerate blood vessels and improve cardiac function. The iPS cells have already been derived from healthy donors blood cells and stored.

The researchers said Monday they decided to conduct a clinical trial instead of a clinical study in hopes of obtaining approval from the health ministry for clinical applications as soon as possible.

The trial involves stringently evaluating risks, particularly cancer possibilities, and the efficacy of transplanting some 100 million cells per patient that may include tumor cells.

This is the second iPS cell-based clinical trial in Japan. The first was conducted on eye disease patients by the Riken research institute.

Read the original post:
Osaka University transplants iPS cell-based heart cells in world's first clinical trial - The Japan Times

To Read More: Osaka University transplants iPS cell-based heart cells in world’s first clinical trial – The Japan Times
categoriaIPS Cell Therapy commentoComments Off on Osaka University transplants iPS cell-based heart cells in world’s first clinical trial – The Japan Times | dataJanuary 27th, 2020
Read All

In a race against terminal illness, former Obama staffer with ALS and his wife find new hope a year later – Bryan-College Station Eagle

By daniellenierenberg

CHICAGO Brian Wallach wasnt supposed to live to see his younger daughters first birthday.

Diagnosed with amyotrophic lateral sclerosis (ALS), a terminal disease with no cure, doctors told him in 2017 that he might have six months to live.

Today, hes focused on being there for his daughters future firsts: kindergarten drop-off, middle school dance, wedding day.

More than two years after his diagnosis, he has been lucky, he said, to experience relatively limited progression of his disease. After some balance issues, the Kenilworth resident now uses a cane or, as he is careful to specify, a cool walking stick to get around.

When Wallach was diagnosed, neither he nor his wife, Sandra Abrevaya, knew much about ALS, a neurodegenerative disease that affects nerve cells in the brain and the spinal cord, eventually paralyzing even the bodys ability to breathe.

In response to Wallachs diagnosis, the couple, both 39, launched I AM ALS in 2019. Former staffers in the Obama White House, they marshaled lessons learned while campaigning gathering information, forming consensus, considering the impossible possible to build a force to mobilize hope and change for those facing a disease they say can and should be cured.

Rays of hope are beginning to emerge through an innovative trial that received FDA approval last week to test several drugs at the same time, a bipartisan congressional caucus, doubled federal funding, and support from groups like the Chan Zuckerberg Initiative, which gave the couples organization a $453,000 grant in September.

Last year we made hope a word that was OK to use, Wallach said. This year we have to make hope real.

Audaciousness is the only option, the couple says, in their race against the clock.

Wallach logged 120,000 miles in the air last year, including traveling to Washington, D.C., in April, where he testified before Congress and asked legislators to amp up funding.

Last year, every time someone said, Do you want to speak to us, I said, yes. Every time someone said, Theres a meeting, I said, Im going. he said. Every time there was anything, I said, Great, Im on the plane.

Until October, when Wallach fell while exiting a Lyft in Boston after swinging a heavy backpack onto his back. Thirteen staples in his head later, and after terrifying Abrevaya with a phone call, the two agreed he wouldnt travel alone anymore. Hes maintaining momentum for the cause with more hours in his home office and fewer in airports.

In December, I AM ALS debuted billboards around Times Square as part of its #CuresForAll campaign aimed at informing the public about the impact a cure or better treatment for a neurodegenerative disease can have on other diseases such as multiple sclerosis, Alzheimers and Parkinsons. ALS patients and their families from states including Michigan, Maine and Colorado were in New York for the launch.

The billboards noted the number of people lost to ALS each day 16 with photographs of those who died in 2019. Days earlier, Pete Frates, a founder of the viral fundraiser the Ice Bucket Challenge, which raised $115 million, had died. He was 34.

The campaign was also shared on social media. The posts expressed the suffering and loss nationwide: a mother wrote about her son who was diagnosed at 20 and died at 28; a son posted in honor of his dad; Colorado Rep. Jason Crow posted a message honoring his cousin.

Its time, the couple said, to switch ALS conversations from a diagnosis rooted in darkness to the faces of people bravely moving forward. They want to speed development of potential cures and give patients more access to experimental treatments.

Thats not an unreasonable goal, said Sabrina Paganoni, a faculty member at The Sean M. Healey & AMG Center for ALS at Mass General in Boston, which plans to test at least five different medications for ALS at the same time, a first for the disease and something she said could be a huge turning point.

On Wednesday, the Healey Center announced it received FDA approval to move forward with testing the first three drugs: Zilucoplan, Verdiperstat and CNM-Au8. Similar to how cancer drugs are already tested, this gives patients access to more treatments and allows researchers to quickly collect data and accelerate the pace toward a cure.

This is a very exciting time in the history of ALS, Paganoni said. I think this is going to be the decade when ALS is changed from a rapidly fatal disease to a more chronic disease that we can manage.

For years, Steve Perrin, the chief executive officer at the ALS Therapy Development Institute, has monitored clinical trials for ALS. So far, he said, the two drugs approved by the FDA, Radicava and Rilutek, are a very marginal slowing down of disease.

This year, he said the quality of drugs going into trials seems improved. He is excited about several trials, including one studying stem cells and another testing a drug to potentially slow progression in some patients.

As a patient you want to see something measurable, and I dont mean measurable in days, he said. If Im a patient, I want to see something, and I want hope for myself and my family. I want something that is going to slow the disease down so I can watch my kids growing up, I can watch them graduate from college, I can watch them marry.

But that takes resources.

We are in a time when we can reasonably say that theres going to be new treatments available, Paganoni said. But we need more funding and support, so all of this can happen, and happen soon.

Nearly every moment feels like a push-pull for Wallach and Abrevaya.

Do they spend more precious minutes with their two daughters, ages 4 and 2, or do they spend time away, among strangers on a plane, in a researchers office, walking the halls of Congress with the hope that those minutes will, someday, result in time banked to create more family memories.

The hardest balance, if Im honest, is, I love every minute I have with them, Wallach said about his daughters, but I also feel this pressing sense of, I need to be working towards a goal of actually finding a cure.

Were doing that so we have a shot at a real future together, Abrevaya said about their time spent traveling and advocating.

At home, when the family heads for the door, the toddlers reach for their fathers shoes, and they get his walking stick.

While that both fills your heart with joy and appreciation, its also painful that your toddlers are being put in this position, Abrevaya said.

The parents guard normalcy. They take their daughters to swim at the neighborhood pool and on vacation with friends. Wallach wishes he could lift them above his head to touch the ceiling, like their uncle can. But he can lie on the floor and play with them; he can listen to them belt out songs on their purple karaoke machine.

They find ways to lighten a heavy subject. On New Years Eve, the two danced in a video on the foundations Instagram, singing into hairbrushes, and Wallach promised to get an ALS: You Gone tattoo if 20,000 people donated $10 to a Healey Center research fundraiser. It raised $40,000 in 24 hours, Wallach said. No matter the outcome, he plans to get the tattoo.

The couple, who both work full-time jobs Abrevaya is the president of nonprofit Thrive, Wallach works at law firm Skadden, Arps, Slate, Meagher & Flom want more research, to create a patient navigation system, and to gather signatures for a letter asking new FDA commissioner Stephen Hahn to speed ALS patients access to possible treatments.

And they keep looking for light. But it takes work.

Changing life with ALS for Wallach, and for other patients and their families, requires bold action from people with the power to make change: politicians, researchers, philanthropists.

As they meet others with ALS, they welcome new friends and face the pain of losing some.

It does make you uniquely urgent in what you do, Wallach said. You push because you have to. You push because you know that the time that we have is precious, and that you want to see 20 years from now. And know that you can make that happen.

(EDITORS: STORY CAN END HERE)

Wallach often shares moments about his ALS journey on Twitter with his 40,000 followers. Recently, he shared something he wasnt sure he should. It was a time he was unable to find light.

On a recent night, he woke up to pain hes had for the past few months, radiating from his right hip to his right calf.

He clutched a stuffed llama his daughter gave him. And he began to cry.

I cried because of the pain. I cried because I couldnt be the father to my girls I dreamed of being, he wrote. I cried because I couldnt be the husband to my wife I dream of being. Because I saw the future zooming ahead, and for a brief moment I wondered if I would be a part of it.

His wife heard him crying that night. She asked what was wrong. And he said maybe they would be better off if he left, living instead in an assisted living facility. Their daughters, he told her, could have a dad who could do everything he dreamed of doing.

She looked at him in the dark. You are my light, she said. You are their light. The only way you are leaving us is if you die in my arms, and we arent going to let that happen for a long, long, long time.

Finally, he smiled.

2020 Chicago Tribune

Visit the Chicago Tribune at http://www.chicagotribune.com

Distributed by Tribune Content Agency, LLC.

PHOTOS (for help with images, contact 312-222-4194): ALS-BATTLE

Read the original:
In a race against terminal illness, former Obama staffer with ALS and his wife find new hope a year later - Bryan-College Station Eagle

To Read More: In a race against terminal illness, former Obama staffer with ALS and his wife find new hope a year later – Bryan-College Station Eagle
categoriaSpinal Cord Stem Cells commentoComments Off on In a race against terminal illness, former Obama staffer with ALS and his wife find new hope a year later – Bryan-College Station Eagle | dataJanuary 26th, 2020
Read All

Qatar- HMC to introduce regenerative therapy to treat foot and ankle illnesses – MENAFN.COM

By daniellenierenberg

(MENAFN - Gulf Times) The Foot and Ankle sub-specialty at Hamad General Hospital (HGH), part of Hamad Medical Corporation (HMC), will soon introduce the latest medical procedure, BMAC, to treat various illnesses related to foot and ankle.'Bone marrow aspirate concentrate (BMAC) is a regenerative therapy procedure that uses stem cells from a patient's bone marrow to initiate healing for a number of orthopaedic conditions, such as tendinopathy, osteoarthritis and cartilage injuries, said Dr Mohamed Maged Mekhaimar, senior consultant and orthopaedic surgeon at HGH.'This will help treating patients with tendon inflation. It can also be used to treat inflammation on the bottom of the foot as well as for traumatic conditions of the ankle. These services will soon be available at Hamad General Hospital, explained Dr Mekhaimar.Foot and ankle services were started at HGH in 2012. 'Now, there is a great demand for these services in the country as more and more people are approaching us for various issues. The centre provides treatment for several problems such as flat foot problems, among other issues. We also provide treatment for diabetic foot people, he continued.The centre currently performs about five surgeries per day and takes care for all different injuries, including sport injuries.According to the official, the centre also makes use of PRP (Platelet Rich Plasma) machine by which blood is taken from people and then separated. 'Using the PRP machine, we can inject the blood particles to the joints. This facility is available in HGH and the Bone and Joint Center, part of HMC, he noted.'Our clinics are at the Bone and Joint Center. All our patients come through the Bone and Joint Center. We are also in the process of introducing the weight-bearing CT scan machine. With this, we can scan the foot and ankle of the patient while he or she is standing on it. This can give better impression of the condition of the patients, he highlighted.'Some deformity can be better measured through this CT scan machine. It will also be used for treating the knee joint as it is one of the most advanced treatment options available now, he added.

MENAFN2501202000670000ID1099602239

Go here to read the rest:
Qatar- HMC to introduce regenerative therapy to treat foot and ankle illnesses - MENAFN.COM

To Read More: Qatar- HMC to introduce regenerative therapy to treat foot and ankle illnesses – MENAFN.COM
categoriaBone Marrow Stem Cells commentoComments Off on Qatar- HMC to introduce regenerative therapy to treat foot and ankle illnesses – MENAFN.COM | dataJanuary 26th, 2020
Read All

If youre troubled by ache within the nerves, comply with the following tips, know – Sahiwal Tv

By daniellenierenberg

Many folks all over the world will be seen troubled by ache within the veins. And many occasions, even after an excessive amount of therapy, this ache shouldnt be relieved. But within the coming days youll be able to do away with neuralgia utterly, that too with none unwanted side effects. Researchers on the University of Sydney have used human stem cells for excessive ache reduction in mice. Now, theyre shifting in the direction of human trials.

Greg Nelly, senior researcher on the Charles Perkins Center, stated that at occasions, extreme stress on the nerves causes them to get broken. For instance, carpal tunnel syndrome is the median nerve within the fingers ( median nerve ) Due to extreme stress.

->As youll be able to think about, nerve accidents can result in insufferable neuropathic ache. There can also be no efficient therapy to alleviate ache in most sufferers.

Therefore, Nelly and colleagues on the University of Sydney developed an efficient remedy. Researchers have been in a position to create pain-relieving neurons utilizing human stem cells.

Nelly stated that this success implies that for some sufferers affected by nerve ache, we are able to carry out pain-relieving implants from our cells, which might cease the ache.

In the research, researchers collected stem cells from grownup blood samples. Then, used human-induced pluripotent stem cells (iPSCs) from the bone marrow to create pain-relieving cells within the laboratory.

To check the efficacy of the therapy, the group injected neurons that abolished spinal ache in mice affected by extreme neuropathic ache. It was revealed that this therapy supplied full reduction from ache to the mice with none unwanted side effects.

Co-senior creator Dr. Leslie Caron stated that because of this transplant remedy is prone to be an efficient and long-lasting therapy for neuropathic ache.

After shut therapy in mice, the University of Sydney group is shifting ahead for extra intensive research in pigs. Within the following 5 years, theyll check people who are suffering from power ache.

Researchers stated {that a} move check in people will probably be a giant success. This could point out the event of latest non-opioid, non-addictive ache administration methods for sufferers.

More:
If youre troubled by ache within the nerves, comply with the following tips, know - Sahiwal Tv

To Read More: If youre troubled by ache within the nerves, comply with the following tips, know – Sahiwal Tv
categoriaBone Marrow Stem Cells commentoComments Off on If youre troubled by ache within the nerves, comply with the following tips, know – Sahiwal Tv | dataJanuary 26th, 2020
Read All

Scientists Think They Know How Stress Causes Gray Hair – Healthline

By daniellenierenberg

Sorry Mom and Dad: It turns out you might not have been exaggerating when you told us your children made your hair turn gray.

Stress may play a key role in just how quickly hair goes from colored to ashen, a study published this past week in the journal Nature suggests.

Scientists have long understood some link is possible between stress and gray hair, but this new research from Harvard University in Massachusetts more deeply probes the exact mechanisms at play.

The researchers initial tests looked closely at cortisol, the stress hormone that surges in the body when a person experiences a fight or flight response.

Its an important bodily function, but the long-term presence of heightened cortisol is linked to a host of negative health outcomes.

But the culprit ended up being a different part of the bodys fight or flight response the sympathetic nervous system.

These nerves are all over the body, including making inroads to each hair follicle, the researchers reported.

Chemicals released during the stress response specifically norepinephrine causes pigment producing stem cells to activate prematurely, depleting the hairs reserves of color.

The detrimental impact of stress that we discovered was beyond what I imagined, Ya-Chieh Hsu, PhD, a lead study author and an associate professor of stem cell and regenerative biology at Harvard, said in a press release. After just a few days, all of the pigment-regenerating stem cells were lost. Once theyre gone, you cant regenerate pigments anymore. The damage is permanent.

But stress isnt the only or even the primary reason that most people get gray hair.

In most cases, its simple genetics.

Gray hair is caused by loss of melanocytes (pigment cells) in the hair follicle. This happens as we age and, unfortunately, there is no treatment that can restore these cells and the pigment they produce, melanin, Dr. Lindsey A. Bordone, a dermatologist at ColumbiaDoctors and an assistant professor of dermatology at Columbia University Medical Center in New York, told Healthline. Genetic factors determine when you go gray. There is nothing that can be done medically to prevent this from happening when it is genetically predetermined to happen.

That doesnt mean environmental factors such as stress dont play a role.

Smoking, for instance, is a known risk factor for premature graying, according to a 2013 study. So kick the habit if you want to keep that color a little longer.

Other contributing factors to premature graying include deficiencies in protein, vitamin B-12, copper, and iron as well as aging due in part to an accumulation of oxidative stress.

That stress is prompted by an imbalance between free radicals and antioxidants in your body that can damage tissue, proteins, and DNA, Kasey Nichols, NMD, an Arizona physician and a health expert at Rave Reviews, told Healthline.

And some degree of oxidative stress is a natural part of life.

We would expect increasing gray hair as we advance in age, and we see about a 10 percent increase in the chance of developing gray hair for every decade after age 30, Nichols said.

Changes you can pursue to delay premature grays include eating a diet high in omega-3 fatty acids such as walnuts and fatty fish, not spending too much time in the skin-damaging and hair-damaging ultraviolet light of the sun, and taking vitamin B-12 and vitamin B-6 supplements.

That said, if you are going gray prematurely, it wouldnt hurt to go have a checkup just in case natural genetic factors arent the sole culprit.

The new Harvard research is only a mouse study, so replicating the same results in a human study would be necessary to strengthen the findings.

But the Harvard research has implications far beyond graying hair, with the hair color change merely one obvious sign of other internal changes as a result of prolonged stress.

By understanding precisely how stress affects stem cells that regenerate pigment, weve laid the groundwork for understanding how stress affects other tissues and organs in the body, said Hsu. Understanding how our tissues change under stress is the first critical step towards eventual treatment that can halt or revert the detrimental impact of stress.

Might that also mean someday halting and reverting the march of premature gray hair? Its too soon to tell.

We still have a lot to learn in this area, Hsu said.

Go here to read the rest:
Scientists Think They Know How Stress Causes Gray Hair - Healthline

To Read More: Scientists Think They Know How Stress Causes Gray Hair – Healthline
categoriaSkin Stem Cells commentoComments Off on Scientists Think They Know How Stress Causes Gray Hair – Healthline | dataJanuary 26th, 2020
Read All

Roll play: Jade rollers and gua sha stone are making waves in skincare – Times of India

By daniellenierenberg

If you havent chanced upon a gua sha stone facial or a jade roller video on your social media, are you even on it? The ancient Chinese technique of face massaging is gaining traction thanks to beauty bloggers sharing their basic kneads. If you have stumbled upon these videos but have no clue whats going on, read on. Dermatologist Dr Nirupama Parwanda says that the basics come from traditional Chinese wisdom: improper blood circulation and stagnant blood flow is one of the main reasons behind various diseases. To improve circulation and drain toxins, you can try jade rollers and gua sha an alternative therapy that involves massaging your skin using special tools. Parwanda says, Our bodies have a source of energy known as chi flowing through it. And to ensure good health and prosperity, we must balance it. Dr Rinky Kapoor, dermatologist and dermato-surgeon, explains, Both rollers and gua sha are made of stones such as quartz, jade, rose quartz and amethyst known for their healing properties. Gua sha is also known as coining, skin scrapping or pressure stroking. FLOW AND GLOWBoth work on the principle of improving blood flow under the skin and enhancing lymphatic drainage. This helps carry the oxygen to the skin cells, which in turn makes the skin tissues healthy, and reduces fine lines and wrinkles. Parwanda says that gua sha is also called natural botox as it helps in controlling signs of ageing. The proven benefits are: pain reduction in muscles and joints; reduction in perimenopause symptoms like anxiety, insomnia, hot flashes; improved blood circulation, removal of toxins. It also treats musculoskeletal disorders and reduces wrinkles.

TOO GOOD TO BE TRUE?Kapoor cautions that just looking at videos online doesnt mean you know the proper way to use it. You need to follow the process to reap the maximum benefits. Also, theres not one simple process for both jade roller and gua sha. Think of it as driving while the basics of accelerator, brake and clutch remain the same, driving styles are different, she says. Start both facials from the neck and then move upwards and with upward strokes. Rollers are simpler to use as you can just start massaging on the outward and upward direction from one point, except for the neck, where the massaging motion is downwards. Gua sha facials require more technique. Tip: you can learn from a practitioner.

The rest is here:
Roll play: Jade rollers and gua sha stone are making waves in skincare - Times of India

To Read More: Roll play: Jade rollers and gua sha stone are making waves in skincare – Times of India
categoriaSkin Stem Cells commentoComments Off on Roll play: Jade rollers and gua sha stone are making waves in skincare – Times of India | dataJanuary 26th, 2020
Read All

Scientists prove link between stress and prematurely greying hair – Newstalk ZB

By daniellenierenberg

Marie Antoinette's hair suddenly turned white before the ill-fated French queen was taken to the guillotine to have her head chopped off, according to some historical accounts.

More modern reports refer to hair turning prematurely white in survivors of bomb attacks during World War II, while an Australian airline pilot saw his hair go grey in the months after landing a plane following a failure of all four engines in the early 1980s.

While there's been plenty of anecdotal evidence suggesting premature greying can be caused by extreme stress -- whether this is true and how this happens isn't widely understood.

Now, Harvard University scientists think they have the answer -- at least in mice.

The group of researchers believe it's down to the animal's sympathetic nervous system -- which is best known for activating our "fight or flight" response to danger, they say.

"Under stress, our sympathetic nerve becomes highly activated," said Ya-Chieh Hsu, associate professor of stem cell and regenerative biology at Harvard, in an email. "And actually, activation of the sympathetic nervous system under stress is supposed to be a good thing."

Its activation triggers the "fight or flight" response through the neurotransmitter norepinephrine, or noradrenaline, explained Hsu, a senior author of the study published Wednesday in the scientific journal Nature. "Noradrenaline raises our heartbeat and allows us to react quickly to danger without having to think about it," he said.

"However, it is the same noradrenaline that turns out to be bad for melanocyte stem cells at a high level, and triggers their loss."

Melanocyte stem cells are found in hair follicles and determine hair colour. In people, the pool of these cells deplete as they age, turning hair grey as pigment depletes. Their loss from excessive noradrenaline could be causing this to happen prematurely, the team suggest.

Loss of pigment

The team had thought that acute stress might trigger an immune attack on pigment-producing stem cells or that the blame lied with the hormone cortisol because cortisol levels are elevated under stress. Hsu said they went through many different possibilities before focusing on the sympathetic nervous system.

"We were really surprised to find that it was the culprit, because it is normally seen as a beneficial system, or at least transient and reversible," she said.

The team put mice under three different types of stress through what Hsu described as established standard protocols. These included a single injection of a chemical to activate the mouse's pain fiber, cage tilting and rapid changes between light and dark.

Changes were observed in all mice but there was some variability, with white hair only coming out after all the stem cells are gone.

"Some hair follicles have reduced levels of melanocyte stem cells so they can still make pigment, while others have lost all stem cells and can't make pigment anymore, so the hair becomes white," she said.

Pigment-producing stem cells and the sympathetic nervous system are very similar in mice and humans, explained Hsu who was hopeful that the mechanisms would be related. But future studies would be needed to provide definitive evidence, she said.

"Everyone has an anecdote to share about how stress affects their body, particularly in their skin and hair the only tissues we can see from the outside," Hsu said in a news release.

"We wanted to understand if this connection is true, and if so, how stress leads to changes in diverse tissues. Hair pigmentation is such an accessible and tractable system to start with and besides, we were genuinely curious to see if stress indeed leads to hair greying."

Hsu said the findings may also help shed light on the effects of stress on various organs and tissues, and pave the way for new studies that seek to modify or block the damaging effects of stress.

In an accompanying article, Shayla Clark and Christopher Deppmann, researchers from the Neuroscience Graduate Program at the University of Virginia, who were not involved in the study, said it was interesting to consider what possible evolutionary advantage might be conferred by stress-induced greying.

"Because grey hair is most often linked to age, it could be associated with experience, leadership and trust. Perhaps an animal that has endured enough stress to 'earn' grey hair has a higher place in the social order than would ordinarily be conferred by that individual's age," they wrote.

Visit link:
Scientists prove link between stress and prematurely greying hair - Newstalk ZB

To Read More: Scientists prove link between stress and prematurely greying hair – Newstalk ZB
categoriaSkin Stem Cells commentoComments Off on Scientists prove link between stress and prematurely greying hair – Newstalk ZB | dataJanuary 26th, 2020
Read All

Alopecia: What causes the hair loss condition? – foxwilmington.com

By daniellenierenberg

Everyone sheds about 100 hairs each day as part of the normal hair growth cycle, but excess loss is usually a distressing development.(iStock)

Hair loss is typically considered the domain of aging men, but this equal-opportunity condition which has many causes can affect virtually anyone.

Alopecia is the medical term for hair loss, and it doesnt only happen on the scalp. Some illnesses and medications can trigger balding over the entire body, though genetics account for most cases on the head, according to theCleveland Clinic.

PARTY DRUG MDMA A STEP CLOSER TO LEGALIZATION FOR PTSD THERAPY

Everyone sheds about 100 hairs each day as part of the normal hair growth cycle, but excess loss is usually a distressing development. Americans spend more than $3.5 billion each year trying to treat it, according to theAmerican Hair Loss Association.

Most peoples hair grows about a half-inch per month, and about 90 percentof your hair is actively growing at any given time, with the other 10 percentin dormant phase. After two or three months, this dormant hair falls out and its follicles begin growing new hair as other follicles begin a dormant phase.

Shedding hair is different from hair loss, when a hair falls out and doesnt grow back. People often shed hair during stressful events, such aschildbirth, a breakup or divorce or during times of grief.

It still doesnt feel good, and it takes the hair [awhile] to reach a certain length where you perceive its presence, said Doris Day, a board-certified dermatologist New York City and an attending physician at Lenox Hill Hospital, also in New York. So it feels like a hair loss, but its not a hair loss.

Aside from heredity, noticeable hair loss can be caused by wide variety of factors, including:

Harsh hairstyles or treatments: Hairstyles that consistently use rubber bands, rollers or barrettes, or pull hair into tight styles such as cornrows, can inflame and scar hair follicles. So can incorrectly used chemical products such as dyes, bleaches, straighteners or permanent wave solutions. Depending on the degree of damage, resulting hair loss can be permanent.

Hormone imbalances: In women, hormonal shifts from birth control pills,pregnancy, childbirth, menopause or hysterectomy can induce more hair follicles than normal to enter the dormant phase.

Illness or surgery: The stress from sickness or surgery may prompt the body to temporarily cease nonessential tasks such as hair production. Specific conditions can also trigger it, including thyroid disorders,syphilis, iron deficiency,lupusor severe infection. An autoimmune condition called alopecia areata, which has no cure, causes rapid body-wide hair loss.

Medications and vitamins: Cancer chemotherapy, which attacks hair follicles in its attempt to kill all fast-growing cells around the body, is a well-known reason for hair loss. Other medications side effects include hair shedding as well, such as some that treat high blood pressure andgout(a painful joint condition caused by a buildup of uric acid). Excessive levels of vitamin A also contribute.

Nutritional deficits: Heavy dieting or eating disorders such asbulimiaandanorexiacan temporarily stun hair follicles to cease growth. This can also occur from insufficient protein, vitamin or mineral intake.

Aging: A natural effect of growing older is slowed hair growth.

Women usually dont go completely bald, but lose hair on the top of the head or the temples. Men tend to lose hair on their temples, and are more likely than women to go completely bald, Day said.

Dermatologists will examine the persons scalp and take a history of medical or stressful events to see whats been going on in their life and their world, Day said.

HELICOPTER-SHARING APP BLADE PAIRS WITH NYU LANGONE TO SPEED TRANSPLANT ORGANS

The dermatologist may take a biopsy a small patch of skin that includes the hair follicle and send it to a pathologist to determine if an autoimmune disease, such as lupus, is the cause of the hair loss.

Examining the hair and follicle can also determine whether someone has a bacterial or fungal infection, Day said.

Hair loss remedies range from the mild to the extreme and the inexpensive to the costly. Much depends on how much hair is gone and how high a priority it is to mask its absence or replace it.

According to the Cleveland Clinic, treatments include:

Hair weaves or wigs: Typically expensive, wigs and hair weaves either completely cover the head or add to existing hair, restoring the appearance of a full head of hair. They are especially practical for cancer patients and those whose hair loss is temporary.

Topical creams and lotions: Over-the-counter minoxidil (also known as the brand name Rogaine) can restore some hair growth, especially in those with hereditary hair loss. It is applied directly to the scalp. Prescription-strength finasteride (Propecia) comes in pill form and is only for men. According to theAmerican Academy of Family Physicians(AFP), it may take up to six months to tell if these medications are working.

Anti-inflammatory medications: Prescription steroid-based creams or injections can calm follicles damaged or inflamed by harsh chemicals or excessive pulling.

Surgery: Men tend to be better candidates for surgical hair-replacement techniques because their hair loss is often limited to one or two areas of the scalp. Procedures include grafting, which transplants from one to 15 hairs per disc-shaped graft to other locations. Scalp reduction removes bald skin from the scalp so hair-covered scalp can be stretched to fill in the bald areas. Side effects include swelling, bruising and headaches.

Hair-growth laser treatment can also help stimulate hair follicles and improve growth, Day said. People often see results when they combine laser treatment with another intervention, she said. Treatments range in price from $30 and up for Rogaine to about $3,000 for laser treatment, she added.

According to theNational Institute of Arthritis and Musculoskeletal and Skin Diseases(NIAMSD), alternative therapies may not help hair regrow and many are not supported by medical research. However, other treatments that reportedly improve alopecia areata include Chinese herbs, acupuncture, zinc and vitamin supplements, evening primrose oil and aroma therapy.

Viviscal, a natural supplement, has also shownmore hair growthin men compared to those who took fish extract in clinical trials, Day said.

The NIAMSD recommends discussing any alternative treatments with physicians before use.

The drug Tofacitinib is approved to treat adults witharthritis, but a growing number of cases suggest that it can also treat alopecia universalis, a condition in which people lose all of the hair on their body because theirimmune systemattacks hair follicles,Live Science previously reported.

The finding occurred after doctors prescribed a 25-year-old man with alopecia universalis the drug because they had heard it had treated a similar condition in mice,according to a statement from Yale University. After three months of treatment, the man had completely regrown the hair on his scalp, and he had visible eyebrows, eyelashes, facial hair, as well as hair elsewhere on his body.

Its exciting, said Day, who did not treat this particular patient. There seems to be a real effect here.

CLICK HERE TO GET THE FOX NEWS APP

Its unclear how Tofacitinib (brand name Xeljanz) works, but researchers hope to determine its mechanism soon. This data may help them learn which biological pathways lead to hair loss.

There are now clinical trials taking place around the country to test the safety and efficacy of the drug for hair loss conditions. One such study lasting 3 months gave Tofacitinib to 66 people with alopecia areata (an immune system condition that causes hair to fall out in patches). Half of the people regrew some hair, and one-third had more than 50 percentof the hair on their scalp grow back, according to the 2016 study, published in the journalJCI Insight.

However, researchers are still working to determine the best dose needed, whether the results are lasting, and whether they can develop a topical form of the drug, Day said. She added that patients should be aware that Tofacitinib has side effects. Its already associated with an increased risk of serious infections, as well as stomach and intestinal tears, according to Pfizer, the manufacturer.

Besides investigating Tofacitinib, researchers are also looking at ways to clone hair or use stem cell therapy to treat alopecia, Day said.

This article first appeared on LiveScience.

View original post here:
Alopecia: What causes the hair loss condition? - foxwilmington.com

To Read More: Alopecia: What causes the hair loss condition? – foxwilmington.com
categoriaSkin Stem Cells commentoComments Off on Alopecia: What causes the hair loss condition? – foxwilmington.com | dataJanuary 26th, 2020
Read All

How I Went From Managing Complexity to Becoming a U.S. Ambassador and CEO – SWAAY

By daniellenierenberg

With so many groundbreaking medical advances being revealed to the world every single day, you would imagine there would be some advancement on the plethora of many female-prevalent diseases (think female cancers, Alzheimer's, depression, heart conditions etc.) that women are fighting every single day.

For Anna Villarreal and her team, there frankly wasn't enough being done. In turn, she developed a method that diagnoses these diseases earlier than traditional methods, using a pretty untraditional method in itself: through your menstrual blood.

Getting from point A to point B wasn't so easy though. Villarreal was battling a disease herself and through that experience. I wondered if there was a way to test menstrual blood for female specific diseases," she says. "Perhaps my situation could have been prevented or at least better managed. This led me to begin researching menstrual blood as a diagnostic source. For reasons the scientific and medical community do not fully understand, certain diseases impact women differently than men. The research shows that clinical trials have a disproportionate focus on male research subjects despite clear evidence that many diseases impact more women than men."

There's also no denying that gap in women's healthcare in clinical research involving female subjects - which is exactly what inspired Villarreal to launch her company, LifeStory Health. She says that, with my personal experience everything was brought full circle."

There is a challenge and a need in the medical community for more sex-specific research. I believe the omission of females as research subjects is putting women's health at risk and we need to fuel a conversation that will improve women's healthcare.,"

-Anna Villarreal

Her brand new biotech company is committed to changing the women's healthcare market through technology, innovation and vocalization and through extensive research and testing. She is working to develop the first ever, non-invasive, menstrual blood diagnostic and has partnered with a top Boston-area University on research and has won awards from The International Society for Pharmaceutical Engineering and Northeastern University's RISE.

How does it work exactly? Proteins are discovered in menstrual blood that can quickly and easily detect, manage and track diseases in women, resulting in diseases that can be earlier detected, treated and even prevented in the first place. The menstrual blood is easy to collect and since it's a relatively unexplored diagnostic it's honestly a really revolutionary concept, too.

So far, the reactions of this innovative research has been nothing but excitement. The reactions have been incredibly positive." she shares with SWAAY. Currently, menstrual blood is discarded as bio waste, but it could carry the potential for new breakthroughs in diagnosis. When I educate women on the lack of female subjects used in research and clinical trials, they are surprised and very excited at the prospect that LifeStory Health may provide a solution and the key to early detection."

To give a doctor's input, and a little bit more of an explanation as to why this really works, Dr. Pat Salber, MD, and Founder of The Doctor Weighs In comments: researchers have been studying stem cells derived from menstrual blood for more than a decade. Stem cells are cells that have the capability of differentiating into different types of tissues. There are two major types of stem cells, embryonic and adult. Adult stem cells have a more limited differentiation potential, but avoid the ethical issues that have surrounded research with embryonic stem cells. Stem cells from menstrual blood are adult stem cells."

These stem cells are so important when it comes to new findings. Stem cells serve as the backbone of research in the field of regenerative medicine the focus which is to grow tissues, such as skin, to repair burn and other types of serious skin wounds.

A certain type of stem cell, known as mesenchymal stem cells (MenSCs) derived from menstrual blood has been found to both grow well in the lab and have the capability to differentiate in various cell types, including skin. In addition to being used to grow tissues, their properties can be studied that will elucidate many different aspects of cell function," Dr. Salber explains.

To show the outpour of support for her efforts and this major girl power research, Villarreal remarks, women are volunteering their samples happily report the arrival of their periods by giving samples to our lab announcing de-identified sample number XXX arrived today!" It's a far cry from the stereotype of when it's that time of the month."

How are these collections being done? Although it might sound odd to collect menstrual blood, plastic cups have been developed to use in the collection process. This is similar to menstrual products, called menstrual cups, that have been on the market for many years," Dr. Salber says.

Equally shocking and innovative, this might be something that becomes more common practice in the future. And according to Dr. Salber, women may be able to not only use the menstrual blood for early detection, but be able to store the stem cells from it to help treat future diseases. Companies are working to commercialize the use of menstrual blood stem cells. One company, for example, is offering a patented service to store menstrual blood stem cells for use in tissue generation if the need arises."

See the article here:
How I Went From Managing Complexity to Becoming a U.S. Ambassador and CEO - SWAAY

To Read More: How I Went From Managing Complexity to Becoming a U.S. Ambassador and CEO – SWAAY
categoriaSkin Stem Cells commentoComments Off on How I Went From Managing Complexity to Becoming a U.S. Ambassador and CEO – SWAAY | dataJanuary 25th, 2020
Read All

Weekly pick of brain tumour research news from around the world – Brain Tumour Research

By daniellenierenberg

The first symposium of the South West Brain Tumour Centre was held on Thursday at Derriford Hospital in Plymouth. During a fascinating and very well attended event, topics covered included the mechanism of tumour development, new drug targets, new biomarkers and brain tumour imaging. The South West Brain Tumour centre is of course one of the UK Centres of Excellence funded by Brain Tumour Research.

A really big cancer wide story this week is here Immune discovery 'may treat all cancer' applicable to some solid tumours but not yet brain it really shows the direction of travel toward immunotherapy I have recommended this book before but if interested please do read The Breakthrough by Charles Graeber it is available on Amazon and you can read reviews here - http://www.charlesgraeber.com.Researchers uncover novel drug target for glioblastoma by revealing a cellular pathway that appears to contribute to glioma stem cell spread and proliferation. This pathway shows that glioma stem cells ability to access key nutrients in their surrounding microenvironment is integral for their maintenance and spread. Finding a way to interrupt this feedback loop will be important for treating glioblastoma.

An intelligent molecule could significantly extend the lives of patients with glioblastoma, research finds. The molecule, called ZR2002, which can be administered orally and is capable of penetrating the blood-brain barrier, could delay the multiplication of glioblastoma stem cells resistant to standard treatment. According to scientists in the Metabolic Disorders and Complications Program at the Research Institute of the McGill University Health Centre (RI-MUHC) the ZR2002 molecule is designed to kill two birds with one stone: on top of attacking the tumour, it destroys its defence system.

Researchers find clues to drug resistance in medulloblastoma subtype.US scientists have identified specific types of cells that cause targeted treatment to fail in a subtype of medulloblastoma. They found while the majority of cells responded to treatment, diverse populations within the tumour continue to grow leadingto treatment resistance. They concluded that the diversity of cells within tumours allow them to become rapidly resistant to precisely targeted treatments," and that due to this tumour cell diversity, molecularly precise therapies should be used in combinations to be effective."

Nanoparticles deliver 'suicide gene' therapy to paediatric brain tumours growing in mice So-called "suicide genes" have been studied and used in cancer treatments for more than 25 years. Researchers report here that a type of biodegradable, lab-engineered nanoparticle they fashioned can successfully deliver a ''suicide gene'' to paediatric brain tumour cells implanted in the brains of mice.

According to a study that uncovers an unexpected connection between gliomas and neurodegenerative diseases a protein typically associated with neurodegenerative diseases like Alzheimers might help scientists explore how gliomas become so aggressive. The new study, in mouse models and human brain tumour tissues, was published in Science Translational Medicine and found a significant expression of the protein TAU in glioma cells, especially in those patients with better prognoses. Patients with glioma are given a better prognosis when their tumour expresses a mutation in a gene called isocitrate dehydrogenase 1 (IDH1). In this international collaborative study led by the Instituto de Salud Carlos III-UFIEC in Madrid, Spain, those IDHI mutations stimulated the expression of TAU. Then, the presence of TAU acted as a brake for the formation of new blood vessels, which are necessary for the aggressive behaviour of the tumours.

'Innovative research award' helps Colorado scientists block brain cancer escape routes Cancers used to be defined by where they grow in the body - lung cancer, skin cancer, brain cancer, etc. But work in recent decades has shown that cancers sharing specific genetic changes may have more in common than cancers that happen to grow in an area of the body. For example, lung cancers, skin cancers, and brain cancers may all be caused by mutation in a gene called BRAF. Drugs targeting BRAF have changed the treatment landscape for melanoma, an aggressive form of skin cancer, and are also in use against lung cancers and brain cancers with BRAF mutations. It is really worth clicking through to read more on this and the ultimate goal of identifying new potential targets for combination therapy and new agents that could be added to BRAF inhibiting drugs in brain cancer to keep the cancer from developing resistance.

Related reading:

If you found this story interesting or helpful,sign up to our weekly e-newsand keep up to date with all the latest from Brain Tumour Research.

Visit link:
Weekly pick of brain tumour research news from around the world - Brain Tumour Research

To Read More: Weekly pick of brain tumour research news from around the world – Brain Tumour Research
categoriaSkin Stem Cells commentoComments Off on Weekly pick of brain tumour research news from around the world – Brain Tumour Research | dataJanuary 25th, 2020
Read All

What I Learned About Marriage as a Survivor of Abuse – SWAAY

By daniellenierenberg

With so many groundbreaking medical advances being revealed to the world every single day, you would imagine there would be some advancement on the plethora of many female-prevalent diseases (think female cancers, Alzheimer's, depression, heart conditions etc.) that women are fighting every single day.

For Anna Villarreal and her team, there frankly wasn't enough being done. In turn, she developed a method that diagnoses these diseases earlier than traditional methods, using a pretty untraditional method in itself: through your menstrual blood.

Getting from point A to point B wasn't so easy though. Villarreal was battling a disease herself and through that experience. I wondered if there was a way to test menstrual blood for female specific diseases," she says. "Perhaps my situation could have been prevented or at least better managed. This led me to begin researching menstrual blood as a diagnostic source. For reasons the scientific and medical community do not fully understand, certain diseases impact women differently than men. The research shows that clinical trials have a disproportionate focus on male research subjects despite clear evidence that many diseases impact more women than men."

There's also no denying that gap in women's healthcare in clinical research involving female subjects - which is exactly what inspired Villarreal to launch her company, LifeStory Health. She says that, with my personal experience everything was brought full circle."

There is a challenge and a need in the medical community for more sex-specific research. I believe the omission of females as research subjects is putting women's health at risk and we need to fuel a conversation that will improve women's healthcare.,"

-Anna Villarreal

Her brand new biotech company is committed to changing the women's healthcare market through technology, innovation and vocalization and through extensive research and testing. She is working to develop the first ever, non-invasive, menstrual blood diagnostic and has partnered with a top Boston-area University on research and has won awards from The International Society for Pharmaceutical Engineering and Northeastern University's RISE.

How does it work exactly? Proteins are discovered in menstrual blood that can quickly and easily detect, manage and track diseases in women, resulting in diseases that can be earlier detected, treated and even prevented in the first place. The menstrual blood is easy to collect and since it's a relatively unexplored diagnostic it's honestly a really revolutionary concept, too.

So far, the reactions of this innovative research has been nothing but excitement. The reactions have been incredibly positive." she shares with SWAAY. Currently, menstrual blood is discarded as bio waste, but it could carry the potential for new breakthroughs in diagnosis. When I educate women on the lack of female subjects used in research and clinical trials, they are surprised and very excited at the prospect that LifeStory Health may provide a solution and the key to early detection."

To give a doctor's input, and a little bit more of an explanation as to why this really works, Dr. Pat Salber, MD, and Founder of The Doctor Weighs In comments: researchers have been studying stem cells derived from menstrual blood for more than a decade. Stem cells are cells that have the capability of differentiating into different types of tissues. There are two major types of stem cells, embryonic and adult. Adult stem cells have a more limited differentiation potential, but avoid the ethical issues that have surrounded research with embryonic stem cells. Stem cells from menstrual blood are adult stem cells."

These stem cells are so important when it comes to new findings. Stem cells serve as the backbone of research in the field of regenerative medicine the focus which is to grow tissues, such as skin, to repair burn and other types of serious skin wounds.

A certain type of stem cell, known as mesenchymal stem cells (MenSCs) derived from menstrual blood has been found to both grow well in the lab and have the capability to differentiate in various cell types, including skin. In addition to being used to grow tissues, their properties can be studied that will elucidate many different aspects of cell function," Dr. Salber explains.

To show the outpour of support for her efforts and this major girl power research, Villarreal remarks, women are volunteering their samples happily report the arrival of their periods by giving samples to our lab announcing de-identified sample number XXX arrived today!" It's a far cry from the stereotype of when it's that time of the month."

How are these collections being done? Although it might sound odd to collect menstrual blood, plastic cups have been developed to use in the collection process. This is similar to menstrual products, called menstrual cups, that have been on the market for many years," Dr. Salber says.

Equally shocking and innovative, this might be something that becomes more common practice in the future. And according to Dr. Salber, women may be able to not only use the menstrual blood for early detection, but be able to store the stem cells from it to help treat future diseases. Companies are working to commercialize the use of menstrual blood stem cells. One company, for example, is offering a patented service to store menstrual blood stem cells for use in tissue generation if the need arises."

Original post:
What I Learned About Marriage as a Survivor of Abuse - SWAAY

To Read More: What I Learned About Marriage as a Survivor of Abuse – SWAAY
categoriaSkin Stem Cells commentoComments Off on What I Learned About Marriage as a Survivor of Abuse – SWAAY | dataJanuary 25th, 2020
Read All

Scientists zero in on exact reason behind the link between stress and graying of hair – International Business Times, Singapore Edition

By daniellenierenberg

It is not uncommon to hear people say that stress causes one's hair to gray. Many famous American Presidents such as George W. Bush and Barrack Obama grayed drastically by the end of their taxing presidencies. Yet, the real exact behind the process has eluded scientists... Until now.

Researchers from Harvard University have finally uncovered the precise mechanism that causes graying using mice. Stress triggers nerves that are closely involved in the fight-or-flight response. This, in turn, causes irreversible damage to pigment-regenerating stem cells that are found in the hair follicles.

"We wanted to understand if this connection is true, and if so, how stress leads to changes in diverse tissues. Hair pigmentation is such an accessible and tractable system to start with and besides, we were genuinely curious to see if stress indeed leads to hair graying," said Chieh Hsu, senior author of the study, in a statement.

Stress affects the entire body. Therefore, the researchers had to first ascertain which system of the body was responsible for linking hair colour to stress. The first hypothesises that was formulated was that stress leads to an immune attack against pigment-producing cells. However, the scientists found that in spite of lacking immune cells, some mice continued to exhibit graying of hair. This prompted the researchers to assess the hormone cortisolwhich also did not prove to be the real culprit.

Citing the increase in the levels of cortisol as a response to stress, the team assumed that hormone played a role in the graying processonly to learn that it did not. "But surprisingly, when we removed the adrenal gland from the mice so that they couldn't produce cortisol-like hormones, their hair still turned gray under stress," Hsu said.

Following the striking down of immune response and cortisol levels from a list of possible causes, the researchers began systematically eliminating the various possibilities. Finally, they set their sights on the sympathetic nerve system, which is attributed to controlling the body's fight-or-flight response.

Sympathetic nerves branch into every hair follicle on the skin. What the authors discovered was that stress promotes the release of the chemical norepinephrine by these nerves. The released chemical is absorbed by the pigment-regenerating stem cells that are situated nearby.

Specific stem cells within the hair follicle act as a reservoir of pigment-generating cells. During the regeneration of hair, some of the stem cells are converted into pigment-producing cells that give hair its color.

The team found that the norepinephrine produced by the sympathetic nerves causes uncontrolled activation of the stem cells. All the stem cells now turn into pigment-producing cells, which in turn lead to the premature depletion of the reservoir.

"Acute stress, particularly the fight-or-flight response, has been traditionally viewed to be beneficial for an animal's survival. But in this case, acute stress causes permanent depletion of stem cells," said Bing Zhang, lead author of the study. Therefore, the study highlights the damaging side effects of a generally beneficial evolutionary response that is often considered vital for survival.

In order to make the connection between stress and graying, the researchers began with a complete-body response and gradually focussed on individual organ systems, cell-to-cell interactions, and finally, down to molecular dynamics. A range of research tools was employed for this process, including techniques to manipulate cell receptors, nerves and organs.

For the intrinsic study that focussed on various macro and micromechanisms of the body, the researchers collaborated with scientists across various disciplines. One such collaborator was Isaac Chiu, assistant professor of immunology at Harvard Medical School.

Pointing out that the current study learned beyond the various known capacities of neurons, Chiu said, "With this study, we now know that neurons can control stem cells and their function, and can explain how they interact at the cellular and molecular level to link stress with hair graying."

The researchers say that these findings may further the understanding of broad-ranging effects of stress on various types of tissues and organs. This knowledge will provide a new foundation to study and develop ways to block or modify the effects of stress.

"Understanding how our tissues change under stress is the first critical step towards eventual treatment that can halt or revert the detrimental impact of stress. We still have a lot to learn in this area," concluded Hsu.

More here:
Scientists zero in on exact reason behind the link between stress and graying of hair - International Business Times, Singapore Edition

To Read More: Scientists zero in on exact reason behind the link between stress and graying of hair – International Business Times, Singapore Edition
categoriaSkin Stem Cells commentoComments Off on Scientists zero in on exact reason behind the link between stress and graying of hair – International Business Times, Singapore Edition | dataJanuary 25th, 2020
Read All

Researchers uncover link between the nervous system – Tdnews

By daniellenierenberg

When Marie Antoinette was captured during the French Revolution, her hair reportedly turned white overnight. In more recent history, John McCain experienced severe injuries as a prisoner of war during the Vietnam War and lost color in his hair.

For a long time, anecdotes have connected stressful experiences with the phenomenon of hair graying. Now, for the first time, Harvard University scientists have discovered exactly how the process plays out: stress activates nerves that are part of the fight-or-flight response, which in turn cause permanent damage to pigment-regenerating stem cells in hair follicles.

The study, published in Nature, advances scientists knowledge of how stress can impact the body.

Everyone has an anecdote to share about how stress affects their body, particularly in their skin and hair the only tissues we can see from the outside, said senior author Ya-Chieh Hsu, the Alvin and Esta Star Associate Professor of Stem Cell and Regenerative Biology at Harvard. We wanted to understand if this connection is true, and if so, how stress leads to changes in diverse tissues. Hair pigmentation is such an accessible and tractable system to start with and besides, we were genuinely curious to see if stress indeed leads to hair graying.

Narrowing down the culprit

Because stress affects the whole body, researchers first had to narrow down which body system was responsible for connecting stress to hair color. The team first hypothesized that stress causes an immune attack on pigment-producing cells. However, when mice lacking immune cells still showed hair graying, researchers turned to the hormone cortisol. But once more, it was a dead end.

Stress always elevates levels of the hormone cortisol in the body, so we thought that cortisol might play a role, Hsu said. But surprisingly, when we removed the adrenal gland from the mice so that they couldnt produce cortisol-like hormones, their hair still turned gray under stress.

After systematically eliminating different possibilities, researchers honed in on the sympathetic nerve system, which is responsible for the bodys fight-or-flight response.

Sympathetic nerves branch out into each hair follicle on the skin. The researchers found that stress causes these nerves to release the chemical norepinephrine, which gets taken up by nearby pigment-regenerating stem cells.

Permanent damage

In the hair follicle, certain stem cells act as a reservoir of pigment-producing cells. When hair regenerates, some of the stem cells convert into pigment-producing cells that color the hair.

Researchers found that the norepinephrine from sympathetic nerves causes the stem cells to activate excessively. The stem cells all convert into pigment-producing cells, prematurely depleting the reservoir.

When we started to study this, I expected that stress was bad for the body but the detrimental impact of stress that we discovered was beyond what I imagined, Hsu said. After just a few days, all of the pigment-regenerating stem cells were lost. Once theyre gone, you cant regenerate pigment anymore. The damage is permanent.

The finding underscores the negative side effects of an otherwise protective evolutionary response, the researchers said.

Acute stress, particularly the fight-or-flight response, has been traditionally viewed to be beneficial for an animals survival. But in this case, acute stress causes permanent depletion of stem cells, said postdoctoral fellow Bing Zhang, the lead author of the study.

Answering a fundamental question

To connect stress with hair graying, the researchers started with a whole-body response and progressively zoomed into individual organ systems, cell-to-cell interaction and, eventually, all the way down to molecular dynamics. The process required a variety of research tools along the way, including methods to manipulate organs, nerves, and cell receptors.

To go from the highest level to the smallest detail, we collaborated with many scientists across a wide range of disciplines, using a combination of different approaches to solve a very fundamental biological question, Zhang said.

The collaborators included Isaac Chiu, assistant professor of immunology at Harvard Medical School who studies the interplay between nervous and immune systems.

We know that peripheral neurons powerfully regulate organ function, blood vessels, and immunity, but less is known about how they regulate stem cells, Chiu said.

With this study, we now know that neurons can control stem cells and their function, and can explain how they interact at the cellular and molecular level to link stress with hair graying.

The findings can help illuminate the broader effects of stress on various organs and tissues. This understanding will pave the way for new studies that seek to modify or block the damaging effects of stress.

By understanding precisely how stress affects stem cells that regenerate pigment, weve laid the groundwork for understanding how stress affects other tissues and organs in the body, Hsu said. Understanding how our tissues change under stress is the first critical step towards eventual treatment that can halt or revert the detrimental impact of stress. We still have a lot to learn in this area.

The study was supported by the Smith Family Foundation Odyssey Award, the Pew Charitable Trusts, Harvard Stem Cell Institute, Harvard/MIT Basic Neuroscience Grants Program, Harvard FAS and HMS Deans Award, American Cancer Society, NIH, the Charles A. King Trust Postdoctoral Fellowship Program, and an HSCI junior faculty grant.

Read this article:
Researchers uncover link between the nervous system - Tdnews

To Read More: Researchers uncover link between the nervous system – Tdnews
categoriaSkin Stem Cells commentoComments Off on Researchers uncover link between the nervous system – Tdnews | dataJanuary 25th, 2020
Read All

Kyoto University team gets OK from ministry for plan to transplant iPS-derived cartilage into knee joints – The Japan Times

By daniellenierenberg

KYOTO An expert panel of the health ministry on Friday approved a clinical research program proposed by a Kyoto University team to transplant cartilage made from induced pluripotent stem (iPS) cells to damaged knee joints.

Professor Noriyuki Tsumaki and other members of the team are planning to create cartilage with a diameter of 2 to 3 millimeters using iPS cells stored at the universitys Center for iPS Cell Research and Application (CiRA).

The team aims to carry out the first transplant this year. After a clinical trial by Asahi Kasei Corp., which supports the project, it hopes to put the technology into practical use in 2029.

Four people between the ages of 20 and 70 will undergo transplant operations using iPS cell-derived cartilage for their damaged knee joints, with the area of damage ranging from 1 centimeter to 5 centimeters. The team does not plan to seek additional patients for the program.

The team will monitor the four patients for one year after the operations to keep an eye out for possible development of tumors. If the operations succeed, the transplanted material will fuse with existing cartilage.

There are many patients experiencing inconvenience due to damaged cartilage, Tsumaki told a news conference at the Kyoto University Hospital on Friday. Well work hard so that we can offer therapy methods.

The team will also aim to apply the therapy to patients with osteoarthritis.

In 2014, Riken, a Japanese government-affiliated research institute, transplanted retina cells made from iPS cells as a treatment for an incurable eye disease, in the worlds first transplant of iPS-derived cells.

Later, similar transplant operations were conducted by Kyoto University for Parkinsons disease and by Osaka University for corneal disease.

Visit link:
Kyoto University team gets OK from ministry for plan to transplant iPS-derived cartilage into knee joints - The Japan Times

To Read More: Kyoto University team gets OK from ministry for plan to transplant iPS-derived cartilage into knee joints – The Japan Times
categoriaIPS Cell Therapy commentoComments Off on Kyoto University team gets OK from ministry for plan to transplant iPS-derived cartilage into knee joints – The Japan Times | dataJanuary 25th, 2020
Read All

The Kyoto University team’s plan to transplant iPS cartilage into knee joints is OK – gotech daily

By daniellenierenberg

KYOTO A panel of experts from the Ministry of Health approved a clinical research program proposed by a team from the University of Kyoto on Friday for the transplantation of cartilage from induced pluripotent stem cells [iPS] into damaged knee joints.

Professor Noriyuki Tsumaki and other members of the team are planning to produce 2 to 3 millimeter diameter cartilage using iPS cells, which will be stored at the Universitys Center for iPS Cell Research and Application [CiRA].

The team plans to perform the first transplant this year. According to a clinical study by Asahi Kasei Corp., which supports the project, the technology should be put into practice in 2029.

Four people between the ages of 20 and 70 are transplanted with iPS cell cartilage for their damaged knee joints, with the damage range between 1 cm and 5 cm. The team does not plan to seek additional patients for the program.

Immunosuppressors are not used in the transplant because cartilage usually does not show an immune response.

The team will monitor the four patients for possible tumor development for a year after the operation. If the operations are successful, the transplanted material melts into the existing cartilage.

There are many patients who experience discomfort from cartilage damage, said Tsumaki at a press conference at Kyoto University Hospital on Friday. We will work hard to offer therapy methods.

The team will also try to apply the therapy to patients with osteoarthritis.

In 2014, Riken, a research institute affiliated with the Japanese government, transplanted retina cells made from iPS cells to treat an incurable eye disease in the worlds first transplant of iPS-derived cells.

Similar transplants were later performed by Kyoto University for Parkinsons and Osaka University for corneal diseases.

Follow this link:
The Kyoto University team's plan to transplant iPS cartilage into knee joints is OK - gotech daily

To Read More: The Kyoto University team’s plan to transplant iPS cartilage into knee joints is OK – gotech daily
categoriaIPS Cell Therapy commentoComments Off on The Kyoto University team’s plan to transplant iPS cartilage into knee joints is OK – gotech daily | dataJanuary 25th, 2020
Read All

Contrasting National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) – Slater Sentinel

By daniellenierenberg

US Stem Cell (OTCMKTS:USRM) and National Research (NASDAQ:NRC) are both small-cap medical companies, but which is the better stock? We will compare the two businesses based on the strength of their dividends, analyst recommendations, valuation, earnings, risk, institutional ownership and profitability.

Earnings and Valuation

This table compares US Stem Cell and National Researchs revenue, earnings per share and valuation.

Insider and Institutional Ownership

39.7% of National Research shares are owned by institutional investors. 16.7% of US Stem Cell shares are owned by company insiders. Comparatively, 4.5% of National Research shares are owned by company insiders. Strong institutional ownership is an indication that hedge funds, large money managers and endowments believe a company is poised for long-term growth.

Risk and Volatility

US Stem Cell has a beta of 4.87, suggesting that its share price is 387% more volatile than the S&P 500. Comparatively, National Research has a beta of 0.78, suggesting that its share price is 22% less volatile than the S&P 500.

Analyst Recommendations

This is a breakdown of recent ratings and recommmendations for US Stem Cell and National Research, as reported by MarketBeat.com.

Profitability

This table compares US Stem Cell and National Researchs net margins, return on equity and return on assets.

Summary

National Research beats US Stem Cell on 7 of the 9 factors compared between the two stocks.

US Stem Cell Company Profile

U.S. Stem Cell, Inc., a biotechnology company, focuses on the discovery, development, and commercialization of autologous cellular therapies for the treatment of chronic and acute heart damage, and vascular and autoimmune diseases in the United States and internationally. Its lead product candidates include MyoCell, a clinical therapy designed to populate regions of scar tissue within a patient's heart with autologous muscle cells or cells from a patient's body for enhancing cardiac function in chronic heart failure patients; and AdipoCell, a patient-derived cell therapy for the treatment of acute myocardial infarction, chronic heart ischemia, and lower limb ischemia. The company's product development pipeline includes MyoCell SDF-1, an autologous muscle-derived cellular therapy for improving cardiac function in chronic heart failure patients. It is also developing MyoCath, a deflecting tip needle injection catheter that is used to inject cells into cardiac tissue in therapeutic procedures to treat chronic heart ischemia and congestive heart failure. In addition, the company provides physician and patient based regenerative medicine/cell therapy training, cell collection, and cell storage services; and cell collection and treatment kits for humans and animals, as well operates a cell therapy clinic. The company was formerly known as Bioheart, Inc. and changed its name to U.S. Stem Cell, Inc. in October 2015. U.S. Stem Cell, Inc. was founded in 1999 and is headquartered in Sunrise, Florida.

National Research Company Profile

National Research Corporation (NRC) is a provider of analytics and insights that facilitate revenue growth, patient, employee and customer retention and patient engagement for healthcare providers, payers and other healthcare organizations. The Companys portfolio of subscription-based solutions provides information and analysis to healthcare organizations and payers across a range of mission-critical, constituent-related elements, including patient experience and satisfaction, community population health risks, workforce engagement, community perceptions, and physician engagement. The Companys clients range from acute care hospitals and post-acute providers, such as home health, long term care and hospice, to numerous payer organizations. The Company derives its revenue from its annually renewable services, which include performance measurement and improvement services, healthcare analytics and governance education services.

Receive News & Ratings for US Stem Cell Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for US Stem Cell and related companies with MarketBeat.com's FREE daily email newsletter.

More:
Contrasting National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) - Slater Sentinel

To Read More: Contrasting National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) – Slater Sentinel
categoriaCardiac Stem Cells commentoComments Off on Contrasting National Research (NASDAQ:NRC) and US Stem Cell (NASDAQ:USRM) – Slater Sentinel | dataJanuary 25th, 2020
Read All

If you want to ban fetal tissue research, sign a pledge to refuse its benefits – USA TODAY

By daniellenierenberg

Irving Weissman and Joseph McCune, Opinion contributors Published 7:00 a.m. ET Jan. 24, 2020

Severe Trump administration restrictions mean millions of Americans of all political and religious stripes won't benefit from fetal tissue research.

Last summer the Trump administration curtailed federal funding of medical research using human fetal tissue; the new rulestook effect Oct. 1. More recently, the administration addedrestrictions that are even more severe.

Immediately, important work at two NIH-supported labs in Montana and California that are fighting the AIDS epidemic stopped because they were testing new medications against HIV using mice with human immune systems derived from human fetal tissue. In the near term, all National Institutes of Health (NIH) funding of research using fetal tissuewill likely cease.

More than 30years ago, we invented SCID-hu mice for biomedical research on diseases affecting humans, by implanting human fetal blood-forming and immune system tissuesinto mice whose immune systems had been silenced. The implanted immune tissues came from an aborted fetus, and allowed our otherwise immune-deficient mice to exist and be vulnerable to viruses that infect humans.

Tissues from living infants would not have worked;they are too far along in development and nearly impossible to obtain. This mouse model (and later versions of it) became the only living system, outside of a human, in which advanced therapies for diseases like AIDS and other viral infections could be evaluated before they were given to people.

Our work with human fetal tissue proceeded with the highest level of caution and vigilance. We received advice from bioethicists, clergyand government officials, which led to the establishment of strict guidelines that are still used today. No woman was asked or paid to terminate a pregnancy, the termination process was unaltered, and the women were asked for donation of the organs only after they had decided to terminate the pregnancy. Thus, obtaining the fetal tissue for medical research had no impact on ending pregnancies.

Since then, mice with transplanted human fetal tissues have been successfully used by scientists to identify blood stem cells and to devise treatments now availableor in clinical trialsfor cancer, various viral infections, Alzheimers disease, spinal cord injuries, and other diseases of the nervous system. Such diseases kill or cripple many Americans including pregnant women, fetusesand newborn infants. Many of them have only a short window of opportunity wherein a new therapy can treat them, and a delay can be fatal.

National Institutes of Health in Bethesda, Maryland, on Oct. 21, 2013.(Photo: *, Kyodo)

The Trump administration's new rules are tantamount to a funding ban. In academic labs, the experiments are done by students and fellows in training, and the new rules block any NIH-funded students or fellows from working with human fetal tissue. Those who imposed the banmust bear responsibility for the consequences: People will suffer and die for lack of adequate treatments.

Americans pay the price:Trump administration's 'scientific oppression' threatens US safety and innovation

At a December 2018 meeting at NIH,after hearing scientific evidence about alternative research methods such as the use of adult cells, experts concluded that the use of fetal tissue is uniquely valuable. Nonetheless, the administration severely restricted the use of fetal tissue, thereby denying millions of Americans the fruits of such research Americans of all political stripes, since deadly viruses and cancers do not care who you vote for.

These restrictions subvert the NIH mission, which is to advance medicine and protect the nations health. To the extent that it was motivated by the religious beliefs of those in charge, it bluntly transgresses the American principle of separation of church and state. As a result, both believers and non-believers will die.

Of course, all who take the Hippocratic Oathto "do no harm,"which includes all medical doctors, will always offer and deliver all types of therapies that are available.

Restricting science: Trump EPA's cynical 'transparency' ploy would set back pollution science and public health

However, we believe that thoseresponsible forthis de facto ban, and perhapsthose who agree with them, should personally accept its consequences. We challenge them tobe true to their beliefs. They should pledge to never accept any cancer therapy, any AIDS medication, any cardiac drug, any lung disease treatment, any Alzheimers therapy, or any other medical advance that was developed using fetal tissue including our mice. Its a long list, one that you can learn about from us here. Should this apply to you, be faithful and be bold: Take the pledge.

Irving Weissman is a Professor of Pathology and Developmental Biology and the Director of the Stanford Institute of Stem Cell Biology and Regenerative Medicine and Ludwig Center for Cancer Stem Cell at Stanford University School of Medicine. Joseph McCune is Professor Emeritus of Medicine from the Division of Experimental Medicine at the University of California, San Francisco. The views expressed here are solely their own.

Autoplay

Show Thumbnails

Show Captions

Read or Share this story: https://www.usatoday.com/story/opinion/2020/01/24/trump-fetal-tissue-research-ban-hurts-all-americans-column/4553379002/

Go here to read the rest:
If you want to ban fetal tissue research, sign a pledge to refuse its benefits - USA TODAY

To Read More: If you want to ban fetal tissue research, sign a pledge to refuse its benefits – USA TODAY
categoriaCardiac Stem Cells commentoComments Off on If you want to ban fetal tissue research, sign a pledge to refuse its benefits – USA TODAY | dataJanuary 25th, 2020
Read All

El Paso scientists team up for heart research project at the International Space Station – KVIA El Paso

By daniellenierenberg

EL PASO, Texas -- Biomedical research scientists from Texas Tech University Health Sciences Center El Paso and The University of Texas at El Paso are partnering up to send "artificial mini-hearts" to the International Space Station to better understand how microgravity affects the function of the human heart.

The three-year project, funded by the National Science Foundation (NSF) and the space station's U.S. National Laboratory, brings together TTUHSC El Paso faculty scientist Munmun Chattopadhyay, Ph.D., and UTEP biomedical engineer Binata Joddar, Ph.D. The researchers will collaborate in their Earth-bound labs to create tiny (less than 1 millimeter thick) heart-tissue structures, known as cardiac organoids, using human stem cells and 3D bioprinting technology.

By exposing the organoids to the near-weightless environment of the orbiting space station, the researchers hope to gain a better understanding of a health condition known as cardiac atrophy, which is a reduction and weakening of heart tissue. Cardiac atrophy often affects astronauts who spend long periods of time in microgravity. A weakened heart muscle has difficulty pumping blood to the body, and can lead to problems such as fainting, irregular heartbeat, heart valve problems and even heart failure. Cardiac atrophy is also associated with chronic disease.

The first year of the project, which began in September, will focus on research design. During this phase, Dr. Joddar will use 3D printing to fabricate the cardiac organoids by coupling cardiac cells in physiological ratios to mimic heart tissue. The second year will be centered on preparing the organoid payload for a rocket launch and mission in space. The third and final year of the research will involve analyzing data from the experiment after the organoids are returned to Earth.

The project will also provide an educational opportunity for the El Paso community, with a workshop for K-12 students to learn about tissue engineering projects on the space station. It will also include a seminar for medical students, interns and residents about the benefits and challenges of transitioning research from Earth-based laboratories into space.

Read the original here:
El Paso scientists team up for heart research project at the International Space Station - KVIA El Paso

To Read More: El Paso scientists team up for heart research project at the International Space Station – KVIA El Paso
categoriaCardiac Stem Cells commentoComments Off on El Paso scientists team up for heart research project at the International Space Station – KVIA El Paso | dataJanuary 25th, 2020
Read All

Page 162«..1020..161162163164..170180..»


Copyright :: 2025