Page 166«..1020..165166167168..180190..»

Local firm adds a new wrinkle to anti-aging products – The Coal Valley News

By daniellenierenberg

HUNTINGTON Serucell Corporation, a cosmeceutical company based in Huntington, has developed the worlds only dual-cell technology to create and produce anti-aging skincare products, and they did it in Huntington.

Serucell KFS Cellular Protein Complex Serum is made start to finish at Serucells laboratory on the south side of Huntington.

This has been one of the best kept secrets in West Virginia, said Cortland Bohacek, executive chairman and a co-founder of Serucell Corporation.

The company soft launch was in September 2018 at The Greenbrier Spas. The Official online launch was April 2019 and is getting exposure with some well known sellers like Neiman Marcus, local dermatologist and plastic surgeons offices and several other retail locations from New York to California. It is also sold online at serucell.com.

One person that has tried the product is Jennifer Wheeler, who is also a Huntington City Council member.

As a consumer I have an appreciation of the quality of the product and the results Ive seen using it, she said. It has been transformative for my skin and seems like its success will be transformative for our city as well.

She said Serucell and the people behind it are impressive on every level.

In my role on council, Im especially grateful for the companys conscious effort to stay and grow in our city, Wheeler said.

A one-ounce bottle of the serum costs $225. The recommended usage is twice per day and it will last on average of about six weeks.

Serucells active ingredient is called KFS (Keratinocyte Fibroblast Serum), which is made up of more than 1,500 naturally derived super proteins, collagens, peptides and signaling factors that support optimal communication within the cellular makeup of your skin.

This is the first and only dual-cell technology that optimizes hydration and harnesses the power of both keratinocytes and fibroblasts, two essential contributors to maintaining healthy skin by supporting natural rejuvenation of aging skin from the inside out, said Jennifer Hessel, president and CEO of the company.

When applied to the skin, KFS helps boost the skins natural ability to support new collagen and elastin, strengthen the connection and layer of support between the upper and lower layers of your skin. The result, over time is firmer, plumper and smoother skin, according to Hessel.

Why it works so naturally with your skin is because it is natural, Hessel said. These proteins play an important role in strengthening the bond between the layers of your skin, and thats where the re-boot happens.

KFS is the creation of Dr. Walter Neto, Serucells chief science officer and co-founder of the company. Neto is both a physician and a research scientist, specializing in the field of regenerative medicine with an emphasis on skin healing and repair.

Neto said Serucells technology unlocks the key to how our cells communicate and harnesses the signaling power actions to produce the thousands of bioactive proteins necessary to support the skins natural rejuvenation.

Originally from Brazil, Neto studied at Saint Matthews University and completed his clinical training in England. His clinical research on stem-cell cancer therapies, bone and tissue engineering and wound and burn healing led to his discovery in cell-to-cell communication, and ultimately the creation of Serucells KFS Cellular Protein Complex Serum.

Neto received multiple patents for the production method of Serucell KFS Serum.

Neto lives in Huntington with his wife and four golden retrievers.

Neto works alongside his longtime friend, Dr. Brett Jarrell.

I have known Brett since I was 18 years old, Neto said.

Jarrell practices emergency medicine in Ashland, Kentucky, and oversees all aspects of quality control for Serucell. He received his bachelors degree in biology from Wittenberg University, his masters degree in biology from Marshall University and his medical degree from the Marshall University School of Medicine. Jarrell completed his residency at West Virginia University and is board certified by the American Board of Emergency Medicine.

Jarrell has served as a clinical instructor of emergency medicine at the Marshall School of Medicine, president of the West Virginia chapter of the American College of Emergency Medicine and he has published a number of peer-reviewed journal articles on stroke research.

Jarrell also lives in Huntington.

Another co-founder of the company is Dr. Tom McClellan.

McClellan is Serucells chief medical officer and director of research and is a well-respected plastic and reconstructive surgeon with a private practice, McClellan Plastic Surgery, in Morgantown.

McClellan completed his plastic and reconstructive surgery training at the world-renowned Lahey Clinic Foundation, a Harvard Medical School and Tufts Medical School affiliate in Boston, Massachusetts. While in Boston, he worked at Lahey Medical Center, Brigham and Womens Hospital, as well as at the Boston Childrens Hospital. McClellan is board certified by the American Board of Plastic Surgery.

In addition to his practice and role at Serucell, McClellan utilizes his surgical skills through pro bono work with InterplastWV, a non-profit group that provides comprehensive reconstructive surgery to the developing world. He has participated in surgical missions to Haiti, Peru and the Bahamas.

McClellan lives in Morgantown with his family.

All three doctors here have strong connections to West Virginia and we didnt want to leave, Neto said. We all want to give back to West Virginia, so that is the main reason we have our business here in Huntington.

We are building a company we believe can make a difference in the community, Hessel added. Our goal is to grow Serucell and build our brand right here in Huntington. There is a pool of untapped talent here in Huntington. When we expand our business here, we can provide another reason for young people to be able to stay and grow their careers, whether it is in science, operations or manufacturing. The team is a pretty excited to make an impact in the community where it all started.

Hessel decline to give sales numbers, but said the business has been growing each year since the product was introduced. She also declined to give the number of employees at the facility, but did say it has sales representatives across the country.

For more information, visit serucell.com.

Original post:
Local firm adds a new wrinkle to anti-aging products - The Coal Valley News

To Read More: Local firm adds a new wrinkle to anti-aging products – The Coal Valley News
categoriaSkin Stem Cells commentoComments Off on Local firm adds a new wrinkle to anti-aging products – The Coal Valley News | dataJanuary 4th, 2020
Read All

Victoria Beckham Dreams That her Beauty Line Will Become ‘Brand of the Future’ – Al Bawaba

By daniellenierenberg

Victoria Beckham aims to "create a brand of the future" with Victoria Beckham Beauty.

The former Spice Girl launched her eponymous beauty brand last year, later expanding her label to include skincare, and the 45-year-old fashion designer says her intention was to create products that are sustainable and not made from toxic formulas, whilst being "inclusive" for all skin tones.

The mother-of-four told the February issue of Harper's Bazaar UK: "I've been obsessed with make-up and skincare and wellness for longer than I can remember."But I couldn't find what I wanted - clean beauty.

"What is that, even? It's a real grey area.

"I wanted to create a brand of the future - focusing on what's in the formulas but then also sustainability.

"The other thing that was key was making sure it was very inclusive - whether it's make-up or skincare, this is for every skin type and tone, and for both women and men."

In November, Victoria - who has Brooklyn, 20, Romeo, 17, Cruz, 14 and Harper, eight, with retired soccer star husband David Beckham - released her Cell Rejuvenating Priming Moisturiser in collaboration with Professor Augustinus Bader, the German stem-cell scientist behind The Cream, which was named as one of 2019's most popular skincare products.

Bader's product features a patented Trigger Factor Complex that works to jumpstart your skin's repair and renewal functions to heal skin faster and in turn, improve the appearance of fine lines and wrinkles, and as a fan of the cream herself, Victoria was thrilled to work with the scientist.

She said: "It's been a dream to develop, with Augustinus, a priming moisturiser that works to improve the health of my skin and gives me that fresh, natural glow that I love."

The priming moisturiser is a hybrid product that combines primer with moisturiser, and is inspired by Victoria's own skincare routine.

Victoria's product implements Bader's Trigger Factor Complex technology, as well as the lipids, vitamins, and amino acids found in his original cream, but with the added benefit of also smoothing skin so it's prepped for make-up application.

Bader explained: "It's the first priming moisturiser of its kind to care for your skin cells while also preparing your skin for makeup application."

The cream has a lightweight texture that can be work alone to give skin a radiant finish or under make-up, which according to Victoria, "will enhance your products."

Read the original:
Victoria Beckham Dreams That her Beauty Line Will Become 'Brand of the Future' - Al Bawaba

To Read More: Victoria Beckham Dreams That her Beauty Line Will Become ‘Brand of the Future’ – Al Bawaba
categoriaSkin Stem Cells commentoComments Off on Victoria Beckham Dreams That her Beauty Line Will Become ‘Brand of the Future’ – Al Bawaba | dataJanuary 4th, 2020
Read All

Making blood on demand: How far have we come? – Science Codex

By daniellenierenberg

The reconstitution of the blood system in humans holds great therapeutic potential to treat many disorders, like blood cancers, sickle-cell anemia and others. Successful reconstitution requires the transplantation and engraftment of hematopoietic (or blood) stem cells (HSCs), which after reaching their niche, start producing all types of blood cells, including platelets, white and red blood cells.

In current clinical practice, this is carried out by infusing HSCs obtained from a matched donor who is immunologically compatible with the patient in need (allogeneic transplantation), or by the expansion of the patient's own HSCs in the lab, and then re-infusing them back into the patient (ex-vivo, autologous transplantation). However, the utility of both routes is currently limited by a number of factors. First, in the case of allogeneic transplantation, the scarcity of matched donors significantly increases the waiting time, which could be detrimental to the patient. Second, the ex vivo expansion of HSCs, whether allogeneic or autologous, has been a challenging task, due to the limited proliferative potential these cells exhibit in culture. These limitations have raised the need for other sources of HSCs that would alleviate the need for matched donors and yield functional HSCs in large quantities.

In 2007, Professor Shinya Yamanaka and colleagues demonstrated that somatic cells, like skin fibroblasts, could be reprogrammed back to a cellular state that resembled human embryonic stem cells (hESCs), which are a group of cells found in the blastocyst-stage human embryo and contribute solely to the development of the human fetus during pregnancy. The reprogrammed cells were termed, Induced Pluripotent Stem Cells (iPSCs). In addition to their developmental potential, human ESCs and iPS cells display unlimited proliferative potential in culture, which makes them an ideal source of cells for regenerative medicine in general and for hematopoietic differentiation to obtain possibly unlimited quantities of HSCs. Therefore, there has been a growing interest to harness the potential of these cells for treating blood disorders.

However, advancement in deriving functional HSCs from human pluripotent stem cells has been slow. This has been attributed to incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, the authors discuss the latest efforts to generate HSCs capable of long-term engraftment and reconstitution of the blood system from human pluripotent stem cells. Stem cell research has witnessed milestone achievements in this area in the last couple of years, the significance of which are discussed and analyzed in detail.

The authors additionally discuss two highly important families of transcription factors in the context of hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA proteins. These are thought of as master regulators, in the sense of having numerous transcriptional targets, which upon activation, could elicit significant changes in cell identity. The authors hypothesize that precise temporal control of the levels of certain members of these families during hematopoietic differentiation could yield functional HSCs capable of long-term engraftment.

The authors conclude the review with a summary of future perspectives, in which they discuss how newly developed techniques, like the deactivated-Cas9 (dCas9) gene-expression control system, can be utilized during the course of hematopoietic differentiation of pluripotent stem cells for precise temporal control of the aforementioned master regulators to achieve functional HSCs.

More:
Making blood on demand: How far have we come? - Science Codex

To Read More: Making blood on demand: How far have we come? – Science Codex
categoriaSkin Stem Cells commentoComments Off on Making blood on demand: How far have we come? – Science Codex | dataJanuary 4th, 2020
Read All

Stem Cells Market Key Opportunities and Forecast up to 2025 – AnalyticSP

By daniellenierenberg

In theglobalstem cells marketa sizeable proportion of companies are trying to garner investments from organizations based overseas. This is one of the strategies leveraged by them to grow their market share. Further, they are also forging partnerships with pharmaceutical organizations to up revenues.

In addition, companies in the global stem cells market are pouring money into expansion through multidisciplinary and multi-sector collaboration for large scale production of high quality pluripotent and differentiated cells. The market, at present, is characterized by a diverse product portfolio, which is expected to up competition, and eventually growth in the market.

Some of the key players operating in the global stem cells market are STEMCELL Technologies Inc., Astellas Pharma Inc., Cellular Engineering Technologies Inc., BioTime Inc., Takara Bio Inc., U.S. Stem Cell, Inc., BrainStorm Cell Therapeutics Inc., Cytori Therapeutics, Inc., Osiris Therapeutics, Inc., and Caladrius Biosciences, Inc.

Request PDF Sample of Stem Cells Market Report @https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=132

As per a report by Transparency Market Research, the global market for stem cells is expected to register a healthy CAGR of 13.8% during the period from 2017 to 2025 to become worth US$270.5 bn by 2025.

Depending upon the type of products, the global stem cell market can be divided into adult stem cells, human embryonic stem cells, induced pluripotent stem cells, etc. Of them, the segment of adult stem cells accounts for a leading share in the market. This is because of their ability to generate trillions of specialized cells which may lower the risks of rejection and repair tissue damage.

Depending upon geography, the key segments of the global stem cells market are North America, Latin America, Europe, Asia Pacific, and the Middle East and Africa. At present, North America dominates the market because of the substantial investments in the field, impressive economic growth, rising instances of target chronic diseases, and technological progress. As per the TMR report, the market in North America will likely retain its dominant share in the near future to become worth US$167.33 bn by 2025.

Enquiry for Discount on Stem Cells Market Report @https://www.transparencymarketresearch.com/sample/sample.php?flag=D&rep_id=132

Investments in Research Drives Market

Constant thrust on research to broaden the utility scope of associated products is at the forefront of driving growth in the global stem cells market. Such research projects have generated various possibilities of different clinical applications of these cells, to usher in new treatments for diseases.Since cellular therapies are considered the next major step in transforming healthcare, companies are expanding their cellular therapy portfolio to include a range of ailments such as Parkinsons disease, type 1 diabetes, spinal cord injury, Alzheimers disease, etc.

The growing prevalence of chronic diseases and increasing investments of pharmaceutical and biopharmaceutical companies in stem cell research are the key driving factors for the stem cells therapeutics market. The growing number of stem cell donors, improved stem cell banking facilities, and increasing research and development are other crucial factors serving to propel the market, explains the lead analyst of the report.

More here:
Stem Cells Market Key Opportunities and Forecast up to 2025 - AnalyticSP

To Read More: Stem Cells Market Key Opportunities and Forecast up to 2025 – AnalyticSP
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cells Market Key Opportunities and Forecast up to 2025 – AnalyticSP | dataJanuary 4th, 2020
Read All

It can be difficult to forecast technological and scientific changes, but this is what will happen in 2020 – Medical Herald

By daniellenierenberg

Gene editing Researchers will work frenzied to evaluate the potential of a new version of the Crispr technique, known as Prime editing, unveiled in October to a lot of fanfare. Prime editing was proposed to have the ability to rectify about 89 percent of the 75,000 adverse genetic mutations that lay behind hereditary diseases, such as cystic fibrosis and sickle cell disease of the blood disorder.

3D rockets Last year, major steps in rocket science were made, with successful testing of a number of 3D-printed engine prototypes.

Stem cells Scientists around the world are collaborating on trials of potential stem cell treatments for blindness, spinal cord injury, heart failure, diabetes, Parkinsons disease and lung cancer, and some of the first findings are expected to be available later this year. Embryonic or pluripotent stem cells have immense therapeutic promise because they can grow into any of the bodys roughly 220 adult, specialized cells, from insulin-making pancreatic cells to the brains nerve cells.

Mars The ExoMars programs 2020 mission, if all goes to plan, will bring to the surface of Mars a European rover and a Russian vehicle. ExoMars will be the first mission to incorporate the ability to move across the planets surface and reach into the ability to study Mars.

Nasa is setting up a separate mission to research Mars habitability and prepare for future human missions. Smart needle Researchers are hoping to get an early indication as to whether a new smart needle they have developed can detect cancer successfully in seconds.

The researchers have so far concentrated on lymphoma, but said the procedure could also be used later down the line to treat other aspects of the disease, such as breast and prostate cancer. The smart needle uses light to near-instantly classify cancerous tissues. Using a Raman spectroscopy procedure, the Optical Biopsy tests the tissue-scattered light when a laser embedded in the needle shines on it.

The light scatters slightly from healthy tissues than from diseased tissues, which ensures that doctors will immediately make a decision. Developed by Toyota, the Human Support Robot and Delivery Support Robot will be used in tandem.

The new plant is designed to handle 5,000 tons of waste a day, burning the waste.

Excerpt from:
It can be difficult to forecast technological and scientific changes, but this is what will happen in 2020 - Medical Herald

To Read More: It can be difficult to forecast technological and scientific changes, but this is what will happen in 2020 – Medical Herald
categoriaSpinal Cord Stem Cells commentoComments Off on It can be difficult to forecast technological and scientific changes, but this is what will happen in 2020 – Medical Herald | dataJanuary 4th, 2020
Read All

My agonising two-year wait for a stem-cell donor after being diagnosed with leukaemia – The Telegraph

By daniellenierenberg

There is also another option on the table: a technology called haplo-identical, where they could use the stem cells from my brother, who is a 50 per cent match.

But it shouldnt have been this hard to find a match, and thats whyI started my campaign to sign more people up to the transplant list.I want to make a difference for other people who have to go through this.

If I dont make it, I want to leave a legacy that the children can look at when theyre older and know that Mummy did everything she could to fight this thing. There can only be one winner with this disease, and it needs to be me.

As told to Jessica Salter

Leukaemia Care is one of three charities supported by this years Telegraph Christmas Charity Appeal. Our others are Wooden Spoon, which works with the rugby community to raise money for disabled and disadvantaged children,and The Silver Line, a telephone support service for lonely elderly people. To donate,visit telegraph.co.uk/charity or call 0151 284 1927 before the end of January

Read more:
My agonising two-year wait for a stem-cell donor after being diagnosed with leukaemia - The Telegraph

To Read More: My agonising two-year wait for a stem-cell donor after being diagnosed with leukaemia – The Telegraph
categoriaBone Marrow Stem Cells commentoComments Off on My agonising two-year wait for a stem-cell donor after being diagnosed with leukaemia – The Telegraph | dataJanuary 4th, 2020
Read All

BrainStorm Cell Therapeutics Wins 2020 ‘Buzz of BIO’ Award for ALS Investigational Therapy – ALS News Today

By daniellenierenberg

For its promising investigational therapeutic approach to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), BrainStorm Cell Therapeutics is theBuzz of BIO 2020 winnerin the Public Therapeutic Biotech category.

The Buzz of BIO contest identifies U.S. companies with groundbreaking, early-stage potential to improve lives. The event also is anopportunity to make investor connections that could take products to the next phase.

Ten biotechnology companies are nominated in each of the three categories ofBuzz of BIO: Public Therapeutic Biotech, Private Therapeutic Biotech, and Diagnostics and Beyond. In the Public Therapeutic Biotech category that BrainStorm won, nominated companies must be actively developing a publicly traded human treatment intended for review by theU.S. Food and Drug Administration (FDA).

As a developer of autologous cellular therapies treatments that use a patients own cells and tissues for debilitating neurodegenerative diseases, BrainStorm is now testing its NurOwn therapy for safety and effectiveness. The treatment involves extracting, from human bone, marrow-derived mesenchymal stem cells (MSCs), which are capable of differentiating into other cell types. The MSCs are then matured into a specific cell type that produces neurotrophic factors compounds that promote nervous tissue growth and survival. They are then reintroduced to the body via injection into muscles and/or the spinal canal.

Backed by a California Institute for Regenerative Medicine grant, Brainstorm has fully enrolledits randomized, double-blind, placebo-controlled Phase 3 clinical trial (NCT03280056) at six U.S. sites in California, Massachusetts, and Minnesota. Some 200 ALS patients are participating. A secondary safety analysis by the trials independent Data Safety Monitoring Board (DSMB) revealed no new concerns. Every two months, study subjects will be given three injections into the spinal canal of either NurOwn or placebo.

The trial is expected to conclude late this year. Results will be announced shortly afterward.

In a Phase 2 study (NCT02017912), which included individuals with rapidly progressing ALS, NurOwn demonstrated a positive safety profile as well as prospective efficacy.

The use of autologous MSC cells to potentially treat ALS was given orphan drug status by both the FDA and the European Medicines Agency.

Thanks to everyone who voted for BrainStorm during the Buzz of BIO competition,Chaim Lebovits, BrainStorm president and CEO, said in a press release. The entire management team at BrainStorm was very pleased with the results of this competition, and we look forward to presenting to an audience of accredited investors who may benefit from the companys story. We thank the BIO[Biotechnology Innovation Organization] team for singling out BrainStorms NurOwn as a key technology with the potential to improve lives.

As a contest winner, BrainStorm is invited to givea presentation at theBio CEO & Investor Conference, to be held Feb. 1011 in New York City, along with exposure to multiple industry elites and potential investors.

NurOwn cells also are being tested in a Phase 2 clinical study (NCT03799718) in patients with progressive multiple sclerosis.

Mary M. Chapman began her professional career at United Press International, running both print and broadcast desks. She then became a Michigan correspondent for what is now Bloomberg BNA, where she mainly covered the automotive industry plus legal, tax and regulatory issues. A member of the Automotive Press Association and one of a relatively small number of women on the car beat, Chapman has discussed the automotive industry multiple times of National Public Radio, and in 2014 was selected as an honorary judge at the prestigious Cobble Beach Concours dElegance. She has written for numerous national outlets including Time, People, Al-Jazeera America, Fortune, Daily Beast, MSN.com, Newsweek, The Detroit News and Detroit Free Press. The winner of the Society of Professional Journalists award for outstanding reporting, Chapman has had dozens of articles in The New York Times, including two on the coveted front page. She has completed a manuscript about centenarian car enthusiast Margaret Dunning, titled Belle of the Concours.

Total Posts: 6

Ins holds a PhD in Biomedical Sciences from the University of Lisbon, Portugal, where she specialized in blood vessel biology, blood stem cells, and cancer. Before that, she studied Cell and Molecular Biology at Universidade Nova de Lisboa and worked as a research fellow at Faculdade de Cincias e Tecnologias and Instituto Gulbenkian de Cincia. Ins currently works as a Managing Science Editor, striving to deliver the latest scientific advances to patient communities in a clear and accurate manner.

Link:
BrainStorm Cell Therapeutics Wins 2020 'Buzz of BIO' Award for ALS Investigational Therapy - ALS News Today

To Read More: BrainStorm Cell Therapeutics Wins 2020 ‘Buzz of BIO’ Award for ALS Investigational Therapy – ALS News Today
categoriaBone Marrow Stem Cells commentoComments Off on BrainStorm Cell Therapeutics Wins 2020 ‘Buzz of BIO’ Award for ALS Investigational Therapy – ALS News Today | dataJanuary 4th, 2020
Read All

ASTRONOMICAL ODDS: Stem cell recipient and her donor both from Ottawa – Ottawa Sun

By daniellenierenberg

Colleen LeCours lay in a hospital bed at the General campus of The Ottawa Hospital on August 12, 2016, waiting for the only thing that could save her life a stem cell transplant from a stranger.

The donor could be anywhere in the world if a related blood donor cant be found, the call to find a match goes out to registries all over the globe and the donated stem cells are rushed across international borders.

What LeCours didnt know is that her donor, an 18-year-old Carleton University student named Timothy White, was just one floor below. Similarly, White didnt know that his recipient was in the same hospital.

There are currently more than 450,000 people on the Canadian Blood Services Stem Cell Registry formerly known as OneMatch and 36 million on affiliated international registries. Still, some people never find a match. There are more than 900 Canadians in need of a transplant who have not found a match anywhere in the world.

What were the odds that the match for LeCours, now 57, would be found in the same city?

Astronomical, she said.

The chances that White would even ever be asked to donate were also very low only about one in a thousand. After he agreed to donate, he was not told where the recipient might be. I was told the recipient could be anywhere. They could be in Africa, said White, now 22 and a recent graduate in computer science.

White had signed up for the registry through a cheek swab booth at ComiCon less than six months earlier. A smart place to recruit would-be stem cell donors, he notes. The optimal donor is a male between the age of 17 and 35 and thats the ComiCon demographic.

He decided to register as a potential donor because he grew up in the scouting movement. One of the main philosophies is to do a good turn every day, he said.

The donation was a non-surgical procedure in which Whites blood was removed though a needle, the stem cells were separated from his blood and the remaining blood components returned to his body through another needle. The procedure started at about 8 a.m. and was over by about 5 p.m.

I figured if I gave someone a day for a thousand more days (of life) then I felt it was a fair trade. I have many years of life. Why not spend one day? said White.

LeCourss medical journey started in 2009 with an emergency room visit for abdominal pain. She was eventually diagnosed with Stage 4 follicular lymphoma, a blood cancer that affects infection-fighting white blood cells. At the time, LeCours was working for Gov.-Gen. Michalle Jean and was able to stay on the job most of the time during her six months of treatment.

Four years later, the lymphoma returned. It was back again two years after that, in a more aggressive form. The only treatment was stem cell transplant.

There are two main kinds of stem cell transplants autologous and allogenic. In an autologous transplant, stem cells are collected from a patients own blood and reintroduced after being treated to remove cancer cells. In an allogenic stem cell transplant, the stem cells come from a donor.

At this point, LeCours was a candidate for an autologous transplant. Once again, she underwent aggressive chemotherapy. A year later, the cancer returned.

Doctors told LeCours there wasnt much else they could do and advised her to get her affairs in order. But the hospitals transplant team felt she could be a candidate for an allogenic transplant. Theres risk rejecting donated stem cells can be fatal to the patient.

LeCours learned that her brother was a match. But the medical work-up would last about three months and she couldnt wait that long.

I wasnt sure I wanted to do it but I didnt have much choice, she said. They said, We have someone waiting in the wings.

And I said, He probably has wings.

After the transplant, LeCours recovered as an outpatient in the home of her brother and sister-in-law. It took three months to rebuild her immune system. Her only rejection symptoms were a bit of skin irritation.

In January 2018, LeCours received an email asking if she would like to exchange contact information with her donor. She replied that she would.

A few months later, she got a message with Whites co-ordinates and was astonished to find that her donor was in Ottawa. It took her a few weeks to formulate an email.

I didnt want to scare him. I just wanted him to know how incredibly grateful I was. And I wanted to pay it forward, said LeCours.

After careful consideration, she sent White an email on Oct. 8, 2018.

Today, being Thanksgiving, I have so much to be thankful for, namely you giving your stem cells and saving my life and the success of the stem cells grafting to my bone marrow, LeCours wrote. I cant thank you enough for your wonderful selfless act.

Stem cell donor 18-year-old Carleton University student Timothy White at The Ottawa Hospital, General campus, donating stem cells for Colleen LeCours in August 2016. At the time he did not know that LeCours would be the recipient. Courtesy Timothy White.jpg

She added that she didnt know anything about him except for his name and email address, and asked if they could meet. They got together for the first time over lunch in a burger restaurant.

As soon as I saw him, I broke down, said LeCours.

It has been three and a half years since the transplant and LeCours remains in remission. She invited White to her familys Thanksgiving this year, and the two meet to catch up every few months. Its one of the quirks of stem cell donation that the recipient assumes the blood type of the donor. LeCours, once O-positive, now has blood type A-negative, like White.

Im a grandmother. The fact that my grandson has his moma is huge.

ALSO IN THE NEWS

Ottawa police chief lifts suspension of police union boss Matt Skof

Reduce the burden: Inuit healing centre reopens after funding lapse forced shut down

RTG wasnt on top of it : New Years Eve light rail issues attributed to dirt, grit buildup on trains

Read more:
ASTRONOMICAL ODDS: Stem cell recipient and her donor both from Ottawa - Ottawa Sun

To Read More: ASTRONOMICAL ODDS: Stem cell recipient and her donor both from Ottawa – Ottawa Sun
categoriaBone Marrow Stem Cells commentoComments Off on ASTRONOMICAL ODDS: Stem cell recipient and her donor both from Ottawa – Ottawa Sun | dataJanuary 4th, 2020
Read All

Stocks making the biggest moves midday: L3Harris, Tesla, Apache & more – CNBC

By daniellenierenberg

Military personnel walk past the Raytheon Missile stand.

Carl De Souza | AFP | Getty Images

Check out the companies making headlines in midday trading:

Raytheon, Lockheed Martin, L3Harris Equity of major aircraft and weapons manufacturers Raytheon, Lockheed Martin and L3Harris rose 1.6%, 3.8% and 3.3%, respectively, in midday trading as U.S.-Iranian tensions flare in the Middle East. The U.S. confirmed it was responsible for a drone strike in Baghdad on Friday that killed Iranian Gen. Qasem Soleimani, Tehran's top military commander and a prominent political fixture in the region.

Incyte Shares of Incyte plunged 10% Friday after the company announced that a Phase III study showed one of its developmental drugs failed to show results that were statistically superior to a placebo. The drug was aimed at treating a disease that arises when donated bone marrow or stem cells attack their new host.

Tesla Tesla's stock climbed 3.8% on Friday after the automaker reported better-than-expected deliveries for its most recent quarter. The electric car company delivered 112,000 vehicles during the fourth quarter, topping consensus estimates of 106,000. Tesla delivered roughly 367,500 vehicles for the full year, a 50% increase from 2018 and within the range that it had given as guidance.

Bank of America Shares of the top U.S. bank fell 1.5% in afternoon trading after BMO Capital Markets downgraded the equity to market perform from outperform, telling clients its valuation re-rating has "run its course." Analyst James Fotheringham added that Bank of America shares now trade at a premium to their long-term average and suggested investors look to cheaper names like Citi and Morgan Stanley in the big-bank space.

Concho Resources, Apache, Devon Energy Shares of Concho, Apache and Devon all traded higher, following crude prices, after the U.S. killed a top Iranian military leader in an airstrike. Concho and Apache each traded higher by more than 1% while Devon advanced 0.8%.

L Brands Shares of L Brands rose nearly 8% after Bank of America upgraded the retail and apparel company to buy from neutral. The bank's analysts cited a strong Bath & Body Works business, potential for a more stable Victoria's Secret and a high dividend yield as reasons for the upgrade. The bank also raised its price target on the stock to $25 per share from $21, which would be a 49% increase from where the stock closed on Thursday.

Humana Humana rose 1.5% after Goldman Sachs added the health care company to its "Conviction Buy" list and told clients it sees sizable upward revisions to earnings estimates due to the recent repeal of a fee on health insurers.

CNBC's Fred Imbert and Jesse Pound contributed to this report.

Excerpt from:
Stocks making the biggest moves midday: L3Harris, Tesla, Apache & more - CNBC

To Read More: Stocks making the biggest moves midday: L3Harris, Tesla, Apache & more – CNBC
categoriaBone Marrow Stem Cells commentoComments Off on Stocks making the biggest moves midday: L3Harris, Tesla, Apache & more – CNBC | dataJanuary 4th, 2020
Read All

Targeted deletion of PD-1 in myeloid cells induces antitumor immunity – Science

By daniellenierenberg

INTRODUCTION

Programmed cell death protein 1 (PD-1) is a major inhibitor of T cell responses expressed on activated T cells. It is also expressed on natural killer cells, B cells, regulatory T cells, T follicular helper cells, and myeloid cells (1). The current model supports that a key mechanism dampening antitumor immune responses is the up-regulation of PD-1 ligands in cancer cells and antigen-presenting cells (APCs) of the tumor microenvironment (TME), which mediate ligation of PD-1 on tumor-infiltrating CD8+ T cells, leading to the development of T incapable of generating antitumor responses (2). Therapeutic targeting of the PD-1 pathway with antibodies blocking the PD-1 receptor or its ligands induces expansion of oligoclonal CD8+ tumor-infiltrating lymphocytes that recognize tumor neoantigens (3). Thus, in the context of cancer, PD-1 is considered a major inhibitor of T effector cells, whereas on APC and cancer cells, emphasis has been placed on the expression of PD-1 ligands. PD-1 ligand-1 expression in the TME is often a prerequisite for patient enrollment to clinical trials involving blockade of the PD-1 pathway. However, responses do not always correlate with PD-L1 expression, and it remains incompletely understood how the components of the PD-1:PD-L1/2 pathway suppress antitumor immunity.

Recent studies indicated that PD-1 can be induced by Toll-like receptor (TLR) signaling in macrophages (M) and negatively correlates with M1 polarization (4). PD-1 expression in macrophages plays a pathologic role by suppressing the innate inflammatory response to sepsis (5) and inhibiting Mycobacterium tuberculosis phagocytosis in active tuberculosis (6). Our knowledge about the function of PD-1 on myeloid cells in the context of cancer is very limited. However, similar to its role in infections, PD-1 expression inversely correlates with M1 polarization and phagocytic potency of tumor-associated M (TAM) against tumor (7, 8). The mechanisms of PD-1 expression in myeloid cells and the role of PD-1expressing myeloid cells in tumor immunity remain unknown.

The rapid increase in myeloid cell output in response to immunologic stress is known as emergency myelopoiesis. Terminally differentiated myeloid cells are essential innate immune cells and are required for the activation of adaptive immunity. Strong activation signals mediated by pathogen-associated molecular pattern or danger-associated molecular pattern molecules lead to a transient expansion and subsequent differentiation of myeloid progenitors to mature monocytes and granulocytes to protect the host. In contrast, during emergency myelopoiesis mediated by continuous low-level stimulation mediated by cancer-derived factors and cytokines, bone marrow common myeloid progenitors (CMPs) but, predominantly, granulocyte/macrophage progenitors (GMPs) undergo modest expansion with hindered differentiation, and a fraction of myeloid cells with immunosuppressive and tumor-promoting properties, named myeloid-derived suppressor cells (MDSCs), accumulates. MDSCs suppress CD8+ T cell responses by various mechanisms (9). In the mouse, MDSCs consist of two major subsets, CD11b+Ly6ChiLy6G (thereafter named CD11b+Ly6C+) monocytic (M-MDSC) and CD11b+Ly6CloLy6G+ (hereafter named CD11b+Ly6G+) polymorphonuclear (PMN-MDSC) (10). These cells have similar morphology and phenotype to normal monocytes and neutrophils but distinct genomic and biochemical profiles (9). In humans, in addition to M-MDSC and PMN-MDSC, a small subset of early-stage MDSC has been identified (10).

Although PMN-MDSCs represent the major subset of circulating MDSC, they are less immunosuppressive than M-MDSC when assessed on a per cell basis (1113). Current views support the two-signal requirement for MDSC function. The first signal controls MDSC generation, whereas the second signal controls MDSC activation, which depends on cues provided by the TME and promotes MDSC differentiation to TAM (14). Proinflammatory cytokines and endoplasmic reticulum stress response in the TME contribute to pathologic myeloid cell activation that manifests as weak phagocytic activity, increased production of reactive oxygen species and nitric oxide (NO) and expression of arginase-1 (ARG1), and convert myeloid cells to MDSC (9). MDSCs are associated with poor outcomes in many cancer types in patients and negatively correlate with response to chemotherapy, immunotherapy, and cancer vaccines (1519).

In the present study, we examined how PD-1 regulates the response of myeloid progenitors to cancer-driven emergency myelopoiesis and its implications on antitumor immunity. We determined that myeloid progenitors, which expand during cancer-driven emergency myelopoiesis, express PD-1 and PD-L1. PD-L1 was constitutively expressed on CMPs and GMPs, whereas PD-1 expression displayed a notable increase on GMPs that arose during tumor-driven emergency myelopoiesis. PD-1 was also expressed on tumor-infiltrating myeloid cellsincluding M-MDSCs and PMN-MDSCs, CD11b+F4/80+ M, and CD11c+major histocompatibility complex class II-positive (MHCII+) dendritic cells (DCs) in tumor-bearing miceand on MDSCs in patients with refractory lymphoma. Ablation of PD-1 signaling in PD-1 knockout (KO) mice prevented GMP accumulation and MDSC generation and resulted in increase of Ly6Chi effector monocytes, M and DC. We generated mice with conditional targeting of the Pdcd1 gene (PD-1f/f) and selectively eliminated PD-1 in myeloid cells or T cells. Compared with T cellspecific ablation of PD-1, myeloid-specific PD-1 ablation more effectively decreased tumor growth in various tumor models. At a cellular level, only myeloid-specific PD-1 ablation skewed the myeloid cell fate commitment from MDSC to effector Ly6Chi monocytes M and DC and induced T effector memory (TEM) cells with improved functionality. Our findings reveal a previously unidentified role of the PD-1 pathway and suggest that skewing of myeloid cell fate during emergency myelopoiesis and differentiation to effector APCs, thereby reprogramming T cell responses, might be a key mechanism by which PD-1 blockade mediates antitumor function.

For our studies, we selected the murine B16-F10 melanoma tumor model because it has been informative in dissecting mechanisms of resistance to checkpoint immunotherapy (20). First, we examined whether B16-F10 induces tumor-driven emergency myelopoiesis similarly to the MC17-51 fibrosarcoma, a mouse tumor model well established to induce cancer-driven emergency myelopoiesis (21). We assessed the expansion of myeloid progenitors in the bone marrow and the increase of CD11b+CD45+ myeloid cells in the spleen and tumor (figs. S1 and S2). Both tumor types induced increase of myeloid progenitors in the bone marrow and systemic increase of CD45+CD11b+ myeloid cells (fig. S3), providing evidence that B16-F10 melanoma is an appropriate tumor model to study tumor-driven emergency myelopoiesis and its consequences in tumor immunity. In the spleen of nontumor-bearing mice, few myeloid cells constitutively expressed very low levels of PD-L1, whereas PD-1 was very low to undetectable (Fig. 1, A and B). In B16-F10 tumor-bearing mice, expression of PD-1 and PD-L1 was up-regulated on myeloid cells of the spleen (Fig. 1, C to F). PD-1 and PD-L1 were also expressed on myeloid cells at the tumor site (Fig. 1, G to I). All subsets of myeloid cells expanding in tumor-bearing mice including M-MDSCs, PMN-MDSCs, CD11b+F4/80+ Ms, and CD11c+MHCII+ DCs expressed PD-1 (Fig. 1, D and G). Kinetics studies of PD-1 expression on myeloid cells in the spleen of tumor-bearing mice showed a gradual increase over time (Fig. 1, J to M).

(A and B) Expression of PD-1 and PD-L1 on CD11b+Ly6C+ monocytes and CD11c+MHCII+ DC in the spleen of nontumor-bearing C57BL/6 mice. FMO, fluorescence minus one. (C) C57BL/6 mice were inoculated with B16-F10 mouse melanoma, and at the indicated time points, expression of PD-1 was examined by flow cytometry in the spleen after gating on the indicated myeloid populations; contour plots depicting the percentage of positive cells are shown. On day 16 after tumor inoculation, expression of PD-1 and PD-L1 was assessed in the spleen (D) and the tumor site (G) after gating on the indicated myeloid populations. (D and G) Fluorescence-activated cell sorting (FACS) histograms and contour plots depicting the percentage of positive cells and bar graphs (E, F, H, and I) of mean SEM positive cells. Results are representative of 12 independent experiments with six mice per group. (J to M) Kinetics of PD-1 up-regulation on CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ of the spleen after tumor inoculation. **P < 0.01, ***P < 0.005, ****P < 0.001.

Because myeloid cells that give rise to MDSC and TAM are generated from myeloid progenitors in the bone marrow during tumor-driven emergency myelopoiesis, we examined PD-1 and PD-L1 expression in these myeloid progenitors. In nontumor-bearing mice, PD-1 was detected at very low levels on GMPs (Fig. 2A), whereas PD-L1 was constitutively expressed in CMPs but mostly on GMPs (Fig. 2B). In tumor-bearing mice, PD-L1 was up-regulated in CMPs and GMPs, and its expression levels remained elevated during all assessed time points (Fig. 2, F to J). PD-1 expression was induced on CMPs but more prominently on GMPs (Fig. 2, C to I). Kinetics studies showed that PD-1 expression on GMPs peaked early after tumor inoculation (Fig. 2, C, E, and I), at a time point when tumor growth was not yet measurable. Thus, induction of PD-1 expression in myeloid progenitors is an early event during tumor development.

(A and B) Expression of PD-1 and PD-L1 on CMPs and GMPs of nontumor-bearing mice. (C to J) C57BL/6 mice were inoculated with B16-F10 mouse melanoma, and expression of PD-1 and PD-L1 on CMPs and GMPs was examined on days 9, 12, 14, and 16 after implantation. FACS histograms (C and F) and contour plots (D, E, G, and H) indicating the percentage of positive cells and bar graphs of mean SEM positive cells (I and J) are shown. Results are representative of four independent experiments with six mice per group. (K and L) Kinetics of PD-1 (K) and PD-L1 (L) expression on CMPs (blue) and GMPs (orange) during tumor-driven emergency myelopoiesis. Results are representative of four separate experiments with six mice per group. *P < 0.05, ***P < 0.005, ****P < 0.001.

To determine whether PD-1 expression on GMPs was mediated by growth factors regulating emergency myelopoiesis, we cultured bone marrow cells from nontumor-bearing mice with granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony growth factor (GM-CSF), and the TLR4 ligand lipopolysaccharide. PD-1 that was constitutively expressed at low levels in GMPs was up-regulated by culture with each of these factors (fig. S4A), consistent with our findings that PD-1 expression was rapidly induced on GMPs of tumor-bearing mice in vivo (Fig. 2, C, E, and I). Quantitative polymerase chain reaction (qPCR) in purified Linneg bone marrow cells showed that PD-1 mRNA was constitutively expressed in myeloid progenitors and was up-regulated by culture with G-CSF or GM-CSF (fig. S4B). Together, these in vivo and in vitro studies provide evidence that PD-1 expression on myeloid progenitors is regulated by a direct cell-intrinsic effect of factors driving cancer-mediated emergency myelopoiesis.

To examine whether PD-1 was expressed in MDSCs in humans, we used samples from healthy donors and patients with malignant non-Hodgkins lymphoma (NHL) (figs. S5 and S6). A high level of PD-1expressing M-MDSCs was detected in the peripheral blood of three patients with treatment-refractory NHL but not in two patients who responded to treatment or five healthy donors (fig. S6). These results show that PD-1 expression is detected in human MDSCs and serve as a paradigm, suggesting that PD-1 expression in MDSCs of patients with cancer might be a clinically relevant event.

To examine whether PD-1 might have an active role in tumor-induced stress myelopoiesis, we used PD-1deficient (PD-1/) mice. PD-1 deletion, which resulted in decreased tumor growth (Fig. 3, A and B), substantially altered tumor-induced stress myelopoiesis (Fig. 3, C to E). Although accumulation of CMPs was comparable, accumulation of GMPs was significantly diminished in PD-1/ mice (Fig. 3, C and D), indicating that GMPs might be a key target on which PD-1 mediated its effects on myeloid progenitors (Fig. 3E). Kinetics studies showed sustained GMP expansion in wild-type (WT) tumor-bearing mice. In contrast, in PD-1/ tumor-bearing mice, GMPs displayed a rapid expansion and subsequent decline (fig. S7). In parallel, in PD-1/ mice, there was an increase of differentiated CD11b+Ly6Chi monocytic cells not only in the tumor (Fig. 3H) but also in the spleen and the small intestine, which also displayed an increase in CD11c+MHCII+ DCs (Fig. 3, F and G). Moreover, at these sites, there was a significant increase of the CD11b+Ly6C+/CD11b+Ly6G+ ratio (Fig. 3, I to K), indicating a shift of myelopoiesis output toward monocytic lineage dominance. These Ly6Chi monocytes, CD11b+F4/80+ Ms, and CD11c+MHCII+ DCs in PD-1/ tumor-bearing mice expressed interferon (IFN) regulatory factor 8 (IRF8), and all myeloid subsets had elevated expression of the retinoic acid receptor-related orphan receptor (RORC or ROR) (Fig. 3, L to N, and fig. S8). Similar results were observed in two additional tumor models, the MC38 colon adenocarcinoma and the MC17-51 fibrosarcoma model (fig. S9), both of which induced cancer-driven emergency myelopoiesis (fig. S3).

(A and B) WT and PD-1/ mice were inoculated with B16-F10 melanoma, and tumor size was monitored daily (A). Mice were euthanized on day 16, and tumor weight was measured (B). Data shown are means SEM of six mice per group and are representative of six independent experiments. (C) Mean percentages SEM of LSK (Linneg, Sca1pos, CD127neg, c-kitpos) and LK (Linneg, Sca1neg, CD127neg, c-kitpos) hematopoietic precursors, CMP, and GMP in the bone marrow of nontumor-bearing and tumor-bearing WT and PD-1/ mice. GMPs in PD-1/ mice were significantly lower compared with GMPs in WT mice (**P < 0.01). (D) Representative contour plots of FACS analysis for CMP and GMP in the bone marrow of tumor-bearing WT and PD-1/ mice. (E) Schematic presentation of myeloid lineage differentiation. The arrowhead indicates GMP, the key target population of PD-1 during emergency myelopoiesis. HSC, hematopoietic stem cells; MPP, multi-potent progenitor; MDP, monocyte/macrophages and DC precursors; CDP, common dendritic cell progenitors; CLP, common lymphoid progenitors. (F to H) Mean percentages of CD45+CD11b+, CD11b+Ly6C+, CD11b+Ly6G+, and CD11c+MHCII+ in the spleen (F), small intestine (G), and B16-F10 site (H) of tumor-bearing WT and PD-1/ mice. (I to K) Representative plots of FACS analysis for CD11b+Ly6Chi and CD11b+Ly6C+/CD11b+Ly6G+ ratio in the spleen (I), small intestine (J), and B16-F10 site (K). (L to N) Mean percentages SEM of RORC and IRF8 expressing CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ myeloid cells within the CD45+CD11b+ gate in the spleen (L), small intestine (M), and B16-F10 site (N). Data from one representative experiment of three independent experiments with six mice per group are shown. (O and P) Diminished suppressive activity (O) and NO production (P) of CD11b+Ly6C+ cells isolated from PD-1/ tumor-bearing mice. CD11b+Ly6C+ cells were isolated from tumor-bearing WT and PD-1/ mice and cultured at various ratios with OTI splenocytes stimulated with OVA257264. Data show means SEM of one representative of two experiments (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.001).

IRF8 regulates myeloid cell fate to monocyte/macrophage and DC differentiation versus granulocyte differentiation (22, 23), explaining the increase of CD11b+Ly6C+/CD11b+Ly6G+ ratio that we observed in tumor-bearing PD-1 KO mice. IRF8 is designated as one of the terminal selectors that control the induction and maintenance of the terminally differentiated state of these myeloid cells (22, 23). Moreover, IRF8 shifts the fate of myeloid cells away from immature MDSC, which are characterized by a restriction in IRF8 expression (24, 25). Retinoid-related orphan nuclear receptors not only are required for myelopoiesis and are mediators of the inflammatory response of effector Ly6Chi monocytes and macrophages (21, 26) but also can be expressed by MDSC (21). For these reasons, we examined the functional properties of CD11b+Ly6C+ cells in PD-1/ tumor-bearing mice. A key mechanism by which CD11b+Ly6C+ M-MDSCs mediate suppression of T cell responses involves the production of NO (27). We assessed the immunosuppressive function and found diminished NO production and diminished suppressor capacity of CD11b+Ly6C+ myeloid cells isolated from tumor-bearing PD-1/ mice compared with their counterparts isolated from tumor-bearing WT control mice (Fig. 3, O and P). Thus, PD-1 ablation switches the fate and function of myeloid cells away from immunosuppressive MDSC and promotes the generation of differentiated monocytes, M, and DC. The expansion of CD11b+Ly6Chi monocytes, the increase of the CD11b+Ly6C+/CD11b+Ly6G+ ratio, and the up-regulation of RORC in myeloid cells of the spleen of PD-1/ mice were already observed on day 9 after tumor inoculation, when tumors were not yet measurable, and on day 12, when tumors in WT and PD-1/ mice had comparable size (fig. S10). These results indicate that the effects of PD-1 ablation on the myeloid compartment of PD-1/ tumor-bearing mice preceded the differences in tumor growth.

To determine the potential therapeutic relevance of these findings, we examined whether changes in the myeloid compartment might be detected during treatment with PD-1blocking antibody. Compared with the control treatment group, mice receiving antiPD-1 antibody (fig. S11A) had diminished accumulation of GMP in the bone marrow (fig. S11B) and increased expansion of Ly6C+ monocytes and DC in the tumor site (fig. S11D), with effector features characterized by the expression of RORC, IRF8, and IFN- (fig. S11, E to G and I). In contrast, cells expressing interleukin-4 receptor (IL-4Ra), a marker of MDSC (10, 28), were significantly decreased (fig. S11H). Thus, treatment with antiPD-1blocking antibody promotes the differentiation of myeloid cells with effector features while suppressing expansion of MDSC in tumor-bearing mice.

To determine whether these changes on myeloid cell fate in PD-1/ mice were mediated by myeloid cellintrinsic effects of PD-1 ablation or by the effects of PD-1neg T cells on myeloid cells, we generated mice with conditional targeting of Pdcd1 gene (PD-1f/f) (fig. S12A) and crossed them with mice expressing cre recombinase under the control of the lysozyme (LysM) promoter to induce selective ablation of the Pdcd1 gene in myeloid cells (PD-1f/fLysMcre) or with mice expressing cre recombinase under the control of the CD4 promoter to induce selective ablation of the Pdcd1 gene in T cells (PD-1f/fCD4cre) (fig. S12, B and C). In PD-1f/fLysMcre mice, tumor growth was significantly diminished (Fig. 4, A and B), indicating that despite the preserved PD-1 expression in T cells, myeloid-specific PD-1 ablation in PD-1f/fLysMcre mice was sufficient to inhibit tumor growth. Tumor-driven emergency myelopoiesis was selectively affected in PD-1f/fLysMcre mice. Although myeloid-specific PD-1 ablation resulted in expansion of CMPs, accumulation of GMPs was prevented (Fig. 4C). In contrast, no change on cancer-driven emergency myelopoiesis was detected in PD-1f/fCD4cre mice, which had comparable expansion of CMP and GMP to PD-1f/f control mice (Fig. 5A).

(A and B) PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice were inoculated with B16-F10 melanoma, and tumor size was monitored daily (A). After mice were euthanized, tumor weight was measured (B). (C) Mean percentages SEM of CMP and GMP in the bone marrow of tumor-bearing PD-1f/f and PD-1f/fLysMcre mice. (D) Mean percentages SEM of CD11b+CD45+ cells and CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ myeloid subsets in the spleen of tumor-bearing mice. (E) Mean percentages SEM of CD11b+CD45+, CD11b+Ly6C+, and CD11b+Ly6G+ cells and (F) representative contour plots of FACS analysis for CD11b+CD45+ and CD11b+Ly6C+ cells at the tumor site in PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice. (G) Mean percentages SEM of CD16/CD32+, CD86+, CD88+, and CD80+ cells and IFN-expressing myeloid cell subsets within the CD45+CD11b+ gate in B16-F10 tumors from PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice. (H) Mean percentages SEM and (I) FACS histograms of IL-4Ra, CD206, and ARG1 expression in CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ myeloid cells within the CD11b+CD45+ gate in the spleen of tumor-bearing PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice. Data are from one representative of three independent experiments with six mice per group are shown in all the panels (*P < 0.05, **P < 0.01, ***P < 0.005, and ****P < 0.001).

PD-1f/f and PD-1f/fCD4cre mice were inoculated with B16-F10 melanoma. (A) On day 16, mice were euthanized, and bone marrow CMPs and GMPs were examined by flow cytometry. Mean percentages SEM of CMP or GMP are shown. (B and C) Tumor size was assessed every other day from inoculation (B). On the day of euthanasia, tumor weight was measured (C). (D) Mean percentages SEM of CD11b+CD45+ cells and CD11b+Ly6C+ and CD11b+Ly6G+ populations within the CD11+CD45+ gate in the spleen. (E) Mean percentages SEM of CD11b+CD45+ cells and CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ cells within the CD11b+CD45+ gate in the tumor site. (F) Mean percentages SEM of CD16/CD32+, CD86+, CD88+, CD80+, and IFN- expression in the indicated myeloid subsets (CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+) within the CD11b+CD45+ gate in the tumor site. (G to J) Mean percentages SEM of CD4+ and CD8+ TCM and TEM (G), as well as IFN-, IL-2, and IL-17 (H to J) expression in CD4+ and CD8+ TEM and TCM at the tumor site, and respective contour plots (K to M). Results are from one representative of two independent experiments with six mice per group are shown (*P < 0.05 and **P < 0.01).

Myeloid-specific PD-1 ablation in PD-1f/fLysMcre mice not only shifted the differentiation of CD11b+Ly6C+ and CD11b+Ly6G+ myeloid subsets and increased the CD11b+Ly6C+/CD11b+Ly6G+ ratio in the spleen and tumor site as in PD-1/ mice (Fig. 4, D to F) but also resulted in a notably different immunological profile of CD11b+Ly6C+ monocytic myeloid cells, consistent with effector myeloid function as indicated by the expression of effector myeloid cell markers including CD80, CD86, CD16/32 (Fc receptor II/III), and CD88 (C5aR) (Fig. 4G). Consistent with the improved function of myeloid cells, PD-1f/fLysMcre mice also had higher levels of IFN-expressing CD11b+Ly6Chi monocytes and CD11b+F4/80+ Ms (Fig. 4G and fig. S13, A and B) and increase of IRF8+ and RORC+ CD11b+Ly6Chi monocytes (fig. S13, C and D). In contrast, cells expressing IL-4Ra, CD206, and ARG1which are markers of MDSC, immunosuppressive neutrophils, and tolerogenic DCs (2933)were diminished (Fig. 4, H and I). Thus, myeloid-intrinsic PD-1 ablation skews the fate of myeloid cells away from immunosuppressive MDSCs; promotes the differentiation of functional effector monocytes, Ms, and DCs; and has a decisive role in systemic antitumor immunity despite PD-1 expression in T cells.

We studied antitumor responses in mice with T cellspecific PD-1 ablation and found that PD-1f/fCD4cre mice had diminished antitumor protection (Fig. 5, B and C). Consistent with the causative role of myeloid cellspecific PD-1 targeting in the differentiation and function of myeloid cells, T cellspecific PD-1 ablation did not induce expansion of CD11b+CD45+ leukocytes, CD11b+F4/80+ Ms, and CD11c+MHCII+ DCs and increase of CD11b+Ly6C+/CD11b+Ly6G+ ratio (Fig. 5, D and E) or immunological features of functional effector myeloid cells (Fig. 5F) in PD-1f/fCD4cre tumor-bearing mice, compared with control tumor-bearing mice. Moreover, despite PD-1 ablation, tumor-bearing PD-1f/fCD4cre mice did not have quantitative differences in tumor-infiltrating TEM cells compared with control tumor-bearing mice (Fig. 5G) or features of enhanced effector function as determined by assessment of cytokine-producing cells (Fig. 5, H to M).

Similar outcomes to those observed with B16-F10 tumor in the differentiation of myeloid cells toward myeloid effectors versus MDSC were obtained when PD-1f/fLysMcre and PD-1f/fCD4cre mice were inoculated with MC38 colon adenocarcinoma cells (Fig. 6, B to I). Moreover, PD-1f/fLysMcre but not PD-1f/f CD4cre mice inoculated with MC38 had functional differences in tumor-infiltrating TEM and T central memory (TCM) cells compared with control tumor-bearing mice (Fig. 6, J to L). In the context of this highly immunogenic tumor, PD-1 ablation in myeloid cells resulted in complete tumor eradication, whereas mice with PD-1 ablation in T cells showed progressive tumor growth (Fig. 6A). Together, these results suggest that by preventing the differentiation of effector myeloid cells and promoting generation of MDSC, myeloid-specific PD-1 expression has a decisive role on T cell function. Thus, although PD-1 is an inhibitor of T cell responses (2, 34, 35), ablation of PD-1 signaling in myeloid cells is an indispensable requirement for induction of systemic antitumor immunity in vivo.

(A) PD-1f/f, PD-1f/fCD4cre, and PD-1f/fLysMcre mice were inoculated with MC38 colon adenocarcinoma, and tumor size was monitored daily. Mice were euthanized on day 21, and mean percentages SEM of CD45+CD11b+ cells and CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F4/80+, and CD11c+MHCII+ myeloid subsets in the spleen (B) and tumor site (C) were determined. (D) Mean percentages SEM of RORC- and IRF8-expressing CD11b+Ly6C+, CD11b+Ly6G+, CD11b+F/480+, and CD11c+MHCII+ myeloid cells and (E) mean percentages SEM of ARG1, IL-4Ra, CD88, and CD80 cells within the same myeloid subsets in the spleen. (F and G) Representative flow cytometry plots for RORC and IRF8 expression. (H) Mean percentages SEM and (I) representative flow cytometry plots of IFN- and ARG1-expressing CD11b+Ly6C+ and CD11b+Ly6G+ myeloid cells at the tumor site. (J to L) Mean percentages SEM of CD4+ and CD8+ TCM and TEM cells (J) and IFN-expressing CD4+ and CD8+ TEM and TCM at the tumor site (K) and respective contour plots (L). Data are from one representative of three experiments with six mice per group (*P < 0.05, **P < 0.01, and ***P < 0.001).

To further investigate the direct effects of PD-1 on myeloid cell fate in the absence of T cells, we used recombination activating gene 2 (RAG2) KO mice (lacking mature T cells and B cells). Treatment of RAG2 KO tumor-bearing mice with antiPD-1blocking antibody resulted in decreased accumulation of GMPs during tumor-driven emergency myelopoiesis (fig. S14A), myeloid cell expansion in the spleen and tumor site (fig. S14, B and C), and enhanced generation of effector myeloid cells (fig. S14, D to G), providing evidence that blockade of PD-1mediated signals skews myeloid lineage fate to myeloid effector cells in a myeloid cellintrinsic and T cellindependent manner. In RAG2 KO mice treated with antiPD-1 antibody, despite the absence of T cells, a decrease of tumor growth was also observed (fig. S14, H and I), suggesting that ablation of PD-1 signaling promotes myeloid-specific mechanisms that induce tumor suppression, one of which might involve increased phagocytosis (8).

To understand mechanisms that might be responsible for the significant differences of myeloid cell fate commitment induced by myeloid-specific PD-1 targeting, we examined whether PD-1deficient bone marrow myeloid progenitors might have distinct signaling responses to the key hematopoietic growth factors that mediate cancer-driven emergency myelopoiesis, which also induced PD-1 expression in GMP during in vitro culture. To avoid any potential impact of bone marrowresiding PD-1/ T cells or mature myeloid cells on the signaling responses of myeloid progenitors, we used Linneg bone marrow from PD-1f/fLysMcre mice because LysMcre is expressed in CMPs and GMPs (36), allowing us to take advantage of the selective deletion of PD-1 in these myeloid progenitors. PD-1deficient GMPs (fig. S15) had enhanced activation of extracellular signalregulated kinase 1/2 (Erk1/2), mammalian target of rapamycin complex 1 (mTORC1), and signal transducer and activator of transcription 1 (STAT1) in response to G-CSF, a main mediator of emergency myelopoiesis (37, 38). These results are notable because each of these signaling targets has a decisive role in the differentiation and maturation of myeloid cells while preventing the generation of immature immunosuppressive MDSC (3942). These findings indicate that PD-1 might affect the differentiation of myeloid cells by regulating the fine tuning of signaling responses of myeloid progenitors to hematopoietic growth factors that induce myeloid cell differentiation and lineage fate determination during emergency myelopoiesis.

Metabolism has a decisive role in the fate of hematopoietic and myeloid precursors. Stemness and pluripotency are regulated by maintenance of glycolysis (43). Switch from glycolysis to mitochondrial metabolism and activation of oxidative phosphorylation and trichloroacetic acid (TCA) cycle are associated with differentiation (44). This is initiated by glycolysis-mediated mitochondrial biogenesis and epigenetic regulation of gene expression (43). The structural remodeling of the mitochondrial architecture during differentiation is characterized by increased replication of mitochondrial DNA to support production of TCA cycle enzymes and electron transport chain subunits, linking mitochondrial metabolism to differentiation (45).

We examined whether PD-1 ablation, which promoted the differentiation of myeloid cells in response to tumor-mediated emergency myelopoiesis, might affect the metabolic properties of myeloid precursors. Linneg bone marrow myeloid precursors were cultured with the cytokines G-CSF/GM-CSF/IL-6 that drive tumor-mediated emergency myelopoiesis in cocktail (Fig. 7, A and B) or individually (Fig. 7, C and D). Hematopoietic stem cell differentiation was documented by decrease of Linneg, which was more prominent in the cultures of PD-1deficient bone marrow cells, and coincided with increase of CD45+CD11b+ cells (Fig. 7, A and B). Ly6C+ monocytic cells dominated in the PD-1f/fLysMcre cultures, whereas Ly6G+ granulocytes were decreasing compared with PD-1f/f control cultures (Fig. 7, C and D), providing evidence for a cell-intrinsic mechanism of PD-1deficient myeloid precursors for monocytic lineage commitment. Glucose uptake, but more prominently, mitochondrial biogenesis, was elevated in PD-1deficient CMP and GMP (Fig. 7, E and F). Bioenergetics studies showed that PD-1deficient cells developed robust mitochondrial activity (Fig. 7G) and increase of oxygen consumption rate (OCR)/extracellular acidification rate (ECAR) ratio during culture (Fig. 7H), indicating that mitochondrial metabolism progressively dominated over glycolysis. This bioenergetic profile is consistent with metabolism-driven enhanced differentiation of hematopoietic and myeloid precursors (45, 46).

(A and B) Linneg bone marrow from PD-1f/f and PD-1f/fLysMcre mice was cultured with GM-CSF, G-CSF, and IL-6 for the indicated time intervals. Mean percentages SEM of CD11b+CD45+ (A) and Linneg cells (B) are shown. (C and D) Bone marrow cells purified as in (A) and (B) were cultured with the indicated growth factors, and mean percentages SEM of CD11b+Ly6C+ and CD11b+Ly6G+ cells were examined after 48 hours of culture. (E to H) Bone marrow cells were prepared and cultured as in (A) and (B), and at 48 hours of culture, glucose uptake was assessed using 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino]-2-Deoxyglucose (2-NBDG) (E), and mitochondrial biogenesis was assessed by MitoGreen staining and flow cytometry (F). (G) At 24, 48, and 72 hours of culture, OCR and ECAR were measured by a Seahorse extracellular flux analyzer, and mitostress responses at each time point of culture were examined. (H) OCR/ECAR ratio was measured at these time points, and the increase of OCR/ECAR ratio during stimulation was calculated. (I) Linneg bone marrow cells from PD-1f/f and PD-1f/fLysMcre mice were cultured with G-CSF and GM-CSF for 48 hours, and metabolite analysis was performed by mass spectrometry. The unsupervised hierarchical clustering heat map of the top 50 metabolites is shown. (J) At 24, 48, and 72 hours of culture with G-CSF and GM-CSF, mRNA was extracted and analyzed for the expression of the indicated genes by qPCR. Results of the 48-hour culture are shown and are presented as the fold increase over the mRNA level expressed by PD-1f/f cells. Results are from one of three independent experiments. (K to M) At 24 hours of culture with GM-CSF, G-CSF, or IL-6, the content of neutral lipid droplets, including triglycerides and cholesterol esters, was assessed by flow cytometry using boron-dipyrromethene (BODIPY) 493/503. Mean percentages SEM (K) of BODIPY 493/503positive cells within the CD11b+CD45+ gate, representative contour plots (L), and histograms of FACS analysis (M) are shown. (N) PD-1f/f and PD-1f/fLysMcre DC were differentiated in the presence of B16-F10 tumor supernatant, and the content of neutral lipids was assessed. Mean percentage SEM of BODIPY 493/503positive DC within the CD45+CD11b+ gate is shown. Results are representative of three experiments. *P < 0.05, **P < 0.01, and ***P < 0.005.

We performed unbiased global metabolite analysis to determine whether PD-1deficient myeloid precursors developed a distinct metabolic program. Compared with control, PD-1deficient cells had elevated metabolic intermediates of glycolysis and pentose phosphate pathway (PPP), acetylcoenzyme A (coA), and the TCA cycle metabolites citrate and -ketoglutarate, but the most prominent difference was the elevated cholesterol (Fig. 7I, figs. S16 and S17, and table S1). Abundant cytosolic acetyl-coA can be used for fatty acid and cholesterol biosynthesis (fig. S17) (43). Moreover, mTORC1 activates de novo cholesterol synthesis via sterol regulatory element-binding protein 1 (SREBP1), which regulates transcription of enzymes involved in cholesterol synthesis (47, 48). Because acetyl-coA was elevated (Fig. 7I and fig. S17) and mTORC1 activation was enhanced in PD-1deficient myeloid progenitors in response to growth factors driving emergency myelopoiesis (fig. S15), we examined whether activation of the mevalonate pathway that induces cholesterol synthesis (fig. S18A) might be involved. In PD-1deficient myeloid progenitors cultured with growth factors of emergency myelopoiesis, mRNA of genes regulating cholesterol synthesis and uptake was increased, mRNA of genes promoting cholesterol metabolism was decreased (Fig. 7J and fig. S18B), whereas cellular cholesterol and neutral lipid content was elevated (Fig. 7, K to M). PD-1deficient DC not only differentiated in vitro in the presence of B16-F10 tumor supernatant but also had a significant increase of cholesterol and neutral lipids compared with similarly differentiated DC from control mice (Fig. 7N). Consistent with these in vitro findings, glucose uptake and content of cholesterol and neutral lipids were elevated in GMPs of tumor-bearing PD-1 KO mice compared with control mice at days 7 or 9 after tumor inoculation, respectively, when tumors were not yet detectable or tumors in WT and PD-1 mice had equal size (fig. S19). Thus, features associated with metabolism-driven differentiation of myeloid progenitors are enhanced early in tumor-bearing PD-1 KO mice.

In addition to cholesterol synthesis, mevalonate also leads to the synthesis of isoprenoids, including geranylgeranyl pyrophosphate (GGPP) (fig. S17), which is required for protein geranylgeranylation catalyzed by geranylgeranyltransferase and has an active role in the up-regulation of RORC expression (49). Our metabolite analysis showed increased GGPP (Fig. 7I), providing a mechanistic explanation for the up-regulation of RORC in PD-1deficient myeloid cells. Cholesterol accumulation is associated with skewing of hematopoiesis toward myeloid lineage and monocytosis, induces a proinflammatory program in monocytes/macrophages and DC, and amplifies TLR signaling (5052). Together, these results unravel a previously unidentified role of PD-1 targeting in regulating myeloid lineage fate commitment and proinflammatory differentiation of monocytes, macrophages, and DC during tumor-driven emergency myelopoiesis, through metabolic reprogramming.

Previously, it was determined that monocyte/macrophage terminal differentiation is controlled by the combined actions of retinoid receptors and the nuclear receptor peroxisome proliferatoractivated receptor (PPAR), which is regulated by cholesterol and promotes gene expression and lipid metabolic processes, leading to terminal macrophage differentiation (26, 53). Because our in vitro studies showed that PD-1deficient myeloid progenitors developed a distinct metabolic program with elevated cholesterol metabolism, we examined whether PD-1 ablation might alter the expression of PPAR in addition to RORC. We found that the expression of PPAR was elevated in CD11b+Ly6C+ monocytic cells and M isolated from tumors of PD-1/ and PD-1f/fLysMcre mice (Fig. 8, A to C). Because PD-1deficient myeloid progenitors developed robust mitochondrial activity during culture in vitro (Fig. 7, G and H) and PPAR is involved in mitochondrial function (53), we examined whether myeloid cells in tumor-bearing mice have improved mitochondrial metabolism, a feature that has an important role in supporting antitumor function of other immune cells (54). Monocytes, M, and DC isolated from tumor of PD-1/, and PD-1f/fLysMcre mice had increased mitochondrial membrane potential compared with myeloid cells from control tumor-bearing mice, consistent with enhanced mitochondrial metabolism (Fig. 8, D to G).

(A to C) Expression of PPAR in myeloid cells at the B16-F10 site in PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice was examined by flow cytometry. Mean percentages SEM (A), representative histograms (B), and contour plots (C) of PPAR-expressing CD11b+Ly6C+, CD11b+F4/80+, and CD11c+MHCII+ subsets. (D to G) Mitochondrial metabolic activity of myeloid cells at the B16-F10 tumor site in PD-1f/f, PD-1f/fLysMcre, and PD-1/ mice was examined by assessing mitochondrial membrane potential using MitoRed. Mean fluorescence intensity (MFI) SEM of MitoRedpositive CD11b+Ly6C+, CD11b+F4/80+, and CD11c+MHCII+ subsets within the CD45+CD11b+ gate (D to F) and representative plots of FACS analysis (G) are shown. (H to L) In parallel, expression of IFN-, IL-17A, IL-2, IL-10, RORC, and ICOS in CD8+ TCM and TEM isolated from B16-F10bearing PD-1f/f and PD-1f/fLysMcre mice was assessed by flow cytometry. Representative histograms (H), contour plots (I and K), and mean percentages SEM (J, L, and M) within the CD44hiCD62Lhi gate (for TCM) and CD44hiCD62lo gate (for TEM) cells are shown. Data are from one representative of four independent experiments (*P < 0.05, **P < 0.01, and ***P < 0.005).

We investigated whether these significant immunometabolic changes of myeloid cells, induced by myeloid-specific PD-1 targeting, affected immunological properties of T cells that have key roles in their antitumor function. Compared with control PD-1f/f tumor-bearing mice, PD-1f/fLysMcre tumor-bearing mice had no quantitative differences in CD4+ or CD8+ TEM and TCM cells (fig. S20A) but had significant functional differences. There was an increase of IFN-, IL-17, and IL-10producing CD8+ TEM cells and IL-2producing CD8+ TCM cells (Fig. 8, H to J). Inducible T cell costimulator (ICOS) and lymphocyte-activation gene 3 (Lag3) were elevated in T cells from PD-1f/fLysMcre tumor-bearing mice but cytotoxic T-lymphocyte-associated protein 4 (CTLA4), T cell immunoglobulin and mucin domain 3 (Tim3), CD160, and PD-1/PD-L1 were comparable in T cells from PD-1f/f and PD-1f/fLysMcre tumor-bearing mice (Fig. 8, K to M, and fig. S20B). These findings are significant because IL-17producing T helper cell 17 (TH17)/ T cytotoxic cell 17 (Tc17) cells have enhanced antitumor function and mediate durable tumor growth inhibition (55). Moreover, T cells with a hybrid phenotype producing both IFN- and IL-17 might have superior antitumor properties by combining the enhanced effector function of TH1/Tc1 and the longevity and stemness of TH17/Tc17 cells (56). In our studies, these properties of TEM cells correlated with improved antitumor function in PD-1f/fLysMcre mice.

To examine experimentally whether PD-1deficient myeloid cells differentiated in tumor-bearing mice in vivo have improved capacity of inducing antigen-specific T cell responses, we assessed responses of the same primary CD4+ or CD8+ T cells to antigen-loaded DCs isolated from PD-1/ or control mice bearing B16-F10 tumors (fig. S21A). DCs isolated from the spleen of tumor-bearing WT and PD-1/ mice were pulsed with ovalbumin (OVA) and cocultured with OVA-specific CD4+ or CD8+ T cells from OTI or OTII T cell receptor (TCR)transgenic mice. DCs from tumor-bearing PD-1/ mice had superior ability to induce OTI and OTII T cell proliferation and IFN- expression (fig. S21, B and C). Together, our data provide evidence that myeloid cellintrinsic PD-1 ablation induces potent antitumor immunity by decreasing accumulation of MDSC and promoting proinflammatory and effector monocytic/macrophage and DC differentiation, thereby leading to enhanced effector T cell responses.

Our present studies reveal a previously unidentified role of the PD-1 pathway in regulating lineage fate commitment and function of myeloid cells that arise from tumor-driven emergency myelopoiesis. These outcomes are mediated by myeloid-intrinsic effects of PD-1 ablation, leading to altered signaling and metabolic reprogramming of myeloid progenitors characterized by enhanced differentiation and elevated cholesterol synthesis. Consequently, the accumulation of immature immunosuppressive and tumor-promoting MDSC is diminished, and the output of differentiated, inflammatory effector monocytes, M, and DC is enhanced. These immunometabolic changes of myeloid cells promote the differentiation of TEM cells and systemic antitumor immunity in vivo despite preserved PD-1 expression in T cells.

We found that PD-1deficient myeloid progenitors had enhanced activation of Erk1/2 and mTORC1 in response to G-CSF. These results indicate that Erk1/2 and mTORC1, a downstream mediator of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, which are major targets of PD-1 in T cells (2), are subjected to PD-1mediated inhibition in myeloid cells. These results are revealing because Erk1/2 phosphorylation subverts MDSC-mediated suppression by inducing M-MDSCs differentiation to APC (39). Erk and PI3K regulate glycolysis in response to G-CSF (57). PI3K/Akt/mTORC1 signaling is critical in myeloid lineage commitment. Expression of constitutively active Akt in CD34+ cells induces enhanced monocyte and neutrophil development, whereas a dominant negative Akt has the opposite effect (58). mTORC1 is necessary for the transition of hematopoietic cells from a quiescent state to a prepared alert state in response to injury-induced systemic signals (59), for G-CSFmediated differentiation of myeloid progenitors (40), and for M-CSFmediated monocyte/macrophage generation (41). mTORC1 stimulates translation initiation through phosphorylation of 4E (eIF4E)binding protein 1 (4E-BP1) and ribosomal S6 kinases and has a decisive role in the expression of glucose transporters and enzymes of glycolysis and PPP (47). Consistent with these, our studies showed that PD-1deficient myeloid progenitors had elevated expression of glycolysis and PPP intermediates after culture with emergency cytokines in vitro and enhanced monocytic differentiation in tumor-bearing mice in vivo. Together, our findings indicate that PD-1 might affect the differentiation of myeloid cells by regulating the fine tuning of signaling responses of myeloid progenitors to hematopoietic growth factors that induce myeloid cell differentiation and lineage fate determination during emergency myelopoiesis. Further studies will identify how receptor-proximal signaling events mediated by hematopoietic growth factors are targeted by PD-1 in a manner comparable to PD-1mediated targeting of signaling pathways in T cells (2, 34, 35).

Our metabolite analysis showed that a notable difference of PD-1deficient myeloid progenitors was the increased expression of mevalonate metabolism enzymes and the elevated cholesterol. mTORC1 activates SREBP1, which induces transcription of enzymes involved in fatty acid and cholesterol synthesis (48), thereby leading to glycolysis-regulated activation of the mevalonate pathway. Our signaling studies showing enhanced mTORC1 activation and our metabolic studies showing enhanced mitochondrial metabolism and increased cholesterol content in PD-1deficient myeloid cells provide a mechanistic link between the altered differentiation of PD-1deficient myeloid progenitors and the altered immunophenotypic and functional program of PD-1deficient monocytes, M, and DC in tumor-bearing mice. Cholesterol drives myeloid cell expansion and differentiation of macrophages and DC (50, 51, 60) and promotes antigen-presenting function (61). These properties are consistent with the metabolic profile and the increased cholesterol of PD-1deficient myeloid progenitors; the inflammatory and effector features of differentiated monocytes, M, and DC; and the enhanced T effector cell activation in tumor-bearing mice with myeloid-specific PD-1 ablation that we identified in our studies. By such mechanism, PD-1 might centrally regulate antitumor immunity, independently of the expression of PD-1 and its ligands in the TME. Our studies showed that PD-1 expression on myeloid progenitors is an early event during tumor-mediated emergency myelopoiesis and indicate that PD-1 blockade at early stages of cancer might have a decisive effect on antitumor immunity by preventing MDSC generation from myeloid progenitors and inducing the systemic output of effector myeloid cells that drive antitumor T cell responses.

In addition to its expression in myeloid progenitors, in the bone marrow, we found that PD-1 is expressed in all myeloid subsets including M-MDSC, PMN-MDSC, CD11b+F4/80+ M, and CD11c+MHCII+ DC in the tumor and the spleen of tumor-bearing mice, albeit at different levels. This difference might be related to gradient of tumor-derived factors responsible for PD-1 induction such as G-CSF and GM-CSF that we found to induce PD-1 transcription in myeloid progenitors. This possibility would be consistent with the gradual up-regulation of PD-1 expression in splenic myeloid cells, determined by our kinetics studies, which correlates with tumor growth that might be responsible for the increase of systemic levels of tumor-derived soluble factors that induce PD-1. Other cues of the TME known to mediate the activation step of MDSC (14) might also be responsible for the induction of higher PD-1 expression level in the tumor versus the splenic myeloid cells. Our findings unravel a previously unidentified role of PD-1 in myeloid cell fate commitment during emergency myelopoiesis, a process that is involved not only in antitumor immunity but also in the control of pathogen-induced innate immune responses and sterile inflammation (62).

An additional important finding of our studies is that the nuclear receptors RORC and PPAR are up-regulated in myeloid cells by PD-1 ablation. RORs were initially considered retinoic acid receptors but were subsequently identified as sterol ligands. RORC not only is induced by sterols and isoprenoid intermediates (49) but also serves as the high-affinity receptor of the cholesterol precursor desmosterol (63, 64), a metabolic intermediate of cholesterol synthesis via the mevalonate pathway that regulates inflammatory responses of myeloid cells (52, 60). Desmosterol and as sterol sulfates function as endogenous RORC agonists and induce expression of RORC target genes (63, 64). Our studies showed that, in addition to cholesterol, the mevalonate metabolism product GGPP that has an active role in the up-regulation of RORC expression (49) was elevated in PD-1deficient myeloid cells, providing a mechanistic basis for our finding of the elevated RORC expression. Retinoid receptors and PPAR together regulate monocyte/macrophage terminal differentiation (26). Although initially thought to be involved in proinflammatory macrophage differentiation, it was subsequently understood that PPAR predominantly promotes macrophage-mediated resolution of inflammation by inducing expression of the nuclear receptor liver X receptor and the scavenger receptor CD36, thereby regulating tissue remodeling (65). PPAR also regulates macrophage-mediated tissue remodeling by efferocytosis and production of proresolving cytokines (66), which can suppress cancer growth (67). The combined actions of RORC and PPAR induced by myeloid-specific PD-1 ablation might be involved in the antitumor function by promoting both proinflammatory and tissue remodeling properties of myeloid cells. Future studies will dissect the specific role of each of these nuclear receptors on the antitumor immunity induced by myeloid cellspecific ablation of PD-1.

In conclusion, our results provide multiple levels of evidence that myeloid-specific PD-1 targeting mediates myeloid cellintrinsic effects, which have a decisive role on systemic antitumor responses. This might be a key mechanism by which PD-1 blockade induces antitumor function. Recapitulating this immunometabolic program of myeloid cells will improve the outcome of cancer immunotherapy.

immunology.sciencemag.org/cgi/content/full/5/43/eaay1863/DC1

Materials and Methods

Fig. S1. Gating strategy of hematopoietic and myeloid precursors in the bone marrow.

Fig. S2. Gating strategy of myeloid subsets in the spleen and tumor site.

Fig. S3. Cancer-induced emergency myelopoiesis in three different mouse tumor models.

Fig. S4. PD-1 expression is induced on myeloid progenitors by emergency cytokines.

Fig. S5. Gating strategy for identification of MDSC in human blood samples.

Fig. S6. PD-1 expression in human MDSC.

Fig. S7. PD-1 ablation alters tumor-driven emergency myelopoiesis.

Fig. S8. PD-1 ablation induces expression of RORC and IRF8 in myeloid cells expanding in response to tumor-driven emergency myelopoiesis.

Fig. S9. PD-1 ablation induces expression of RORC and IRF8 in myeloid cells expanding in mice-bearing MC38 or MC17-51 tumors.

Fig. S10. PD-1 ablation increases the output of RORChi effector-like myeloid cells at early stages of tumor growth.

Fig. S11. Therapeutic targeting of PD-1 increases effector features of myeloid cells and decreases tumor growth.

Fig. S12. Myeloid-specific and T cellspecific PD-1 deletion.

Fig. S13. Myeloid-specific PD-1 ablation promotes expansion of IRF8hi and RORChi monocytes and IFN-producing monocytes and macrophages in the tumor site.

Fig. S14. Tumor-induced emergency myelopoiesis and myeloid effector differentiation in Rag2-deficient mice treated with PD-1 antibody.

Fig. S15. PD-1 ablation reduces the threshold of growth factormediated signaling in GMP.

Fig. S16. Myeloid-specific PD-1 ablation induces a distinct metabolic profile characterized by elevated cholesterol.

Fig. S17. Metabolic pathways linking glycolysis to PPP, fatty acid, and cholesterol synthesis.

Fig. S18. Schematic presentation of the mevalonate pathway.

Fig. S19. Increase of glucose uptake and neutral lipid content in PD-1deficient myeloid progenitors early after tumor implantation.

Fig. S20. Myeloid-specific PD-1 deletion alters the immunological profile of CD8+ TEM cells.

Fig. S21. PD-1 ablation enhances antigen presentation ex vivo by tumor-matured DC.

Table S1. List of significantly different metabolites.

Table S2. List of antibodies used for surface staining.

Table S3. List of antibodies used for intracellular staining.

Table S4. List of antibodies used for phenotype of human MDSC.

Table S5. Raw data in Excel spreadsheet.

References (6871)

Acknowledgments: Funding: This work was supported by NIH grants CA183605, CA183605S1, and AI098129-01 and by the DoD grant PC140571. Author contribution: L.S. participated in the conceptualization of the project and experimental design, performed experiments and the analysis and validation of the data, prepared figures, and participated in the preparation of the manuscript. M.A.A.M. performed experiments and the analysis and validation of the data, prepared figures, and participated in the preparation of the manuscript. J.D.W., N.M.T.-O., A.C., R.P., Q.W., and M.Y. participated in various steps of the experimental studies. J.A. participated in the experimental design of metabolite studies and the formal analysis and the validation of the data and participated in the preparation of the manuscript. N.P. participated in the conceptualization of the project, designed and performed the bioenergetics studies, and participated in experiments, the analysis and validation of the data, and the preparation of the manuscript. V.A.B. had the overall responsibility of project conceptualization, experimental design, investigation, data analysis and validation, and preparation of the manuscript and figures. Competing interests: V.A.B. has patents on the PD-1 pathway licensed by Bristol-Myers Squibb, Roche, Merck, EMD-Serono, Boehringer Ingelheim, AstraZeneca, Novartis, and Dako. The authors declare no other competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper or the Supplementary Materials.

See the rest here:
Targeted deletion of PD-1 in myeloid cells induces antitumor immunity - Science

To Read More: Targeted deletion of PD-1 in myeloid cells induces antitumor immunity – Science
categoriaBone Marrow Stem Cells commentoComments Off on Targeted deletion of PD-1 in myeloid cells induces antitumor immunity – Science | dataJanuary 4th, 2020
Read All

Researchers at Baylor College of Medicine Discover How to Improve Bone Repair – Gilmore Health News

By daniellenierenberg

Researchers at Baylor College of Medicine have discovered a new mechanism that helps maintain and repair bones in adults. Ultimately, this could help develop new therapeutic strategies to improve bone healing.

Knee Bones

Osteoporosis is a skeletal disease characterized by reduced bone density and changes in the microarchitecture of bones. These changes weaken the bone and increase the risk of fracture. This disease develops particularly in older people. Today, a new study could eventually lead to the development of therapeutic strategies to improve bone healing in these patients. According to the results published in the journal Cell Stem Cell on the 5th December, 2019 researchers have discovered a new mechanism that contributes to the maintenance and repair of bones in adults.

Read Also: HGH Is Now A Solid Treatment For Osteoporosis According To Studies

Adult bone repair relies on the activation of bone stem cells, which still remain poorly characterized. Bone stem cells have been found both in the bone marrow inside the bone and also in the periosteum the outer layer of tissue that envelopes the bone. Previous studies have shown that these two populations of stem cells, although they share many characteristics, also have unique functions and specific regulatory mechanisms. said Dr. Dongsu Park, assistant professor of molecular and human genetics, pathology and immunology at Baylor College of Medicine, where the study was conducted.

Of these two populations, periosteal stem cells are the least known. Although the scientists know that this is a heterogeneous population of cells that can contribute to the thickness, formation and repair of bone fractures, no one has yet been able to distinguish between the different subtypes of bone stem cells in order to study the regulation of their different functions.

Here, however, Dongsu Park and colleagues were able to develop a technique in mice to identify different subpopulations of periosteal stem cells, define their contribution to the repair of bone fractures and identify the specific factors that regulate their migration and proliferation under physiological conditions.

In rats, they discovered specific markers for this class of cells. They identified a specific subset of stem cells that contribute to lifelong bone regeneration in adults. They also observed that periosteal stem cells react to inflammatory molecules, chemokines, which are normally produced in bone injuries.

Read Also: The Exciting Future of Joint and Cartilage Repair

In detail, periosteal stem cells have receptors that bind to the CCL5 chemokine. The CCL5 chemokine sends a signal to the cells to migrate to the injured bone and repair it. By suppressing the CCL5 gene in rats, the researchers found defects in bone repair that delayed healing. However, when they gave CCL5 to rats that had lost CCL5, the bones recovered faster.

Our findings contribute to a better understanding of the healing of adult bones. We believe this is one of the first studies to show that bone stem cells are heterogeneous and that different subtypes have unique properties that are regulated by specific mechanisms, said Dongsu Park. We have identified markers that allow us to distinguish between the subtypes of bone stem cells and have investigated what each subtype contributes to bone health. The understanding of how the functions of bone stem cells are regulated offers the possibility of developing new therapeutic strategies for the treatment of bone damage in adults.

Read Also: Implants from Own Stem Cells May Offer Solution to Back Pain, Researchers Say

In the long term, these findings may therefore have potential therapeutic applications, particularly in people with osteoporosis or diabetes.Indeed, people with diabetes may be prone to falls and fractures due to possible neurological, visual or renal complications. In addition, bone fragility in diabetics is likely to be due to changes in bone remodeling and, in particular, an increase in bone resorption.

https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(19)30458-8?

Mitochondrial Damage Can Cause Osteoporosis According to Study

Man Destroys Kidneys With Too Much Vitamin D

Could Stem Cell Injections Get Rid of Low Back Pain Completely?

Natural Remedies You May Want to Try For Arthritis

To Grow Taller With Limb Lengthening Surgery Is Not For The Fainthearted

HGH Deficiency in Children: The Latest Facts

Hormones Replacement Therapy for Graceful Aging A Major Trend

Continued here:
Researchers at Baylor College of Medicine Discover How to Improve Bone Repair - Gilmore Health News

To Read More: Researchers at Baylor College of Medicine Discover How to Improve Bone Repair – Gilmore Health News
categoriaBone Marrow Stem Cells commentoComments Off on Researchers at Baylor College of Medicine Discover How to Improve Bone Repair – Gilmore Health News | dataJanuary 4th, 2020
Read All

Cardio Round-up: Look Back at 2019, The Importance of Sleep, and More – DocWire News

By daniellenierenberg

This weeks Cardio Round-up features a look back at what you may have missed during the holidays, as well as some of the big 2019 cardiology stories.

The past year saw some big stories like the Apple Heart study, presented at ACC.19, which essentially validated the ability of a wearable device (an Apple iWatch) equipped with a tachogram-tracking algorithm was able to detect pulse irregularities associated with atrial fibrillation. Icosapent ethyl also featured prominently, gaining an FDA approval for the reduction of cardiovascular disease risk as an add-on to statin therapy in high-risk patients with hypertriglyceridemia. Dapagliflozin (highlighted in the DAPA-HF study) also was shown to be an effective treatment for heart failure in both diabetic and non-diabetic patients.

2019 In Cardiology: Apple Heart Study Lands; Icosapent Ethyl Gets FDA Nod for New Indication; Dapagliflozin For Nondiabetics; and More

A new observational study published inEuropacesuggests it is possible to monitor and predict individual progression ofatrial fibrillation (AFib) using pacemakers or defibrillators.We aimed to study the progression of AER in individual patients with implantable devices and AFib episodes, the paper authors wrote. The study results indicated that the slope of AAR changes during the progression of AFib showed patient-specific patterns correlating with the time-to-completion of AER (R2 = 0.85). This technology opens up enormous possibilities in personalized medicine for AFib patients because it allows us to determine the progression rate of the arrhythmia in each individual and to optimize the timing of medical intervention with current treatment options, one of the researchers said in a press release.

Personalized Medicine for AFib: How Electric Activity in the Heart Can Predict Individual Progression of Atrial Fibrillation

A research team, publishing the study in the Journal of Molecular and Cellular Cardiology, worked on converting adipogenic mesenchymal stem cells, which reside within fat cells, into cardiac progenitor cells. The ensuing cardiac progenitor cells can be programmed to aid heartbeats as a sinoatrial node (SAN), which is part of the electrical cardiac conduction system.We are reprogramming the cardiac progenitor cell and guiding it to become a conducting cell of the heart to conduct electrical current, said study co-author Bradley McConnell, associate professor of pharmacology, in a press release. Results of this study show that the SHT5 combination of transcription factors can reprogram CPCs into Pacemaker-like cells.

The Next Generation of Biologic Pacemakers? New Discovery in Stem Cells from Fat Creates Another Alternative Treatment

Diabetes mellitus is an independent predictor for heart failure, according to the findings of a study published inMayo Clinic Proceedings. In this study, using the Rochester Epidemiology Project, researchers assessed the long-term impact ofdiabeteson the development of heart failure by including 116 study subjects with diabetes, who were matched 1:2 based on age, hypertension, sex, coronary artery disease and diastolic with 232 participants without diabetes. The results showed that that diabetes is an independent risk factor for the development of heart failure. Over the duration of 10 years, 21% of participants with diabetes developed heart failure, independent of other causes. The researchers observed that by comparison, only 12% of patients without diabetes developed heart failure. The key takeaway is that diabetes mellitus alone is an independent risk factor for the development of heart failure, wrote one of the authors.

Diabetes is an Independent Predictor for Heart Failure

A new study suggests that regularly getting a good nights sleep isnt just a helpful overall health recommendation but is also an essential way to keep risk for heart disease and stroke down. The paper, published in theEuropean Journal of Cardiology, included more than 300,000 participants initially free of cardiovascular disease (CVD) from UK Biobank. According to the results, there were 7,280 documented cases of incident CVD (4,667 coronary heart disease and 2,650 stroke) cases. Participants with a sleep score of 5 had a 35% reduced risk for CVD, a 34% reduced risk for coronary heart disease, and a 34% reduced risk for stroke when compared to participants with a score of 0-1.As with other findings from observational studies, our results indicate an association, not a causal relation, one of the authors said in a press release. However, these findings may motivate other investigations and, at least, suggest that it is essential to consider overall sleep behaviors when considering a persons risk of heart disease or stroke.

Getting Quality Sleep, and the Right Amount, Can Offset Genetic Susceptibility for Heart Disease and Stroke Risk

Read more:
Cardio Round-up: Look Back at 2019, The Importance of Sleep, and More - DocWire News

To Read More: Cardio Round-up: Look Back at 2019, The Importance of Sleep, and More – DocWire News
categoriaCardiac Stem Cells commentoComments Off on Cardio Round-up: Look Back at 2019, The Importance of Sleep, and More – DocWire News | dataJanuary 4th, 2020
Read All

Duke Researchers Garner Over $6 Million in NIH Funding to Fight Genetic Diseases – Duke Today

By daniellenierenberg

Hemophilia. Cystic fibrosis. Duchenne muscular dystrophy. Huntingtons disease. These are just a few of the thousands of disorders caused by mutations in the bodys DNA. Treating the root causes of these debilitating diseases has become possible only recently, thanks to the development of genome editing tools such as CRISPR, which can change DNA sequences in cells and tissues to correct fundamental errors at the sourcebut significant hurdles must be overcome before genome-editing treatments are ready for use in humans.

Enter the National Institutes of Health Common Funds Somatic Cell Genome Editing (SCGE) program, established in 2018 to help researchers develop and assess accurate, safe and effective genome editing therapies for use in the cells and tissues of the body (aka somatic cells) that are affected by each of these diseases.

Todaywith three ongoing grants totaling more than $6 million in research fundingDuke University is tied with Yale University, UC Berkeley and UC Davis for the most projects supported by the NIH SCGE Program.

In the 2019 SCGE awards cycle, Charles Gersbach, the Rooney Family Associate Professor of Biomedical Engineering, and collaborators across Duke and North Carolina State University received two grants: the first will allow them to study how CRISPR genome editing affects engineered human muscle tissues, while the second project will develop new CRISPR tools to turn genes on and off rather than permanently alter the targeted DNA sequence. This work builds on a 2018 SCGE grant, led by Aravind Asokan, professor and director of gene therapy in the Department of Surgery, which focuses on using adeno-associated viruses to deliver gene editing tools to neuromuscular tissue.

There is an amazing team of engineers, scientists and clinicians at Duke and the broader Research Triangle coalescing around the challenges of studying and manipulating the human genome to treat diseasefrom delivery to modeling to building new tools, said Gersbach, who with his colleagues recently launched the Duke Center for Advanced Genomic Technologies (CAGT), a collaboration of the Pratt School of Engineering, Trinity College of Arts and Sciences, and School of Medicine. Were very excited to be at the center of those efforts and greatly appreciate the support of the NIH SCGE Program to realize this vision.

For their first grant, Gersbach will collaborate with fellow Duke biomedical engineering faculty Nenad Bursac and George Truskey to monitor how genome editing affects engineered human muscle tissue. Through their new project, the team will use human pluripotent stem cells to make human muscle tissues in the lab, specifically skeletal and cardiac muscle, which are often affected by genetic diseases. These systems will then serve as a more accurate model for monitoring the health of human tissues, on-target and off-target genome modifications, tissue regeneration, and possible immune responses during CRISPR-mediated genome editing.

Currently, most genetic testing occurs using animal models, but those dont always accurately replicate the human response to therapy, says Truskey, the Goodson Professor of Biomedical Engineering.

Bursac adds, We have a long history of engineering human cardiac and skeletal muscle tissues with the right cell types and physiology to model the response to gene editing systems like CRISPR. With these platforms, we hope to help predict how muscle will respond in a human trial.

Gersbach will work with Tim Reddy, a Duke associate professor of biostatistics and bioinformatics, and Rodolphe Barrangou, the Todd R. Klaenhammer Distinguished Professor in Probiotics Research at North Carolina State University, on the second grant. According to Gersbach, this has the potential to extend the impact of genome editing technologies to a greater diversity of diseases, as many common diseases, such as neurodegenerative and autoimmune conditions, result from too much or too little of certain genes rather than a single genetic mutation. This work builds on previous collaborations between Gersbach, Barrangou and Reddy developing both new CRISPR systems for gene regulation and to regulate the epigenome rather than permanently delete DNA sequences.

Aravind Asokan leads Dukes initial SCGE grant, which explores the the evolution of next generation of adeno-associated viruses (AAVs), which have emerged as a safe and effective system to deliver gene therapies to targeted cells, especially those involved in neuromuscular diseases like spinal muscular atrophy, Duchenne muscular dystrophy and other myopathies. However, delivery of genome editing tools to the stem cells of neuromuscular tissue is particularly challenging. This collaboration between Asokan and Gersbach builds on their previous work in using AAV and CRISPR to treat animal models of DMD.

We aim to correct mutations not just in the mature muscle cells, but also in the muscle stem cells that regenerate skeletal muscle tissue, explainsAsokan. This approach is critical to ensuring long-term stability of genome editing in muscle and ultimately we hope to establish a paradigm where our cross-cutting viral evolution approach can enable efficient editing in multiple organ systems.

Click through to learn more about the Duke Center for Advanced Genomic Technologies.

Read more:
Duke Researchers Garner Over $6 Million in NIH Funding to Fight Genetic Diseases - Duke Today

To Read More: Duke Researchers Garner Over $6 Million in NIH Funding to Fight Genetic Diseases – Duke Today
categoriaCardiac Stem Cells commentoComments Off on Duke Researchers Garner Over $6 Million in NIH Funding to Fight Genetic Diseases – Duke Today | dataJanuary 4th, 2020
Read All

The ‘supercells’ that cured an infant’s grave genetic illness – FRANCE 24

By daniellenierenberg

McLean (United States) (AFP)

When a person's immune system is impaired by a genetic disease, a bone-marrow transplant can be a powerful therapeutic tool, but with a major downside: during the first few months the recipient's defenses against viruses are severely weakened. The slightest infection can lead to a hospital trip.

A still-experimental type of treatment known as T-cell therapy aims to assist during this vulnerable period -- the months during which the body is rebuilding its natural defenses. After two decades of clinical trials, the technology has been refined, and is being used to treat more and more patients, many of them children.

A boy named Johan is one of them.

Today he is a mischievous, smiling toddler with a thick shock of light-brown hair, who never tires, playfully tormenting the family's puppy, Henry.

There is no sign of the three-year-long medical and emotional roller-coaster ride he and his family, who live in an affluent Washington suburb, have been on.

The first traumatic surprise came with the results of a pregnancy test: Johan was not planned.

"That was a huge shock. I cried," said his mother, 39-year-old Maren Chamorro.

- Risky procedure -

She had known since childhood that she carried a gene that can be fatal in a child's first 10 years, chronic granulomatous disease (CGD).

Her brother died of it at the age of seven. The inexorable laws of genetics meant that Maren had a one in four chance of transmitting it to her child.

For their first children, she and her husband Ricardo had chosen in-vitro fertilization, allowing the embryos to be genetically tested before implantation.

Their twins Thomas and Joanna were born -- both disease-free -- seven and a half years ago.

But in Johan's case, a post-birth genetic test quickly confirmed the worst: he had CGD.

After conferring with experts at Children's National Hospital in Washington, the couple took one of the most important decisions of their lives: Johan would receive a bone-marrow transplant, a risky procedure but one that would give him a chance of a cure.

"Obviously, the fact that Maren had lost a sibling at a young age from the disease played a big role," Ricardo confided.

Bone marrow, the spongy tissue inside bones, serves as the body's "factory" for the production of blood cells -- both red and white.

- His brother's immune system -

Johan's white blood cells were incapable of fighting off bacteria and fungal infections. A simple bacterial infection, of negligible concern in a healthy child, could spread out of control in his young body.

Luckily, Johan's brother Thomas, six years old at the time, was a perfect match. In April 2018, doctors first "cleansed" Johan's marrow using chemotherapy. They then took a small amount of marrow from Thomas's hip bones using a long, thin needle.

From that sample they extracted "supercells," as Thomas calls them -- stem cells, which they reinjected into Johan's veins. Those cells would eventually settle in his bone marrow -- and begin producing normal white blood cells.

The second step was preventive cell therapy, under an experimental program led by immunologist Michael Keller at Children's National Hospital.

The part of the immune system that protects against bacteria can be rebuilt in only a matter of weeks; but for viruses, the natural process takes at least three months.

- Hurdles remain -

From Thomas's blood, doctors extracted specialized white blood cells -- T-cells -- that had already encountered six viruses.

Keller grew them for 10 days in an incubator, creating an army of hundreds of millions of those specialized T-cells. The result: a fluffy white substance contained in a small glass vial.

Those T-cells were then injected into Johan's veins, immediately conferring protection against the six viruses.

"He has his brother's immune system," said Keller, an assistant professor at Children's National.

Johan's mother confirmed as much: today, when Thomas and Johan catch a cold, they have the same symptoms, and for nearly the same amount of time.

"I think it's pretty cool to have immunity from your big brother," Maren Chamorro said.

This therapeutic approach -- boosting the body's immune system using cells from a donor or one's own genetically modified cells -- is known as immunotherapy.

Its main use so far has been against cancer, but Keller hopes it will soon become available against viruses for patients, like Johan, who suffer from depressed immune systems.

The chief obstacles to that happening are the complexity of the process and the costs, which can run to many thousands of dollars. These factors currently restrict the procedure to some 30 medical centers in the United States.

For Johan, a year and a half after his bone marrow transplant, everything points to a complete success.

"It's neat to see him processing things, and especially play outside in the mud," his mother said.

"You know, what a gift!"

Her only concern now is the same as any mother would have -- that when her son does fall ill, others in the family might catch the same bug.

2020 AFP

See more here:
The 'supercells' that cured an infant's grave genetic illness - FRANCE 24

To Read More: The ‘supercells’ that cured an infant’s grave genetic illness – FRANCE 24
categoriaBone Marrow Stem Cells commentoComments Off on The ‘supercells’ that cured an infant’s grave genetic illness – FRANCE 24 | dataJanuary 2nd, 2020
Read All

Innovative therapies: Novel targets in allergic inflammation – SelectScience

By daniellenierenberg

Meet the inflammation and immunity researcher studying the fundamental cellular mechanisms behind uncontrolled inflammatory responses to allergens

As the prevalence of allergic disease continues to rise worldwide, the work of immunologist Dr. Adam MacNeil has never been more important. By identifying novel targets in allergic inflammation to enable the development of innovative therapies, MacNeil and his team are pushing toward a healthier future. Were interested in allergic inflammation from two different branches, firstly, how the cells that contribute to inflammation emerge from the bone marrow, and secondly, how mature mast cells contribute to inflammatory mechanisms at the site of exposure, explains MacNeil, associate professor in the interdisciplinary Health Sciences department at Brock University, Canada.

Dr. Adam J. MacNeil, Associate Professor of Immunologyat Brock University's Department of Health Sciences.Pictured from left to rightare;Melissa Rouillard, Aindriu Maguire, Rob Crozier, Adam MacNeil, Jeremia Coish, Katie Hunter, Colton Watson, and Natalie Hicks. Image courtesy of theMacNeil Lab.

The MacNeil Lab investigates mechanisms in hematopoietic stem cells directing the maturation of the most well-known allergic mediator cellsmature mast cellsthat drive allergic inflammation. A key research goal for the team is to identify how an allergen activates a mast cell to create an inflammatory response.

Seeking to understand the signals that stimulate a progenitor cell to become a mast cell in different tissues, this research looks to determine the signaling pathways directing the epigenetic, and ultimately proteomic, profile of these cells1-3. To do this, cells are isolated and matured from bone marrow to create functional, phenotypical mast cells, which are primed with allergen-specific IgE molecules before addition of the allergen to activate the cells. The inflammatory response to the allergen, and the cell signaling processes that contribute to the inflammatory mechanisms, can then be measured through the secretion of histamines in degranulation mechanisms, or release of pro-inflammatory mediators such as cytokines, chemokines, and lipid metabolites.

Brock University

Being able to identify and sort cells with a specific immune profile requires tools capable of precision sorting of heterogeneous populations of cells. MacNeil expands: Were working with a heterogeneous population of cells in the bone marrow and trying to take only the stem cells out. So, it's a very small population within the total population of cells. Many of the assays that we want to do with that small population of cells are very well-suited to being sorted directly onto a 96-well plate where we can then actually conduct the experiment directly, knowing exactly how many cells are in each well and what the particular profile of those cells is. That makes the Sony SH800S a really strong tool for our lab.

When it comes to optimizing and streamlining the lab's work, Sony technology offers advantages over traditional methods. The traditional flow cytometer or cell sorter in any core lab is operated by a technician, and they're the only one allowed to touch it. That doesn't make for great learning opportunities for graduate students, and it's much better if they can actually interface with the instrument themselves, says MacNeil. The software and automation really allow for that to happen, but also adds to the robustness of the instrument. The way in which it has been designed means that it's pretty difficult to break it.

With an epigenetic approach to understanding how mast cells differentiate, and the effect of inhibiting specific signaling pathways in those cells, the MacNeil Lab uses sorted cells in functional assays such as immune cell profiling and cytokine secretion. Also, the cells can be sorted into plate-based assays for ChIP or RNA-Seq to assess their genetic profile. We're not only interested in sorting. We bought the device because it's robustly dynamic, explains MacNeil, referring to the Sony SH800S. You can look at data acquisition and not have to even use the sorting function at all in certain scenarios. There are many times that were simply interested in looking at the phenotype of our cells and not worried about sorting necessarily. Weve found this instrument to be very easy to use and to give us robust data in terms of the immune profile of our cells.

In addition, the SH800S microfluidic sorting chip helps to automate key stages of instrument setup and demonstrates versatility with a wide range of chip sizes, ranging from 70130 m, for sorting a variety of cells. The chip ultimately gets to the robustness of the instrument, explains MacNeil. Because of the chip, we have such peace of mind about how the instrument functions that we don't even worry about clogging of the instrument and all of the problems that the chip ultimately solves. If we do run into a problem, we can just change the chip. I certainly find the chip technology to be really well suited to our type of lab environment.

For MacNeil, the Sony SH800S Cell Sorter is a great fit for the lab, with a seamless software interface and great overall instrument design and modularity for easy plate-based sorting.MacNeil lab logocourtesy of the MacNeil Lab.

Working within the diverse multidisciplinary department at Brock University opens unique and fascinating research avenues not available to all immunologists and has led MacNeil to interesting collaborations and knowledge exchange on transdisciplinary projects.

As part of these broader research avenues, working with sociologist Prof. Terrance Wade and cardiovascular biologist Prof. Deborah OLeary, MacNeil also studies adverse experiences in childhood. The team is investigating whether such events may set the immunological stage for dysregulated inflammation in later life, through mechanisms involving stress-stimulated cortisol release that can shape how the immune system is responding4.

In another stream of collaborative immunological research, MacNeil collaborates with psychologist Prof. Anthony Bogaert to look at the role of the immune system in shaping sexual orientation as part of the fraternal birth order effect. This research looks at how early pregnancies stimulate the immune system to make antibodies against brain proteins in fetal males that may then affect their social behaviors in later life5. Its something I may not have expected to ever work on, says MacNeil. But when you come to a diverse department with a wide lens on health, these kinds of opportunities emerge. Were now interested in using the SH800S to test hypotheses for particular mechanisms underlying this phenomenon.

Looking ahead, MacNeil expects tissue heterogeneity to be a key issue to tackle in the field of immunology. Cell populations simply aren't uniform, he says. Mast cells in different locations in the body don't have exactly the same phenotype, and so, as our research proceeds and we continue to probe the role of the mast cell in allergic inflammation, we're very conscious that tissue heterogeneity is going to be a factor. But with such challenges come opportunities. Were ultimately interested in going into those tissues and trying to pull mast cells out. To do this, we would require an instrument like a cell sorter. Once the cells are sorted, we can interrogate their functional phenotype, including how they degranulate, secrete cytokines and metabolize lipids etc. toward one day potentially modulating their phenotype for the hundreds of millions affected by this inappropriate immune response, MacNeil concludes.

View post:
Innovative therapies: Novel targets in allergic inflammation - SelectScience

To Read More: Innovative therapies: Novel targets in allergic inflammation – SelectScience
categoriaBone Marrow Stem Cells commentoComments Off on Innovative therapies: Novel targets in allergic inflammation – SelectScience | dataJanuary 2nd, 2020
Read All

What are the odds? Stem cell recipient learns her donor is also in Ottawa – Ottawa Citizen

By daniellenierenberg

Colleen LeCours lay in a hospital bed at the General campus of The Ottawa Hospital on August 12, 2016, waiting for the only thing that could save her life a stem cell transplant from a stranger.

The donor could be anywhere in the world if a related blood donor cant be found, the call to find a match goes out to registries all over the globe and the donated stem cells are rushed across international borders.

What LeCours didnt know is that her donor, an 18-year-old Carleton University student named Timothy White, was just one floor below. Similarly, White didnt know that his recipient was in the same hospital.

There are currently more than 450,000 people on the Canadian Blood Services Stem Cell Registry formerly known as OneMatch and 36 million on affiliated international registries. Still, some people never find a match. There are more than 900 Canadians in need of a transplant who have not found a match anywhere in the world.

What were the odds that the match for LeCours, now 57, would be found in the same city?

Astronomical, she said.

The chances that White would even ever be asked to donate were also very low only about one in a thousand. After he agreed to donate, he was not told where the recipient might be. I was told the recipient could be anywhere. They could be in Africa, said White, now 22 and a recent graduate in computer science.

White had signed up for the registry through a cheek swab booth at ComiCon less than six months earlier. A smart place to recruit would-be stem cell donors, he notes. The optimal donor is a male between the age of 17 and 35 and thats the ComiCon demographic.

He decided to register as a potential donor because he grew up in the scouting movement. One of the main philosophies is to do a good turn every day, he said.

The donation was a non-surgical procedure in which Whites blood was removed though a needle, the stem cells were separated from his blood and the remaining blood components returned to his body through another needle. The procedure started at about 8 a.m. and was over by about 5 p.m.

I figured if I gave someone a day for a thousand more days (of life) then I felt it was a fair trade. I have many years of life. Why not spend one day? said White.

LeCourss medical journey started in 2009 with an emergency room visit for abdominal pain. She was eventually diagnosed with Stage 4 follicular lymphoma, a blood cancer that affects infection-fighting white blood cells. At the time, LeCours was working for Gov.-Gen. Michalle Jean and was able to stay on the job most of the time during her six months of treatment.

Four years later, the lymphoma returned. It was back again two years after that, in a more aggressive form. The only treatment was stem cell transplant.

There are two main kinds of stem cell transplants autologous and allogenic. In an autologous transplant, stem cells are collected from a patients own blood and reintroduced after being treated to remove cancer cells. In an allogenic stem cell transplant, the stem cells come from a donor.

At this point, LeCours was a candidate for an autologous transplant. Once again, she underwent aggressive chemotherapy. A year later, the cancer returned.

Doctors told LeCours there wasnt much else they could do and advised her to get her affairs in order. But the hospitals transplant team felt she could be a candidate for an allogenic transplant. Theres risk rejecting donated stem cells can be fatal to the patient.

LeCours learned that her brother was a match. But the medical work-up would last about three months and she couldnt wait that long.

I wasnt sure I wanted to do it but I didnt have much choice, she said. They said, We have someone waiting in the wings.

And I said, He probably has wings.

After the transplant, LeCours recovered as an outpatient in the home of her brother and sister-in-law. It took three months to rebuild her immune system. Her only rejection symptoms were a bit of skin irritation.

In January 2018, LeCours received an email asking if she would like to exchange contact information with her donor. She replied that she would.

A few months later, she got a message with Whites co-ordinates and was astonished to find that her donor was in Ottawa. It took her a few weeks to formulate an email.

I didnt want to scare him. I just wanted him to know how incredibly grateful I was. And I wanted to pay it forward, said LeCours.

After careful consideration, she sent White an email on Oct. 8, 2018.

Today, being Thanksgiving, I have so much to be thankful for, namely you giving your stem cells and saving my life and the success of the stem cells grafting to my bone marrow, LeCours wrote. I cant thank you enough for your wonderful selfless act.

Stem cell donor 18-year-old Carleton University student Timothy White at The Ottawa Hospital, General campus, donating stem cells for Colleen LeCours in August 2016. At the time he did not know that LeCours would be the recipient. Courtesy Timothy White.jpg

She added that she didnt know anything about him except for his name and email address, and asked if they could meet. They got together for the first time over lunch in a burger restaurant.

As soon as I saw him, I broke down, said LeCours.

It has been three and a half years since the transplant and LeCours remains in remission. She invited White to her familys Thanksgiving this year, and the two meet to catch up every few months. Its one of the quirks of stem cell donation that the recipient assumes the blood type of the donor. LeCours, once O-positive, now has blood type A-negative, like White.

Im a grandmother. The fact that my grandson has his moma is huge.

ALSO IN THE NEWS

Ottawa police chief lifts suspension of police union boss Matt Skof

Reduce the burden: Inuit healing centre reopens after funding lapse forced shut down

RTG wasnt on top of it : New Years Eve light rail issues attributed to dirt, grit buildup on trains

See the article here:
What are the odds? Stem cell recipient learns her donor is also in Ottawa - Ottawa Citizen

To Read More: What are the odds? Stem cell recipient learns her donor is also in Ottawa – Ottawa Citizen
categoriaSkin Stem Cells commentoComments Off on What are the odds? Stem cell recipient learns her donor is also in Ottawa – Ottawa Citizen | dataJanuary 2nd, 2020
Read All

Why microneedling facials really work to revive 40+ skin – harpersbazaar.com

By daniellenierenberg

I call it peak bleak: its right about now when all of us beyond our thirties are really thinking that our skin looks particularly knackered. Its central heating, its illness, its being overtired, over worked and over partied and it makes for a combination of low-level dryness and dullness that no illuminating make-up seems to ameliorate (highlighter on a dehydrated cheekbone is never flattering). Hydrating sheet masks, richer moisturisers and glycolic peels make some strides to improve exhausted skin, but the thing Ive found to make the single biggest difference is microneedling.

Im not referring to deep derma rolling treatments here (brilliant as they are for long term rejuvenation, they do entail some down-time) but rather facials - and at-home facial treatments - that incorporate a level of gentle needling. What gives these facials the edge on less than young skin is twofold: firstly, as leading facialist Sarah Chapman explains, microneedling is electronic precision engineering, creating thousands of needle columns into the skin, each one penetrating into the dermis layer to rejuvenate your skin by supercharging collagen production, which in turn reduces the appearance of wrinkles, fine lines and improves the overall texture of your skin. Which goes to say that it gets right to the root cause of a bleak complexion and directly revs it up.

Secondly, needling is astoundingly effective at aiding absorption of serums applied both during and after treatment (thanks to those tiny channels that Chapman described) and, quite frankly, the more hydrating serum you can get your skin to suck up, the better in terms of improving its plumpness and luminosity in both the short and long term.

Treatment wise, the best facial that incorporates needling is Chapmans Stem Cell Collagen Therapy treatment, 210. Chapman calls it the ultimate youth-boosting facial, a punchy claim that I must say its hard to dispute. The needling itself feels like nothing more than an electric toothbrush being whisked over the skin as it pushes in concentrated doses of botanical stem cells and peptides, while the finishing Dermalux red-light therapy adds to the impressive post-treatment glow. Whether you're looking for a facial that really delivers pre- or post-party, or simply want a fix to rid you of lacklustre skin, this is the facial to book.

At home, I like to needle every other day with a gentle manual 0.2-0.3mm roller: freshly rolled skin sucks in serum incredibly satisfyingly, and the increased microcirculation it induces adds to the don't you look well effect. Environs CIT Roller, 59, and Nannette de Gaspes Art of Noir Roller Noir, 35, both manage to be effective yet gentle. Do not be tempted to buy a cheap roller on Amazon or eBay; the needles are often hooked, which can rip the skin leading to redness and inflammation.

Roller Noir

35.00

Skinesis Intense Hydrating Booster

64.00

B-Hydra Intensive Hydration Serum

40.00

Peptide Veil

115.00

Rolling can be done on bare skin, but I find it more effective and comfortable to apply a thick layer of hydrating serum first, slathering on three times the amount Id usually apply of either Skinesis Intense Hydrating Booster, 64, or Drunk Elephant B-Hydra Intensive Hydrating Serum, 44. Start at the forehead and roll over each area three or four times horizontally, three or four times vertically, then diagonally in each direction, before moving onto the cheeks and finally chin and neck. Finish with a thick veil of cream (Im loving Decree Peptide Emollient Veil, 115) and youll wake up to skin that is anything but bleak.

Like this article? Sign up to our new newsletter to get more articles like this delivered straight to your inbox.

SIGN UP

Read the original:
Why microneedling facials really work to revive 40+ skin - harpersbazaar.com

To Read More: Why microneedling facials really work to revive 40+ skin – harpersbazaar.com
categoriaSkin Stem Cells commentoComments Off on Why microneedling facials really work to revive 40+ skin – harpersbazaar.com | dataJanuary 2nd, 2020
Read All

Girl, 3, dies in her parents arms on New Years Day after leukaemia battle – The Sun

By daniellenierenberg

A LITTLE girl who won the backing of thousands of strangers online died of leukaemia on New Year's Day.

Esme Handley was just three years old when she passed away.

6

6

The adorable tot was diagnosed with blood cancer at just 22 months, after developing a bruise while she was on a family holiday in Greece.

Her parents Rebecca and Will broke the heartbreaking news on their daughter's Facebook Page, named Esme Lionheart after her love of lions.

They said: If you look to the sky tonight you will see a star shining brighter than any other.

Our darling girl went onwards with her journey at midday today.

"She was peaceful and in our arms and knew how ridiculously adored she was.

Esme Grace Angela Handley 13.08.2016 - 01.01.2020.

Rebecca, 38, and Will, 43, faced a battle to try and save their only daughter following her diagnosis.

They discovered she had the high risk acute myeloid leukaemia during a family trip to Greece before which Esme fell.

6

When a bruise that developed shortly afterwards failed to disappear, the couple Googled Esme's symptoms and became concerned.

She was taken to hospital in Greece where the diagnosis was confirmed.

Esme was given a stem cell transplant in September 2018 alongside three rounds of chemotherapy but after six months the leukaemia returned in the tots bone marrow.

If you look to the sky tonight you will see a star shining brighter than any other. Our darling girl went onwards with her journey at midday today.

The family were not eligible for a second transplant on the NHS and were faced with raising 500,000 privately for the urgent treatment.

In November, her parents admitted that Esme could no longer expect to be cured and said their baby had simply had enough.

They said: Since diagnosis we have often spoken about a metaphorical 'sealed envelope' that contains Esme's fate.

"Yesterday we got to open that envelope and it was not what we had hoped.

The leukaemia is out of control and there is nothing more which can be done.

We have spoken with every single, leading paediatric consultant globally, tried all available drugs (some of which arent even licensed in kids), explored a ridiculous amount of supplements and complementary medicines, had healing circles far and wide sending prayers.....

But its not been enough. We dont get to keep our baby.

6

And to be perfectly honest, even if there was something else they could come up with, right now, Im not sure we would be able to pursue it.

"Its very clear to see that Esme has simply had enough....and who could blame her?

Esme thrives when shes outdoors but all she has known for 18 months is hospitals. The treatment she has had wouldnt be tolerated by most adults.

She has been continually pumped full of drugs; had hundreds of blood transfusions; successfully come through one stem cell transplant; had surgery for three Hickman lines into her heart; had numerous tubes shoved up her nose and drops in her eyes, suffered countless horrendous infections including a type of pneumonia three times; lost her hair; lost her fingernails; vomited daily, had her skin break down, crack, be burnt from chemo; nearly died from sepsis; almost died from anaphylaxis; been blue-lighted to PICU after having a seizure which temporarily left her in a vegetative state thanks to a fungal brain infection....and it goes on.

Whilst we would do absolutely anything for her, ANYTHING, Im also not sure how much more we can tolerate either.

A month later, they described the heartbreaking cocktail of pain management Esme had to bear to soften her ever-increasing suffering".

6

At the time, her parents posted: It's now three weeks to the day that we learnt that Esme's story will not have the happy ending we've all prayed for, three long weeks in which we've had to contemplate the unthinkable and bear witness to Esme's ever-increasing suffering.

In the first couple of weeks one of the biggest difficulties was accepting that the team's goal was no longer to cure but just to manage pain.

This sounds obvious but you suddenly find yourself inexplicably sad that the nurses are no longer asking you for Esme's heart rate or temperature every few hours.

At one point I even found myself crying when I bumped into another child being wheeled to theatre and realised Esme will never have another general anaesthetic.

Instead, getting ahead of Esme's pain has become a full-time occupation for us and the team, and Ezzie is now on an ever-escalating daily mix of paracetamol, topical morphine, oxycodone, ketamine and, most recently, methadone.

6

The psychology team here warn against reading adult meanings into our children's innocent words but it's difficult not to tear up when Esme tells us repeatedly I don't think my bottom's ever gonna get better, it's the hurtiest bottom in the whole world ....or My arm/leg/back/headache is killing me.

They also described how Esme had been bedridden for three months and would never walk again.

But the tot had her own Christmas tree and was even taken out of the Royal Marsden Hospital over the festive period to see Christmas lights in Morden before a screening of Frozen 2 at Everyman Esher.

SIGNS OF LEUKAEMIA EVERY PARENT NEEDS TO KNOW

LEUKAEMIA is a type of blood cancer, some forms of which are more common in children.

There are no specific signs or symptoms which would allow for a doctor to make a diagnosis without lab tests.

In all types of leukaemia symptoms are more commonly caused by a lack of normal blood cells than by the presence of abnormal white cells.

As the bone marrow becomes full of leukaemia cells, it is unable to produce the large numbers of normal blood cells which the body needs.

Thiscan lead to:

BREAK THE FAST Best breakfast ideas to burn fat first thing in the morning

STRANGER DANGER Mum covered in tumours is abused by strangers who think she's contagious

SPICE IS RIGHT Turmeric could help beat cancer as compound in spice may kill tumours

SINISTER SCAR Chickenpox scar develops into skin cancer 30yrs after woman caught the virus

WEIGHTY ISSUE How to lose weight fast with the 8 best diets of 2020 including keto & vegan

Exclusive

WEIGH TO GO I lost 9st by counting my steps - after devastating warning from doctors

COLON CONDITION Get the lowdown on the signs, symptoms and treatment for colitis

ULTIMATE GIFT None of these beaming kids would be alive today without a stranger's blood

LAST WISH Size 26 mum, 42, sheds staggering 10st to honour her dying mum's wish

Now Will and Rebecca, of West Norwood, south London, hope to donate money in Esmes name.

They have already raised 425,000 on GoFundMe.

Rebecca said in November: When we began fundraising we were punchy with our target to ensure we had enough for a self-funded transplant and said that whatever remained would go to the CCLG, the UK's leading kids cancer charity.

Given how desperately poor the funding is into paediatric AML research, we feel even more strongly about this now.

So a large chunk of the cash we have remaining (after spending some on novel drugs and supportive care) will be donated to AML research to try and spare future families the pain and anguish we have experienced.

To donate in memory of Esme, visit her GoFundMe page here.

Here is the original post:
Girl, 3, dies in her parents arms on New Years Day after leukaemia battle - The Sun

To Read More: Girl, 3, dies in her parents arms on New Years Day after leukaemia battle – The Sun
categoriaSkin Stem Cells commentoComments Off on Girl, 3, dies in her parents arms on New Years Day after leukaemia battle – The Sun | dataJanuary 2nd, 2020
Read All

The Mutuality Between Mothers and Their Developing Babies – Patheos

By daniellenierenberg

Medical science is learning more and more about pregnancy and fetal development. And what they are finding is mind-blowing. We now know that there is a radical mutuality in the relationship between the mother and her child in the womb. Both work together to build the placenta. And just as cells from the mothers body become part of the baby, cells from the baby become permanent parts of the mother.

From an interview in the Catholic magazine Crux with Prof. Kristin Marguerite Collier of the University of Michigan Medical School:

The placenta is the organ through which the mother and prenatal child interface. The placenta is an organ that is attached to the inside of the uterus and connects to the prenatal child through the childs umbilical cord.

What is not as well known about this organ is that the placenta is the only organ in human biology that is made by two persons, together, in cooperation. The placenta is built from tissue that is part from mom, and part from the growing baby. Because of this, the placenta is referred to as a feto-maternal organ. It is the only organ made by two people, in cooperation with providence. It is the first time mom and her baby come together, albeit at the cellular level, to do something in cooperation. . . .

In the creation of the placenta, cells from the trophoblast, which are from the embryo, reach down towards the mothers uterine wall while at the same time, the spiral arteries from the mothers uterus are reaching up towards the embryo. This process leads to the creation of the placenta.

The placenta is the only purposely transient organ in humans and unlike the rest of our organs, acts as many organs in one. The placenta functions to eliminate waste, like the kidneys would do, facilitates transfer of oxygen and carbon dioxide, like the lungs would do, and provides nutrients, like a GI tract would do. It even has endocrine and immune function. What used to be discarded as just the afterbirth is now regarded as a magnificently complex shared organ that supports the formation of the prenatal child.

Even more amazing to me is the phenomenon of fetomaternal microchimerism, named after the chimera of Greek mythology, a creature comprised of three different species:

In science, microchimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. During pregnancy, small numbers of cells traffic across the placenta. Some of the prenatal childs cells cross into the mother, and some cells from the mother cross into the prenatal child. The cells from the prenatal child are pluripotent and integrate into tissues in her mothers body and start functioning like the cells around them. This integration is known as feto-maternal microchimerism.

The presence of these cells is amazing for several reasons. One is that these cells have been found in various maternal organs and tissues such as the brain, the breast, the thyroid and the skin. These are all organs which in some way are important for the health of both the baby and her mother in relationship. The post-partum phase is when there is need, for example, for lactation. The fetomaternal microchimeric cells have been shown to be important in signaling lactation. These cells have been found in the skin, for example, in Cesarean section incisions where they are helping to produce collagen. Baby is helping mom heal after delivery by the presence of her cells! It would be one thing for these cells to come into the mother and be inert, but is a whole other thing entirely that these cells are active and aid mom for example in helping to produce milk for her baby and helping her heal. These cells may even affect how soon the mother can get pregnant again and therefore can affect spacing of future siblings.

To think that a physical presence of the baby in her mother is helping protect her from cancer at the level of the cell, speaks to a radical mutuality at the cellular level that we are just beginning to understand. . . .

The big takeaway is that the science of microchimerism supports the fact that some human beings carry remnants of other humans in their bodies. Thus, we arent the singular-autonomous individuals we think of ourselves as being.

I came across another article that said that if the mother suffers organ damage during pregnancy, the baby can send its stem cells to repair the damage! (The article included a link to this medical journal.)

The Crux interviewer, Charles C. Camosy, wanted to bring out the implications for Marys relationship with Jesus. Yes, said Prof. Collierwho is a Christian, but not a CatholicMary would always have a part of Jesus with her, indeed, as a part of her. But this intimate mutual union is also true, she said, for all mothers.All mothers carry their children with them, on a cellular level, for their whole lives. And just as she has contributed to the formation of the bodies of her children, they have contributed to the formation of hers.

Prof. Collier then makes a startlingly comforting application. Mothers whose children have died, she said, often feel that their children are still with them. We now know that they are.

Illustration via Good Free Photos, Public Domain

Original post:
The Mutuality Between Mothers and Their Developing Babies - Patheos

To Read More: The Mutuality Between Mothers and Their Developing Babies – Patheos
categoriaSkin Stem Cells commentoComments Off on The Mutuality Between Mothers and Their Developing Babies – Patheos | dataJanuary 2nd, 2020
Read All

Firm adds a new wrinkle to anti-aging products – Williamson Daily News

By daniellenierenberg

HUNTINGTON Serucell Corporation, a cosmeceutical company based in Huntington, has developed the worlds only dual-cell technology to create and produce anti-aging skincare products, and they did it in Huntington.

Serucell KFS Cellular Protein Complex Serum is made start to finish at Serucells laboratory on the south side of Huntington.

This has been one of the best kept secrets in West Virginia, said Cortland Bohacek, executive chairman and a co-founder of Serucell Corporation.

The company soft launch was in September 2018 at The Greenbrier Spas. The Official online launch was April 2019 and is getting exposure with some well known sellers like Neiman Marcus, local dermatologist and plastic surgeons offices and several other retail locations from New York to California. It is also sold online at serucell.com.

One person that has tried the product is Jennifer Wheeler, who is also a Huntington City Council member.

As a consumer I have an appreciation of the quality of the product and the results Ive seen using it, she said. It has been transformative for my skin and seems like its success will be transformative for our city as well.

She said Serucell and the people behind it are impressive on every level.

In my role on council, Im especially grateful for the companys conscious effort to stay and grow in our city, Wheeler said.

A one-ounce bottle of the serum costs $225. The recommended usage is twice per day and it will last on average of about six weeks.

Serucells active ingredient is called KFS (Keratinocyte Fibroblast Serum), which is made up of more than 1,500 naturally derived super proteins, collagens, peptides and signaling factors that support optimal communication within the cellular makeup of your skin.

This is the first and only dual-cell technology that optimizes hydration and harnesses the power of both keratinocytes and fibroblasts, two essential contributors to maintaining healthy skin by supporting natural rejuvenation of aging skin from the inside out, said Jennifer Hessel, president and CEO of the company.

When applied to the skin, KFS helps boost the skins natural ability to support new collagen and elastin, strengthen the connection and layer of support between the upper and lower layers of your skin. The result, over time is firmer, plumper and smoother skin, according to Hessel.

Why it works so naturally with your skin is because it is natural, Hessel said. These proteins play an important role in strengthening the bond between the layers of your skin, and thats where the re-boot happens.

KFS is the creation of Dr. Walter Neto, Serucells chief science officer and co-founder of the company. Neto is both a physician and a research scientist, specializing in the field of regenerative medicine with an emphasis on skin healing and repair.

Neto said Serucells technology unlocks the key to how our cells communicate and harnesses the signaling power actions to produce the thousands of bioactive proteins necessary to support the skins natural rejuvenation.

Originally from Brazil, Neto studied at Saint Matthews University and completed his clinical training in England. His clinical research on stem-cell cancer therapies, bone and tissue engineering and wound and burn healing led to his discovery in cell-to-cell communication, and ultimately the creation of Serucells KFS Cellular Protein Complex Serum.

Neto received multiple patents for the production method of Serucell KFS Serum. He lives in Huntington with his wife and four golden retrievers and works alongside his longtime friend, Dr. Brett Jarrell.

I have known Brett since I was 18 years old, Neto said.

Jarrell practices emergency medicine in Ashland, Kentucky, and oversees all aspects of quality control for Serucell. He received his bachelors degree in biology from Wittenberg University, his masters degree in biology from Marshall University and his medical degree from the Marshall University School of Medicine. Jarrell completed his residency at West Virginia University and is board certified by the American Board of Emergency Medicine.

Jarrell has served as a clinical instructor of emergency medicine at the Marshall School of Medicine, president of the West Virginia chapter of the American College of Emergency Medicine and he has published a number of peer-reviewed journal articles on stroke research.

Jarrell also lives in Huntington.

Another co-founder of the company is Dr. Tom McClellan.

McClellan is Serucells chief medical officer and director of research and is a well-respected plastic and reconstructive surgeon with a private practice, McClellan Plastic Surgery, in Morgantown.

McClellan completed his plastic and reconstructive surgery training at the world-renowned Lahey Clinic Foundation, a Harvard Medical School and Tufts Medical School affiliate in Boston, Massachusetts. While in Boston, he worked at Lahey Medical Center, Brigham and Womens Hospital, as well as at the Boston Childrens Hospital. McClellan is board certified by the American Board of Plastic Surgery.

In addition to his practice and role at Serucell, McClellan utilizes his surgical skills through pro bono work with InterplastWV, a non-profit group that provides comprehensive reconstructive surgery to the developing world. He has participated in surgical missions to Haiti, Peru and the Bahamas.

McClellan lives in Morgantown with his family.

All three doctors here have strong connections to West Virginia, and we didnt want to leave, Neto said. We all want to give back to West Virginia, so that is the main reason we have our business here in Huntington.

We are building a company we believe can make a difference in the community, Hessel added. Our goal is to grow Serucell and build our brand right here in Huntington. There is a pool of untapped talent here in Huntington. When we expand our business here, we can provide another reason for young people to be able to stay and grow their careers, whether it is in science, operations or manufacturing. The team is a pretty excited to make an impact in the community where it all started.

Hessel decline to give sales numbers, but said the business has been growing each year since the product was introduced. She also declined to give the number of employees at the facility, but did say it has sales representatives across the country.

Go here to read the rest:
Firm adds a new wrinkle to anti-aging products - Williamson Daily News

To Read More: Firm adds a new wrinkle to anti-aging products – Williamson Daily News
categoriaSkin Stem Cells commentoComments Off on Firm adds a new wrinkle to anti-aging products – Williamson Daily News | dataJanuary 2nd, 2020
Read All

Page 166«..1020..165166167168..180190..»


Copyright :: 2024