Page 171«..1020..170171172173..180190..»

Gene Therapy Arrives – Scientific American

By daniellenierenberg

The idea for gene therapya type of DNA-based medicine that inserts a healthy gene into cells to replace a mutated, disease-causing variantwas first published in 1972. After decades of disputed results, treatment failures and some deaths in experimental trials, the first gene therapy drug, for a type of skin cancer, was approved in China in 2003. The rest of the world was not easily convinced of the benefits, however, and it was not until 2017 that the U.S. approved one of these medicines. Since then, the pace of approvals has accelerated quickly. At least nine gene therapies have been approved for certain kinds of cancer, some viral infections and a few inherited disorders. A related drug type interferes with faulty genes by using stretches of DNA or RNA to hinder their workings. After nearly half a century, the concept of genetic medicine has become a reality.

These treatments use a harmless virus to carry a good gene into cells, where the virus inserts it into the existing genome, canceling the effects of harmful mutations in another gene.

GENDICINE:Chinas regulatory agency approved the worlds first commercially available gene therapy in 2003 to treat head and neck squamous cell carcinoma, a form of skin cancer. Gendicine is a virus engineered to carry a gene that has instructions for making a tumor-fighting protein. The virus introduces the gene into tumor cells, causing them to increase the expression of tumor-suppressing genes and immune response factors.The drug is still awaiting FDA approval.

GLYBERA:The first gene therapy to be approved in the European Union treated lipoprotein lipase deficiency (LPLD), a rare inherited disorder that can cause severe pancreatitis. The drug inserted the gene for lipoprotein lipase into muscle cells. But because LPLD occurs in so few patients, the drug was unprofitable. By 2017 its manufacturer declined to renew its marketing authorization; Glybera is no longer on the market.

IMLYGIC:The drug was approved in China, the U.S. and the E.U. to treat melanoma in patients who have recurring skin lesions following initial surgery. Imlygic is a modified genetic therapy inserted directly into tumors with a viral vector, where the gene replicates and produces a protein that stimulates an immune response to kill cancer cells.

KYMRIAH:Developed for patients with B cell lymphoblastic leukemia, a type of cancer that affects white blood cells in children and young adults, Kymriah was approved by the FDA in 2017 and the E.U. in 2018. It works by introducing a new gene into a patients own T cells that enables them to find and kill cancer cells.

LUXTURNA:The drug was approved by the FDA in 2017 and in the E.U. in 2018 to treat patients with a rare form of inherited blindness called biallelic RPE65 mutation-associated retinal dystrophy. The disease affects between 1,000 and 2,000 patients in the U.S. who have a mutation in both copies of a particular gene, RPE65. Luxturna delivers a normal copy of RPE65 to patients retinal cells, allowing them to make a protein necessary for converting light to electrical signals and restoring their vision.

STRIMVELIS:About 15 patients are diagnosed in Europe every year with severe immunodeficiency from a rare inherited condition called adenosine deaminase deficiency (ADA-SCID). These patients bodies cannot make the ADA enzyme, which is vital for healthy white blood cells. Strimvelis, approved in the E.U. in 2016, works by introducing the gene responsible for producing ADA into stem cells taken from the patients own marrow. The cells are then reintroduced into the patients bloodstream, where they are transported to the bone marrow and begin producing normal white blood cells that can produce ADA.

YESCARTA:Developed to treat a cancer called large B cell lymphoma, Yescarta was approved by the FDA in 2017 and in the E.U. in 2018. It is in clinical trials in China. Large B cell lymphoma affects white blood cells called lymphocytes. The treatment, part of an approach known as CAR-T cell therapy, uses a virus to insert a gene that codes for proteins called chimeric antigen receptors (CARs) into a patients T cells. When these cells are reintroduced into the patients body, the CARs allow them to attach to and kill cancer cells in the bloodstream.

ZOLGENSMA:In May 2019 the FDA approved Zolgensma for children younger than two years with spinal muscular atrophy, a neuromuscular disorder that affects about one in 10,000 people worldwide. It is one of the leading genetic causes of infant mortality. Zolgensma delivers a healthy copy of the human SMN gene to a patients motor neurons in a single treatment.

ZYNTEGLO:Granted approval in the E.U. in May 2019, Zynteglo treats a blood disorder called beta thalassemia that reduces a patients ability to produce hemoglobin, the protein in red blood cells that contains iron, leading to life-threatening anemia. The therapy has been approved for individuals 12 years and older who require regular blood transfusions. It employs a virus to introduce healthy copies of the gene for making hemoglobin into stem cells taken from the patient.The cells are then reintroduced into the bloodstream and transported to the bone marrow, where they begin producing healthy red blood cells that can manufacture hemoglobin.

This approach uses a synthetic strand of RNA or DNA (called an oligonucleotide) that, when introduced into a patients cell, can attach to a specific gene or its messenger molecules, effectively inactivating them. Some treatments use an antisense method, named for one DNA strand, and others rely on small interfering RNA strands, which stop instruction molecules that go from the gene to the cells protein factories.

DEFITELIO:This drug contains a mixture of single-strand oligonucleotides obtained from the intestinal mucosa of pigs. It was approved (with limitations) in the U.S. and the E.U. in 2017 to treat severe cases of veno-occlusive disease, a disorder in which the small veins of the liver become obstructed, in patients who have received a bone marrow transplant.

EXONDYS 51:In 2016 the FDA granted approval to Exondys 51 amid some controversy regarding its efficacy; two members of the FDA review panel resigned in protest of the decision. The therapy is designed to treat a form of Duchenne muscular dystrophy caused by mutations in the RNA that codes for the protein that helps to connect muscle fibers cytoskeletons to a surrounding matrix. Exondys 51 is effective in treating about 13 percent of the Duchenne population.

KYNAMRO:Approved by the FDA in in 2013, Kynamro is designed to inhibitor effectively shut down production ofa protein that helps to produce low-density lipoprotein (LDL). Injected subcutaneously, this therapy is used to lower LDL levels in patients who have dangerously high cholesterol.

MACUGEN:Age-related macular degeneration is the leading cause of vision loss in people age 60 and older. It is caused by deterioration of the center of the retina due to leaking blood vessels. Approved in the U.S., Macugen inhibits these blood vessels from growing under the retina, thus treating the disorder.

SPINRAZA:With its FDA approval in 2016, Spinraza became the first gene-based therapy for spinal muscular atrophy. The inherited disorder is caused by low levels of SMN, a key protein for the maintenance of motor neurons. Spinraza binds to RNA from a backup gene called SMN2, converting that RNA into instructions for making fully functioning SMN proteins.

See the original post here:
Gene Therapy Arrives - Scientific American

To Read More: Gene Therapy Arrives – Scientific American
categoriaBone Marrow Stem Cells commentoComments Off on Gene Therapy Arrives – Scientific American | dataDecember 18th, 2019
Read All

FDA Grants Accelerated Approval to Astellas’ and Seattle Genetics’ PADCEV (enfortumab vedotin-ejfv) for People with Locally Advanced or Metastatic…

By daniellenierenberg

"Metastatic urothelial cancer is an aggressive and devastating disease with limited treatment options, and the approval of PADCEV is a significant advance for these patients who previously had limited options after initial therapies failed," said Jonathan E. Rosenberg, M.D., Medical Oncologist, Chief, Genitourinary Medical Oncology Service, Memorial Sloan Kettering Cancer Center in New York. "The PADCEV clinical trial enrolled a range of patients whose cancer was difficult to treat, including those whose disease had spread to the liver."

"The FDA approval of PADCEV is welcome news for patients with bladder cancer," said Andrea Maddox-Smith, Chief Executive Officer, Bladder Cancer Advocacy Network. "Though new medicines for bladder cancer have been approved in recent years, most people living with advanced stages of this disease face a difficult journey with few treatment options."

"This approval underscores our commitment to develop novel medicines that address unmet patient needs, and we're grateful to the patients and physicians whose participation led to this outcome," said Andrew Krivoshik, M.D., Ph.D., Senior Vice President and Oncology Therapeutic Area Head, Astellas.

"PADCEV is the first antibody-drug conjugate approved for patients facing this aggressive disease, and it is the culmination of years of innovative work on this technology," said Roger Dansey, M.D., Chief Medical Officer, Seattle Genetics.

PADCEV was evaluated in the pivotal trial EV-201, a single-arm phase 2 multi-center trial that enrolled 125 patients with locally advanced or metastatic urothelial cancer who received prior treatment with a PD-1 or PD-L1 inhibitor and a platinum-based chemotherapy.1 In the study, the primary endpoint of confirmed objective response rate (ORR) was 44 percent per blinded independent central review (55/125; 95% Confidence Interval [CI]: 35.1, 53.2). Among patients treated with the single agent PADCEV, 12 percent (15/125) experienced a complete response, meaning no cancer could be detected at the time of assessment, and 32 percent (40/125) experienced a partial response, meaning a decrease in tumor size or extent of cancer in the body. The median duration of response (DoR), a secondary endpoint, was 7.6 months (95% CI: 6.3, not estimable [NE]). The most common serious adverse reactions (3%) were urinary tract infection (6%), cellulitis (5%), febrile neutropenia (4%), diarrhea (4%), sepsis (3%), acute kidney injury (3%), dyspnea (3%), and rash (3%). The most common adverse reaction leading to discontinuation was peripheral neuropathy (6%). The most common adverse reactions (20%) were fatigue (56%), peripheral neuropathy (56%), decreased appetite (52%), rash (52%), alopecia (50%), nausea (45%), dysgeusia (42%), diarrhea (42%), dry eye (40%), pruritus (26%) and dry skin (26%). The most common Grade 3 adverse reactions (5%) were rash (13%), diarrhea (6%) and fatigue (6%).

The FDA's Accelerated Approval Program allows approval of a medicine based on a surrogate endpoint if the medicine fills an unmet medical need for a serious condition.A global, randomized phase 3 confirmatory clinical trial (EV-301) is underway and is also intended to support global registrations.

About PADCEV PADCEV is a first-in-class antibody-drug conjugate (ADC) that is directed against Nectin-4, a protein located on the surface of cells and highly expressed in bladder cancer.1,2 Nonclinical data suggest the anticancer activity of PADCEV is due to its binding to Nectin-4 expressing cells followed by the internalization and release of the anti-tumor agent monomethyl auristatin E (MMAE) into the cell, which result in the cell not reproducing (cell cycle arrest) and in programmed cell death (apoptosis). PADCEV is co-developed by Astellas and Seattle Genetics.

PADCEV Support Solutions offers access and reimbursement support to help patients access PADCEV. For more information, go to PADCEV Support Solutions at PADCEVSupportSolutions.com.

About Bladder and Urothelial CancerApproximately 80,000 people in the U.S. will be diagnosed with bladder cancer this year.4 Urothelial cancer accounts for 90 percent of all bladder cancers and can also be found in the renal pelvis, ureter and urethra.5

Important Safety Information

Warnings and Precautions

Adverse Reactions Serious adverse reactions occurred in 46% of patients treated with PADCEV. The most common serious adverse reactions (3%) were urinary tract infection (6%), cellulitis (5%), febrile neutropenia (4%), diarrhea (4%), sepsis (3%), acute kidney injury (3%), dyspnea (3%), and rash (3%). Fatal adverse reactions occurred in 3.2% of patients, including acute respiratory failure, aspiration pneumonia, cardiac disorder, and sepsis (each 0.8%).

Adverse reactions leading to discontinuation occurred in 16% of patients; the most common adverse reaction leading to discontinuation was peripheral neuropathy (6%). Adverse reactions leading to dose interruption occurred in 64% of patients; the most common adverse reactions leading to dose interruption were peripheral neuropathy (18%), rash (9%) and fatigue (6%). Adverse reactions leading to dose reduction occurred in 34% of patients; the most common adverse reactions leading to dose reduction were peripheral neuropathy (12%), rash (6%) and fatigue (4%).

The most common adverse reactions (20%) were fatigue (56%), peripheral neuropathy (56%), decreased appetite (52%), rash (52%), alopecia (50%), nausea (45%), dysgeusia (42%), diarrhea (42%), dry eye (40%), pruritus (26%) and dry skin (26%). The most common Grade 3 adverse reactions (5%) were rash (13%), diarrhea (6%) and fatigue (6%).

Lab Abnormalities In one clinical trial, Grade 3-4 laboratory abnormalities reported in 5% were: lymphocytes decreased, hemoglobin decreased, phosphate decreased, lipase increased, sodium decreased, glucose increased, urate increased, neutrophils decreased.

Drug Interactions

Specific Populations

For more information, please see the full Prescribing Information for PADCEV here.

About Astellas Astellas Pharma Inc., based in Tokyo, Japan, is a company dedicated to improving the health of people around the world through the provision of innovative and reliable pharmaceutical products. For more information, please visit our website at https://www.astellas.com/en.

About Seattle Genetics Seattle Genetics, Inc. is an emerging multi-product, global biotechnology company that develops and commercializes transformative therapies targeting cancer to make a meaningful difference in people's lives. The company is headquartered in Bothell, Washington, and has a European office in Switzerland. For more information on our robust pipeline, visit http://www.seattlegenetics.comand follow @SeattleGenetics on Twitter.

About the Astellas and Seattle Genetics CollaborationSeattle Genetics and Astellas are co-developing PADCEV (enfortumab vedotin) under a collaboration that was entered into in 2007 and expanded in 2009. Under the collaboration, the companies are sharing costs and profits on a 50:50 basis worldwide.

Astellas Cautionary Notes In this press release, statements made with respect to current plans, estimates, strategies and beliefs and other statements that are not historical facts are forward-looking statements about the future performance of Astellas. These statements are based on management's current assumptions and beliefs in light of the information currently available to it and involve known and unknown risks and uncertainties. A number of factors could cause actual results to differ materially from those discussed in the forward-looking statements. Such factors include, but are not limited to: (i) changes in general economic conditions and in laws and regulations, relating to pharmaceutical markets, (ii) currency exchange rate fluctuations, (iii) delays in new product launches, (iv) the inability of Astellas to market existing and new products effectively, (v) the inability of Astellas to continue to effectively research and develop products accepted by customers in highly competitive markets, and (vi) infringements of Astellas' intellectual property rights by third parties.

Information about pharmaceutical products (including products currently in development), which is included in this press release is not intended to constitute an advertisement or medical advice.

Seattle Genetics Forward Looking StatementsCertain statements made in this press release are forward looking, such as those, among others, relating to the continued FDA approval of PADCEV (enfortumab vedotin-ejfv) for the treatment of adult patients with locally advanced or metastatic urothelial cancer who have previously received a PD-1/L1 inhibitor, and a platinum-containing chemotherapy in the neoadjuvant/adjuvant, locally advanced or metastatic setting; the conduct of an ongoing randomized phase 3 confirmatory clinical trial (EV-301) intended to verify the clinical benefit of PADCEV and support global registrations; and the therapeutic potential of PADCEV including its efficacy, safety and therapeutic uses. Actual results or developments may differ materially from those projected or implied in these forward-looking statements. Factors that may cause such a difference include the possibility that EV-301 and subsequent clinical trials may fail to establish sufficient efficacy; that adverse events or safety signals may occur; that utilization and adoption of PADCEV by prescribing physicians may be limited by the availability and extent of reimbursement or other factors; and that adverse regulatory actions may occur. More information about the risks and uncertainties faced by Seattle Genetics is contained under the caption "Risk Factors" included in the company's Quarterly Report on Form 10-Q for the quarter ended September 30, 2019 filed with the Securities and Exchange Commission. Seattle Genetics disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

1 Padcev [package insert]. Northbrook, IL: Astellas, Inc. 2 Rosenberg JE, O'Donnell PH, Balar AV, et al. Pivotal Trial of Enfortumab Vedotin in Urothelial Carcinoma After Platinum and Anti-Programmed Death 1/Programmed Death Ligand 1 Therapy. J Clin Oncol 2019;37(29):2592600.3 Challita-Eid P, Satpayev D, Yang P, et al. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res 2016;76(10):3003-13. 4 American Society of Clinical Oncology. Bladder cancer: introduction (10-2017). https://www.cancer.net/cance rtypes/bladdercancer/introduction. Accessed 05-09-2019. 5National Cancer Institute. Surveillance, Epidemiology, and End Results Program. Cancer stat facts: bladder cancer. https://seer.cancer.gov/statfacts/html/urinb.html. Accessed 05-01-2019.

SOURCE Astellas Pharma US, Inc.

https://www.astellas.com

View post:
FDA Grants Accelerated Approval to Astellas' and Seattle Genetics' PADCEV (enfortumab vedotin-ejfv) for People with Locally Advanced or Metastatic...

To Read More: FDA Grants Accelerated Approval to Astellas’ and Seattle Genetics’ PADCEV (enfortumab vedotin-ejfv) for People with Locally Advanced or Metastatic…
categoriaCardiac Stem Cells commentoComments Off on FDA Grants Accelerated Approval to Astellas’ and Seattle Genetics’ PADCEV (enfortumab vedotin-ejfv) for People with Locally Advanced or Metastatic… | dataDecember 18th, 2019
Read All

Scientists Take Stem Cells and Convert Them to Heart Pacemaker Cells – Technology Networks

By daniellenierenberg

University of Houston associate professor of pharmacology Bradley McConnell is helping usher in a new age of cardiac pacemakers by using stem cells found in fat, converting them to heart cells, and reprogramming those to act as biologic pacemaker cells. He is reporting his work in theJournal of Molecular and Cellular Cardiology.

The new biologic pacemaker-like cell will be useful as an alternative treatment for conduction system disorders, cardiac repair after a heart attack and to bridge the limitations of the electronic pacemaker.

"We are reprogramming the cardiac progenitor cell and guiding it to become a conducting cell of the heart to conduct electrical current," said McConnell.

McConnell's collaborator, Robert J. Schwartz, Hugh Roy and Lillian Cranz Cullen Distinguished Professor of biology and biochemistry, previously reported work on turning the adipogenic mesenchymal stem cells, that reside in fat cells, into cardiac progenitor cells. Now those same cardiac progenitor cells are being programmed to keep hearts beating as a sinoatrial node (SAN), part of the electrical cardiac conduction system (CCS).

The SAN is the primary pacemaker of the heart, responsible for generating the electric impulse or beat. Native cardiac pacemaker cells are confined within the SAN, a small structure comprised of just a few thousand specialized pacemaker cells. Failure of the SAN or a block at any point in the CCS results in arrhythmias.

More than 600,000 electronic pacemakers are implanted in patients annually to help control abnormal heart rhythms. The small mechanical device is placed in the chest or abdomen and uses electrical pulses to prompt the heart to beat normally. In addition to having the device regularly examined by a physician, over time an electronic pacemaker can stop working properly.

"Batteries will die. Just look at your smartphone," said McConnell. "This biologic pacemaker is better able to adapt to the body and would not have to be maintained by a physician. It is not a foreign object. It would be able to grow with the body and become much more responsive to what the body is doing."

To convert the cardiac progenitor cells, McConnell infused the cells with a unique cocktail of three transcription factors and a plasma membrane channel protein to reprogram the heart cells in vitro.

"In our study, we observed that the SHOX2, HCN2, and TBX5 (SHT5) cocktail of transcription factors and channel protein reprogrammed the cells into pacemaker-like cells. The combination will facilitate the development of cell-based therapies for various cardiac conduction diseases," he reported.

Reference: Raghunathan et al. (2019).Conversion of human cardiac progenitor cells into cardiac pacemaker-like cells. Journal of Molecular and Cellular Cardiology. DOI: https://doi.org/10.1016/j.yjmcc.2019.09.015.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Read this article:
Scientists Take Stem Cells and Convert Them to Heart Pacemaker Cells - Technology Networks

To Read More: Scientists Take Stem Cells and Convert Them to Heart Pacemaker Cells – Technology Networks
categoriaCardiac Stem Cells commentoComments Off on Scientists Take Stem Cells and Convert Them to Heart Pacemaker Cells – Technology Networks | dataDecember 18th, 2019
Read All

Stem Cell Therapy Market Detailed Analysis and Forecast 2017-2025 – 101Newsindustry

By daniellenierenberg

Stem Cell Therapy Market: Snapshot

Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.

To know Untapped Opportunities in the MarketCLICK HERE NOW

One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.

It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Get Discount on Latest Report @CLICK HERE NOW

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Request TOC of the Reportfor more Industry Insights @CLICK HERE NOW

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

About TMR Research:

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Read more here:
Stem Cell Therapy Market Detailed Analysis and Forecast 2017-2025 - 101Newsindustry

To Read More: Stem Cell Therapy Market Detailed Analysis and Forecast 2017-2025 – 101Newsindustry
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy Market Detailed Analysis and Forecast 2017-2025 – 101Newsindustry | dataDecember 18th, 2019
Read All

Global Stem Cell Therapy Market to Surpass US$ 40.3 Billion by 2027 Coherent Market Insights – Business Wire

By daniellenierenberg

SEATTLE--(BUSINESS WIRE)--According to Coherent Market Insights, the global stem cell therapy market was valued at US$ 7,313.6 million in 2018, and is expected to exhibit a CAGR of 21.1% over the forecast period (2019-2027).

Key Trends and Analysis of the Stem cell therapy Market:

Key trends in market are increasing incidence of cancer and osteoporosis, rising number of research and development activities for product development, and adoption of growth strategies such as acquisitions, collaborations, product launches by the market players.

Key players are focused on launches of production facility for offering better stem cell therapy in the potential market. For instance, in January 2019, FUJIFILM Cellular Dynamics, Inc., a subsidiary of FUJIFILM Corporation, announced to invest around US$ 21 Mn for building new cGMP-compliant production facility, in order to enhance production capacity of induced pluripotent stem (iPS) cell for the development of cell therapy and regenerative medicine products. The new facility is expected to begin its operations by March 2020.

Request your Sample copy @ https://www.coherentmarketinsights.com/insight/request-sample/2848

Market players are adopting inorganic growth strategies such as acquisitions and collaborations, in order to enhance their offerings in the potential market. For instance, in August 2019, Bayer AG acquired BlueRock Therapeutics, a company developing cell therapies based on induced pluripotent stem cell (iPSC) platform. This acquisition is expected to strengthen Bayers market position in the stem cell therapy market.

Furthermore, increasing research and development activities of stem cells by research organizations to provide efficient treatment options to patients suffering from various chronic diseases is expected to drive growth of the stem cell therapy market over the forecast period. For instance, in January, 2019, the Center for Beta Cell Therapy in Diabetes and ViaCyte, Inc. initiated a trial of human stem cell-derived product candidates in type 1 diabetes patients in Europe.

However, high cost of preservation of stem cells and other factors is expected to hamper growth of stem cell therapy market over the forecast period. High cost of stem cell storage is a factor that is expected to hinder growth of the market. For instance, according to the Meredith Corporation, a private bank generally charges US$ 1,200 to US$ 2,300 to collect cord blood at the time of delivery, with annual storage fees of US$ 100 to US$ 300 each year. Thus, high cost associated with stem cell storage combined with high production cost are expected to hinder growth of the market, especially in emerging economies.

Key Market Takeaways:

Buy this Report (Single User License) @ https://www.coherentmarketinsights.com/insight/buy-now/2848

Market Segmentations:

See the article here:
Global Stem Cell Therapy Market to Surpass US$ 40.3 Billion by 2027 Coherent Market Insights - Business Wire

To Read More: Global Stem Cell Therapy Market to Surpass US$ 40.3 Billion by 2027 Coherent Market Insights – Business Wire
categoriaIPS Cell Therapy commentoComments Off on Global Stem Cell Therapy Market to Surpass US$ 40.3 Billion by 2027 Coherent Market Insights – Business Wire | dataDecember 18th, 2019
Read All

Human fat cells tweaked to function like a pacemaker – Times of India

By daniellenierenberg

NEW DELHI: In a first, researchers, including one of Indianorigin, have reprogrammed the human bodys fat cells into those similar to the hearts pacemaker cells which control heartbeat by creating rhythmic electrical impulses an advance that may lead to new therapies for cardiac failure. The study, published in the Journal of Molecular and Cellular Cardiology, noted that the new pacemaker-like cell may become a useful alternative treatment for heart conduction system disorders, and to bridge the limitations of current treatments such as artificial pacemakers. '; var randomNumber = Math.random(); var isIndia = (window.geoinfo && window.geoinfo.CountryCode === 'IN') && (window.location.href.indexOf('outsideindia') === -1 ); console.log(isIndia && randomNumber Artificial pacemakers need to be regularly examined and over time can stop working properly. In the study, researchers, including Suchi Raghunathan from the University of Houston, tweaked unspecialised stem cells to turn them into conducting cells of the heart that could carry electrical current. Batteries will die. This biologic pacemaker is better able to adapt to the body and would not have to be maintained by a physician, said study co-author Bradley McConnell.

Read the original here:
Human fat cells tweaked to function like a pacemaker - Times of India

To Read More: Human fat cells tweaked to function like a pacemaker – Times of India
categoriaCardiac Stem Cells commentoComments Off on Human fat cells tweaked to function like a pacemaker – Times of India | dataDecember 18th, 2019
Read All

$13 Million Grant to Probe the Genome of Heart Cells – PRNewswire

By daniellenierenberg

SAN FRANCISCO, Dec. 17, 2019 /PRNewswire/ -- The genome of human cells looks a lot like a tangled ball of yarn, with tightly wound clumps from which myriad loose strands escape and loop out. But there is order to this tangleand growing evidence that the genome's 3D architecture influences the activity of its genes. Understanding the rules that control gene activity has been the object of a long collaboration between Gladstone investigators Deepak Srivastava, Benoit Bruneau, Katherine Pollard, Bruce Conklin, and Nevan Krogan, and their UC San Francisco (UCSF) partner Brian Black. Together, they have already found many key regulators of gene activity in the heart.

Now, their collaboration has received a strong shot in the arm from the National Institute of Health with the recent award of a Program Project Grant totaling $13 million between the labs for the next five years.

With this new support, the researchers will carry out a comprehensive probe into gene activity in heart cells and its intersection with the genome's 3D organization during heart formation.

"It is truly gratifying to see our long collaboration supported in this way by the National Institute of Health,"says Srivastava, president of Gladstone Institutes and project leader on this multi-investigator grant. "This funding will allow us to dig deep into processes that are fundamental to heart cell biology, but that will also directly inform our efforts to design therapies for congenital heart disease, heart failure, and other heart diseases."

Heart failure is the most common cause of death in adults, and congenital heart defects the most common form of birth defects. These defects have been traced to mutations in a number of proteins that regulate gene activity in heart cells, including the proteins at the core of the researchers' new proposal.

"However, the investigation of the 3D organization of the genome is a relatively new area, particularly in the heart," says Srivastava, who is also a pediatric cardiologist and has devoted much of his career to understanding heart formation and congenital heart defects.

The work outlined in this grant is therefore expected to yield novel insight into heart disease and spur the design of new therapies. It will also help the researchers improve their ability to coax human cells into becoming various types of heart cells. This technology could eventually be used to regenerate failing heart tissue.

Gladstone Senior InvestigatorBruce Conklinwill lend his expertise in cardiac stem cell biology and CRISPR gene-editing technology to the project.

The researchers' plan is to correlate gene activity and genome organization at the whole-genome scale and during multiple stages of heart formation. This will require enormous technological power. It will also require massive computing power and statistical analysis to store and sift through the large data sets the group will generate.

But the team is well-positioned to take on this challenge.

"Our studies are facilitated by extraordinary new technology,"says Bruneau, also a cardiovascular development specialist and the director of the Gladstone Institute of Cardiovascular Disease.

The $13 million proposal will leverage Srivastava, Bruneau, and Black's deep understanding of heart development and disease, and enlist the state-of-the-art technologies and analytic tools that Pollard and Krogan have developed to collect and analyze information about biological networks on a grand scale.

"Our team combines a remarkable array of expertise and technologies," says Srivastava, who is also director of the Roddenberry Stem Cell Center at Gladstone. "It would be impossible for any one or two labs in isolation to pursue the complex goals we set out to achieve with this project."

Dynamic Protein Networks

The project focuses on a small set of proteins the team has previously shown to be crucial for the formation of a functional heart. These proteins, known as transcription factors, activate or silence genes by binding to specific DNA sequences in the genes' vicinity.

The scientists have shown that cardiac transcription factors can associate with each other and with other proteins. "Depending on the associations they form, they turn genes on, off, or somewhere in between, and different types of heart cells may form," says Black.

But for a transcription factor to turn a gene on or off, it needs to access the gene's DNA sequence. That's not as easy as it sounds, as much of the genome is wound up in tight coils that give no foothold to transcription factors.

Bruneau's team studies proteins that modulate the accessibility of DNA sequences along the genome, a process known as chromatin remodeling. These proteins unspool segments of the genome from the tightly wound coils, opening up stretches of DNA that transcription factors can bind.

Like transcription factors, chromatin remodeling proteins associate with each other and with other proteins, forming associations that vary depending on the cell type or the stage of heart formation.

Interestingly, Srivastava's group recently discovered that cardiac transcription factors may have long-range effects on the 3D organization of the genome. The genome is housed in a separate compartment of the cell, a spherical structure called the nucleus. Srivastava's team found that cardiac transcription factors may pull genome loops all the way to proteins lining the edges of the nucleus.

The picture that emerges from these findings is that of a vast network of proteins that coordinate gene activity and genome architecture, and change as the heart forms.

Now the researchers want to know how these networks form, how many proteins they entail, and what genes they affect.

Dynamic Lab Partnerships

To answer these questions, the team will analyze the associations between cardiac transcription factors, chromatin remodeling proteins, and their various partners during heart development. They will pair this analysis with a genome-wide survey of the genes these proteins target and of these genes' activity.

"Our overarching goal is to understand all the levels of gene regulation in developing hearts, from genes and transcription factors to chromatin remodeling and to genome organization within the nucleus," says Bruneau, who is also a professor of pediatrics at UCSF.

The researchers will use a battery of sophisticated techniques to capture the complexes that proteins form with each other or with DNA sequences and to record which genes are active or inactive in different types of heart cells.

They will leverage various models of heart development, including human induced pluripotent stem cells (hiPS cells) that can give rise to heart tissue in the dish, or cells from the developing heart of mouse embryos. They will also use CRISPR technology and other genetic tools to insert mutations in heart cells and evaluate the impact of these mutations on the protein-genome networks.

Their success will depend on high-throughput data collection and analysis, and powerful statistics to guarantee the validity of the findings. That's where Krogan and Pollard come in.

Krogan's labwill contribute technology his lab developed to determine how proteins interact with one another in the celland how those interactions affect the interaction of proteins with DNA.

Pollard's groupwill devise statistical methods to rigorously analyze the protein networks and gene activity profiles the researchers uncover through the lens of genetic causes of heart disease.

"The biggest challenge will be to develop novel computational methods, including artificial intelligence tools," says Pollard, who directs the Gladstone Institute for Data Science and Biotechnology. "This is the first time that scientists will integrate such diverse kinds of data to understand a disease."

Together, these tools will allow the researchers to reliably identify connections between protein networks and gene activity at all stages of heart formation, in the context of disease or healthy heart formation.

"This project crystallizes a more than a decade-long collaboration across our labs, with a laser focus on fundamental concepts of gene regulation," says Bruneau.

"We will learn how these concepts apply to the heart and to heart diseases," he adds, "but we think they will also be relevant to other organs and sets of diseases."

Media Contact:Megan McDevittmegan.mcdevitt@Gladstone.ucsf.edu

Related Images

team-of-researchers-who-received.jpg Team of Researchers who Received the Grant New funding from the NIH fuels collaboration between UCSF's Brian Black and Gladstone's Deepak Srivastava, Benoit Bruneau (front row, left to right), Katie Pollard, Bruce Conklin (back row, left to right), and Nevan Krogan (not shown).

Related Links

Gladstone Release

SOURCE Gladstone Institutes

https://gladstone.org

Read the original post:
$13 Million Grant to Probe the Genome of Heart Cells - PRNewswire

To Read More: $13 Million Grant to Probe the Genome of Heart Cells – PRNewswire
categoriaCardiac Stem Cells commentoComments Off on $13 Million Grant to Probe the Genome of Heart Cells – PRNewswire | dataDecember 18th, 2019
Read All

Cell Separation Technology Market is Estimated to Record Highest CAGR by 2027 – Techi Labs

By daniellenierenberg

Transparency Market Research (TMR)has published a new report on the globalcell separation technology marketfor the forecast period of 20192027. According to the report, the global cell separation technology market was valued at ~US$ 5 Bnin 2018, and is projected to expand at a double-digit CAGR during the forecast period.

Cell separation, also known as cell sorting or cell isolation, is the process of removing cells from biological samples such as tissue or whole blood. Cell separation is a powerful technology that assists biological research. Rising incidences of chronic illnesses across the globe are likely to boost the development of regenerative medicines or tissue engineering, which further boosts the adoption of cell separation technologies by researchers.

Expansion of the global cell separation technology market is attributed to an increase in technological advancements and surge in investments in research & development, such asstem cellresearch and cancer research. The rising geriatric population is another factor boosting the need for cell separation technologies Moreover, the geriatric population, globally, is more prone to long-term neurological and other chronic illnesses, which, in turn, is driving research to develop treatment for chronic illnesses. Furthermore, increase in the awareness about innovative technologies, such as microfluidics, fluorescent-activated cells sorting, and magnetic activated cells sorting is expected to propel the global cell separation technology market.

Request a Brochure of Cell Separation Technology Market Report

https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=1925

North America dominated the global cell separation technology market in 2018, and the trend is anticipated to continue during the forecast period. This is attributed to technological advancements in offering cell separation solutions, presence of key players, and increased initiatives by governments for advancing the cell separation process. However, insufficient funding for the development of cell separation technologies is likely to hamper the global cell separation technology market during the forecast period. Asia Pacific is expected to be a highly lucrative market for cell separation technology during the forecast period, owing to improving healthcare infrastructure along with rising investments in research & development in the region.

Rising Incidences of Chronic Diseases, Worldwide, Boosting the Demand for Cell Therapy

Incidences of chronic diseases such as diabetes, obesity, arthritis, cardiac diseases, and cancer are increasing due to sedentary lifestyles, aging population, and increased alcohol consumption and cigarette smoking. According to the World Health Organization (WHO), by 2020, the mortality rate from chronic diseases is expected to reach73%, and in developing counties,70%deaths are estimated to be caused by chronic diseases. Southeast Asia, Eastern Mediterranean, and Africa are expected to be greatly affected by chronic diseases. Thus, the increasing burden of chronic diseases around the world is fuelling the demand for cellular therapies to treat chronic diseases. This, in turn, is driving focus and investments on research to develop effective treatments. Thus, increase in cellular research activities is boosting the global cell separation technology market.

For More Actionable Insights into The Competitive Landscape of Cell Separation Technology Market , Pre Book This Report

https://www.transparencymarketresearch.com/checkout.php?rep_id=1925&ltype=S

Increase in Geriatric Population Boosting the Demand for Surgeries

The geriatric population is likely to suffer from chronic diseases such as cancer and neurological disorders more than the younger population. Moreover, the geriatric population is increasing at a rapid pace as compared to that of the younger population. Increase in the geriatric population aged above 65 years is projected to drive the incidences of Alzheimers, dementia, cancer, and immune diseases, which, in turn, is anticipated to boost the need for corrective treatment of these disorders. This is estimated to further drive the demand for clinical trials and research that require cell separation products. These factors are likely to boost the global cell separation technology market.

Launching Innovative Products, and Acquisitions & Collaborations by Key Players Driving Global Cell Separation Technology Market

The global cell separation technology market is highly competitive in terms of number of players. Key players operating in the global cell separation technology market includeAkadeum Life Sciences, STEMCELL Technologies, Inc., BD, Bio-Rad Laboratories, Inc., Miltenyi Biotech, 10X Genomics, Thermo Fisher Scientific, Inc., Zeiss, GE Healthcare Life Sciences, PerkinElmer, Inc., and QIAGEN.

About Us

Transparency Market Research is a next-generation market intelligence provider, offering fact-based solutions to business leaders, consultants, and strategy professionals.

Our reports are single-point solutions for businesses to grow, evolve, and mature. Our real-time data collection methods along with ability to track more than one million high growth niche products are aligned with your aims. The detailed and proprietary statistical models used by our analysts offer insights for making right decision in the shortest span of time. For organizations that require specific but comprehensive information we offer customized solutions through adhoc reports. These requests are delivered with the perfect combination of right sense of fact-oriented problem solving methodologies and leveraging existing data repositories.

TMR believes that unison of solutions for clients-specific problems with right methodology of research is the key to help enterprises reach right decision.

ContactTransparency Market ResearchState Tower,90 State Street,Suite 700,Albany NY 12207United StatesTel:+1-518-618-1030USA Canada Toll Free:866-552-3453Email:sales@transparencymarketresearch.comWebsite:http://www.transparencymarketresearch.com

More:
Cell Separation Technology Market is Estimated to Record Highest CAGR by 2027 - Techi Labs

To Read More: Cell Separation Technology Market is Estimated to Record Highest CAGR by 2027 – Techi Labs
categoriaCardiac Stem Cells commentoComments Off on Cell Separation Technology Market is Estimated to Record Highest CAGR by 2027 – Techi Labs | dataDecember 18th, 2019
Read All

Bone Marrow Processing System Market Expected to Witness an Imperishable Growth over 2025 – Guru Online News

By daniellenierenberg

Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.

The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.Europe and North America spearheaded the market as of 2016, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.

Get More Information:https://www.trendsmarketresearch.com/report/sample/3184

In 2016, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy.

Request For Table of Contents:https://www.trendsmarketresearch.com/report/requesttoc/3184

Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.

Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others

Report Description:https://www.trendsmarketresearch.com/report/bone-marrow-processing-system-market

See the original post:
Bone Marrow Processing System Market Expected to Witness an Imperishable Growth over 2025 - Guru Online News

To Read More: Bone Marrow Processing System Market Expected to Witness an Imperishable Growth over 2025 – Guru Online News
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Processing System Market Expected to Witness an Imperishable Growth over 2025 – Guru Online News | dataDecember 18th, 2019
Read All

Gene Therapy for Sickle-Cell Anemia Looks Promisingbut It’s Riddled With Controversy – Singularity Hub

By daniellenierenberg

Gene therapy is fighting to enter mainstream medicine. With sickle cell disease, the fight is heating up.

Roughly two years ago, the FDA made the historic decision to approve the first gene therapy in the US, finally realizing the therapeutic potential of hacking our biological base code after decades of cycles of hope and despair. Other approvals soon followed, including Luxturna to target inherited blindness and Zolgensma, a single injection that could save children with a degenerative disease from their muscles wasting away and dying before the age of two.

Yet despite their transformative potential, gene therapy has only targeted relatively rareand often fataldisorders. Thats about to change.

This year, a handful of companies deployed gene therapy against sickle-cell anemia, a condition that affects over 20 million people worldwide and 100,000 Americans. With over a dozen therapies in the run, sickle-cell disease could be the indication that allows gene therapy to enter the mainstream. Yet because of its unique nature, sickle-cell could also be the indication that shines an unflinching spotlight on challenges to the nascent breakthrough, both ethically and technologically.

You see, sickle-cell anemia, while being one of the worlds best-known genetic diseases, and one of the best understood, also predominantly affects third-world countries and marginalized people of color in the US. So far, gene therapy has come with a hefty bill exceeding millions; few people afflicted by the condition can carry that amount. The potential treatments are enormously complex, further upping costs to include lengthy hospital stays, and increasing potential side effects. To muddy the waters even more, the disorder, though causing tremendous pain and risk of stroke, already has approved pharmaceutical treatments and isnt necessarily considered life-threatening.

How we handle gene therapies for sickle-cell could inform many other similar therapies to come. With nearly 400 clinical trials in the making and two dozen nearing approval, theres no doubt that hacking our genes will become one of the most transformative medical wonders of the new decade. The question is: will it ever be available for everyone in need?

Even those uninterested in biology have likely heard of the disorder. Sickle-cell anemia holds the crown as the first genetic disorder to be traced to its molecular roots nearly a hundred years ago.

The root of the disorder is a single genetic mutation that drastically changes the structure of the oxygen-carrying protein, beta-globin, in red blood cells. The result is that the cells, rather than forming their usual slick disc-shape, turn into jagged, sickle-shaped daggers that damage blood vessels or block them altogether. The symptoms arent always uniform; rather, they come in crisis episodes during which the pain becomes nearly intolerable.

Kids with sickle-cell disorder usually die before the age of five; those who survive suffer a lifetime of debilitating pain and increased risk of stroke and infection. The symptoms can be managed to a degree with a cocktail of drugsantibiotics, painkillers, and a drug that reduces crisis episodes but ups infection risksand frequent blood transfusions or bone marrow transplants. More recently, the FDA approved a drug that helps prevent sickled-shaped cells from forming clumps in the vessels to further combat the disorder.

To Dr. David Williams at Boston Childrens Hospital in Massachusetts, the availability of these treatmentshowever inadequatesuggests that gene therapy remains too risky for sickle-cell disease. Its not an immediately lethal diseaseit wouldnt be ethical to treat those patients with a highly risky experimental approach, he said to Nature.

Others disagree. Freeing patients from a lifetime of risks and pain seems worthy, regardless of the price tag. Inspired by recent FDA approvals, companies have jumped onto three different treatments in a bitter fight to be the first to win approval.

The complexity of sickle-cell disease also opens the door to competing ideas about how to best treat it.

The most direct approach, backed by Bluebird Bio in Cambridge, Massachusetts, uses a virus to insert a functional copy of the broken beta-globin gene into blood cells. This approach seems to be on track for winning the first FDA approval for the disorder.

The second idea is to add a beneficial oxygen-carrying protein, rather than fixing the broken one. Here, viruses carry gamma-globin, which is a variant mostly present in fetal blood cells, but shuts off production soon after birth. Gamma-globin acts as a repellent that prevents clotting, a main trigger for strokes and other dangerous vascular diseases.

Yet another idea also focuses on gamma-globin, the good guy oxygen-carrier. Here, rather than inserting genes to produce the protein, the key is to remove the breaks that halt its production after birth. Both Bluebird Bio and Sangamo Therapeutics, based in Richmond, California, are pursing this approach. The rise of CRISPR-oriented companies is especially giving the idea new promise, in which CRISPR can theoretically shut off the break without too many side effects.

But there are complications. All three approaches also tap into cell therapy: blood-producing cells are removed from the body through chemotherapy, genetically edited, and re-infused into the bone marrow to reconstruct the entire blood system.

Its a risky, costly, and lengthy solution. Nevertheless, there have already been signs of success in the US. One person in a Bluebird Bio trial remained symptom-free for a year; another, using a CRISPR-based approach, hasnt experienced a crisis in four months since leaving the hospital. For about a year, Bluebird Bio has monitored a dozen treated patients. So far, according to the company, none has reported episodes of severe pain.

Despite these early successes, advocates worry about the actual impact of a genetic approach to sickle-cell disease.

Similar to other gene therapies, the treatment is considered a last-line, hail Mary solution for the most difficult cases of sickle cell disease because of its inherent risks and costly nature. Yet end-of-the-line patients often suffer from kidney, liver, and heart damages that make chemotherapy far too dangerous.

Then theres the problem of global access. Some developing countries, where sickle-cell disease is more prevalent, dont even have consistent access to safe blood transfusions, not to mention the laboratory equipment needed for altering blood-producing stem cells. Recent efforts in education, early screening, and prevention have also allowed people to live longer and reduce the stigma of the disorder.

Is a $1 million price tag ever attainable? To combat exhorbitant costs, Bluebird Bio is offering an installment payment plan for five years, which can be terminated anytime the treatment stops working. Yet for patients in South Africa, India, or Cambodia, the costs far exceed the $3 per month price tag for standard treatment. Even hydroxyurea, the newly-approved FDA drug to reduce crisis pain episodes, is just a fraction of the price tag that comes with gene therapy.

As gene therapy technologies are further refined and their base cost reduced, its possible that overall costs will drop. Yet whether these treatments will be affordable in the long run remains questionable. Even as scientists focus on efficacy rather than price tag, NIH director Dr. Francis Collins believes not thinking about global access is almost unethical. There are historical examples for optimism: vaccines, once rather fringe, now touch almost every corner of our world with the help of scientific knowledge, advocacy groups, andfundamentallyproven efficacy.

With the rise of gene therapy, were now in an age of personalized medicine beyond imagination. Its true that perhaps sickle-cell disease genetic therapies arent quite there yet in terms of safety and efficacy; but without tackling access issues, the therapy will be stymied in its impact for global good. As genetic editing tools become more powerful, gene therapy has the potential to save even more livesif its made accessible to those who need it most.

Image Credit: Image by Narupon Promvichai from Pixabay

The rest is here:
Gene Therapy for Sickle-Cell Anemia Looks Promisingbut It's Riddled With Controversy - Singularity Hub

To Read More: Gene Therapy for Sickle-Cell Anemia Looks Promisingbut It’s Riddled With Controversy – Singularity Hub
categoriaBone Marrow Stem Cells commentoComments Off on Gene Therapy for Sickle-Cell Anemia Looks Promisingbut It’s Riddled With Controversy – Singularity Hub | dataDecember 18th, 2019
Read All

Hematopoietic Stem Cell Transplantation (HSCT) Market Expected to Deliver Dynamic Progression until 2028| Regen Biopharma Inc – The World Industry…

By daniellenierenberg

The "Hematopoietic Stem Cell Transplantation (HSCT) Market" report contains data that has been carefully analyzed in the various models and factors that influence the industrial expansion of the Hematopoietic Stem Cell Transplantation (HSCT) market. An assessment of the impact of current market trends and conditions is also included to provide information on the future market expansion. The report contains comprehensive information on the global dynamics of Hematopoietic Stem Cell Transplantation (HSCT), which provides a better prediction of the progress of the market and its main competitors [Regen Biopharma Inc, China Cord Blood Corp, CBR Systems Inc, Escape Therapeutics Inc, Cryo-Save AG, Lonza Group Ltd, Pluristem Therapeutics Inc, ViaCord Inc]. The report provides detailed information on the future impact of the various schemes adopted by governments in different sectors of the world market.

The Hematopoietic Stem Cell Transplantation (HSCT) market report is crafted with figures, charts, tables, and facts to clarify, revealing the position of the specific sector at the regional and global level. The report also provides a brief summary of all major segments, such as [Autologous], with more detailed market share data in terms of supply, demand, and revenue from trading processes and after-sales.

Grab the sample of Hematopoietic Stem Cell Transplantation (HSCT) market here: http://www.marketsnresearch.com/request-for-sample.html?repid=62938

The Hematopoietic Stem Cell Transplantation (HSCT) report rates the market according to different segments, including geographic areas [Peripheral Blood Stem Cells Transplant (PBSCT), Bone Marrow Transplant (BMT), Cord Blood Transplant (CBT)] and current market trends. The market report contains information about different companies, manufacturers and traders.

The market report comprises an analysis of the latest developments in the field of innovative technologies, detailed profiles of the industry's top competitors, and an excellent business model. The report also contains information on market expectations for the coming years. The Hematopoietic Stem Cell Transplantation (HSCT) report also provides a detailed summary of the macro and microelement estimations that are important to market participants and newly developed companies.

For more enquires regarding Hematopoietic Stem Cell Transplantation (HSCT) market, click here: http://www.marketsnresearch.com/inquiry-for-buying.html?repid=62938

The different characteristics and performance of Hematopoietic Stem Cell Transplantation (HSCT) are analyzed based on subjective and quantitative techniques to give a clear picture of current and future evaluation.

Research Objective :

Our board of exchange givers additionally as exchange experts over the value chain have taken immense endeavors in doing this gathering activity and hard work add request to deliver the key players with helpful essential and optional information concerning the world Hematopoietic Stem Cell Transplantation (HSCT) advertise. moreover, the report furthermore contains contributions from our exchange experts that may encourage the key players in sparing their time from the inside examination half. firms WHO get and utilize this report will be totally benefitted with the derivations conveyed in it. but this, the report furthermore gives top to bottom investigation on Hematopoietic Stem Cell Transplantation (HSCT) deal in addition on the grounds that the elements that impact the customers additionally as undertakings towards this technique.

Thanks for reading this article; you'll be able to additionally get individual chapter wise section or region wise report versions like North America, Europe, Asia-Pacific, South America, geographic area and continent.

Sorry! The Author has not filled his profile.

See the original post:
Hematopoietic Stem Cell Transplantation (HSCT) Market Expected to Deliver Dynamic Progression until 2028| Regen Biopharma Inc - The World Industry...

To Read More: Hematopoietic Stem Cell Transplantation (HSCT) Market Expected to Deliver Dynamic Progression until 2028| Regen Biopharma Inc – The World Industry…
categoriaBone Marrow Stem Cells commentoComments Off on Hematopoietic Stem Cell Transplantation (HSCT) Market Expected to Deliver Dynamic Progression until 2028| Regen Biopharma Inc – The World Industry… | dataDecember 18th, 2019
Read All

CytoDyn Signs Definitive Agreements with Vyera Pharmaceuticals to Commercialize Leronlimab in the U.S. for the Treatment of HIV – GlobeNewswire

By daniellenierenberg

In exchange for the exclusive right to market and distribute leronlimab in the U.S. for HIV-related indications, Vyera will pay upfront and regulatory and sales-based milestone payments of up to $87.5 million, as well as a royalty of 50 percent on net sales. Vyera will also make an investment in CytoDyn of $4 million in the form of registered CytoDyn common stock

CytoDyn will maintain responsibility for the development and FDA approval of leronlimab for all HIV-related and other indications

VANCOUVER, Washington and NEW YORK, Dec. 17, 2019 (GLOBE NEWSWIRE) -- CytoDyn Inc. (OTC.QB: CYDY), (CytoDyn) and Vyera Pharmaceuticals, LLC (Vyera), today announced that they have entered into a Commercialization and License Agreement (CLA) and a related Supply Agreement to commercialize leronlimab (PRO 140) in the U.S. for the treatment of HIV.

Under theterms of the CLA, CytoDyn will maintain responsibility for the development and FDA approval of leronlimab for all HIV-related and other indications, while Vyera has been granted an exclusive license to market and distribute leronlimab in the U.S. for the treatment of HIV. In exchange for such exclusive license, Vyera has agreed to pay upfront and regulatory and sales-based milestone payments of up to $87.5 million, as well as a royalty of 50 percent on net sales. Vyera also agreed to make an investment in CytoDyn of $4 million in the form of registered CytoDyn common stock.

It is anticipated that these agreements will enable CytoDyn to leverage Vyeras well-established commercial infrastructure and highly-experienced sales team for the launch and commercialization of leronlimab and provide Vyera with a complimentary and novel product to bolster its pipeline of therapies for the treatment of infectious diseases.

This agreement helps complete the strategic objective to further establish CytoDyn as a leader in efforts to enhance the lives of patients through target-specific medicine, said Nader Pourhassan, Ph.D., CytoDyns President and Chief Executive Officer. Vyeras focus on developing therapies for patients living with serious and neglected diseases make them an ideal partner for this collaboration. We are excited to work with Vyera to leverage their platforms and capabilities to potentially offer a more effective treatment option for this HIV population.

Averill L. Powers, Chief Executive Officer of Phoenixus AG, Vyeras parent company, noted: Vyeras collaboration with CytoDyn demonstrates our commitment to address the needs of significant patient populations across our group companies generally and, in particular, a new level of our commitment to supporting patients living with HIV.

About Leronlimab (PRO 140)The U.S. Food and Drug Administration (FDA) has granted a "Fast Track" designation to CytoDyn for two potential indications of leronlimab for deadly diseases. The first as a combination therapy with HAART for HIV-infected patients, and the second is for metastatic triple-negative breast cancer (mTNBC). Leronlimab is an investigational humanized IgG4 mAb that blocks CCR5, a cellular receptor that is important in HIV infection, tumor metastases, and other diseases, including NASH. Leronlimab has successfully completed nine clinical trials in over 800 people, including meeting its primary endpoints in a pivotal Phase 3 trial (leronlimab in combination with standard anti-retroviral therapies in Highly Treatment Experienced (HTE) Multi-Drug Resistant (MDR) HIV Patients).

In the setting of HIV/AIDS, leronlimab is a viral-entry inhibitor; it masks CCR5, thus protecting healthy T cells from viral infection by blocking the predominant HIV (R5) subtype from entering those cells. Leronlimab has been the subject of nine clinical trials, each of which demonstrated that leronlimab can significantly reduce or control HIV viral load in humans. The leronlimab antibody appears to be a powerful antiviral agent leading to potentially fewer side effects and less frequent dosing requirements compared with daily drug therapies currently in use.

In the setting of cancer, research has shown that CCR5 plays an important role in tumor invasion and metastasis. Increased CCR5 expression is an indicator of disease status in several cancers. Published studies have shown that blocking CCR5 can reduce tumor metastases in laboratory and animal models of aggressive breast and prostate cancer. Leronlimab reduced human breast cancer metastasis by more than 98 percent in a murine xenograft model. CytoDyn is, therefore, conducting a Phase 2 human clinical trial in metastatic triple-negative breast cancer and was granted Fast Track designation in May 2019. Additional research is being conducted with leronlimab in the setting of cancer and NASH with plans to conduct additional clinical studies when appropriate.

The CCR5 receptor appears to play a central role in modulating immune cell trafficking to sites of inflammation and may be important in the development of acute graft-versus-host disease (GvHD) and other inflammatory conditions. Clinical studies by others further support the concept that blocking CCR5 using a chemical inhibitor can reduce the clinical impact of acute GvHD without significantly affecting the engraftment of transplanted bone marrow stem cells. CytoDyn is currently conducting a Phase 2 clinical study with leronlimab to further support the concept that the CCR5 receptor on engrafted cells is critical for the development of acute GvHD and that blocking this receptor from recognizing certain immune signaling molecules is a viable approach to mitigating acute GvHD. The FDA has granted orphan drug designation to leronlimab for the prevention of graft-versus-host disease (GvHD).

About CytoDynCytoDyn is a biotechnology company developing innovative treatments for multiple therapeutic indications based on leronlimab, a novel humanized monoclonal antibody targeting the CCR5 receptor. CCR5 appears to play a key role in the ability of HIV to enter and infect healthy T-cells. The CCR5 receptor also appears to be implicated in tumor metastasis and immune-mediated illnesses, such as graft-vs-host disease (GvHD) and NASH. CytoDyn has successfully completed a Phase 3 pivotal trial with leronlimab in combination with standard anti-retroviral therapies in HIV-infected treatment-experienced patients. CytoDyn plans to seek FDA approval for leronlimab in combination therapy and plans to complete the filing of a Biologics License Application (BLA) in 2019 for that indication. CytoDyn is also conducting a Phase 3 investigative trial with leronlimab (PRO 140) as a once-weekly monotherapy for HIV-infected patients and, plans to initiate a registration-directed study of leronlimab monotherapy indication, which if successful, could support a label extension. Clinical results to date from multiple trials have shown that leronlimab (PRO 140) can significantly reduce viral burden in people infected with HIV with no reported drug-related serious adverse events (SAEs). Moreover, results from a Phase 2b clinical trial demonstrated that leronlimab monotherapy can prevent viral escape in HIV-infected patients, with some patients on leronlimab monotherapy remaining virally suppressed for more than four years. CytoDyn is also conducting a Phase 2 trial to evaluate leronlimab for the prevention of GvHD and has received clearance to initiate a clinical trial with leronlimab in metastatic triple-negative breast cancer. More information is at http://www.cytodyn.com.

About VyeraVyera is a United States based biopharmaceutical company committed to developing and commercializing treatments that address serious and rare diseases with high unmet medical needs. Vyera supports programs that offer financial assistance to patients in need and gives discounts to organizations that provide care to underserved populations. Vyeras research and development efforts focus on novel treatment options for toxoplasmosis and other rare or serious health conditions. https://www.vyera.com/.

Forward-Looking StatementsThis press release contains certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, Section 21E of the Securities Exchange Act of 1934 and as that term is defined in the Private Securities Litigation Reform Act of 1995, that involve risks, uncertainties, and assumptions that are difficult to predict. CytoDyn and Vyera (collectively, the Companies) intend that such forward-looking statements be subject to the safe harbors created thereby. Words and expressions reflecting optimism, satisfaction or disappointment with current prospects, as well as words such as "believes," "hopes," "intends," "estimates," "expects," "projects," "plans," "anticipates" and variations thereof, or the use of future tense, identify forward-looking statements, but their absence does not mean that a statement is not forward-looking. The Companies forward-looking statements are not guarantees of performance, and actual results could vary materially from those contained in or expressed by such statements due to risks and uncertainties including: (i) the sufficiency of the Companies cash position, (ii) the Companies ability to raise additional capital to fund its operations, (iii) the Companies ability to meet its debt obligations, if any, (iv) the Companies ability to enter into partnership or licensing arrangements with third parties, (v) the Companies ability to identify patients to enroll in its clinical trials in a timely fashion, (vi) the Companies ability to achieve approval of a marketable product, (vii) the design, implementation and conduct of the Companies clinical trials, (viii) the results of the Companies clinical trials, including the possibility of unfavorable clinical trial results, (ix) the market for, and marketability of, any product that is approved, (x) the existence or development of vaccines, drugs, or other treatments that are viewed by medical professionals or patients as superior to the Companies products, (xi) regulatory initiatives, compliance with governmental regulations and the regulatory approval process, (xii) general economic and business conditions, (xiii) changes in foreign, political, and social conditions, and (xiv) various other matters, many of which are beyond the Companies control. CytoDyn urges investors to consider specifically the various risk factors identified in its most recent Form 10-K, and any risk factors or cautionary statements included in any subsequent Form 10-Q or Form 8-K, filed with the Securities and Exchange Commission. Except as required by law, neither Company the Company undertakes any responsibility to update any forward-looking statements to take into account events or circumstances that occur after the date of this press release.

CytoDyn Contacts:

Media:Grace FotiadesLifeSci Public Relationsgfotiades@lifescipublicrelations.com(646) 876-5026

Investors:Deanna Ebenhahndebenhahn@cytodyn.com

Vyera Contacts:

Media:media@vyera.com

Investors:ir@vyera.com

Visit link:
CytoDyn Signs Definitive Agreements with Vyera Pharmaceuticals to Commercialize Leronlimab in the U.S. for the Treatment of HIV - GlobeNewswire

To Read More: CytoDyn Signs Definitive Agreements with Vyera Pharmaceuticals to Commercialize Leronlimab in the U.S. for the Treatment of HIV – GlobeNewswire
categoriaBone Marrow Stem Cells commentoComments Off on CytoDyn Signs Definitive Agreements with Vyera Pharmaceuticals to Commercialize Leronlimab in the U.S. for the Treatment of HIV – GlobeNewswire | dataDecember 18th, 2019
Read All

MZ Skin Replenish and Restore Overnight Face Masque Review – goodhousekeeping.com

By daniellenierenberg

Overall score: 85/100

Tested August 2019

This face mask is formulated with ingredients such as ovine placenta and Phyto stem cells, a blend that claims to repair the skin and boost the production of collagen and elastin. It aims to leave skin hydrated, firmer and looking younger overnight these effects should be long-lasting.

250.00

Available from: net-a-porter.com

As many as 91% of our testers agreed that this product delivered on its claims. It left skin feeling more hydrated by morning and the effects were long-lasting.

It plumped and firmed the skin, especially around the neck and dcolletage. Our testers also noted improvements to the appearance of eye bags and fine lines around the eyes. The face mask absorbed, blended nicely and left the skin feeling soft. The panel described it as an intensive product, which reduced the size of pores and left the complexion smoother and more even.

All product information provided by the manufacturer is correct at time of publication.

View post:
MZ Skin Replenish and Restore Overnight Face Masque Review - goodhousekeeping.com

To Read More: MZ Skin Replenish and Restore Overnight Face Masque Review – goodhousekeeping.com
categoriaSkin Stem Cells commentoComments Off on MZ Skin Replenish and Restore Overnight Face Masque Review – goodhousekeeping.com | dataDecember 18th, 2019
Read All

GoodCell Oversubscribes Upon Debut, Fueling Expansion of Health Tracking and Personal Biobanking Services; Adds Former Amazon and Microsoft Executive…

By daniellenierenberg

Company closes $5.6 million in funding and secures distinguished board of directors as it seeks to empower individual health ownership with personalized biological analysis and storage

GoodCell ("LifeVault Bio"), the personal biobanking company with the health indicators to inform actionable next steps in your health journey, today announced it has secured a $2.6 million price round under LifeVault Bio and a $3 million convertible note, and brought on renowned technology executive Anthony Bay as its newest board member. The capital will be used to expand GoodCell Diagnostics, the companys commercial application, as it pioneers a cell quality test to measure the DNA damage to somatic cells over time, as well as fuel the formation of strategic partnerships across the healthcare and life sciences sectors, and grow the team at its headquarters in Waltham, Mass.

GoodCell helps individuals take control of their health through personalized biobanking of cells, DNA and blood plasma, with the belief that medical science will continue to progress, bringing forth new ways of preventing, detecting and treating diseases. Research continues to prove that cells are an essential starting material for the treatments of tomorrow. DNA and plasma are widely validated as critical information sources for monitoring and tracking health risk and informing lifestyle decisions. GoodCell aims to empower individuals with personal health information and storage resources to take full advantage of breakthrough medical science as it emerges.

"Stem cells are among the most promising areas of medical research because they are the starting materials from which all other cells originate," said Brad Hamilton, co-founder and chief science officer at GoodCell. "Some of these cells, specifically induced pluripotent stem (iPS) cells which can be derived from a persons own skin or blood, can be programmed to produce virtually any type of cell in the human body. This versatility has made them an instrumental tool, helping scientists understand and fight some of the biggest health threats of our time, such as Parkinsons disease, Type 1 diabetes and heart disease. GoodCell exists to help people preserve their access to these potentially lifesaving cells."

After GoodCell sends members a sample collection kit to their doorstep, they are prompted to schedule a convenient blood-draw with a certified phlebotomist, who then safely packages and ships the sample for processing. Once received, GoodCell isolates and preserves three components of the blood sample: cells, DNA and blood plasma. The DNA sample is then tested to inform genetic predisposition to disease, such as metabolic, neurologic and cardiac disorders, as well as certain cancers. Armed with deep insight into a members biology, the GoodCell Dashboard displays their health information as a comprehensive overview, designed to inform the next best action in their health journey. Samples are stored in a state-of-the-art, FDA-registered CLIA/CAP certified lab and biorepository that is trusted by larger biotechnology companies and the National Institutes of Health. Since it is the change in health indicators that indicates risk, recurrent sampling is possible to enable measuring the trajectory of change in plasma components or DNA. Since the samples belong to GoodCell members, they can decide whether or not to share their information with their doctor or allow researchers to use it in clinical studies.

"To me, GoodCell represents the ultimate in personalized medicine. Individuals can now have their own biobank and their own biodata. These wont be owned by a hospital or in the case of your cells, by no one at all. These will be stored for you, accessible only on your instruction. As new tests come online or as cells become a broader therapy source, you will be able to tap into your own earlier, preserved self in the form of your blood," said David Scadden, MD, co-founder and chair of the Scientific Advisory Board at GoodCell. "Imagine two scenarios. First, a new blood test becomes available for Alzheimers disease. You get the test, but just like current tests for things like prostate cancer, it is only meaningful in light of how it is changing. Your doctor will likely advise waiting months or a year to re-test. With a GoodCell sample, we envision the test can be done on your blood from a previous time. Then you can know how things are changing without the prolonged wait and the anxiety it engenders. Second, lets say the stem cell field delivers on the therapies it is currently testing for diabetes, heart failure, Parkinsons disease and macular degeneration. Those therapies will likely be as cells derived from you. Would you want those to be from you at a younger age since we know our cells accumulate genetic damage with age? I think most people would, and would want cells from their blood, which the bones have shielded from radiation, rather than their skin as is currently done. GoodCell will have those blood cells for you and has shown they can be made into stem cells (iPSC) with high efficiency."

Story continues

GoodCell is focused on continuing to grow its customer base and building up its talent pool at its new headquarters in Waltham, Mass. The company, which is poised to expand its headcount in early 2020, will also be exploring strategic partnerships with cell and gene therapy companies and interest groups that could benefit from GoodCell members deciding whether to opt-in to allow access to stored cells, DNA and plasma. GoodCell will also continue to recruit pioneers in business, science and technology to its board positions. Most recently, it welcomed Anthony Bay, former Global Head of Digital Video for Amazon and a veteran senior executive at other technology powerhouses, including Apple and Microsoft.

"Ive devoted my career to creating scalable and differentiated technology platforms and unique digital experiences in many industries, and am excited to lend my expertise and perspectives to GoodCell," said Bay. "I am delighted to play a role in helping the GoodCell team scale and expand to match the size of our opportunity to change peoples lives."

Bay joins an already robust and diverse group of consumer technology and life science leaders, including John Goscha, Lucidity Lights founder and Chairman of the Board of Directors, Finally Light Bulb Company founder and entrepreneur; David Scadden, MD, professor of medicine at Harvard Universitys Department of Stem Cell and Regenerative Biology; Daniel Marshak, principal consultant in therapeutics, diagnostics and medical devices; Avi Ellman, managing partner of Delta Global Investment Services; and Trevor Perry, co-founder and chief executive officer at GoodCell.

"Up until now, existing genetics offerings can only go so far as to inform your genetic makeup. GoodCell is taking that a step further today by combining genetics, health indicator testing and personal biobanking into one solution, and then turning this information right back to the individual so they can understand the story of their health and leverage actionable data at any age," said Perry. "We are taking advantage of leading scientific innovation to help people take control of their health through personalized biobanking of cells, DNA, and blood plasma, and we believe the tremendous amount of support we received during this initial funding round will further allow us to be a true enabler of and partner in this process. Our goal is to set a new standard for personal biobanking as an individual health milestone, and our mission is to ensure our members feel confident and prepared to own their aging experience, and we look forward to accelerating our efforts in the months ahead."

For more information about GoodCell, visit https://www.goodcell.com. To order your starter kit, visit https://www.goodcell.com/shop/.

About GoodCell

GoodCell helps you take control of your health through personalized biobanking of cells, DNA and blood plasma. Leveraging the best science, the technology provides health indicators for a comprehensive and proactive approach to self-care. Through the GoodCell Dashboard, the company informs the next best action in your health journey, offering access for you and for your doctor to actionable data and insights that relate to all aspects of your health through genetic reporting and blood analysis. Driven by mounting evidence in support of cellular therapy and united in the belief that you should be empowered to take control of your health, GoodCell is led by a founding team of scientific advisors with a diverse set of medical research and clinical expertise. By backing up your starting materials, GoodCell is setting a new standard of personal biobanking today for a healthier future. Learn more at: https://www.goodcell.com.

View source version on businesswire.com: https://www.businesswire.com/news/home/20191217005485/en/

Contacts

PAN CommunicationsStaci Didner407 734 7325Goodcell@pancomm.com

Go here to see the original:
GoodCell Oversubscribes Upon Debut, Fueling Expansion of Health Tracking and Personal Biobanking Services; Adds Former Amazon and Microsoft Executive...

To Read More: GoodCell Oversubscribes Upon Debut, Fueling Expansion of Health Tracking and Personal Biobanking Services; Adds Former Amazon and Microsoft Executive…
categoriaSkin Stem Cells commentoComments Off on GoodCell Oversubscribes Upon Debut, Fueling Expansion of Health Tracking and Personal Biobanking Services; Adds Former Amazon and Microsoft Executive… | dataDecember 18th, 2019
Read All

Mother Nature provides new gene therapy strategy to reverse disease – Health Europa

By daniellenierenberg

Though the research was intended as a proof of concept, the experimental gene therapy slowed tumour growth and prolonged survival in mice with gliomas, which constitute about 80% of malignant brain tumours in humans.

The technique takes advantage of exosomes, fluid-filled sacs that cells release as a way to communicate with other cells.

The research was carried out by scientists at the Ohio State University and published in the journal Nature Biomedical Engineering.

While exosomes are gaining ground as biologically friendly carriers of therapeutic materials because there are a lot of them and they dont prompt an immune response the trick with gene therapy is finding a way to fit those comparatively large genetic instructions inside their tiny bodies on a scale that will have a therapeutic effect.

This new method relies on patented technology that prompts donated human cells such as adult stem cells to spit out millions of exosomes that, after being collected and purified, function as nanocarriers containing a drug.

When they are injected into the bloodstream, they know exactly where in the body to find their target even if its in the brain.

Senior study author L. James Lee, professor emeritus of chemical and biomolecular engineering at Ohio State University, said: Think of them like Christmas gifts: the gift is inside a wrapped container that is postage paid and ready to go. This is a Mother Nature-induced therapeutic nanoparticle.

In 2017, Lee and colleagues made waves with news of a regenerative medicine discovery called tissue nanotransfection (TNT). The technique uses a nanotechnology-based chip to deliver biological cargo directly into skin, an action that converts adult cells into any cell type of interest for treatment within a patients own body.

By looking further into the mechanism behind TNTs success, scientists in Lees lab discovered that exosomes were the secret to delivering regenerative goods to tissue far below the skins surface.

The scientists placed about one million donated cells on a nano-engineered silicon wafer and used an electrical stimulus to inject synthetic DNA into the donor cells. As a result of this DNA force-feeding, as Lee described it, the cells need to eject unwanted material as part of DNA transcribed messenger RNA and repair holes that have been poked in their membranes.

The electrical stimulation had a bonus effect of a thousand-fold increase of therapeutic genes in a large number of exosomes released by the cells, a sign that the technology is scalable to produce enough nanoparticles for use in humans.

Essential to any gene therapy is knowing what genes need to be delivered to fix a medical problem. For this work, the researchers chose to test the results on glioma brain tumours by delivering a gene called PTEN, a cancer-suppressor gene. Mutations of PTEN that turn off that suppression role can allow cancer cells to grow unchecked.

For Lee, founder of Ohio States Center for Affordable Nanoengineering of Polymeric Biomedical Devices, producing the gene is the easy part. The synthetic DNA force-fed to donor cells is copied into a new molecule consisting of messenger RNA, which contains the instructions needed to produce a specific protein. Each exosome bubble containing messenger RNA is transformed into a nanoparticle ready for transport, with no blood-brain barrier to worry about.

The testing in mice showed the labelled exosomes were far more likely to travel to the brain tumours and slow their growth compared to substances used as controls.

Because of exosomes safe access to the brain, Lee said, this drug-delivery system has promise for future applications in neurological diseases such as Alzheimers and Parkinsons disease.

Read more from the original source:
Mother Nature provides new gene therapy strategy to reverse disease - Health Europa

To Read More: Mother Nature provides new gene therapy strategy to reverse disease – Health Europa
categoriaSkin Stem Cells commentoComments Off on Mother Nature provides new gene therapy strategy to reverse disease – Health Europa | dataDecember 18th, 2019
Read All

FDA Oncologic Drugs Advisory Committee (ODAC) Recommends KEYTRUDA (pembrolizumab) for the Treatment of Certain Patients with High-Risk, Non-Muscle…

By daniellenierenberg

The ODAC discussions were based on the supplemental Biologics License Application (sBLA), currently under priority review at the FDA, seeking approval of KEYTRUDA monotherapy for the treatment of patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, NMIBC with carcinoma in-situ (CIS) with or without papillary tumors who are ineligible for or have elected not to undergo cystectomy (removal of bladder). This application is based on results from the Phase 2 KEYNOTE-057 trial.

The positive vote from todays ODAC meeting supports the potential for KEYTRUDA in certain patients with high-risk, non-muscle invasive bladder cancer, who currently have limited non-surgical treatment options approved by the FDA, said Dr. Roy Baynes, senior vice president and head of global clinical development, chief medical officer, Merck Research Laboratories. We are encouraged by todays productive discussion and look forward to working with the FDA as they continue their review of our supplemental application for KEYTRUDA in this patient population.

The ODAC provides the FDA with independent, expert advice and recommendations on marketed and investigational medicines for use in the treatment of cancer. The FDA is not bound by the committees guidance but takes its advice into consideration. Merck anticipates a Prescription Drug User Fee Act (PDUFA), or target action date, in January 2020, based on priority review.

About Bladder Cancer

Bladder cancer begins when cells in the urinary bladder start to grow uncontrollably. As more cancer cells develop, they can form a tumor and spread to other areas of the body. Bladder cancers are described based on how far they have invaded into the wall of the bladder. NMIBC occurs when the cancer has not grown into the main muscle layer of the bladder. It is estimated that more than 80,000 new cases of bladder cancer will be diagnosed in 2019 in the United States. Approximately 75% of patients with bladder cancer are diagnosed with non-muscle invasive bladder cancer (NMIBC). For high-risk NMIBC patients who are BCG-unresponsive with persistent or recurrent disease, treatment guidelines recommend radical cystectomy, a surgery to remove the entire bladder that often requires removal of other surrounding organs and tissues. In men, removal of the prostate is common, and in women, surgeons may also remove the uterus, fallopian tubes, ovaries and cervix, and occasionally a portion of the vagina.

About KEYNOTE-057

The filing was based on data from KEYNOTE-057 (NCT02625961), a Phase 2, multicenter, open-label, single-arm trial in 102 patients with Bacillus Calmette-Guerin (BCG)-unresponsive, high-risk, non-muscle invasive bladder cancer (NMIBC) with carcinoma in-situ (CIS) with or without papillary tumors who were ineligible for or had elected not to undergo cystectomy (Cohort A). In this study, BCG-unresponsive high-risk NMIBC is defined as persistent disease despite adequate BCG therapy, disease recurrence after an initial tumor-free state following adequate BCG therapy, or T1 disease following a single induction course of BCG. Patients received KEYTRUDA 200 mg every three weeks until unacceptable toxicity, persistent or recurrent high-risk NMIBC or progressive disease. Assessment of tumor status was performed every 12 weeks, and patients without disease progression could be treated for up to 24 months. The major efficacy outcome measures were complete response (as defined by negative results for cystoscopy [with transurethral resection of bladder tumor (TURBT)/biopsies as applicable], urine cytology, and computed tomography urography [CTU] imaging) and duration of response.

About KEYTRUDA (pembrolizumab) Injection, 100mg

KEYTRUDA is an anti-PD-1 therapy that works by increasing the ability of the bodys immune system to help detect and fight tumor cells. KEYTRUDA is a humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2, thereby activating T lymphocytes which may affect both tumor cells and healthy cells.

Merck has the industrys largest immuno-oncology clinical research program. There are currently more than 1,000 trials studying KEYTRUDA across a wide variety of cancers and treatment settings. The KEYTRUDA clinical program seeks to understand the role of KEYTRUDA across cancers and the factors that may predict a patients likelihood of benefitting from treatment with KEYTRUDA, including exploring several different biomarkers.

Selected KEYTRUDA (pembrolizumab) Indications

Melanoma

KEYTRUDA is indicated for the treatment of patients with unresectable or metastatic melanoma.

KEYTRUDA is indicated for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.

Non-Small Cell Lung Cancer

KEYTRUDA, in combination with pemetrexed and platinum chemotherapy, is indicated for the first-line treatment of patients with metastatic nonsquamous non-small cell lung cancer (NSCLC), with no EGFR or ALK genomic tumor aberrations.

KEYTRUDA, in combination with carboplatin and either paclitaxel or paclitaxel protein-bound, is indicated for the first-line treatment of patients with metastatic squamous NSCLC.

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with NSCLC expressing PD-L1 [tumor proportion score (TPS) 1%] as determined by an FDA-approved test, with no EGFR or ALK genomic tumor aberrations, and is stage III where patients are not candidates for surgical resection or definitive chemoradiation, or metastatic.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with metastatic NSCLC whose tumors express PD-L1 (TPS 1%) as determined by an FDA-approved test, with disease progression on or after platinum-containing chemotherapy. Patients with EGFR or ALK genomic tumor aberrations should have disease progression on FDA-approved therapy for these aberrations prior to receiving KEYTRUDA.

Small Cell Lung Cancer

KEYTRUDA is indicated for the treatment of patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least one other prior line of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

Head and Neck Squamous Cell Cancer

KEYTRUDA, in combination with platinum and fluorouracil (FU), is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent head and neck squamous cell carcinoma (HNSCC).

KEYTRUDA, as a single agent, is indicated for the first-line treatment of patients with metastatic or with unresectable, recurrent HNSCC whose tumors express PD-L1 [combined positive score (CPS) 1] as determined by an FDA-approved test.

KEYTRUDA, as a single agent, is indicated for the treatment of patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) with disease progression on or after platinum-containing chemotherapy.

Classical Hodgkin Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory classical Hodgkin lymphoma (cHL), or who have relapsed after 3 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Primary Mediastinal Large B-Cell Lymphoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with refractory primary mediastinal large B-cell lymphoma (PMBCL), or who have relapsed after 2 or more prior lines of therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials. KEYTRUDA is not recommended for treatment of patients with PMBCL who require urgent cytoreductive therapy.

Urothelial Carcinoma

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who are not eligible for cisplatin-containing chemotherapy and whose tumors express PD-L1 [combined positive score (CPS) 10] as determined by an FDA-approved test, or in patients who are not eligible for any platinum-containing chemotherapy regardless of PD-L1 status. This indication is approved under accelerated approval based on tumor response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in confirmatory trials.

KEYTRUDA is indicated for the treatment of patients with locally advanced or metastatic urothelial carcinoma (mUC) who have disease progression during or following platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant treatment with platinum-containing chemotherapy.

Microsatellite Instability-High (MSI-H) Cancer

KEYTRUDA is indicated for the treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)

This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials. The safety and effectiveness of KEYTRUDA in pediatric patients with MSI-H central nervous system cancers have not been established.

Gastric Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction (GEJ) adenocarcinoma whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test, with disease progression on or after two or more prior lines of therapy including fluoropyrimidine- and platinum-containing chemotherapy and if appropriate, HER2/neu-targeted therapy. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Esophageal Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent locally advanced or metastatic squamous cell carcinoma of the esophagus whose tumors express PD-L1 (CPS 10) as determined by an FDA-approved test, with disease progression after one or more prior lines of systemic therapy.

Cervical Cancer

KEYTRUDA is indicated for the treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS 1) as determined by an FDA-approved test. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Hepatocellular Carcinoma

KEYTRUDA is indicated for the treatment of patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib. This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Merkel Cell Carcinoma

KEYTRUDA is indicated for the treatment of adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). This indication is approved under accelerated approval based on tumor response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in the confirmatory trials.

Renal Cell Carcinoma

KEYTRUDA, in combination with axitinib, is indicated for the first-line treatment of patients with advanced renal cell carcinoma (RCC).

Selected Important Safety Information for KEYTRUDA

Immune-Mediated Pneumonitis

KEYTRUDA can cause immune-mediated pneumonitis, including fatal cases. Pneumonitis occurred in 3.4% (94/2799) of patients with various cancers receiving KEYTRUDA, including Grade 1 (0.8%), 2 (1.3%), 3 (0.9%), 4 (0.3%), and 5 (0.1%). Pneumonitis occurred in 8.2% (65/790) of NSCLC patients receiving KEYTRUDA as a single agent, including Grades 3-4 in 3.2% of patients, and occurred more frequently in patients with a history of prior thoracic radiation (17%) compared to those without (7.7%). Pneumonitis occurred in 6% (18/300) of HNSCC patients receiving KEYTRUDA as a single agent, including Grades 3-5 in 1.6% of patients, and occurred in 5.4% (15/276) of patients receiving KEYTRUDA in combination with platinum and FU as first-line therapy for advanced disease, including Grades 3-5 in 1.5% of patients.

Monitor patients for signs and symptoms of pneumonitis. Evaluate suspected pneumonitis with radiographic imaging. Administer corticosteroids for Grade 2 or greater pneumonitis. Withhold KEYTRUDA for Grade 2; permanently discontinue KEYTRUDA for Grade 3 or 4 or recurrent Grade 2 pneumonitis.

Immune-Mediated Colitis

KEYTRUDA can cause immune-mediated colitis. Colitis occurred in 1.7% (48/2799) of patients receiving KEYTRUDA, including Grade 2 (0.4%), 3 (1.1%), and 4 (<0.1%). Monitor patients for signs and symptoms of colitis. Administer corticosteroids for Grade 2 or greater colitis. Withhold KEYTRUDA for Grade 2 or 3; permanently discontinue KEYTRUDA for Grade 4 colitis.

Immune-Mediated Hepatitis (KEYTRUDA) and Hepatotoxicity (KEYTRUDA in Combination With Axitinib)

Immune-Mediated Hepatitis

KEYTRUDA can cause immune-mediated hepatitis. Hepatitis occurred in 0.7% (19/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.4%), and 4 (<0.1%). Monitor patients for changes in liver function. Administer corticosteroids for Grade 2 or greater hepatitis and, based on severity of liver enzyme elevations, withhold or discontinue KEYTRUDA.

Hepatotoxicity in Combination With Axitinib

KEYTRUDA in combination with axitinib can cause hepatic toxicity with higher than expected frequencies of Grades 3 and 4 ALT and AST elevations compared to KEYTRUDA alone. With the combination of KEYTRUDA and axitinib, Grades 3 and 4 increased ALT (20%) and increased AST (13%) were seen. Monitor liver enzymes before initiation of and periodically throughout treatment. Consider more frequent monitoring of liver enzymes as compared to when the drugs are administered as single agents. For elevated liver enzymes, interrupt KEYTRUDA and axitinib, and consider administering corticosteroids as needed.

Immune-Mediated Endocrinopathies

KEYTRUDA can cause hypophysitis, thyroid disorders, and type 1 diabetes mellitus. Hypophysitis occurred in 0.6% (17/2799) of patients, including Grade 2 (0.2%), 3 (0.3%), and 4 (<0.1%). Hypothyroidism occurred in 8.5% (237/2799) of patients, including Grade 2 (6.2%) and 3 (0.1%). The incidence of new or worsening hypothyroidism was higher in 1185 patients with HNSCC (16%) receiving KEYTRUDA, as a single agent or in combination with platinum and FU, including Grade 3 (0.3%) hypothyroidism. Hyperthyroidism occurred in 3.4% (96/2799) of patients, including Grade 2 (0.8%) and 3 (0.1%), and thyroiditis occurred in 0.6% (16/2799) of patients, including Grade 2 (0.3%). Type 1 diabetes mellitus, including diabetic ketoacidosis, occurred in 0.2% (6/2799) of patients.

Monitor patients for signs and symptoms of hypophysitis (including hypopituitarism and adrenal insufficiency), thyroid function (prior to and periodically during treatment), and hyperglycemia. For hypophysitis, administer corticosteroids and hormone replacement as clinically indicated. Withhold KEYTRUDA for Grade 2 and withhold or discontinue for Grade 3 or 4 hypophysitis. Administer hormone replacement for hypothyroidism and manage hyperthyroidism with thionamides and beta-blockers as appropriate. Withhold or discontinue KEYTRUDA for Grade 3 or 4 hyperthyroidism. Administer insulin for type 1 diabetes, and withhold KEYTRUDA and administer antihyperglycemics in patients with severe hyperglycemia.

Immune-Mediated Nephritis and Renal Dysfunction

KEYTRUDA can cause immune-mediated nephritis. Nephritis occurred in 0.3% (9/2799) of patients receiving KEYTRUDA, including Grade 2 (0.1%), 3 (0.1%), and 4 (<0.1%) nephritis. Nephritis occurred in 1.7% (7/405) of patients receiving KEYTRUDA in combination with pemetrexed and platinum chemotherapy. Monitor patients for changes in renal function. Administer corticosteroids for Grade 2 or greater nephritis. Withhold KEYTRUDA for Grade 2; permanently discontinue for Grade 3 or 4 nephritis.

Immune-Mediated Skin Reactions

Immune-mediated rashes, including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN) (some cases with fatal outcome), exfoliative dermatitis, and bullous pemphigoid, can occur. Monitor patients for suspected severe skin reactions and based on the severity of the adverse reaction, withhold or permanently discontinue KEYTRUDA and administer corticosteroids. For signs or symptoms of SJS or TEN, withhold KEYTRUDA and refer the patient for specialized care for assessment and treatment. If SJS or TEN is confirmed, permanently discontinue KEYTRUDA.

Other Immune-Mediated Adverse Reactions

Immune-mediated adverse reactions, which may be severe or fatal, can occur in any organ system or tissue in patients receiving KEYTRUDA and may also occur after discontinuation of treatment. For suspected immune-mediated adverse reactions, ensure adequate evaluation to confirm etiology or exclude other causes. Based on the severity of the adverse reaction, withhold KEYTRUDA and administer corticosteroids. Upon improvement to Grade 1 or less, initiate corticosteroid taper and continue to taper over at least 1 month. Based on limited data from clinical studies in patients whose immune-related adverse reactions could not be controlled with corticosteroid use, administration of other systemic immunosuppressants can be considered. Resume KEYTRUDA when the adverse reaction remains at Grade 1 or less following corticosteroid taper. Permanently discontinue KEYTRUDA for any Grade 3 immune-mediated adverse reaction that recurs and for any life-threatening immune-mediated adverse reaction.

The following clinically significant immune-mediated adverse reactions occurred in less than 1% (unless otherwise indicated) of 2799 patients: arthritis (1.5%), uveitis, myositis, Guillain-Barr syndrome, myasthenia gravis, vasculitis, pancreatitis, hemolytic anemia, sarcoidosis, and encephalitis. In addition, myelitis and myocarditis were reported in other clinical trials, including classical Hodgkin lymphoma, and postmarketing use.

Treatment with KEYTRUDA may increase the risk of rejection in solid organ transplant recipients. Consider the benefit of treatment vs the risk of possible organ rejection in these patients.

Infusion-Related Reactions

KEYTRUDA can cause severe or life-threatening infusion-related reactions, including hypersensitivity and anaphylaxis, which have been reported in 0.2% (6/2799) of patients. Monitor patients for signs and symptoms of infusion-related reactions. For Grade 3 or 4 reactions, stop infusion and permanently discontinue KEYTRUDA.

Complications of Allogeneic Hematopoietic Stem Cell Transplantation (HSCT)

Immune-mediated complications, including fatal events, occurred in patients who underwent allogeneic HSCT after treatment with KEYTRUDA. Of 23 patients with cHL who proceeded to allogeneic HSCT after KEYTRUDA, 6 (26%) developed graft-versus-host disease (GVHD) (1 fatal case) and 2 (9%) developed severe hepatic veno-occlusive disease (VOD) after reduced-intensity conditioning (1 fatal case). Cases of fatal hyperacute GVHD after allogeneic HSCT have also been reported in patients with lymphoma who received a PD-1 receptorblocking antibody before transplantation. Follow patients closely for early evidence of transplant-related complications such as hyperacute graft-versus-host disease (GVHD), Grade 3 to 4 acute GVHD, steroid-requiring febrile syndrome, hepatic veno-occlusive disease (VOD), and other immune-mediated adverse reactions.

In patients with a history of allogeneic HSCT, acute GVHD (including fatal GVHD) has been reported after treatment with KEYTRUDA. Patients who experienced GVHD after their transplant procedure may be at increased risk for GVHD after KEYTRUDA. Consider the benefit of KEYTRUDA vs the risk of GVHD in these patients.

Increased Mortality in Patients With Multiple Myeloma

In trials in patients with multiple myeloma, the addition of KEYTRUDA to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of these patients with a PD-1 or PD-L1 blocking antibody in this combination is not recommended outside of controlled trials.

Embryofetal Toxicity

Based on its mechanism of action, KEYTRUDA can cause fetal harm when administered to a pregnant woman. Advise women of this potential risk. In females of reproductive potential, verify pregnancy status prior to initiating KEYTRUDA and advise them to use effective contraception during treatment and for 4 months after the last dose.

Adverse Reactions

In KEYNOTE-006, KEYTRUDA was discontinued due to adverse reactions in 9% of 555 patients with advanced melanoma; adverse reactions leading to permanent discontinuation in more than one patient were colitis (1.4%), autoimmune hepatitis (0.7%), allergic reaction (0.4%), polyneuropathy (0.4%), and cardiac failure (0.4%). The most common adverse reactions (20%) with KEYTRUDA were fatigue (28%), diarrhea (26%), rash (24%), and nausea (21%).

In KEYNOTE-002, KEYTRUDA was permanently discontinued due to adverse reactions in 12% of 357 patients with advanced melanoma; the most common (1%) were general physical health deterioration (1%), asthenia (1%), dyspnea (1%), pneumonitis (1%), and generalized edema (1%). The most common adverse reactions were fatigue (43%), pruritus (28%), rash (24%), constipation (22%), nausea (22%), diarrhea (20%), and decreased appetite (20%).

In KEYNOTE-054, KEYTRUDA was permanently discontinued due to adverse reactions in 14% of 509 patients; the most common (1%) were pneumonitis (1.4%), colitis (1.2%), and diarrhea (1%). Serious adverse reactions occurred in 25% of patients receiving KEYTRUDA. The most common adverse reaction (20%) with KEYTRUDA was diarrhea (28%).

In KEYNOTE-189, when KEYTRUDA was administered with pemetrexed and platinum chemotherapy in metastatic nonsquamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 20% of 405 patients. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonitis (3%) and acute kidney injury (2%). The most common adverse reactions (20%) with KEYTRUDA were nausea (56%), fatigue (56%), constipation (35%), diarrhea (31%), decreased appetite (28%), rash (25%), vomiting (24%), cough (21%), dyspnea (21%), and pyrexia (20%).

In KEYNOTE-407, when KEYTRUDA was administered with carboplatin and either paclitaxel or paclitaxel protein-bound in metastatic squamous NSCLC, KEYTRUDA was discontinued due to adverse reactions in 15% of 101 patients. The most frequent serious adverse reactions reported in at least 2% of patients were febrile neutropenia, pneumonia, and urinary tract infection. Adverse reactions observed in KEYNOTE-407 were similar to those observed in KEYNOTE-189 with the exception that increased incidences of alopecia (47% vs 36%) and peripheral neuropathy (31% vs 25%) were observed in the KEYTRUDA and chemotherapy arm compared to the placebo and chemotherapy arm in KEYNOTE-407.

In KEYNOTE-042, KEYTRUDA was discontinued due to adverse reactions in 19% of 636 patients; the most common were pneumonitis (3%), death due to unknown cause (1.6%), and pneumonia (1.4%). The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia (7%), pneumonitis (3.9%), pulmonary embolism (2.4%), and pleural effusion (2.2%). The most common adverse reaction (20%) was fatigue (25%).

In KEYNOTE-010, KEYTRUDA monotherapy was discontinued due to adverse reactions in 8% of 682 patients with metastatic NSCLC; the most common was pneumonitis (1.8%). The most common adverse reactions (20%) were decreased appetite (25%), fatigue (25%), dyspnea (23%), and nausea (20%).

Adverse reactions occurring in patients with SCLC were similar to those occurring in patients with other solid tumors who received KEYTRUDA as a single agent.

In KEYNOTE-048, KEYTRUDA monotherapy was discontinued due to adverse events in 12% of 300 patients with HNSCC; the most common adverse reactions leading to permanent discontinuation were sepsis (1.7%) and pneumonia (1.3%). The most common adverse reactions (20%) were fatigue (33%), constipation (20%), and rash (20%).

In KEYNOTE-048, when KEYTRUDA was administered in combination with platinum (cisplatin or carboplatin) and FU chemotherapy, KEYTRUDA was discontinued due to adverse reactions in 16% of 276 patients with HNSCC. The most common adverse reactions resulting in permanent discontinuation of KEYTRUDA were pneumonia (2.5%), pneumonitis (1.8%), and septic shock (1.4%). The most common adverse reactions (20%) were nausea (51%), fatigue (49%), constipation (37%), vomiting (32%), mucosal inflammation (31%), diarrhea (29%), decreased appetite (29%), stomatitis (26%), and cough (22%).

In KEYNOTE-012, KEYTRUDA was discontinued due to adverse reactions in 17% of 192 patients with HNSCC. Serious adverse reactions occurred in 45% of patients. The most frequent serious adverse reactions reported in at least 2% of patients were pneumonia, dyspnea, confusional state, vomiting, pleural effusion, and respiratory failure. The most common adverse reactions (20%) were fatigue, decreased appetite, and dyspnea. Adverse reactions occurring in patients with HNSCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of facial edema and new or worsening hypothyroidism.

In KEYNOTE-087, KEYTRUDA was discontinued due to adverse reactions in 5% of 210 patients with cHL. Serious adverse reactions occurred in 16% of patients; those 1% included pneumonia, pneumonitis, pyrexia, dyspnea, GVHD, and herpes zoster. Two patients died from causes other than disease progression; 1 from GVHD after subsequent allogeneic HSCT and 1 from septic shock. The most common adverse reactions (20%) were fatigue (26%), pyrexia (24%), cough (24%), musculoskeletal pain (21%), diarrhea (20%), and rash (20%).

In KEYNOTE-170, KEYTRUDA was discontinued due to adverse reactions in 8% of 53 patients with PMBCL. Serious adverse reactions occurred in 26% of patients and included arrhythmia (4%), cardiac tamponade (2%), myocardial infarction (2%), pericardial effusion (2%), and pericarditis (2%). Six (11%) patients died within 30 days of start of treatment. The most common adverse reactions (20%) were musculoskeletal pain (30%), upper respiratory tract infection and pyrexia (28% each), cough (26%), fatigue (23%), and dyspnea (21%).

In KEYNOTE-052, KEYTRUDA was discontinued due to adverse reactions in 11% of 370 patients with locally advanced or metastatic urothelial carcinoma. Serious adverse reactions occurred in 42% of patients; those 2% were urinary tract infection, hematuria, acute kidney injury, pneumonia, and urosepsis. The most common adverse reactions (20%) were fatigue (38%), musculoskeletal pain (24%), decreased appetite (22%), constipation (21%), rash (21%), and diarrhea (20%).

In KEYNOTE-045, KEYTRUDA was discontinued due to adverse reactions in 8% of 266 patients with locally advanced or metastatic urothelial carcinoma. The most common adverse reaction resulting in permanent discontinuation of KEYTRUDA was pneumonitis (1.9%). Serious adverse reactions occurred in 39% of KEYTRUDA-treated patients; those 2% were urinary tract infection, pneumonia, anemia, and pneumonitis. The most common adverse reactions (20%) in patients who received KEYTRUDA were fatigue (38%), musculoskeletal pain (32%), pruritus (23%), decreased appetite (21%), nausea (21%), and rash (20%).

Adverse reactions occurring in patients with gastric cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

Adverse reactions occurring in patients with esophageal cancer were similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy.

In KEYNOTE-158, KEYTRUDA was discontinued due to adverse reactions in 8% of 98 patients with recurrent or metastatic cervical cancer. Serious adverse reactions occurred in 39% of patients receiving KEYTRUDA; the most frequent included anemia (7%), fistula, hemorrhage, and infections [except urinary tract infections] (4.1% each). The most common adverse reactions (20%) were fatigue (43%), musculoskeletal pain (27%), diarrhea (23%), pain and abdominal pain (22% each), and decreased appetite (21%).

Adverse reactions occurring in patients with hepatocellular carcinoma (HCC) were generally similar to those in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy, with the exception of increased incidences of ascites (8% Grades 34) and immune-mediated hepatitis (2.9%). Laboratory abnormalities (Grades 34) that occurred at a higher incidence were elevated AST (20%), ALT (9%), and hyperbilirubinemia (10%).

Among the 50 patients with MCC enrolled in study KEYNOTE-017, adverse reactions occurring in patients with MCC were generally similar to those occurring in patients with melanoma or NSCLC who received KEYTRUDA as a monotherapy. Laboratory abnormalities (Grades 34) that occurred at a higher incidence were elevated AST (11%) and hyperglycemia (19%).

In KEYNOTE-426, when KEYTRUDA was administered in combination with axitinib, fatal adverse reactions occurred in 3.3% of 429 patients. Serious adverse reactions occurred in 40% of patients, the most frequent (1%) were hepatotoxicity (7%), diarrhea (4.2%), acute kidney injury (2.3%), dehydration (1%), and pneumonitis (1%). Permanent discontinuation due to an adverse reaction occurred in 31% of patients; KEYTRUDA only (13%), axitinib only (13%), and the combination (8%); the most common were hepatotoxicity (13%), diarrhea/colitis (1.9%), acute kidney injury (1.6%), and cerebrovascular accident (1.2%). The most common adverse reactions (20%) were diarrhea (56%), fatigue/asthenia (52%), hypertension (48%), hepatotoxicity (39%), hypothyroidism (35%), decreased appetite (30%), palmar-plantar erythrodysesthesia (28%), nausea (28%), stomatitis/mucosal inflammation (27%), dysphonia (25%), rash (25%), cough (21%), and constipation (21%).

Read this article:
FDA Oncologic Drugs Advisory Committee (ODAC) Recommends KEYTRUDA (pembrolizumab) for the Treatment of Certain Patients with High-Risk, Non-Muscle...

To Read More: FDA Oncologic Drugs Advisory Committee (ODAC) Recommends KEYTRUDA (pembrolizumab) for the Treatment of Certain Patients with High-Risk, Non-Muscle…
categoriaSkin Stem Cells commentoComments Off on FDA Oncologic Drugs Advisory Committee (ODAC) Recommends KEYTRUDA (pembrolizumab) for the Treatment of Certain Patients with High-Risk, Non-Muscle… | dataDecember 18th, 2019
Read All

Boy abandoned at the hospital after being born with butterfly skin disease diagnosed with cancer – Herald Publicist

By daniellenierenberg

A Wisconsin boy with a uncommon illness that causes his pores and skin to blister on the slightest contact has now been recognized with most cancers.

Charlie Knuth, 13, from Darboy, was adopted by his mother and father after he was deserted on the hospital as a child, reported WFRV.

He suffers from epidermolysis bullosa (EB), a uncommon genetic tissue dysfunction that causes the pores and skin to blister and burst, leaving uncooked sores which might be inclined to infections.

Charlie has lived most of his life wrapped in bandages and has to take particular baths on daily basis to deal with his sores and maintain them from getting contaminated.

However the teenager is now going through a brand new battle after being recognized earlier this 12 months with lymphoma, a most cancers of the immune system.

Charlie Knuth, 13, from Darboy, Wisconsin, was born with a uncommon pores and skin dysfunction. Pictured: Charlie, proper, along with his father, Kevin

The dysfunction, often known as epidermolysis bullosa, causes the pores and skin to blister and burst on the slightest contact and leaves uncooked sores. Pictured: Charlie within the hospital)

Victims of EB are lacking sort VII collagen, a protein that enables the highest layer of pores and skin to bind with the underside layers.

The slightest motion can causes the pores and skin to instantly and constantly fall off.

The dysfunction could be very uncommon, and is estimated to happen in 20 newborns per a million reside births within the US, based on Stanford Kidss Hospital.

About 87 % of youngsters born with EB die throughout their first 12 months of life.

There isnt any remedy for EB so remedy goals at stopping blisters from changing into contaminated.

Charlies mom, Trisha Knuth, stated she and his father, Kevin, have tried a number of measures to assist deal with her son, together with lotions, lotions and gloves.

He is additionally undergone two stem cell transplants, during which new sheets of pores and skin grown and graft over the injuries.

In 2017, Charlie underwent surgical procedure to revive the usage of his palms, which had been degenerating because of his situation.

With no surgical procedure, his palms can be lined in scar tissue.

The scar tissue will really construct up between all the net areas between every finger, and the palms, and develop proper excessive of the hand so persons are left with simply nothing however mitts, Trisha advised WFRV.

In keeping with the station, throughout the surgical procedure, pores and skin was taken from Charlies thighs to make use of on his palms.

Titanium rods had been additionally inserted intoevery of his fingers, and saved there for 5 weeks, to stop them from curling into his palms.

Charlie (left and proper) was deserted at a hospital earlier than being adopted by his present mother and father. Earlier this month, he was recognized with lymphoma, a most cancers of immune system cells

His mother and father stated theyre touring to Minnesota to determine what stage his most cancers is at and what remedy hell bear. Pictured: Charlie, proper, along with his mom, Trisha

On Wednesday, Trisha posted on Fb that her son was recognized with lymphoma.

Lymphoma is most cancers that begins within the lymphocytes, that are immune system cells that struggle an infection.

There are two kinds of the most cancers, Non-Hodgkins and Hodgkins, nevertheless its not clear which kind Charlie has.

Indicators and signs embody swelling of the lymph nodes, fever, fatigue, shortness of breath and sudden weight reduction.

Therapy varies and may embody chemotherapy, radiation remedy and immunotherapy.

Its estimated that 82,310 folks will likely be recognized with lymphoma in 2019 and that 20,970 will die, based on the American Most cancers Society.

Within the Fb put up, Trisha wrote: My head is spinning and my coronary heart is breaking. My candy boy.

Charlies mom added the household will likely be touring to Minnesota so his most cancers can get staged and so they can assess remedy choices.

View original post here:
Boy abandoned at the hospital after being born with butterfly skin disease diagnosed with cancer - Herald Publicist

To Read More: Boy abandoned at the hospital after being born with butterfly skin disease diagnosed with cancer – Herald Publicist
categoriaSkin Stem Cells commentoComments Off on Boy abandoned at the hospital after being born with butterfly skin disease diagnosed with cancer – Herald Publicist | dataDecember 18th, 2019
Read All

BioRestorative Therapies Featured in IEEE Pulse Magazine’s Cover Story About Stem Cell Therapies for Low Back Pain – GlobeNewswire

By daniellenierenberg

MELVILLE, N.Y., Dec. 16, 2019 (GLOBE NEWSWIRE) -- BioRestorative Therapies, Inc. (BioRestorative or the Company) (OTC: BRTX), a life sciences company focused on stem cell-based therapies, announced today feature coverage in the news outlet, IEEE Pulse, a magazine of the IEEE Engineering in Medicine and Biology Society. According to IEEE, it is the worlds largest technical professional organization for the advancement of technology.

To view the IEEE Pulse Magazines article featuring BioRestorative, click here.

The published cover-story article features commentary from Francisco Silva, Chief Scientist and Vice President of Research and Development for BioRestorative, regarding BRTX-100, the Companys lead therapeutic candidate for chronic lumbar disc disease. Once the U.S. Food and Drug Administration (FDA) authorizes the sale of BRTX-100, we would ship it to your doctor, and with a 30-minute procedure the material would be injected into your disc in a 1.5 ml solution, explains Silva. He elaborates on the product, discussing growing and expanding stem cells from the patients bone marrow under hypoxic conditions that mimic those in the normal intervertebral space. We are enriching the cells to be able to survive in this harsh environment, says Silva.

In addition to BRTX-100, the magazine article also highlights BioRestoratives other research pursuit, its ThermoStem program, utilizing brown adipose (fat) derived stem cells to target treatment of metabolic diseases and disorders, like diabetes, obesity and hypertension.

About BioRestorative Therapies, Inc.

BioRestorative Therapies, Inc. (www.biorestorative.com) develops therapeutic products using cell and tissue protocols, primarily involving adult stem cells. Our two core programs, as described below, relate to the treatment of disc/spine disease and metabolic disorders:

Disc/Spine Program (brtxDISC): Our lead cell therapy candidate, BRTX-100, is a product formulated from autologous (or a persons own) cultured mesenchymal stem cells collected from the patients bone marrow. We intend that the product will be used for the non-surgical treatment of painful lumbosacral disc disorders. The BRTX-100 production process utilizes proprietary technology and involves collecting a patients bone marrow, isolating and culturing stem cells from the bone marrow and cryopreserving the cells. In an outpatient procedure, BRTX-100 is to be injected by a physician into the patients damaged disc. The treatment is intended for patients whose pain has not been alleviated by non-invasive procedures and who potentially face the prospect of surgery. We have received authorization from the Food and Drug Administration to commence a Phase 2 clinical trial using BRTX-100 to treat persistent lower back pain due to painful degenerative discs.

Metabolic Program (ThermoStem): We are developing a cell-based therapy to target obesity and metabolic disorders using brown adipose (fat) derived stem cells to generate brown adipose tissue (BAT). BAT is intended to mimic naturally occurring brown adipose depots that regulate metabolic homeostasis in humans. Initial preclinical research indicates that increased amounts of brown fat in the body may be responsible for additional caloric burning as well as reduced glucose and lipid levels. Researchers have found that people with higher levels of brown fat may have a reduced risk for obesity and diabetes.

Forward-Looking Statements

This press release contains "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events or results to differ materially from those projected in the forward-looking statements as a result of various factors and other risks, including, without limitation, whether the Company will be able to consummate the private placement and the satisfaction of closing conditions related to the private placement and those set forth in the Company's Form 10-K filed with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and the Company undertakes no obligation to update such statements.

CONTACT:Email: ir@biorestorative.com

Excerpt from:
BioRestorative Therapies Featured in IEEE Pulse Magazine's Cover Story About Stem Cell Therapies for Low Back Pain - GlobeNewswire

To Read More: BioRestorative Therapies Featured in IEEE Pulse Magazine’s Cover Story About Stem Cell Therapies for Low Back Pain – GlobeNewswire
categoriaBone Marrow Stem Cells commentoComments Off on BioRestorative Therapies Featured in IEEE Pulse Magazine’s Cover Story About Stem Cell Therapies for Low Back Pain – GlobeNewswire | dataDecember 16th, 2019
Read All

Immunotherapy drug improves outcomes for some children with relapsed leukemia – National Institutes of Health

By daniellenierenberg

News Release

Tuesday, December 10, 2019

New findings from a clinical trial show that treatment with the immunotherapy drug blinatumomab is superior to standard chemotherapy for children and young adults with high- or intermediate-risk B-cell acute lymphoblastic leukemia (B-ALL) that has relapsed. Those treated with blinatumomab had longer survival, experienced fewer severe side effects, had a higher rate of undetectable residual disease, and were more likely to proceed to a stem cell transplant.

Our study demonstrates that immunotherapy with blinatumomab is more effective and less toxic than chemotherapy as a bridge to curative bone marrow transplant for children and young adults with very aggressive relapse of B-ALL, said Patrick Brown, M.D., who chaired the trial and is director of the Pediatric Leukemia Program at the Johns Hopkins Kimmel Cancer Center, Baltimore. We are thrilled that these patients, whose survival has not substantially improved for decades, now have a new and better standard of care.

The findings were presented as a late-breaking abstract at the American Society of Hematology (ASH) annual meeting on Dec. 10, 2019. The trial was led by the Childrens Oncology Group (COG), part of the National Cancer Institute (NCI)sponsored National Clinical Trials Network. NCI is part of the National Institutes of Health. Amgen reviewed the trial protocol and amendments and provided the study drug under a Cooperative Research and Development Agreement with NCI.

These findings will likely have immediate impact on the treatment of this group of children and young adults with relapsed B-ALL, said Malcolm Smith, M.D., Ph.D., associate branch chief for pediatric oncology in NCIs Cancer Therapy Evaluation Program, which sponsored the trial. These results also reinforce the important role that federally funded clinical trials play in developing more effective treatments for children with cancer.

When children have B-ALL that relapses after their initial treatment, they are typically given chemotherapy. The first four to six weeks of chemotherapy, the reinduction phase, is commonly followed by additional intensive chemotherapy, or consolidation treatment, to further reduce disease levels. Following this, hematopoietic stem cell transplant is considered the best treatment for approximately half of patients, based on factors such as whether relapse occurred during initial treatment or shortly after it was completed.

However, chemotherapy can produce severe side effects in some patients and is sometimes ineffective in reducing leukemia levels to the low levels needed prior to transplant. As a result, patients may not be able to proceed to transplant or transplant may be delayed, which increases the risk that the leukemia will return.

The COG study investigated blinatumomab as an alternative type of consolidation treatment to follow the reinduction phase. Blinatumomab is a type of immunotherapy that works by binding to two different molecules: CD19, a protein, or antigen, expressed on the surface of B-ALL cells, and CD3, an antigen expressed on T cells. By bringing T cells close to leukemia cells, the immunotherapy helps the T cells recognize and kill the cancer cells.

Blinatumomab has been approved by the U.S. Food and Drug Administration (FDA) for adults and children with B-ALL that has returned or has not responded to treatment. FDA has also granted accelerated approval to the drugmeaning confirmatory trials must show it has clinical benefitfor some adults and children undergoing treatment for B-ALL who achieve complete remission but still have small amounts of leukemia detectable using very sensitive methods.

Investigators in this study wanted to see if blinatumomab could increase rates of survival free from leukemia and be less toxic than intensive chemotherapy in children and young adults undergoing consolidation treatment.

The trial report was based on 208 children and young adults aged 130 with relapsed B-ALL who had received reinduction chemotherapy and were considered to have high- or intermediate-risk disease. They were randomly assigned to receive either two rounds of intensive chemotherapy or two 4-week rounds of treatment with blinatumomab before proceeding to a transplant. (A separate part of the study addressed children with low-risk disease.)

After a median follow-up time of 1.4 years, those in the blinatumomab group had higher rates of 2-year disease-free survival, the primary outcome of the study, than those who received intensive chemotherapy (59.3 5.4% vs. 41 6.2%). Those treated with blinatumomab also had higher rates of overall survival (79.4 4.5% vs. 59.2 6%), fewer severe side effects, a higher rate of undetectable residual disease (79% vs. 21%), and a higher rate of proceeding to stem cell transplant (73% vs. 45%).

At a planned interim analysis, an independent data safety monitoring committee concluded that the outcome for children treated with blinatumomab was superior to that of children treated with chemotherapy only and recommended that enrollment to the high- and intermediate-risk part of the trial be stopped.

Future clinical trials will study whether blinatumomabs effects in relapsed B-ALL can be enhanced by combining it with other immunotherapy and will test whether adding the drug to standard chemotherapy for children and young adults with newly diagnosed B-ALL is beneficial.

About the National Cancer Institute (NCI):NCIleads the National Cancer Program and NIHs efforts to dramatically reduce the prevalence of cancer and improve the lives of cancer patients and their families, through research into prevention and cancer biology, the development of new interventions, and the training and mentoring of new researchers. For more information about cancer, please visit the NCI website atcancer.govor call NCIs contact center, the Cancer Information Service, at 1-800-4-CANCER (1-800-422-6237).

About the National Institutes of Health (NIH):NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIHTurning Discovery Into Health

###

See the original post here:
Immunotherapy drug improves outcomes for some children with relapsed leukemia - National Institutes of Health

To Read More: Immunotherapy drug improves outcomes for some children with relapsed leukemia – National Institutes of Health
categoriaBone Marrow Stem Cells commentoComments Off on Immunotherapy drug improves outcomes for some children with relapsed leukemia – National Institutes of Health | dataDecember 16th, 2019
Read All

Aspen Neuroscience Receives $6.5M for Parkinson’s Stem Cell Therapy – Parkinson’s News Today

By daniellenierenberg

Aspen Neuroscience, a new biotech company, has raised $6.5 million to develop cell therapies for Parkinsons disease using patients own cells.

The company was co-founded by renowned stem cell scientists Jeanne F. Loring, PhD, and Andres Bratt-Leal, PhD, and initially supported by Summit for Stem Cell, a non-profit organization that provides a variety of services for Parkinsons patients.

Parkinsons hallmark motor symptomsinclude tremor, slowness of movement (bradykinesia), stiffness (rigidity), uncontrollable movements (dyskinesia), and poor balance.

As the disease progresses, patients typically need to gradually increase their dopaminergic therapeutic dose for maximum benefit. Even after that they might sometimes experience reappearance or worsening of symptoms due to diminishing effects of dopaminergic therapy, known was off periods.

Importantly, dopaminergic therapy is delivered to areas of the brain other than the striatum, a key motor control region severely affected in Parkinsons disease. Because of the therapys off-target behavior, patients also may experience side effects such as hallucinations or cognitive impairment.

Aspen wants to combine its expertise in stem cell biology, genomics and neurology and develop the first autologous (self) stem cell-based therapy for Parkinsons disease.

In this type of cell therapy, a patients own cells (usually skin cells) are reprogrammed back into a stem cell-like state, which allows the development of an unlimited source of almost any type of human cell needed, including dopamine-producing neurons, which are those mainly affected by this disorder.

Because these cells are derived from patients, they do not carry the risk of being rejected once re-implanted, eliminating the need for immunosuppressive complementary therapies, which carry serious side effects such as infections and possibly limiting therapeutic potential.

In theory, replacing lost dopaminergic neurons with new stem cell-derived dopamine-producing ones could potentially ease or reverse motor symptoms associated with the disease.

Aspen is developing a restorative, disease modifying autologous neuron therapy for people suffering from Parkinsons disease, Howard J. Federoff, MD, PhD, Aspens CEO, said in a press release.

We are fortunate to have such a high-caliber scientific and medical leadership team to make our treatments a reality. Our cell replacement therapy, which originated in the laboratory of Dr. Jeanne Loring and was later supported by Summit for Stem Cell and its President, Ms. Jenifer Raub, has the potential to release dopamine and reconstruct neural networks where no disease-modifying therapies exist, Federoff said.

The companys lead product (ANPD001) is undergoing investigational new drug (IND)-enabling studies for the treatment of sporadic Parkinsons disease. Aspen experts also are developing a gene-editing treatment (ANPD002) for familial forms of Parkinsons, starting with the most common genetic variant in the GBAgene, which provides instructions to make the enzyme beta-glucocerebrosidase.

The new seed funding round was led by Domain Associates and Axon Ventures, with additional participation from Alexandria Venture Investments, Arch Venture Partners, OrbiMed and Section 32, according to the press release.

With over three years of experience in the medical communications business, Catarina holds a BSc. in Biomedical Sciences and a MSc. in Neurosciences. Apart from writing, she has been involved in patient-oriented translational and clinical research.

Total Posts: 208

Ana holds a PhD in Immunology from the University of Lisbon and worked as a postdoctoral researcher at Instituto de Medicina Molecular (iMM) in Lisbon, Portugal. She graduated with a BSc in Genetics from the University of Newcastle and received a Masters in Biomolecular Archaeology from the University of Manchester, England. After leaving the lab to pursue a career in Science Communication, she served as the Director of Science Communication at iMM.

The rest is here:
Aspen Neuroscience Receives $6.5M for Parkinson's Stem Cell Therapy - Parkinson's News Today

To Read More: Aspen Neuroscience Receives $6.5M for Parkinson’s Stem Cell Therapy – Parkinson’s News Today
categoriaSkin Stem Cells commentoComments Off on Aspen Neuroscience Receives $6.5M for Parkinson’s Stem Cell Therapy – Parkinson’s News Today | dataDecember 16th, 2019
Read All

Page 171«..1020..170171172173..180190..»


Copyright :: 2024