Page 186«..1020..185186187188..200210..»

New cell therapy improves memory and stops seizures following TBI: Study – ANI News

By daniellenierenberg

ANI | Updated: Nov 16, 2019 17:52 IST

Washington D.C. [USA], Nov 16 (ANI): Researchers have developed a breakthrough cell therapy to improve memory and prevent seizures in mice following traumatic brain injury.The study -- 'Transplanted interneurons improve memory precision after traumatic brain injury' -- was published in the journal of 'Nature Communications.'Traumatic brain injuries (TBI) affect two million Americans each year and cause cell death and inflammation in the brain. People, who experience a head injury often, suffer from lifelong memory loss and can develop epilepsy.In the study, the team transplanted embryonic progenitor cells capable of generating inhibitory interneurons, a specific type of nerve cell that controls the activity of brain circuits, into the brains of mice with traumatic brain injury. They targeted the hippocampus, a brain region responsible for learning and memory.The researchers have discovered that the transplanted neurons migrated into the injury where they formed new connections with the injured brain cells and thrived long term.Within a month after treatment, the mice showed signs of memory improvement such as being able to tell the difference between a box where they had an unpleasant experience from one where they did not.They were able to do this just as well as mice that never had a brain injury. The cell transplants also prevented the mice from developing epilepsy, which affected more than half of the mice who were not treated with new interneurons."Inhibitory neurons are critically involved in many aspects of memory, and they are extremely vulnerable to dying after a brain injury," said Robert Hunt, PhD, assistant professor of anatomy and neurobiology at UCI School of Medicine, who led the study."While we cannot stop interneurons from dying, it was exciting to find that we can replace them and rebuild their circuits," added Hunt.To further test their observations, Hunt and his team silenced the transplanted neurons with a drug, which caused the memory problems to return."It was exciting to see the animals' memory problems come back after we silenced the transplanted cells because it showed that the new neurons really were the reason for the memory improvement," said Bingyao Zhu, a junior specialist and first author of the study.Currently, there are no treatments for people who experience a head injury. If the results in mice can be replicated in humans, it could have a tremendous impact on patients. The next step is to create interneurons from human stem cells."So far, nobody has been able to convincingly create the same types of interneurons from human pluripotent stem cells," Hunt said. "But I think we're close to being able to do this." (ANI)

Follow this link:
New cell therapy improves memory and stops seizures following TBI: Study - ANI News

To Read More: New cell therapy improves memory and stops seizures following TBI: Study – ANI News
categoriaCardiac Stem Cells commentoComments Off on New cell therapy improves memory and stops seizures following TBI: Study – ANI News | dataNovember 17th, 2019
Read All

Im grateful for the kindness of strangers in my cancer recovery – The Globe and Mail

By daniellenierenberg

Illustration by Adam De Souza

First Person is a daily personal piece submitted by readers. Have a story to tell? See our guidelines at tgam.ca/essayguide.

A few days after my stem cell transplant this year, a young cleaner entered my hospital room to disinfect and swab. Broad faced and friendly, she saw me lying in bed reading a book.

Do you like reading, she asked? Well, I have the book for you. It is called Fifty Shades of Grey. Its porno!

Story continues below advertisement

That last part was whispered behind a cupped hand, as she grinned and then giggled. For good measure, she also recommended the teen vampire series Twilight.

Once shed left I laughed out loud in a way I hadnt done for days, weeks in fact. When you have cancer, these moments are golden.

Over the last year I have spent months in hospitals, being infused with chemotherapy that laid me low and then undergoing a risky transplant of stem cells from a heroic unknown donor. During this long period of remission and recovery, I have valued every opportunity to smile, to breathe and to feel hope. Much of this sense of being fully alive has come from the kindness of others.

The transplant had made me feel very sick and there was a point at which I was terrified of dying. I asked the hospital staff for a spiritual adviser and the next day a Buddhist monk came to visit me. I didnt expect this, but his calm face and compassionate manner brought me peace. He read me poems for meditation, encouraged deep breathing, and assured me that all emotions in illness are human expressions of identity and not to be judged or feared. His gentleness was echoed two days later, when a nurse with the loveliest face I had ever seen knelt down next to my bed, held my hand, and reassured me I would be okay.

Day by day, my son, his girlfriend, and my husband encouraged and supported me, too, even when I could barely hold up my head or speak without tears. My 21-year-old son sat with me through many painful procedures, setting his phone to play Bachs Brandenburg Concertos, squeezing my hand, looking into my face, loving me and giving me strength I didnt think I had.

I was diagnosed with acute myeloid leukemia in February 2019; before that fateful month I was a modern German historian teaching university students on the Weimar Republic, Nazism and the Holocaust. There were days when I had wept and raged with my students over the historical accounts of Nazi inhumanity, barbarity and chilling callousness inflicted upon innocent civilians, especially the Jews. I have often questioned whether human nature is fundamentally selfish, violent and nasty. Right now, in this world of hateful populism and climate devastation, I ask these questions even more. But since I became sick, the kindness, indeed the goodness, of other people has been a constant companion to me. I have been overwhelmed by the extraordinary outpouring of support and concern from so many. Compassion, care, affection, hope all have been expressed to me by family, friends, students and colleagues. Blood drives were organized in my name, and students asked me if they could be tested as a possible bone-marrow donor. My sister (who hates medical procedures) underwent several tests to see if she could be a sibling transplant. One colleague even offered me the umbilical blood he had saved from his three children. (Ultimately the hospital found a donor from an international registry.)

Friends and family kept in touch or visited despite the long drives to the two hospitals where I received treatment. Two of my girlfriends texted me every day, sending love, inspiration and photos of flowers. From other well-wishers I received quilts and artwork and shawls, books and lotion and lip balm. I read notes and e-mails that told me I was not alone, that love surrounded me and would lift me up. Prayers were said for me in Protestant, Catholic, Unitarian, Muslim and Jewish places of worship. Students sent me good luck charms, including a chemo bear (it worked! I went into remission). Money was donated in a go-fund-me campaign to help with the costs of travel and accommodation to cancer centres. Strangers (friends of friends) offered their homes at the times when we couldnt find accommodation. Delicious meals were dropped off at my home or brought to the hospitals: lentil soups, macaroni and cheese, banana bread and smoothies, all preventing me from having to imbibe those horrible meal-replacement drinks or the cafeteria food. Cancer patients came to see me and shared their experiences and wisdom. A quietly stoic man in his 40s with Stage 4 colorectal cancer expressed hope in the advances in cancer treatment; another inspirational friend with breast cancer revealed she had undergone over 100 chemo treatments and still managed to propel her bike in the annual Ride to Conquer Cancer. Other leukemia patients in my wards became friends and sources of enormous support. My sister-in-law, a liver transplant survivor, understood my physical and emotional pain and talked me through several hard times. On the stranger than fiction level, old boyfriends and ex-friends reappeared, expressing their love and sending me cards or messages that brought tears to my eyes. At the same time high-school and university pals from my ancient past got in touch and told me to hang in there!

Story continues below advertisement

Story continues below advertisement

I got through the worst days because of the superb doctors and nurses, the donor who gave her or his stem cells, and our excellent health-care system. But I also made it this far because I did not feel alone. I was constantly reminded that I am loved and that I have so much to live for. In the arduous world of my cancer treatment, the face of compassion has appeared so many times and in such beautiful ways that I now place much more faith in the goodness of human nature because I have seen that many of us will care for each other, especially in hard times.

I may not decide to read Fifty Shades of Grey, but I love that this young woman wanted to suggest something to make me forget the cancer and feel better. And, really, because of her and the support that surrounded me, I did.

Carolyn Kay lives in Peterborough, Ont.

Read this article:
Im grateful for the kindness of strangers in my cancer recovery - The Globe and Mail

To Read More: Im grateful for the kindness of strangers in my cancer recovery – The Globe and Mail
categoriaBone Marrow Stem Cells commentoComments Off on Im grateful for the kindness of strangers in my cancer recovery – The Globe and Mail | dataNovember 15th, 2019
Read All

Redding woman donates bone marrow, saves life of a father – FOX61 Hartford

By daniellenierenberg

Please enable Javascript to watch this video

A 25-year-old Redding, Connecticut woman meets the Arizona man who was battling deadly Acute Lymphoblastic Leukemia (ALL) until she saved his life by donating her bone marrow.

Jennie Bunce joined Gift of Life Marrow Registry through a sorority swab drive at North Carolinas High Point University in 2016. "I can remember being like 13 or 14 years old during some school bucket list project. On there was save a life and I got to cross it off so thats pretty cool."

Her life-saving match-- 33-year-old father of six from Mesa, Mark Roser. Roser learned he had ALL after breaking a hip and feeling increasingly weak in 2018.

He needed a bone marrow transplant to survive. He says, "When they discovered it, 94% of my blood cells basically contaminated, so I was really at the final deadline."

Gift of Life Marrow Registry matched the Jennie to Mark with months.

The pair met for the first time at Boca Oyster Bar in Bridgeport in October. Mark says, " I feel great. Im much more positive between work and family. My priorities have completely changed. Time with the kids, time with my wife, just being there for them instead of working so much... I treasure every moment with them now."

According to the gift of Life marrow registry website: "Blood cancer is an umbrella term for cancers that affect the blood, bone marrow and lymphatic system. In most blood cancers, normal blood cell development is interrupted by uncontrolled growth of abnormal blood cells. The abnormal blood cells can prevent blood from fighting off infection or preventing uncontrolled bleeding.

Unfortunately, blood cancer can strike any one of us at any time. Approximately every three minutes, a child or adult in the United States is diagnosed with a type of blood cancer. Thats 360 people a day, 130,000 people a year.

There are three main types of blood cancers: Leukemia, cancer that is found in your blood and bone marrow; Lymphoma, blood cancer that affects the lymphatic system; and Myeloma, blood cancer that specifically targets your plasma cells.

For many, there is hope of a cure through a bone marrow or peripheral blood stem cell transplant. Today, transplantation, of healthy stem cells donated by related and unrelated volunteers, offers hope to many patients suffering from these sometimes deadly diseases.

Advances in transplantation have made this procedure a reality for thousands who are alive today because a stranger gave them the Gift of Life!."

check out: https://www.giftoflife.org to learn more and even register for a swab kit and become a donor yourself.

Continue reading here:
Redding woman donates bone marrow, saves life of a father - FOX61 Hartford

To Read More: Redding woman donates bone marrow, saves life of a father – FOX61 Hartford
categoriaBone Marrow Stem Cells commentoComments Off on Redding woman donates bone marrow, saves life of a father – FOX61 Hartford | dataNovember 15th, 2019
Read All

Gracell Announces Five Presentations at the Annual Meeting of American Society of Hematology (ASH) – BioSpace

By daniellenierenberg

SHANGHAI and SUZHOU, China, Nov. 15, 2019 /PRNewswire/ --Gracell Biotechnologies Co., Ltd. ("Gracell"), a clinical-stage immune cell therapy company, today announced five presentations to be delivered at the upcoming American Society of Hematology (ASH) Annual Meeting in Orlando, Florida, held from December 7-10.

The presentations centre on Gracell's breakthrough FasTCARtechnology, and other two platform technology in four product categories used in the treatment of hematological malignancies, each with well-defined objectives, including:

The four product candidates are currently being studied in ongoing phase I clinical trials conducted by Gracell, Hebei Yanda Lu Daopei Hospital, and Xinqiao Hospital of AMU, and six other hospitals nationwide in China.

"These clinical studies demonstrated Gracell's product development strategy and strong capabilities to bring multiple novel therapies through clinical investigations," said Dr. William CAO, CEO of Gracell. "These invaluable data provides guidance for and enhance our confidence in pipeline selection."

Oral presentations:

A Feasibility and Safety Study of a New CD19-Directed Fast CAR-T Therapy for Refractory and Relapsed B cell Acute Lymphoblastic LeukemiaAbstract #825Session Name: 612. Acute Lymphoblastic Leukemia: Clinical Studies: Therapeutics StrategiesPresenter: Peihua Lu, M.D., Hebei Yanda Lu Daopei HospitalLocation: Orange County Convention Center, Tangerine 1 (WF1), Level 2Time: 5:00 pm, Monday, December 9, 2019https://ash.confex.com/ash/2019/webprogram/Paper121751.html

Anti-CD19/CD22 Dual CAR-T Therapy for Refractory and Relapsed B-Cell Acute Lymphoblastic LeukemiaAbstract #284Session Name: 612. Acute Lymphoblastic Leukemia: Clinical Studies: Novel TherapiesPresenter: Peihua Lu, M.D., Hebei Yanda Lu Daopei HospitalLocation: Orange County Convention Center, W224, Level 2Time: 4:15pm, Saturday, December 7, 2019https://ash.confex.com/ash/2019/webprogram/Paper126429.html

Poster presentations:

CD19-Directed Fast CART Therapy for Relapsed/Refractory Acute Lymphoblastic Leukemia: From Bench to BedsideAbstract #1340Session Name: 614. Acute Lymphoblastic Leukemia: Therapy, excluding Transplantation: Poster IPresenter: Cheng Zhang, M.D., Xinqiao Hospital of AMULocation: Orange County Convention Center, Hall B, Level 25:30-7:30 pm, Saturday, December 7, 2019https://ash.confex.com/ash/2019/webprogram/Paper128006.html

A Bcma and CD19 Bispecific CAR-T for Relapsed and Refractory Multiple MyelomaAbstract # 3147Session Name: 653. Myeloma: Therapy, excluding Transplantation: Poster IIPresenter: Hua Zhang, PhD., Gracell Biotechnology Ltd., Shanghai, China, Shanghai, ChinaLocation: Orange County Convention Center, Hall B, Level 26:00 PM-8:00 pm, Sunday, December 8, 2019https://ash.confex.com/ash/2019/webprogram/Paper131056.html

Role of Donor-Derived CD19.CAR-T Cells in Treating Patients That Relapsed after Allogeneic Hematopoietic Stem Cell TransplantationAbstract #4561Session Name: 723. Clinical Allogeneic and Autologous Transplantation: Late Complications and Approaches to Disease Recurrence: Poster IIIPresenter: Cheng Zhang, M.D., Xinqiao Hospital of AMULocation: Orange County Convention Center, Hall B, Level 26:00-8:00 pm, Monday, December 9, 2019https://ash.confex.com/ash/2019/webprogram/Paper128262.html

About FasT CAR-19

FasT CAR-19, or GC007F, is an investigational CD19-targeted CAR-T cell therapy for adolescent and adult patients with refractory or relapsed B-ALL, as well as aggressive non-Hodgkin lymphoma. Thanks to Gracell's patented FasTCAR technology, the bioprocessing time for GC007F has been significantly reduced from two weeks to 24 hours with substantially lower cost. The improved CAR-T cell fitness resulted in superior proliferation capabilities, potency, and extensive bone marrow migration making GC007F a potential best-in-class therapy for refractory or relapsed B-ALL.

About Dual CAR-19-22

Dual CAR-19-22, or GC022, is an investigational CAR-T cell therapy redirected to target CD19 and CD22, in treating patients with CD19+, or/and CD22+ relapsed/refractory B-ALL. A low toxicity with dose-dependent high CR rate including patients who previously treated with CD19 CAR-T cells were observed.

About Dual CAR-BCMA-19

Dual CAR-BCMA-19, or GC012, is an investigational CAR-T cell therapy redirected to target BCMA and CD19, in treating patients with BCMA+, or/and CD19+ relapsed/refractory multiple myeloma. Previous research shows CD19 could express on the myeloma progenitor cells, while BCMA is a well validated target for MM.

About Donor CAR-19

Donor CAR-19, or GC007G, is an investigational CD19 targeted CAR-T cell therapy manufactured in use of donor's lymphocytes. The objective of this study is to further investigate and better understand the safety and efficacy of donor derived CAR-T cells in treatment of relapsed and refractory B-ALL patients.

About B-ALL

B-ALL is a sub-type of acute lymphoblastic leukemia, although rare, is one of the most common forms of cancer in children between the ages of two and five and adults over the age of 50[1]. In 2015, ALL affected around 876,000 people globally and resulted in 110,000 deaths worldwide[2]. It is also the most common cause of cancer and death from cancer among children. ALL is typically treated initially with chemotherapy aimed at bringing about remission. This is then followed by further chemotherapy carried out over several years.

About MM

Myeloma begins when a plasma cell becomes abnormal. The abnormal cell divides to make copies of itself. These abnormal plasma cells are called myeloma cells. In time, myeloma cells collect in the bone marrow. They may damage the solid part of the bone. When myeloma cells collect in several of your bones, the disease is called "multiple myeloma." This disease may also harm other tissues and organs, such as the kidneys. Myeloma cells make antibodies called M proteins and other proteins. These proteins can collect in the blood, urine, and organs[3].

About Gracell

Gracell Biotechnologies Co., Ltd. ("Gracell") is a clinical-stage biopharma company, committed to developing highly reliable and affordable cell gene therapies for cancer. Gracell is dedicated to resolving the remaining challenges in CAR-T, such as high production costs, lengthy manufacturing process, lack of off-the-shelf products, and inefficacy against solid tumors. Led by a group of world-class scientists, Gracell is advancing FasTCAR, TruUCAR (off-the-shelf CAR), Dual CAR and Enhanced CAR-T cell therapies for leukemia, lymphoma, myeloma, and solid tumors.

CONTACT:

Linc HE Associate Director of Business Developmentsunwei.he@gracellbio.com

Dr. William Cao Founder, Chairman and CEOwilliam.cao@gracellbio.com

View original content to download multimedia:http://www.prnewswire.com/news-releases/gracell-announces-five-presentations-at-the-annual-meeting-of-american-society-of-hematology-ash-300958982.html

SOURCE Gracell

See the original post:
Gracell Announces Five Presentations at the Annual Meeting of American Society of Hematology (ASH) - BioSpace

To Read More: Gracell Announces Five Presentations at the Annual Meeting of American Society of Hematology (ASH) – BioSpace
categoriaBone Marrow Stem Cells commentoComments Off on Gracell Announces Five Presentations at the Annual Meeting of American Society of Hematology (ASH) – BioSpace | dataNovember 15th, 2019
Read All

Maxim Group Maintains Their Buy Rating on Brainstorm Cell Therapeutics (BCLI) – Smarter Analyst

By daniellenierenberg

Maxim Group analyst Jason McCarthy maintained a Buy rating on Brainstorm Cell Therapeutics (BCLI) yesterday and set a price target of $9.00. The companys shares closed last Monday at $3.70.

According to TipRanks.com, McCarthy has 0 stars on 0-5 star ranking scale with an average return of -22.0% and a 25.3% success rate. McCarthy covers the Healthcare sector, focusing on stocks such as SELLAS Life Sciences Group, Hancock Jaffe Laboratories, and Lineage Cell Therapeutics.

The word on The Street in general, suggests a Moderate Buy analyst consensus rating for Brainstorm Cell Therapeutics with a $9.00 average price target.

See todays analyst top recommended stocks >>

The company has a one-year high of $4.50 and a one-year low of $2.92. Currently, Brainstorm Cell Therapeutics has an average volume of 52.25K.

Based on the recent corporate insider activity of 12 insiders, corporate insider sentiment is negative on the stock. This means that over the past quarter there has been an increase of insiders selling their shares of BCLI in relation to earlier this year. Most recently, in August 2019, Irit Arbel, a Director at BCLI sold 13,332 shares for a total of $48,795.

TipRanks has tracked 36,000 company insiders and found that a few of them are better than others when it comes to timing their transactions. See which 3 stocks are most likely to make moves following their insider activities.

Brainstorm Cell Therapeutics, Inc. operates as a biotechnology company, which develops and commercializes adult stem cell therapeutic products. It focuses on utilizing the patients own bone marrow stem cells to generate neuron-like cells that may provide an effective treatment initially for amyotrophic lateral sclerosis, Parkinsons disease, multiple sclerosis and spinal cord injury. The company was founded on September 22, 2000 and is headquartered in New York, NJ.

Go here to see the original:
Maxim Group Maintains Their Buy Rating on Brainstorm Cell Therapeutics (BCLI) - Smarter Analyst

To Read More: Maxim Group Maintains Their Buy Rating on Brainstorm Cell Therapeutics (BCLI) – Smarter Analyst
categoriaSpinal Cord Stem Cells commentoComments Off on Maxim Group Maintains Their Buy Rating on Brainstorm Cell Therapeutics (BCLI) – Smarter Analyst | dataNovember 15th, 2019
Read All

Celgene Receives CHMP Positive Opinion for REVLIMID (lenalidomide) in Combination With Rituximab for the Treatment of Adult Patients With Previously…

By daniellenierenberg

SUMMIT, N.J.--(BUSINESS WIRE)--Celgene Corporation (NASDAQ:CELG) today announced that the European Medicines Agency's (EMA) Committee for Medicinal Products for Human Use (CHMP) has adopted a positive opinion, recommending the approval of REVLIMID (lenalidomide) in combination with rituximab (anti-CD20 antibody) (R) for the treatment of adult patients with previously treated follicular lymphoma (FL) (Grade 1-3a). If approved by the European Commission (EC), R2 will be the first combination treatment regimen for patients with FL that does not include chemotherapy.

Since its initial approval in 2007, REVLIMID has continued to demonstrate its benefits across a range of serious blood disorders in Europe and a CHMP positive opinion for this combination with rituximab is very good news for patients with follicular lymphoma. We look forward to the European Commission decision, said Tuomo Ptsi, President of Hematology/Oncology for Celgene Worldwide Markets.

In FL, a subtype of indolent NHL, the immune system is not functioning optimally.1,2 When this dysfunction occurs, the immune system either fails to detect or attack cancerous cells.1,2 Rituximab is a monoclonal antibody that targets the CD 20 antigen on the surface of pre-B and mature B-lymphocytes. Upon binding to CD20, rituximab causes B-cell lysis. Lenalidomide is an immunomodulator that increases the number and activation of T and natural killer (NK) cells, resulting in the lysis of tumor cells. The R2 combination regimen acts by complementary mechanisms to help the patients immune system to find and destroy the cancer cells.3

Given the incurable nature of FL2, a high unmet medical need exists for the development of novel treatment options with new mechanisms of action and a tolerable safety profile to help improve progression-free survival (PFS) especially in the setting of previously treated FL.

The estimated incidence of NHL in Europe was 100,055 cases in 2018; FL accounts for approximately 25% of all NHL cases and is the most common form of indolent NHL.3,4,5

Chemotherapy is a standard of care for indolent forms of NHL, but most patients will relapse or become refractory to their current treatment, said Prof. John Gribben, President of EHA and Centre for Haemato-Oncology, Barts Cancer Institute, in England The combination of REVLIMID and rituximab could represent a new, chemotherapy-free treatment option for patients with previously treated follicular lymphoma.

The CHMP positive opinion is based primarily on results from the randomized, multi-center, double-blind, Phase 3 AUGMENT study, which evaluated the efficacy and safety of the R combination versus rituximab plus placebo in patients with previously treated FL (n=295).6,7 Additionally, findings from the MAGNIFY study were included as support for the safety and the efficacy of lenalidomide plus rituximab in patients with relapsed or refractory FL, including rituximab refractory FL patients.8

The CHMP reviews applications for all member states of the European Union (EU), as well as Norway, Liechtenstein, and Iceland. The European Commission, which generally follows the recommendation of the CHMP, is expected to make its final decision in approximately two months. If approval is granted, detailed conditions for the use of this product will be described in the REVLIMID Summary of Product Characteristics (SmPC), which will be published in the revised European Public Assessment Report (EPAR).

About Follicular Lymphoma

Lymphoma is a blood cancer that develops in lymphocytes, a type of white blood cell in the immune system that helps protect the body from infection.9 There are two classes of lymphoma Hodgkins lymphoma and non-Hodgkins lymphoma (NHL) each with specific subtypes that determine how the cancer behaves, spreads and should be treated.3,10,11 Other differentiating factors of lymphomas are what type of lymphocyte is affected (T cell or B cell) and how mature the cells are when they become cancerous.11

Follicular lymphoma is the most common indolent (slow-growing) form of NHL, accounting for approximately 25% of all Non-Hodgkin lymphoma (NHL) patients.5,12 Most patients present with advanced disease usually when lymphoma-related symptoms appear (e.g., nodal disease, B symptoms, cytopenia) and receive systemic chemoimmunotherapy.5 While follicular lymphoma patients are generally responsive to initial treatment, the disease course is characterized by recurrent relapses over time with shorter remission periods.13

About AUGMENT

AUGMENT is a Phase 3, randomized, double-blind clinical trial evaluating the efficacy and safety of REVLIMID (lenalidomide) in combination with rituximab (R) versus rituximab plus placebo in patients with previously treated follicular lymphoma (FL). AUGMENT included patients diagnosed with Grade 1, 2 or 3a FL, who were previously treated with at least 1 prior systemic therapy and two previous doses of rituximab. Patients were documented relapsed, refractory or progressive disease following systemic therapy, but were not rituximab-refractory.6,7

The primary endpoint was progression-free survival, defined as the time from date of randomization to the first observation of disease progression or death due to any cause. Secondary and exploratory endpoints included overall response rate, durable complete response rate, complete response rate, duration of response, duration of complete response, overall survival, event-free survival and time to next anti-lymphoma therapy.6,7

About REVLIMID

REVLIMID is approved in Europe and the United States as monotherapy, indicated for the maintenance treatment of adult patients with newly diagnosed multiple myeloma (MM) who have undergone autologous stem cell transplantation. REVLIMID as combination therapy is approved in Europe, in the United States, in Japan and in around 25 other countries for the treatment of adult patients with previously untreated MM who are not eligible for transplant. REVLIMID is also approved in combination with dexamethasone for the treatment of patients with MM who have received at least one prior therapy in nearly 70 countries, encompassing Europe, the Americas, the Middle-East and Asia, and in combination with dexamethasone for the treatment of patients whose disease has progressed after one therapy in Australia and New Zealand.

REVLIMID is also approved in the United States, Canada, Switzerland, Australia, New Zealand and several Latin American countries, as well as Malaysia and Israel, for transfusion-dependent anaemia due to low- or intermediate-1-risk myelodysplastic syndromes (MDS) associated with a deletion 5q cytogenetic abnormality with or without additional cytogenetic abnormalities and in Europe for the treatment of patients with transfusion-dependent anemia due to low- or intermediate-1-risk MDS associated with an isolated deletion 5q cytogenetic abnormality when other therapeutic options are insufficient or inadequate.

In addition, REVLIMID is approved in Europe for the treatment of patients with mantle cell lymphoma (MCL) and in the United States for the treatment of patients with MCL whose disease has relapsed or progressed after two prior therapies, one of which included bortezomib. In Switzerland, REVLIMID is indicated for the treatment of patients with relapsed or refractory MCL after prior therapy that included bortezomib and chemotherapy/rituximab.

REVLIMID is not indicated and is not recommended for the treatment of patients with chronic lymphocytic leukemia (CLL) outside of controlled clinical trials.

Important Safety Information

WARNING: EMBRYO-FETAL TOXICITY, HEMATOLOGIC TOXICITY, and VENOUS and ARTERIAL THROMBOEMBOLISM

Embryo-Fetal Toxicity

Do not use REVLIMID during pregnancy. Lenalidomide, a thalidomide analogue, caused limb abnormalities in a developmental monkey study. Thalidomide is a known human teratogen that causes severe life-threatening human birth defects. If lenalidomide is used during pregnancy, it may cause birth defects or embryo-fetal death. In females of reproductive potential, obtain 2 negative pregnancy tests before starting REVLIMID treatment. Females of reproductive potential must use 2 forms of contraception or continuously abstain from heterosexual sex during and for 4 weeks after REVLIMID treatment. To avoid embryo-fetal exposure to lenalidomide, REVLIMID is only available through a restricted distribution program, the REVLIMID REMS program.

Information about the REVLIMID REMS program is available at http://www.celgeneriskmanagement.com or by calling the manufacturers toll-free number 1-888-423-5436.

Hematologic Toxicity (Neutropenia and Thrombocytopenia)

REVLIMID can cause significant neutropenia and thrombocytopenia. Eighty percent of patients with del 5q MDS had to have a dose delay/reduction during the major study. Thirty-four percent of patients had to have a second dose delay/reduction. Grade 3 or 4 hematologic toxicity was seen in 80% of patients enrolled in the study. Patients on therapy for del 5q MDS should have their complete blood counts monitored weekly for the first 8 weeks of therapy and at least monthly thereafter. Patients may require dose interruption and/or reduction. Patients may require use of blood product support and/or growth factors.

Venous and Arterial Thromboembolism

REVLIMID has demonstrated a significantly increased risk of deep vein thrombosis (DVT) and pulmonary embolism (PE), as well as risk of myocardial infarction and stroke in patients with MM who were treated with REVLIMID and dexamethasone therapy. Monitor for and advise patients about signs and symptoms of thromboembolism. Advise patients to seek immediate medical care if they develop symptoms such as shortness of breath, chest pain, or arm or leg swelling. Thromboprophylaxis is recommended and the choice of regimen should be based on an assessment of the patients underlying risks.

CONTRAINDICATIONS

Pregnancy: REVLIMID can cause fetal harm when administered to a pregnant female and is contraindicated in females who are pregnant. If this drug is used during pregnancy or if the patient becomes pregnant while taking this drug, the patient should be apprised of the potential risk to the fetus

Severe Hypersensitivity Reactions: REVLIMID is contraindicated in patients who have demonstrated severe hypersensitivity (e.g., angioedema, Stevens-Johnson syndrome, toxic epidermal necrolysis) to lenalidomide

WARNINGS AND PRECAUTIONS

Embryo-Fetal Toxicity: See Boxed WARNINGS

REVLIMID REMS Program: See Boxed WARNINGS: Prescribers and pharmacies must be certified with the REVLIMID REMS program by enrolling and complying with the REMS requirements; pharmacies must only dispense to patients who are authorized to receive REVLIMID. Patients must sign a Patient-Physician Agreement Form and comply with REMS requirements; female patients of reproductive potential who are not pregnant must comply with the pregnancy testing and contraception requirements and males must comply with contraception requirements

Hematologic Toxicity: REVLIMID can cause significant neutropenia and thrombocytopenia. Monitor patients with neutropenia for signs of infection. Advise patients to observe for bleeding or bruising, especially with use of concomitant medications that may increase risk of bleeding. MM: Patients taking REVLIMID/dex or REVLIMID as maintenance therapy should have their complete blood counts (CBC) assessed every 7 days for the first 2 cycles, on days 1 and 15 of cycle 3, and every 28 days thereafter. MDS: Patients on therapy for del 5q MDS should have their complete blood counts monitored weekly for the first 8 weeks of therapy and at least monthly thereafter. Patients may require dose interruption and/or dose reduction. Please see the Black Box WARNINGS for further information. MCL: Patients taking REVLIMID for MCL should have their CBCs monitored weekly for the first cycle (28 days), every 2 weeks during cycles 2-4, and then monthly thereafter. Patients may require dose interruption and/or dose reduction

Venous and Arterial Thromboembolism: See Boxed WARNINGS: Venous thromboembolic events (DVT and PE) and arterial thromboses (MI and CVA) are increased in patients treated with REVLIMID. Patients with known risk factors, including prior thrombosis, may be at greater risk and actions should be taken to try to minimize all modifiable factors (e.g., hyperlipidemia, hypertension, smoking). Thromboprophylaxis is recommended and the regimen should be based on patients underlying risks. ESAs and estrogens may further increase the risk of thrombosis and their use should be based on a benefit-risk decision

Increased Mortality in Patients with CLL: In a clinical trial in the first-line treatment of patients with CLL, single agent REVLIMID therapy increased the risk of death as compared to single agent chlorambucil. Serious adverse cardiovascular reactions, including atrial fibrillation, myocardial infarction, and cardiac failure, occurred more frequently in the REVLIMID arm. REVLIMID is not indicated and not recommended for use in CLL outside of controlled clinical trials

Second Primary Malignancies (SPM): In clinical trials in patients with MM receiving REVLIMID, an increase of hematologic plus solid tumor SPM, notably AML and MDS, have been observed. Monitor patients for the development of SPM. Take into account both the potential benefit of REVLIMID and risk of SPM when considering treatment

Increased Mortality with Pembrolizumab: In clinical trials in patients with multiple myeloma, the addition of pembrolizumab to a thalidomide analogue plus dexamethasone resulted in increased mortality. Treatment of patients with multiple myeloma with a PD-1 or PD-L1 blocking antibody in combination with a thalidomide analogue plus dexamethasone is not recommended outside of controlled clinical trials

Hepatotoxicity: Hepatic failure, including fatal cases, has occurred in patients treated with REVLIMID/dex. Pre-existing viral liver disease, elevated baseline liver enzymes, and concomitant medications may be risk factors. Monitor liver enzymes periodically. Stop REVLIMID upon elevation of liver enzymes. After return to baseline values, treatment at a lower dose may be considered

Severe Cutaneous Reactions: Severe cutaneous reactions including Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS) have been reported. These events can be fatal. Patients with a prior history of Grade 4 rash associated with thalidomide treatment should not receive REVLIMID. Consider REVLIMID interruption or discontinuation for Grade 2-3 skin rash. Permanently discontinue REVLIMID for Grade 4 rash, exfoliative or bullous rash, or for other severe cutaneous reactions such as SJS, TEN, or DRESS.

Tumor Lysis Syndrome (TLS): Fatal instances of TLS have been reported during treatment with lenalidomide. The patients at risk of TLS are those with high tumor burden prior to treatment. These patients should be monitored closely and appropriate precautions taken

Tumor Flare Reaction (TFR): TFR has occurred during investigational use of lenalidomide for CLL and lymphoma. Monitoring and evaluation for TFR is recommended in patients with MCL. Tumor flare may mimic the progression of disease (PD). In patients with Grade 3 or 4 TFR, it is recommended to withhold treatment with REVLIMID until TFR resolves to Grade 1. REVLIMID may be continued in patients with Grade 1 and 2 TFR without interruption or modification, at the physicians discretion

Impaired Stem Cell Mobilization: A decrease in the number of CD34+ cells collected after treatment (>4 cycles) with REVLIMID has been reported. Consider early referral to transplant center to optimize timing of the stem cell collection

Thyroid Disorders: Both hypothyroidism and hyperthyroidism have been reported. Measure thyroid function before start of REVLIMID treatment and during therapy

Early Mortality in Patients with MCL: In another MCL study, there was an increase in early deaths (within 20 weeks), 12.9% in the REVLIMID arm versus 7.1% in the control arm. Risk factors for early deaths include high tumor burden, MIPI score at diagnosis, and high WBC at baseline (10 x 109/L)

Hypersensitivity: Hypersensitivity, including angioedema, anaphylaxis, and anaphylactic reactions to REVLIMID has been reported. Permanently discontinue REVLIMID for angioedema and anaphylaxis.

ADVERSE REACTIONS

Multiple Myeloma

Myelodysplastic Syndromes

Mantle Cell Lymphoma

DRUG INTERACTIONS

Periodic monitoring of digoxin plasma levels is recommended due to increased Cmax and AUC with concomitant REVLIMID therapy. Patients taking concomitant therapies such as erythropoietin stimulating agents or estrogen containing therapies may have an increased risk of thrombosis. It is not known whether there is an interaction between dex and warfarin. Close monitoring of PT and INR is recommended in patients with MM taking concomitant warfarin

USE IN SPECIFIC POPULATIONS

Please see full Prescribing Information, including Boxed WARNINGS.

Please see full SmPC for further information.

About Celgene

Celgene Corporation, headquartered in Summit, New Jersey, is an integrated global biopharmaceutical company engaged primarily in the discovery, development and commercialization of innovative therapies for the treatment of cancer and inflammatory diseases through next-generation solutions in protein homeostasis, immuno-oncology, epigenetics, immunology and neuro-inflammation. For more information, please visit http://www.celgene.com. Follow Celgene on Social Media: @Celgene, Pinterest, LinkedIn, Facebook and YouTube.

Forward-Looking Statements

This press release contains forward-looking statements, which are generally statements that are not historical facts. Forward-looking statements can be identified by the words "expects," "anticipates," "believes," "intends," "estimates," "plans," "will," "outlook" and similar expressions. Forward-looking statements are based on management's current plans, estimates, assumptions and projections, and speak only as of the date they are made. Celgene undertakes no obligation to update any forward-looking statement in light of new information or future events, except as otherwise required by law. Forward-looking statements involve inherent risks and uncertainties, most of which are difficult to predict and are generally beyond each company's control. Actual results or outcomes may differ materially from those implied by the forward-looking statements as a result of the impact of a number of factors, many of which are discussed in more detail in the Annual Report on Form 10-K and other reports of each company filed with the Securities and Exchange Commission, including factors related to the proposed transaction between Bristol-Myers Squibb and Celgene, such as, but not limited to, the risks that: managements time and attention is diverted on transaction related issues; disruption from the transaction make it more difficult to maintain business, contractual and operational relationships; legal proceedings are instituted against Bristol-Myers Squibb, Celgene or the combined company could delay or prevent the proposed transaction; and Bristol-Myers Squibb, Celgene or the combined company is unable to retain key personnel.

1 Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014;14(8):517-534.2 Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. J Clin Invest. 2012;122(10):3424-3431.3 Chiu H, Trisal P, Bjorklund C, et al. Combination lenalidomide-rituximab immunotherapy activates anti-tumour immunity and induces tumour cell death by complementary mechanisms of action in follicular lymphoma. Br J Haematol. 2019;185(2):240-253.4 European Cancer Information System. Estimates of cancer incidence and mortality in 2018, for all countries. Available at: https://ecis.jrc.ec.europa.eu/explorer.php. Accessed August 2019.5 European Society for Medical Oncology. Follicular Lymphoma: A Guide for Patients. 2014. Available at: https://www.esmo.org/content/download/52236/963497/file/EN-Follicular-Lymphoma-Guide-for-Patients.pdf . Accessed September 2019.6 Leonard JP, Trneny M, Izutsu K, et al. AUGMENT: A Phase III Study of Lenalidomide Plus Rituximab Versus Placebo Plus Rituximab in Relapsed or Refractory Indolent Lymphoma. J Clin Oncol. 2019;10;37(14):1188-1199.7 ClinicalTrials.gov Rituximab Plus Lenalidomide for Patients With Relapsed / Refractory Indolent Non-Hodgkin's Lymphoma (Follicular Lymphoma and Marginal Zone Lymphoma) (AUGMENT). Available at: https://clinicaltrials.gov/ct2/show/NCT01938001 Accessed September 2019.8 ClinicalTrials.gov Lenalidomide Plus Rituximab Followed by Lenalidomide Versus Rituximab Maintenance for Relapsed/Refractory Follicular, Marginal Zone or Mantle Cell Lymphoma (MAGNIFY). Available at: https://clinicaltrials.gov/ct2/show/NCT01996865 Accessed August 2019.9 American Cancer Society. Lymphoma. Available at: https://www.cancer.org/cancer/lymphoma.html. Accessed August 2019.10 American Cancer Society. What is Hodgkin Lymphoma? Available at: https://www.cancer.org/cancer/hodgkin-lymphoma/about/what-is-hodgkin-disease.html. Accessed August 2019.11 American Cancer Society. What is Non-Hodgkin Lymphoma? Available at: https://www.cancer.org/cancer/non-hodgkin-lymphoma/about/what-is-non-hodgkin-lymphoma.html. Accessed August 2019.12 Lymphoma Action. Follicular lymphoma. Available at: https://lymphoma-action.org.uk/types-lymphoma-non-hodgkin-lymphoma/follicular-lymphoma. Accessed November 2019.13 Montoto S, Lopez-Guillermo A, Ferrer A, et al. Survival after progression in patients with follicular lymphoma: analysis of prognostic factors. Ann Oncol. 2002;13(4):523-30.

See the rest here:
Celgene Receives CHMP Positive Opinion for REVLIMID (lenalidomide) in Combination With Rituximab for the Treatment of Adult Patients With Previously...

To Read More: Celgene Receives CHMP Positive Opinion for REVLIMID (lenalidomide) in Combination With Rituximab for the Treatment of Adult Patients With Previously…
categoriaCardiac Stem Cells commentoComments Off on Celgene Receives CHMP Positive Opinion for REVLIMID (lenalidomide) in Combination With Rituximab for the Treatment of Adult Patients With Previously… | dataNovember 15th, 2019
Read All

Cocker spaniel with cancer to receive stem cells from mother living 4,000 miles away – Fox News

By daniellenierenberg

A 6-year-old cocker spaniel in California that was recently diagnosed with cancer is slated to receive stem cells from her mother living 4,000 miles away in the United Kingdom.

Coco the cocker spaniel gave birth to a litter of puppies six years ago. One of those puppies, Millie, was adopted by Serena and Andrew Lodge, who now live in San Francisco. They may live across the world from each other, but the mother and daughter will soon be reunited for the rare treatment, reported South West News Service, or SWNS, a British news agency.

CHEAPER MEDICATION FOR DOGS WITH SEPARATION ANXIETY NOW APPROVED, FDA SAYS

Coco, left, and daughter, Millie. (SWNS)

The transplant will occur at the North Carolina State Veterinary Hospital in Raleigh. The facility isreportedly one of only a few animal hospitals in the world to offer the treatment, which involves taking healthy stem cells from Cocos bone marrow and injecting them intoMillies.

"Serena and Andrew started chemo on Millie three months ago but they've been told the only chance they'll have of curing her is if they find a positive donor so she can have a transplant, said Cocos owner, Robert Alcock, 52. He arrived with Coco in North Carolina on Wednesday.

Millie while in an animal hospital. (SWNS)

"They contacted us, and we sent some blood samples for testing, along with samples from one of Coco's other pups, he added. They both came back positive but because Coco is Millie's mother the vet said she would be a better match."

"Coco will go into hospital on Sunday for the procedure and then the cells will be donated on Monday, he continued, noting the Lodges have paid for everything.

Robert Alcock and his cocker spaniel, Coco. (SWNS)

BLACK LAB GIVES BIRTH TO 13 PUPPIES, SHOCKS OWNERS: 'THEY WERE JUST FLYING OUT'

Coco is expected to make a full recovery following the procedure. However, there is only a 50 percent chance Millie will be cured even if the treatment is successful, according to SWNS.

Stem cell therapy for pets is costly, typically setting an owner back between $2,000 and $3,000, according to Pet WebMD.

The rest is here:
Cocker spaniel with cancer to receive stem cells from mother living 4,000 miles away - Fox News

To Read More: Cocker spaniel with cancer to receive stem cells from mother living 4,000 miles away – Fox News
categoriaBone Marrow Stem Cells commentoComments Off on Cocker spaniel with cancer to receive stem cells from mother living 4,000 miles away – Fox News | dataNovember 14th, 2019
Read All

Bone marrow transplant: What it is, uses, risks, and recovery – Medical News Today

By daniellenierenberg

Bone marrow is soft, spongy tissue within some bones, including those in the hips and thighs. People with certain blood-related conditions benefit from a transplant that replaces damaged cells with healthy cells, possibly from a donor.

Bone marrow transplants can be lifesaving for people with conditions such as lymphoma or leukemia, or when intensive cancer treatment has damaged blood cells.

This type of transplant can be an intensive procedure, and recovery can take a long time.

Here, we provide an overview of bone marrow transplants, including their uses, risks, and recovery.

Bone marrow contains stem cells. In healthy people, stem cells in bone marrow help create:

If a medical condition such as one that damages the blood or immune system prevents the body from creating healthy blood cells, a person may need a bone marrow transplant.

A person with any of the following conditions may be a candidate for a bone marrow transplant:

There are three types of bone marrow transplant, based on where the healthy bone marrow cells come from.

In many cases, the donor is a close family member, such as a sibling or parent. The medical name for this is an allogenic transplant.

Transplants are more likely to be effective if the donated stem cells have a similar genetic makeup to the person's own stem cells.

If a close family member is not available, the doctor will search a registry of donors to find the closest match. While an exact match is best, advances in transplant procedures are making it possible to use donors who are not an exact match.

In a procedure called an autologous transplant, the doctor will take healthy blood stem cells from the person being treated and replace these cells later, after removing any damaged cells in the sample.

In an umbilical cord transplant, also called a cord transplant, doctors use immature stem cells from the umbilical cord following a baby's birth. Unlike cells from an adult donor, the cells from an umbilical cord do not need to be as close a genetic match.

Before a bone marrow transplant, the doctor will run tests to determine the best type of procedure. They will then locate an appropriate donor, if necessary.

If they can use the person's own cells, they will collect the cells in advance and store them safely in a freezer until the transplant.

The person will then undergo other treatment, which may involve chemotherapy, radiation, or a combination of the two.

These procedures typically destroy bone marrow cells as well as cancer cells. Chemotherapy and radiation also suppress the immune system, helping to prevent it from rejecting a bone marrow transplant.

While preparing for the transplant, the person may need to stay in the hospital for 12 weeks. During this time, a healthcare professional will insert a small tube into one of the person's larger veins.

Through the tube, the person will receive medication that destroys any abnormal stem cells and weakens the immune system to prevent it from rejecting the healthy transplanted cells.

Before entering the hospital, it is a good idea to arrange:

A bone marrow transplant is not surgery. It is similar to a blood transfusion.

If a donor is involved, they will provide the stem cells well in advance of the procedure. If the transplant involves the person's own cells, the healthcare facility will keep the cells in storage.

The transplant typically takes place in several sessions over several days. Staggering the introduction of cells in this way gives them the best chance of integrating with the body.

The healthcare team may also use the tube to introduce liquids such as blood, nutrients, and medications to help fight infection or encourage the growth of bone marrow. The combination depends on the body's response to treatment.

The procedure will temporarily compromise the person's immune system, making them very susceptible to infection. Most hospitals have a dedicated, isolated space for people undergoing bone marrow transplants to help reduce their risk of infection.

After the last session, the doctor will continue to check the blood each day to determine how well the transplant has worked. They will test whether new cells are beginning to grow in bone marrow.

If a person's white blood cell count starts to rise, it indicates that the body is starting to create its own blood, indicating that the transplant has been successful.

The amount of time that it takes for the body to recover depends on:

Many other factors can affect recovery, including:

Some people are able to leave the hospital soon after the transplant, while others need to stay for several weeks or months.

The medical team will continue to monitor the person's recovery for up to 1 year. Some people find that effects of the transplant remain for life.

A bone marrow transplant is a major medical procedure. There is a high risk of complications during and after it.

The likelihood of developing complications depends on various factors, including:

Below are some of the more common complications that people who receive bone marrow transplants experience:

Some people die as a result of complications from bone marrow transplants.

A person who receives a bone marrow transplant may also experience reactions that can follow any medical procedure, including:

The body's response to a bone marrow transplant varies greatly from person to person. Factors such as age, overall health, and the reason for the transplant can all affect a person's long term outlook.

If a person receives a bone marrow transplant to treat cancer, their outlook depends, in part, on how far the cancer has spread. Cancer that has spread far from its origin, for example, responds less well to treatment.

According to the National Marrow Donor Program, the 1-year survival rate among people who have received transplants from unrelated donors increased from 42% to 60% over about the past 5 years.

A bone marrow transplant is a major medical procedure that requires preparation. This involves determining the best type of transplant, finding a donor, if necessary, and preparing for a lengthy hospital stay.

The time that it takes for the body to recover from a transplant varies, depending on factors such as a person's age and overall health and the reason for the transplant.

See original here:
Bone marrow transplant: What it is, uses, risks, and recovery - Medical News Today

To Read More: Bone marrow transplant: What it is, uses, risks, and recovery – Medical News Today
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow transplant: What it is, uses, risks, and recovery – Medical News Today | dataNovember 14th, 2019
Read All

Cocker Spaniel Coco goes to US to try and save her puppy’s life – Lancaster and Morecambe Citizen

By daniellenierenberg

ONE man and his dog are travelling to North Carolina this week, to provide a puppy with a pioneering stem cell transplant that could save her life.

Robert Alcock and his cocker spaniel, Coco, are making the journey so Coco, 7, can donate her stem cells to one of her own puppies, Millie, 6, who has cancer.

The experimental procedure is not yet available in the UK and can only be performed at one US hospital, the NC State Veterinary Hospital.

It involves using stem cells from the bone marrow of one dog and injecting them into the other.

Even if the operation is a success, there is only a 50 percent chance that Millie will be cured.

Millie was taken to the USA when her owners, Serena and Andrew Lodge, emigrated for work. After moving across the pond, Millie contracted cancer.

Millie the dog last week and (inset) before she became ill

Mr Alcock, who lives in Darwen, said the only way to help her is the transplant.

The 52-year-old catering manager said: Serena and Andrew started chemo on Millie three months ago but theyve been told the only chance theyll have of curing her is if they find a positive donor so she can have a transplant.

They contacted us, and we sent some blood samples for testing, along with samples from one of Cocos other pups.

They both came back positive but because Coco is Millies mother the vet said she would be a better match.

Mr and Mrs Lodge then asked Mr Alcock if he would fly to the USA with Coco so she could help save Millies life.

On Wednesday, Mr Alcock made the journey to North Carolina, to the only animal hospital in the States that can perform that kind of transplant on dogs.

Mr Alcock added: The Lodges have paid for everything, and I didnt like to ask how much the operation is costing but I think it will be in the thousands.

We will be in America for about a week.

Coco will go into hospital on Sunday for the procedure and then the cells will be donated on Monday.

Coco is expected to make a full recovery from the operation, but there is only a 50 per cent chance that Millie could be cured once the transplant has been completed.

Robert and Coco

Mr Alcock added: If it was a human then the chances of survival would be really good.

But this is a pioneering procedure, they havent done very many of these transplants before, so well have to wait and see what happens.

More:
Cocker Spaniel Coco goes to US to try and save her puppy's life - Lancaster and Morecambe Citizen

To Read More: Cocker Spaniel Coco goes to US to try and save her puppy’s life – Lancaster and Morecambe Citizen
categoriaBone Marrow Stem Cells commentoComments Off on Cocker Spaniel Coco goes to US to try and save her puppy’s life – Lancaster and Morecambe Citizen | dataNovember 14th, 2019
Read All

BrainStorm Cell Therapeutics Announces Research Grant Award From the National Multiple Sclerosis Society – Yahoo Finance

By daniellenierenberg

NEW YORK, Nov. 14, 2019 (GLOBE NEWSWIRE) -- BrainStorm Cell Therapeutics, Inc. (NASDAQ:BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, announced today that the Company has received a $495,330 grant from the National Multiple Sclerosis Society, through its Fast Forward program, to advance BrainStorms Phase 2 open-label, multicenter clinical trial of repeated intrathecal administration of NurOwn (autologous MSC-NTF cells) in participants with progressive Multiple Sclerosis (NCT03799718).

Chaim Lebovits, President and CEO of BrainStorm stated, We are very pleased to receive this generous grant from the National MS Society. Currently, we are conducting our Phase 2 study in three leading US medical centers: The Keck School of Medicine of USC, The Stanford School of Medicine, and Cleveland Clinic. This research funding will help advance our investigational therapy NurOwn as a potential unmet need for patients with progressive MS. MS continues to devastate the lives of patients and their families and we thank the National MS Society for helping us advance our innovative research program.

Currently, progressive MS treatment options are limited and NurOwn is a promising new autologous cellular treatment modality that has the potential to directly address MS disease pathways, said Ralph Kern MD MHSc, COO and CMO of BrainStorm. He added, This funding from the National MS Society will help us explore key neuroinflammation and neural repair biomarkers in progressive MS to confirm NurOwns unique mechanism of action and guide the design of future clinical trials to address this important unmet patient need.

Leveraging resources in this Phase 2 clinical study of a cell-based therapy for progressive MS exemplifies our work to accelerate research to improve clinical care for people living with MS. said Mark Allegretta, PhD, Vice President of Research at the National MS Society. Were pleased to work with BrainStorm to test a broad panel of biomarkers of neuroinflammation and repair as correlates of the effect of treatment with NurOwn.

About Multiple SclerosisMultiple sclerosis is an unpredictable, often disabling disease of the central nervous system. There is currently no cure for MS. Symptoms vary from person to person and range from numbness and tingling, to mobility challenges, blindness and paralysis. An estimated 1 million people live with MS in the United States. Most people are diagnosed between the ages of 20 and 50 and it affects women three times more than men.

About The National Multiple Sclerosis Society:The National MS Society, founded in 1946, funds cutting-edge research, drives change through advocacy, and provides programs and services to help people affected by MS live their best lives. Connect to learn more and get involved: nationalMSsociety.org, Facebook, Twitter, Instagram, YouTube or 1-800-344-4867.

About NurOwnNurOwn (autologous MSC-NTF) cells represent a promising investigational therapeutic approach to targeting disease pathways important in neurodegenerative disorders. MSC-NTF cells are produced from autologous, bone marrow-derived mesenchymal stem cells (MSCs) that have been expanded and differentiated ex vivo. MSCs are converted into MSC-NTF cells by growing them under patented conditions that induce the cells to secrete high levels of neurotrophic factors. Autologous MSC-NTF cells can effectively deliver multiple NTFs and immunomodulatory cytokines directly to the site of damage to elicit a desired biological effect and ultimately slow or stabilize disease progression. BrainStorm has fully enrolled a Phase 3 pivotal trial of autologous MSC-NTF cells for the treatment of amyotrophic lateral sclerosis (ALS). BrainStorm also recently received U.S. FDA acceptance to initiate a Phase 2 open-label multicenter trial in progressive MS and enrollment began in March 2019.

About BrainStorm Cell Therapeutics Inc.BrainStorm Cell Therapeutics Inc. is a leading developer of innovative autologous adult stem cell therapeutics for debilitating neurodegenerative diseases. The Company holds the rights to clinical development and commercialization of the NurOwn technology platform used to produce autologous MSC-NTF cells through an exclusive, worldwide licensing agreement. Autologous MSC-NTF cells have received Orphan Drug status designation from the U.S. Food and Drug Administration (U.S. FDA) and the European Medicines Agency (EMA) in ALS. BrainStorm has fully enrolled a Phase 3 pivotal trial in ALS (NCT03280056), investigating repeat-administration of autologous MSC-NTF cells at six U.S. sites supported by a grant from the California Institute for Regenerative Medicine (CIRM CLIN2-0989). The pivotal study is intended to support a filing for U.S. FDA approval of autologous MSC-NTF cells in ALS. BrainStorm also recently received U.S. FDA clearance to initiate a Phase 2 open-label multicenter trial in progressive Multiple Sclerosis. The Phase 2 study of autologous MSC-NTF cells in patients with progressive MS (NCT03799718) started enrollment in March 2019. For more information, visit the company's website at http://www.brainstorm-cell.com.

Story continues

Safe-Harbor Statement

Statements in this announcement other than historical data and information, including statements regarding future clinical trial enrollment and data, constitute "forward-looking statements" and involve risks and uncertainties that could causeBrainStorm Cell Therapeutics Inc.'sactual results to differ materially from those stated or implied by such forward-looking statements. Terms and phrases such as "may", "should", "would", "could", "will", "expect", "likely", "believe", "plan", "estimate", "predict", "potential", and similar terms and phrases are intended to identify these forward-looking statements. The potential risks and uncertainties include, without limitation, BrainStorms need to raise additional capital, BrainStorms ability to continue as a going concern, regulatory approval of BrainStorms NurOwn treatment candidate, the success of BrainStorms product development programs and research, regulatory and personnel issues, development of a global market for our services, the ability to secure and maintain research institutions to conduct our clinical trials, the ability to generate significant revenue, the ability of BrainStorms NurOwn treatment candidate to achieve broad acceptance as a treatment option for ALS or other neurodegenerative diseases, BrainStorms ability to manufacture and commercialize the NurOwn treatment candidate, obtaining patents that provide meaningful protection, competition and market developments, BrainStorms ability to protect our intellectual property from infringement by third parties, heath reform legislation, demand for our services, currency exchange rates and product liability claims and litigation,; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available athttp://www.sec.gov. These factors should be considered carefully, and readers should not place undue reliance on BrainStorm's forward-looking statements. The forward-looking statements contained in this press release are based on the beliefs, expectations and opinions of management as of the date of this press release. We do not assume any obligation to update forward-looking statements to reflect actual results or assumptions if circumstances or management's beliefs, expectations or opinions should change, unless otherwise required by law. Although we believe that the expectations reflected in the forward-looking statements are reasonable, we cannot guarantee future results, levels of activity, performance or achievements.

CONTACTS

Corporate:Uri YablonkaChief Business OfficerBrainStorm Cell Therapeutics Inc.Phone: 646-666-3188uri@brainstorm-cell.com

Media:Sean LeousWestwicke/ICR PRPhone: +1.646.677.1839sean.leous@icrinc.com

Link:
BrainStorm Cell Therapeutics Announces Research Grant Award From the National Multiple Sclerosis Society - Yahoo Finance

To Read More: BrainStorm Cell Therapeutics Announces Research Grant Award From the National Multiple Sclerosis Society – Yahoo Finance
categoriaBone Marrow Stem Cells commentoComments Off on BrainStorm Cell Therapeutics Announces Research Grant Award From the National Multiple Sclerosis Society – Yahoo Finance | dataNovember 14th, 2019
Read All

The Heart of the Matter: Leveraging Advances in Cardiac Biology to Innovate Gene-Based Therapies for Heart Failure – Physician’s Weekly

By daniellenierenberg

Heart failure (HF) is the most frequent cardiovascular diagnosis and exacts significant health and financial costs around the globe. It is estimated that at least 26 million people worldwide are living with HF, including nearly 6 million in the United States.1, 2 One in nine U.S. deaths in 2009 included heart failure as a contributing cause and about 50 percent of people in the U.S. with HF die within five years of diagnosis.2 The annual cost of HF-related healthcare services, medication and missed days of work is estimated at $40 billion in the United States and $108 billion globally.3, 4 Quality of life in HF patients is frequently worse than many other chronic diseases and comorbidities are common.5-7 The challenges of HF are expected to grow, as it is estimated that more than 8 million people in the United States alone will have HF by 2030.2 Current therapies improve quality of life in the short-term and have improved long-term survival but a significant number of patients have Class 3 HF despite optimal medical and device therapy. These patients have limited treatment options beyond heart transplant and left ventricular assist devices (LVAD). New therapeutic approaches that address the underlying causes of HF are needed to improve patient outcomes.

Heart failure is a complex disease process and multiple pathways contribute to its development and progression. Myocardial ischemia is frequently an issue in both ischemic and non-ischemic cardiomyopathy as well as HF with preserved and/or reduced ejection fraction. Myocardial ischemia results in insufficient oxygen and nutrients and leads to hypoxia, cardiomyocyte and fibrosis, which all contribute to the progression of heart failure. More effective angiogenesis may prevent this progression. Cell homing also plays a critical role, as injured cardiac tissue secretes factors that lead to the recruitment, proliferation, migration and differentiation of progenitor cells that can help repair tissue damage. Stromal cell-derived factor (SDF)-1 has been shown to play an important role in cardiac repair by mediating cell homing.10 Mitochondrial energy generation is also impaired in HF, leading to decreased contractility and adverse changes to cardiac architecture.11 Scar tissue formed in response to cardiomyocyte injury or death can compromise the hearts mechanical strength or electrical signaling results in myocardial infarction. Inflammatory responses to cardiac tissue damage can promote inappropriate and chronic inflammation and the expression of pro-inflammatory molecules that lead to pathologic changes to cardiac architecture.12, 13

These pathways offer a variety of potential new targets for therapeutic intervention to prevent the development and progression of HF. This opens the door to the development of novel therapies that address the underlying molecular and cellular causes of disease rather than treating HF symptoms alone.

After decades of development, gene-based therapies are now validated therapeutic modalities for the treatment of inherited retinal disorders and cancer and are undergoing clinical evaluation in a variety of inherited, acute and chronic diseases. Nearly two dozen single gene-based therapies for HF have been evaluated in clinical trials.14 Genes evaluated as monogenic gene therapy for HF in clinical trials include vascular endothelial growth factor (VEGF) and fibroblast growth factor type 4 (FGF4) to promote angiogenesis; adenylyl cyclase type 6 (AC6) and sarco/endoplasmic reticulum Ca2+-ATPase type 2 (SERCA2) to improve cardiac calcium homeostasis, which plays a critical role in the contraction and relaxation of heart muscle; and stromal cell-derived factor-1 (SDF-1) to improve cell homing and promote cardiac tissue repair. Late-stage trials of single gene therapies have yielded conflicting results, raising the question as to whether positively impacting a single pathway can be sufficient to overcome detrimental activity of other pathways that contribute to the development and progression of HF. Other potential limitations to HF therapies evaluated in clinical trials to date include the method of delivery, dose and the potency of vectors and gene products.

Given the multiple molecular and cellular pathways active in HF, a multi-gene approach to HF gene therapy may be needed. Simultaneously delivering multiple genes that target diverse HF-related pathways has the potential to improve cardiac biology and function. A triple gene therapy approach (INXN-4001, Triple-Gene LLC, a majority-owned subsidiary of Intrexon Corporation) is currently in clinical development, with each of the genes targeting a specific HF-related pathway. The investigational drug candidate INXN4001 vector expresses: the S100A1 gene product, which regulates calcium-controlled networks and modulates contractility, excitability, maintenance of cellular metabolism and survival; SDF-1a which recruits stem cells, inhibits apoptosis and supports new blood vessel formation; and VEGF-165 which initiates new vessel formation, endothelial cell migration/activation, stem cell recruitment and tissue regeneration. The hypothesis is that the simultaneous delivery of multiple genes in a single vector would more effectively improve multiple aspects of cardiac function compared with single gene therapy. It is delivered by retrograde coronary sinus infusion of a triple effector plasmid designed with a self-cleaving linker to constitutively express human S100A1, SDF-1a and VEGF 165. This route is designed to allow for delivery of a dose to the ventricle which may help achieve improved therapeutic effect.

Several preclinical studies have set the foundation on which to advance a triple gene therapy for HF into the clinic.15-17 Using in vitro studies, transfecting cells derived from patients with dilated cardiomyopathy with a triple gene combination demonstrated improvement in contraction rate and duration, to the levels demonstrated by the control cells and did not result in increased cell death compared to controls.15 Studies in an Adriamycin-induced cardiomyopathy rodent model demonstrated triple gene therapy increased fractional shortening and myocardial wall thickness compared to controls.16 In addition, retrograde coronary sinus infusion of INXN-4001 in a porcine model of ischemic HF resulted in a cardiac-specific biodistribution profile.17

A Phase 1 clinical study has been initiated to evaluate the safety of a single dose of triple gene therapy in stable patients implanted with a LVAD for mechanical support of end-stage HF. An independent Data and Safety Monitoring Board agreed to proceeding to the second cohort following review of the data from the first cohort in the multi-site study.18 The study is ongoing and final results will help to inform our understanding of the potential that multi-gene therapy may play in the treatment of HF.

The recent FDA approvals of gene therapies for an inherited retinal disease and cancer are evidence that gene therapy is a valid therapeutic strategy. Realizing the potential of gene therapy in HF will require appropriately designed clinical trials, but several interesting approaches currently in development may prove to be effective. The results of the initial investigational drug INXN-4001 Phase 1 trial should provide insight into the safety of combining S100A1, SDF-1a and VEGF-165. Evaluation of additional multi-gene combinations will also be important for understanding which targeted pathways yield the greatest effects with respect to relevant clinical endpoints. Continued refinement and optimization of vector design and delivery methods will also be important for advancing further HF gene therapies from bench to bedside.

Read the original post:
The Heart of the Matter: Leveraging Advances in Cardiac Biology to Innovate Gene-Based Therapies for Heart Failure - Physician's Weekly

To Read More: The Heart of the Matter: Leveraging Advances in Cardiac Biology to Innovate Gene-Based Therapies for Heart Failure – Physician’s Weekly
categoriaCardiac Stem Cells commentoComments Off on The Heart of the Matter: Leveraging Advances in Cardiac Biology to Innovate Gene-Based Therapies for Heart Failure – Physician’s Weekly | dataNovember 14th, 2019
Read All

Human Heart Cells Transform in Space; Return to Normal on Earth: Study – The Weather Channel

By daniellenierenberg

Representational image

Heart cells are altered in space, but return to normal within 10 days on Earth, say researchers who examined cell-level cardiac function and gene expression in human heart cells cultured aboard the International Space Station (ISS) for 5.5 weeks.

Exposure to microgravity altered the expression of thousands of genes, but largely normal patterns of gene expression reappeared within 10 days after returning to Earth, according to the study published in the journal Stem Cell Reports.

"We're surprised about how quickly human heart muscle cells are able to adapt to the environment in which they are placed, including microgravity," said senior study author Joseph C. Wu from Stanford University.

These studies may not only provide insight into cellular mechanisms that could benefit astronaut health during long-duration spaceflight, but also potentially lay the foundation for new insights into improving heart health on Earth.

Past studies have shown that spaceflight induces physiological changes in cardiac function, including reduced heart rate, lowered arterial pressure, and increased cardiac output.

But to date, most cardiovascular microgravity physiology studies have been conducted either in non-human models or at tissue, organ, or systemic levels.

Relatively little is known about the role of microgravity in influencing human cardiac function at the cellular level.

To address this question, the research team studied human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). They generated hiPSC lines from three individuals by reprogramming blood cells, and then differentiated them into heart cells.

Beating heart cells were then sent to the ISS aboard a SpaceX spacecraft as part of a commercial resupply service mission. Simultaneously, ground control heart cells were cultured on Earth for comparison purposes.

Upon return to Earth, space-flown heart cells showed normal structure and morphology. However, they did adapt by modifying their beating pattern and calcium recycling patterns.

In addition, the researchers performed RNA sequencing of heart cells harvested at 4.5 weeks aboard the ISS, and 10 days after returning to Earth.

These results showed that 2,635 genes were differentially expressed among flight, post-flight, and ground control samples.

Most notably, gene pathways related to mitochondrial function were expressed more in space-flown heart cells.

A comparison of the samples revealed that heart cells adopt a unique gene expression pattern during spaceflight, which reverts to one that is similar to ground-side controls upon return to normal gravity, the study noted.

According to Wu, limitations of the study include its short duration and the use of 2D cell culture.

In future studies, the researchers plan to examine the effects of spaceflight and microgravity using more physiologically relevant hiPSC-derived 3D heart tissues with various cell types, including blood vessel cells.

"We also plan to test different treatments on the human heart cells to determine if we can prevent some of the changes the heart cells undergo during spaceflight," Wu said.

See more here:
Human Heart Cells Transform in Space; Return to Normal on Earth: Study - The Weather Channel

To Read More: Human Heart Cells Transform in Space; Return to Normal on Earth: Study – The Weather Channel
categoriaCardiac Stem Cells commentoComments Off on Human Heart Cells Transform in Space; Return to Normal on Earth: Study – The Weather Channel | dataNovember 14th, 2019
Read All

Youngstown State, IBM to offer high-tech training in the Mahoning Valley – Crain’s Cleveland Business

By daniellenierenberg

Researchers at Case Western Reserve University have won a number of grants this fall. Here's a look at some of the recently announced ones and the work those grants will be funding, all with links to full stories on the university's The Daily site.

1. First up, a new five-year, $2.2 million grant from Lubrizol Corp. will support STEM scholarships, internships, co-ops and joint research, a post said. The funding will also support programs focused on student research and women in science and engineering.

The joint research between CWRU and Lubrizol will focus on energy, human health, materials and sustainability.

"We are always interested in finding ways that the Case Western Reserve community can engage more fully with the industrial sector," university provost Ben Vinson III said in the post. "It is, along with our community and government partners, critical to the development of our students, our research endeavors and our innovation pathway. Working with the university's office of corporate relations, we are developing new strategies to deepen our industry collaborations that will include investment from our corporate partners to support programmatic areas across campus."

2. A five-year, $1.25 million grant will help the university better train developmental psychologists and speech language pathologists. The grant is from the U.S. Department of Education.

"Many children need extra help in their educational journey. Teachers cannot do it alone," Elizabeth Short, a professor in the Department of Psychological Sciences, said in a post. "Training professionals to provide supports is of paramount importance they are on the frontlines, providing the necessary help to optimize the development of children."

The project will emphasize the importance of working in teams, and the grant brings in both branches of the university's Department of Psychological Sciences: psychology and communication sciences.

3. A $425,000 grant from the U.S. Department of Justice will help Case Western Reserve's Begun Center for Violence Prevention Research and Education work with the city of Akron to analyze information in untested sexual assault kits. Identifying patterns of offender behavior could help the Akron Police Department respond to such assaults, a post said.

The team, led by research assistant professor Rachel Lovell, has also received two Department of Justice awards equaling $528,000 to continue similar work in Cuyahoga County.

4. CWRU and MetroHealth Medical Center researchers recently received more than $800,000 from the U.S. Department of Defense to study the experiences and needs of people with spinal cord injuries. Other partners include the United Spinal Association Northeast Ohio Chapter and the Louis Stokes Cleveland VA Medical Center.

The three-year project will focus on the first year of recovery, and researchers will interview veterans and civilians, as well as their caregivers, a post said.

5. Finally, researchers at the Case Western Reserve School of Medicine have received a grant of almost $700,000 through the National Institutes of Health Somatic Cell Genome Editing program. If researchers continue to meet NIH milestones, the grant amount could increase to $2.78 million, a post said.

The researchers are looking to develop strategies to deliver genome editing complexes directly to stem cells, which could change how certain diseases are treated.

Visit link:
Youngstown State, IBM to offer high-tech training in the Mahoning Valley - Crain's Cleveland Business

To Read More: Youngstown State, IBM to offer high-tech training in the Mahoning Valley – Crain’s Cleveland Business
categoriaSpinal Cord Stem Cells commentoComments Off on Youngstown State, IBM to offer high-tech training in the Mahoning Valley – Crain’s Cleveland Business | dataNovember 14th, 2019
Read All

BREAKTHROUGH: Her vision was getting worse, then animal research made things clear – Speaking of Research

By daniellenierenberg

By Justin A. Varholick, Ph.D.

As we grow older theres an impending fear that we will slowly, but surely, begin to lose our vision. This slow loss of vision is clinically dubbed low vision and impacts more than 39 million Americans, costs $68 billion annually in direct health care costs, and is only growing in our population as baby boomers enter the at-risk age of 65 and older. Magnifiers can often be used to help people with acute issues of low vision, but are often inconvenient and frustrating. More serious issues of low vision such as cataracts, age-related macular degeneration, glaucoma, and diabetic retinopathy require advanced treatment and surgery. For example, cataracts can be improved or reversed by removing the cloudy lens and replacing it with an artificial one. Such surgeries are not always ideal, or convenient, and further contribute to the already hefty direct health care costs. But, a recent breakthrough by Japanese scientists, in correcting blurry vision, might reverse this bleak future.

Old cells can become new againOur story begins around the mid-20th century, in 1958. A young and aspiring scientist, named John Gurdon, was studying frogs at the University of Oxford in England. Not everyone thought Gurdon would end up actually becoming a scientist. In his early days his school master thought such a career was far-fetched for Gurdon. Indeed, he ranked last in his Biology class out of 250 students. Yet despite such poor grades, Gurdon found himself studying frogs at Oxford and earning a doctoral degree in Biology. And his studies would surprisingly lead to a breakthrough in vision, and likely many other issues in human health, like Parkinsons Disease, heart disease, and spinal cord injury.

At the time Gurdon was trying to test an age-old theory on cell development. Many scientists before him discovered that cells the smallest unit of life begin without a clear fate in the early stages of an embryo. Then as the cell develops, their fate becomes more clear. They become cells of the heart, of the brain, the kidneys, the stomach, the spinal cord, or the eyes. But they cannot go back to a time when they had no fate, or specialization. The cells can only develop in one direction, from no destiny, to a clear path, then to a mature adult cell; like one found in the heart. But you just cant take a heart cell and start the process over, maybe turning it into a brain cell.

In disagreement with this theory, Gurdon did a simple experiment. He knew that a tadpole has more adult cells than a frog egg. A tadpole has gills, a heart, eyes, etc., while a frog egg simply does not. So, he cut open the tadpole and removed a single cell from the intestine; an intestinal cell. He then cut open the intestinal cell and removed its nucleus; the seed of the cell carrying all the DNA. Very carefully, he did the same with the frog egg, and finally replaced the nucleus of the frog egg with the nucleus of the intestinal cell. According to the age-old theory, the intestinal nucleus should stop normal development of the frog egg. But thats not what happened.

Instead, the new frog egg continued to develop normally, becoming a tadpole that later became an adult frog. Gurdon thought this was unbelievably odd, and so did everyone else in science. After many more experiments doing the exact same procedure (i.e., replication), it seemed that what he saw was a real, replicable fact. For some reason the nucleus of the intestinal cell was able to reverse itself to have no fate and slowly develop into any other adult cell. The seed from the intestine somehow could become the seed of a heart, brain, kidney, or even an eye cell and of course, an intestinal cell too.

After many more experiments testing the same theory, on many more animals, it seemed the theory was true, but it just didnt work for mammals. Given that the same effect could not be repeated in a mammal, some believed this discovery did not apply to humans. But they were wrong.

The discovery of induced pluripotent stem cellsAlmost 45 years later, around the start of the millennium, Shinya Yamanaka and Kazutoshi Takahashi began running experiments that would translate Gurdons findings to humans. Born after Gurdons findings were already published and well known, Yamanaka and Takahashi grew up in a world in which the fact that old cells can become new again was widely knowna solid foundation for further hypotheses, experiments, and discovery. So, the scientists set out to do what no one had before: turn adult skin cells of mice into new cells without a clear fate.

Yamanaka, the lead investigator of the study, shared a similar early history with Gurdon. He first became a medical doctor in Japan but was frustrated by his inability to quickly remove small human tumors taking over an hour rather than the typical 10 minutes. Senior doctors gave him the nickname Jamanaka, a Japanese pun for the word jama meaning obstacle. He then found himself earning a PhD in pharmacology and becoming a post-doctoral scientist, but spent more time caring for mice than doing actual research. Frustrated again, his wife suggested he just become a practicing physician. Despite her advice, Yamanaka applied to become an Assistant Professor at Nara Institute of Science and Technology, in Japan, and won everyone over with his fantastical ideas of investigating embryonic stem cells; the cells without a clear fate.

Then the persistence paid off when Yamanaka with his assistant, Takahashi discovered how to induce adult skin cells from mice to return to an embryonic, or stem cell, state without a clear fate. They began their experiments knowing that gene transcription factors proteins that turn genes on and off were responsible for keeping embryonic cells in a state without a clear fate. They thought that by turning specific genes on and off with these factors, they could turn back time and make an adult cell embryonic again. So, they tried many different combinations of gene transcription factors and ultimately discovered that 4 specific ones were enough to induce an adult skin cell to a mouse to become an embryonic cell. Because these re-newed embryonic cells, or stem cells, originally came from adult cells they came up with a new name, induced pluripotent stem cell. Broken down, induced pluripotent stem cells means that the cell was induced to become pluripotent pluri meaning several, like plural, and potent meaning very powerful (and stem meaning to have the ability to turn into any cell in the body).

These induced pluripotent cells were thought to be very powerful indeed and scientists across the globe were excited by this great discovery. They had visions of taking a persons skin or blood, forming them into induced pluripotent cells, and then using them to grow a new liver or new parts of the brain. Laboratories across the world confirmed the results by repeating the experiment.

Human stem cells Just repeating the experiments in mice, or frogs, was not enough. They needed to begin making induced pluripotent stem cells from humans. Enter scientists from the University of Wisconsin-Madison. The lead scientist, James Thomson was already well known for deriving primate embryonic cells from rhesus monkeys in 1995 and the first human embryonic cell line in 1998. In fact, Thomsons accomplishment of isolating embryonic cells from monkeys was the first sound evidence that it was possible to do the same for humans. Such discoveries placed him on the forefront in ethical considerations for research using human embryos and the most obvious scientist to lead the path toward making induced pluripotent stem cells from humans.

Thomsons team made the first human derived induced pluripotent stem cells from adult skin, with Yamanaka as a co-scientist. They followed the same general principles set by Yamanaka, who did the procedure with mouse skin cells. Importantly to Thomson, this discovery helped to relieve some ethical controversy with using human embryos to make human stem cells. By being able to induce adult human skin to become pluripotent stem cells, much research on human stem cells could be done without human embryos albeit research with human embryos remains necessary.

Yet more important to the discussion at hand, the ability to induce human skin to become pluripotent stem cells placed us on the edge of a breakthrough. With some clinical trials in humans, the fantasy of growing a new liver, heart, or eye was more a reality than ever before.

The start of human trials In 2012, around the time both Gurdon and Yamanaka were presented with the Nobel Prize in Physiology and Medicine for their work leading to induced pluripotent stem cells, human clinical trials were beginning in Japan. The first clinical trial was for age-related macular degeneration, an eye condition leading to blindness. Unfortunately, this trial was quickly terminated when Yamanaka and his team identified small gene mutations in the transplanted induced pluripotent stem cells from the first patient. Although the procedure did cure the patient of macular degeneration, these small gene mutations worried the scientists because they could lead to tumor development.

But recently with the introduction of an inducible suicide gene that can signal cells with abnormal growth to die, human trials are starting up again. In October of 2018, Japanese scientists began trials with Parkinsons disease, a brain disease related to a shortage of neurons producing dopamine. Scientists took cells from the patients, made them into induced pluripotent stem cells, guided them to develop into dopamine producing cells, and then deposited them in the dopamine centers of the brain through surgery. The outcome is promising since similar procedures in monkeys have been successful.

Other trials in Japan have also started, including spinal cord injury and one for replacing the cornea of the eye. Early results replacing damaged corneas with induced pluripotent stem cells, thereby correcting blurry vision, were just announced at the end of August. Although it will take more patients and safety checks before all humans can get induced pluripotent cells to correct their damaged eyes, malfunctioning brains, or broken spinal cords, Takahashi the post-doctoral scientist working with Yamanaka thinks it might happen as early as 2023. So, it looks like that in our lifetime we just might be able to stay young and enjoy retirement because of great breakthroughs in animal research.Note, EuroStemCell is a great resource for learning more about the ethics and research currently being done with stem cells derived from human embryos.

Like Loading...

Related

See the rest here:
BREAKTHROUGH: Her vision was getting worse, then animal research made things clear - Speaking of Research

To Read More: BREAKTHROUGH: Her vision was getting worse, then animal research made things clear – Speaking of Research
categoriaSkin Stem Cells commentoComments Off on BREAKTHROUGH: Her vision was getting worse, then animal research made things clear – Speaking of Research | dataNovember 14th, 2019
Read All

Defensins and the dermis – Dermatology Times

By daniellenierenberg

Wound healing is complex. Injured tissues undergo a multi-phase process from hemostasis to tissue remodeling. And defensin plays a role.

Basically, it's your natural mechanism for healing a wound, and it stimulates a specific stem cell, the LGR6+ stem cell, according to Greg Keller, M.D., who presented Clinical Data with Defensins at the Global Aesthetic Conference in Miami earlier this month.

After activation, LGR6+ stem cells physically migrate into the basal layer of the skin and create a new epidermis, and eventually, new, younger-acting skin, says Dr. Keller.

In her Cosmeceutical Critique of The role of defensins in treating skin aging, Leslie Baumann, M.D., writes, LGR6+ stem cells, which are dormant until they are activated to respond to damage, are stimulated by defensins.1

She effectively summarizes their role in anti-aging as:

Old fibroblast and keratinocytes are sluggish and lazy. Old cells do not hear signals as well as younger cells. LGR6+ stem cells repopulate the epidermis with new, young keratinocytes. Defensin stimulates LGR6+ stem cells. The defensin/LGR6+ pathway plays a role in keratinization. Using topical defensin can improve the skins appearance.

Theoretically, says Dr. Keller, hair follicles provide a way for defensins to enter the skin to activate the LGR6+ pathway, but We wanted to actually measure wrinkles and quantify how much better the skin was in terms of pore size, oiliness, wrinkles, and the like.

So he, Amy Taub, M.D., Vivian Bucay, M.D., Jay Williams, Ph.D, and Darius Mehregan, M.D., conducted a participant- and investigator-blinded, placebo-controlled, multi-center study with the defensin-containing DefenAge 3-step system (Progenitor Biologics) that includes the 2-Minute Reveal Masque, 24/7 Barrier Balance Cream and 8-in-1 BioSerum, on 44 women, 41-71 years of age with skin types I to V.2

References:

1. Taub A, Bucay V, Keller G, Williams J, Mehregan D. Multi-Center, Double-Blind, Vehicle-Controlled Clinical Trial of an Alpha and Beta Defensin-Containing Anti-Aging Skin Care Regimen With Clinical, Histopathologic, Immunohistochemical, Photographic, and Ultrasound Evaluation. J Drugs Dermatol. 2018;17(4):426-441.2. Bauman L. The role of defensins in treating skin aging. Cosmeceutical Critique. MDedge Dermatology. April 1, 2018. Accessed November 13, 2019. Available at: https://www.mdedge.com/dermatology/article/161149/aesthetic-dermatology/...

See more here:
Defensins and the dermis - Dermatology Times

To Read More: Defensins and the dermis – Dermatology Times
categoriaSkin Stem Cells commentoComments Off on Defensins and the dermis – Dermatology Times | dataNovember 14th, 2019
Read All

What to do in Macau: The 66th Grand Prix, $28888 wine dinners and more – Lifestyle Asia

By daniellenierenberg

Macau is the ultimate setting for some high octane fun this weekend with the return of the annual Macau Grand Prix, now heading into its 66th year. As the city is pulsing with adrenaline, there are plenty of gastronomic highlights as well as the creme de la creme of lifestyle experiences to keep on your radar. Here are all the best events to check out in Macau this month.

When: 16 November

Price: MOP501,000 from Macau Grand Prix

The annual mecca for motorsports is back: Macau opens its venerated 6.2km Guia Circuit as the annual Macau Grand Prix edges into its 66th edition. Veteran and young drivers alike are descending on the SAR for the ultimate glory across three headlining races the Formula 3 Macau Grand Prix, the FIA GT World Cup, and the FIA WTCR, also known as the Macau Guia Race. Sundays Grand Prix finale will have all eyes on some of the worlds best racers such as F3 world champion Dan Ticktum as he returns to the spotlight to vie for his third consecutive win at Macau; alongside newcomers such as David Schumacher, nephew of seven-time Formula 1 winner Michael.

If youre not watching from the Grand Stand or the thrilling Lisboa Bend Stand, for a vantage point to catch all the action in comfort, youll want to head to the Grand Lapa for its annual Grand Prix Live BBQ Buffet all weekend from 1617 November, which will also be broadcasting live on mega screens.

More info here.

When: 30 November1 December

Price: HK$5881,688 from MGM

Actor-turned-chef Nicholas Tse is lending both sides of his talents to this unique food and music festival held for the very first time in Macau. MGM is hosting two nights of unmissable concerts by Tse and fellow Canto-pop stars JW, Joey Yung, rock group Mr., Angela Hui, Chinese singer Liu Junge, Singaporean songstress Joanna Dong, and Macanese band MFM. Alongside two nights of performances, Chef Nic has also partnered with MGMs most eminent chefs to deliver mouthwatering menus of local delicacies, as well as live demonstrations featuring popular chef collaborations from his TV show brought to life. Dont miss this rare chance for dinner and a show.

MGM COTAI, 1/F Roof Terrace, Avenida Da Nave Desportiva, Cotai, Macau, +853 8806 8888

When: Through 29 February, 2020

Theres nothing better than a steamy hot pot dinner during the cooler months: Head to Broadway Macau for a foodie extravaganza of Macanese delicacies for its fourth Hot Pot Street promotion for an eclectic taste of the Cantonese winter tradition. The hotels flagship food street introduces 20 authentic varieties of hot pots showcasing a full spectrum of broths, casseroles and winter warmers from an array of international cuisines, paired with spreads of fresh seafood, organic produce, and premium beef from all over the world.

Broadway Macau, Avenida Marginal Flor de Lotus, Cotai, Macau, +853 8883 3338

The latest hot opening adding to the epicurean haven that is Taipa Village is none other than Barcelona, an innovative new Spanish restaurant and bar by chef Hector Costa Fernandez. Dishing up modern tapas and refreshed Spanish classics, Barcelona is a three-storey venue with a stylish ground floor bar and chefs table overlooking an open kitchen, a first-floor dining room inspired by its eponymous city, and an exotic rooftop bar offering views over the vibrant entertainment area below.

Barcelona, 47 Rua dos Clerigos, Taipa, Macau, +853 2845 5168

Facialist to the stars Margie Lombard, founder of Margys of Monte-Carlo brings an exclusive spa experience to Morpheus this autumn. Famed for her gold mask facial, Margys upgrades her ultimate skin rejuvenating treatment with a new platinum mask treatment that is solely available at Morpheus Spa. Book into one of only six suites for an exalted 110-minute session of pampering with the Prestige Facial with Platinum Mask (MOP3,980), and watch as the chainmail-like platinum mask does its work to retexturise skin for an unbeatable lasting radiance. The Platinum mask is also available as a 20-minute add-on (MOP2,500) together with Margys prized bespoke Stem Cell Illuminating Facial (MOP3,800), which uses a new serum featuring the regenerating power of Swiss Apple stem cells.

Morpheus Spa, 35/F, Morpheus, City of Dreams, Estrada do Istmo, Macau, +853 8868 3098

When: 16 November and 25 January, 2020

Price: MOP28,888 + 10 percent service charge

City of Dreams two-Michelin-starred Alain Ducasse by the eponymous legend is home to some of the most exclusive French haute cuisine menus in this part of the world as it is, but this autumn the restaurant is presenting two unprecedented wine-pairing dinners, billed as featuring some of the greatest vintages of all time. On 16 November, guests can look forward to five rare vintages from Domaine de la Romane-Conti, as well as a prize draw to win a bottle of 1997 Grands-chzeaux. On 25 January next year, guests can also book in as they celebrate Bordeauxs landmark 1982 vintage with a horizontal tasting of Chteau Pichon Longueville Comtesse de Lalande, Chteau Mouton Rothschild, Chteau Margaux, Chteau Cheval Blanc and Chteau Lafite Rothschild and have the opportunity to win a bottle of 1982 Chteau Margaux. Priced at MOP28,888 per person, these exclusive wine dinners will feature a tailor-made seven course menu and kick off with a glass of Dom Prignon 2009, followed by five rare vintages and Grand Crus. Make your reservation by email to adam@cod-macau.com or call +853 8868 3432.

Alain Ducasse, Level 3, Morpheus, City of Dreams, Estrada do Istmo, Macau, +853 8868 3432

Price: MOP7801,280

The St. Regis Macaos Iridium Spa has unveiled its newest treatment, a session that combines both mindful and physical therapy by allowing guests to create their own blended diffuser scents and body scrubs. After spending time learning more about the healing powers of aromatherapy, the guest is given a 45-minute massage and body treatment thats sure to melt away all the tensions of the mind and body.

Iridium Spa, 38/F, St. Regis Macao, S/N, Estrada do Istmo, Macau, +853 8113 4949

Originally posted here:
What to do in Macau: The 66th Grand Prix, $28888 wine dinners and more - Lifestyle Asia

To Read More: What to do in Macau: The 66th Grand Prix, $28888 wine dinners and more – Lifestyle Asia
categoriaSkin Stem Cells commentoComments Off on What to do in Macau: The 66th Grand Prix, $28888 wine dinners and more – Lifestyle Asia | dataNovember 14th, 2019
Read All

Todos and Amarantus JV Announces Full Enrollment for Clinical Trial of LymPro Alzheimers Blood Test Relationship with Amyloid PET – Yahoo Finance

By daniellenierenberg

REHOVOT, Israel and NEW YORK, Nov. 14, 2019 (GLOBE NEWSWIRE) -- Todos Medical Ltd. (TOMDF), a clinical-stage in-vitro diagnostics company focused on the development of blood tests for the early detection of cancer and neurodegenerative disorders, and Amarantus Bioscience Holdings, Inc. a US-based JLABS-alumnus biotechnology holding company developing proprietary orphan neurologic, regenerative medicine and ophthalmic therapies and diagnostics through its subsidiaries, today announced that their joint venture company, Breakthrough Diagnostics, Inc. has completed enrollment of its ongoing clinical trial evaluating the relationship of Alzheimers blood diagnostic Lymphocyte Proliferation Test (LymPro Test) with amyloid PET neuroimaging at Leipzig University in Germany (the LymPro PET 2). Topline results are expected before the end of the first quarter of 2020.

Breakthrough completed a 20-subject clinical study (LymPro PET 1) in 2018 evaluating the correlation between LymPro scores and the diagnosis of Alzheimers disease, as confirmed with amyloid PET neuroimaging and other Alzheimers disease biomarkers. LymPro measures cell cycle dysregulation in peripheral lymphocytes. The top-line data, announced in July 2019, revealed a strong and statistically significant correlation between LymPro scores and amyloid PET neuroimaging cSUVR scores (r = -0.849; p = 0.00000216). Breakthroughs academic collaborators at the Leipzig University then expanded enrollment of that study to include an additional cohort of 20 subjects (LymPro PET 2) to confirm the strong relationship seen from LymPro PET 1. The data from both LymPro 1 and LymPro 2 will be published together in a peer-reviewed journal in 2020.

LymPro is a unique immune system-based Alzheimers blood test, said Dr. Herman Weiss, President & CEO of Todos. LymPro could prove to be a major breakthrough for Alzheimers disease diagnosis by measuring cell cycle dysregulation and amyloid, together, conveniently as part of a blood workup in routine clinical practice. The therapeutic field in Alzheimers has begun to see some renewed hope based upon recent Aducanumab data announced by Biogen that is directly related to the amyloid hypothesis, as well as conditional approval by the National Medical Products Administration in China for the first new Alzheimers drug in over 20 years, called Oligomannate from Shanghai Green Valley Pharmaceuticals, that is based on gut-brain biology of the microbiome and its effects on the immune system. We believe this renewed optimism and broadening of pathophysiological hypotheses relevant to Alzheimers disease being evaluated in the clinic significantly increases the scope for LymPro pharma services collaborations and begins to refine LymPros clinical utility profile for primary care physicians as strategies to correct cell cycle dysregulation emerge.

About Alzheimer's DiseaseAccording to the Alzheimer's Association, it is estimated that over 5.4 million people in the United States suffer from Alzheimer's disease. Over 500,000 patients are diagnosed annually, with nearly one-in-eight older Americans affected by the disease. Alzheimer's disease is the third leading cause of death in the United States. The cost of unpaid care in the United States is estimated at over $210 billion annually.Total payments for care are estimated at over $200 billion annually, including $140 billion in cost to Medicare and Medicaid. Alzheimer's expenditures in the United States are expected to exceed $1.2 trillion by 2050. There is no cure or effective treatment for Alzheimer's disease. Worldwide, about 35.6 million individuals have the disease and, according to the World Health Organization, the number will double every 20 years to 115.4 million people with Alzheimer's by 2050.

About Dr. Arendt's Research at Leipzig UniversityDr. Thomas Arendt is Professor of Neuroscience at Leipzig University where he runs the Paul Flechsig Institute of Brain Research. He has a 30-year record in R&D of therapeutic and diagnostic strategies of neurodegenerative disorders and made several seminal contributions to therapeutic concepts of Alzheimer's disease, including stem cell therapy and modulating tumor suppressor genes. In the early 1980's, he was involved in identifying the degeneration of the cholinergic system in Alzheimer's disease laying the basis for today's only available treatment. He is one of the pioneers of the "cell-cycle theory" of Alzheimer's disease, which he developed towards a diagnostic and therapeutic concept.

Story continues

About Breakthrough Diagnostics, Inc.Breakthrough Diagnostics, Inc. is a joint venture owned by Amarantus Bioscience Holdings, Inc. (AMBS) (80.01%) and Todos Medical Ltd. (19.99%). Breakthrough has been assigned the intellectual property and other rights to the LymPro Test, a diagnostic blood test for Alzheimers disease, as well as rights to other neurological diagnostics testing intellectual property. Todos Medical has provided Amarantus with notice of Todos decision to exercise its exclusive option to acquire the 80.01% of Breakthrough Diagnostics that it currently does not own.

The Lymphocyte Proliferation Test (LymPro Test) determines the ability of peripheral blood lymphocytes (PBLs) and monocytes to withstand an exogenous mitogenic stimulation that induces them to enter the cell cycle. It is believed that certain diseases, most notably Alzheimer's disease, are the result of compromised cellular machinery that leads to aberrant cell cycle re-entry by neurons, which then leads to apoptosis. LymPro is unique in the use of peripheral blood lymphocytes as surrogates for neuronal cell function, suggesting a common relationship between PBLs and neurons in the brain.

About Todos Medical Ltd.Todos Medical Ltd. is an in-vitro diagnostic company engaged in the development of blood tests for the early detection of a variety of cancers, and also has initiated the development of blood tests for neurodegenerative disorders such as Alzheimer's disease through Breakthrough Diagnostics, Inc., its joint venture with Amarantus Bioscience Holdings, Inc. Todos has developed two cancer screening tests based on TBIA (Todos Biochemical Infrared Analyses), a method for cancer screening using peripheral blood analysis. The TBIA screening method is based on the cancers influence on the immune system, which triggers biochemical changes in peripheral blood mononuclear cells and plasma. This proprietary and patented method incorporates biochemistry, physics and signal processing. The companys two cancer screening tests, TM-B1 and TM-B2, have received the CE mark. Breakthrough Diagnostics is developing the LymPro Test, a blood test for diagnosing Alzheimers disease.

For more information, the content of which is not part of this press release, please visithttp://www.todosmedical.com

About Amarantus Bioscience Holdings, Inc.Amarantus Bioscience Holdings (AMBS) is a JLABS alumnus biotechnology company developing treatments and diagnostics for diseases in the areas of neurology, regenerative medicine and orphan diseases through its subsidiaries. The Companys 80.01%-owned subsidiaryBreakthrough Diagnostics, Inc.,currently a joint venture with Todos Medical, Ltd., has licensed intellectual property rights to the Alzheimers blood diagnostic LymPro Test from Leipzig University that was originally developed by Dr. Thomas Arendt, as well as certain rights to multiple sclerosis diagnostic MSPrecise and Parkinsons diagnostic NuroPro. Amarantus entered into a joint venture agreement withTodos Medical, Ltd. to advance diagnostic screening assets and Todos has exercised its exclusive option to acquire Amarantus remaining ownership in Breakthrough in exchange for approximately 50% ownership of Todos. The transaction is expected close before the end of the first quarter of 2020. Amarantus also owns approximately 30% of the common shares of Avant Diagnostics, Inc., a healthcare data-generating technology company that specializes in biomarker assay services that target multiple areas of oncology. Avant provides precision oncology data through its TheraLink assays to assist the biopharmaceutical industry and clinical oncologists in identifying likely responders, initially for breast cancer, to over 70 FDA-approved drug treatments.

AMBS 50%-owned subsidiaryElto Pharma, Inc. has development rights to eltoprazine, a Phase 2b-ready small molecule indicated for Parkinson's disease levodopa-induced dyskinesia, Alzheimers aggression and adult attention deficit hyperactivity disorder, commonly known as ADHD. AMBS acquiredCutanogen Corporationfrom Lonza Group in 2015. Cutanogen is preparing for pivotal studies with Engineered Skin Substitute (ESS) for the treatment of pediatric life-threatening severe burns. ESS is a regenerative medicine-based, autologous full-thickness skin graft technology originally developed by the Shriners Hospital that can be used to treat severe burns, as well as several other catastrophic and cosmetic dermatological indications. AMBS wholly-owned subsidiary,MANF Therapeutics Inc.owns key intellectual property rights and licenses from a number of prominent universities related to the development of the therapeutic protein known as mesencephalic astrocyte-derived neurotrophic factor (MANF). MANF Therapeutics is developing MANF-based products as treatments for ophthalmological disorders such as Wolfram Syndrome, Retinitis Pigmentosa and Glaucoma, as well as neurodegenerative diseases such as Parkinsons disease. MANF was discovered by the Companys Chief Scientific Officer John Commissiong, PhD. Dr. Commissiong discovered MANF from AMBS proprietary discovery engine PhenoGuard, and believes several other neurotrophic factors remain to be discovered. Amarantus has entered into a binding letter of intent to license the therapeutic assets from Elto Pharma, Cutanogen and MANF Therapeutics to Emerald Organic Products.

Forward-looking StatementsCertain statements contained in this press release may constitute forward-looking statements. For example, forward-looking statements are used when discussing our expected clinical development programs and clinical trials. These forward-looking statements are based only on current expectations of management, and are subject to significant risks and uncertainties that could cause actual results to differ materially from those described in the forward-looking statements, including the risks and uncertainties related to the progress, timing, cost, and results of clinical trials and product development programs; difficulties or delays in obtaining regulatory approval or patent protection for product candidates; competition from other biotechnology companies; and our ability to obtain additional funding required to conduct our research, development and commercialization activities. In addition, the following factors, among others, could cause actual results to differ materially from those described in the forward-looking statements: changes in technology and market requirements; delays or obstacles in launching our clinical trials; changes in legislation; inability to timely develop and introduce new technologies, products and applications; lack of validation of our technology as we progress further and lack of acceptance of our methods by the scientific community; inability to retain or attract key employees whose knowledge is essential to the development of our products; unforeseen scientific difficulties that may develop with our process; greater cost of final product than anticipated; loss of market share and pressure on pricing resulting from competition; and laboratory results that do not translate to equally good results in real settings, all of which could cause the actual results or performance to differ materially from those contemplated in such forward-looking statements. Except as otherwise required by law, Todos Medical does not undertake any obligation to publicly release any revisions to these forward-looking statements to reflect events or circumstances after the date hereof or to reflect the occurrence of unanticipated events. For a more detailed description of the risks and uncertainties affecting Todos Medical, please refer to its reports filed from time to time with the U.S. Securities and Exchange Commission.

Todos Investor and Corporate Contact:Kim Sutton GolodetzLHA Investor RelationsSenior Vice President (212) 838-3777kgolodetz@lhai.com

Todos Corporate ContactDaniel HirschTodos MedicalInvestor RelationsEmail:Dan.h@todosmedical.comPhone: (347) 699-0029

Amarantus Investor and Media Contact:Gerald CommissiongPresident & CEOOffice: 650-862-5391Email: gerald@amarantus.com

Read the original here:
Todos and Amarantus JV Announces Full Enrollment for Clinical Trial of LymPro Alzheimers Blood Test Relationship with Amyloid PET - Yahoo Finance

To Read More: Todos and Amarantus JV Announces Full Enrollment for Clinical Trial of LymPro Alzheimers Blood Test Relationship with Amyloid PET – Yahoo Finance
categoriaSkin Stem Cells commentoComments Off on Todos and Amarantus JV Announces Full Enrollment for Clinical Trial of LymPro Alzheimers Blood Test Relationship with Amyloid PET – Yahoo Finance | dataNovember 14th, 2019
Read All

Learn How You Can Treat Your Pain with Regenerative Medicine! – Patch.com

By daniellenierenberg

Have you wondered about new and innovative pain treatment processes that could change your quality of life?

Join us Monday, December 16, 7PM at the Woodbridge Main Library as Manisha Chahal, MD of Edison-Metuchen Orthopaedic Group discusses Regenerative Medicine to Treat Pain. Dr. Chahal will walk us through the promising results of regenerative medicine with a focus on platelet rich plasma and stem cells. She will explain how this process works and the evidence to support this cutting edge science. Dr. Chahal will also describe the best practices to go about and the indications to look out for. She will disclose how to avoid misleading providers and illegitimate products.

About Dr. Manisha Chahal, MD

Dr. Manisha Chahal is a board certified Interventional Pain Management Physician who specializes in minimally invasive procedures for pain.

Dr. Chahal treats the following conditions: headache, lower back pain, joint pain, neck pain, CRPS, postherpetic neuralgia, abdominal wall pain, pelvic pain, coccydynia, and sciatica.

Additionally, Dr. Chahal also performs the following procedures: spinal cord stimulators, regenerative medicine (PRP & stem cell injections), Botox for migraines, cervical epidural steroid injection, lumbar translaminar or transforaminal epidural steroid injections, cervical and lumbar facet rhizotomy, discograms, nerve blocks (ultrasound & C-arm guided), knee genicular blocks & rhizotomy, joint injections, trigger point injections, and qutenza treatment (chemical rhizotomy) for PHN pain.

She received her medical degree from Howard University where she was awarded a Trustee Scholarship for academic achievement. She completed her anesthesia residency training at Beth Israel Deaconess Medical Center (Harvard) in Boston. Dr. Chahal did her Pain Management Fellowship at New York Presbyterian/ Weill Cornell Medical Center in NYC. She is board certified by the American Board of Anesthesiology for both anesthesia and pain medicine.

She treats a wide variety of pain diagnoses and has expertise in many procedures including spinal cord stimulators, transforaminal epidural injections, rhizotomies, ultrasound guided nerve blocks, regenerative treatments and botox.

Dr. Chahal's philosophy is use every pain management option available to help patients ease their pain and "get their life back."

The Woodbridge Main Library is located at 1 George Frederick Plaza in Woodbridge, NJ. If you have any questions or need any further information please contact us at 732-634-4450 or visit our website -www.woodbrigelibrary.org.

Continue reading here:
Learn How You Can Treat Your Pain with Regenerative Medicine! - Patch.com

To Read More: Learn How You Can Treat Your Pain with Regenerative Medicine! – Patch.com
categoriaSpinal Cord Stem Cells commentoComments Off on Learn How You Can Treat Your Pain with Regenerative Medicine! – Patch.com | dataNovember 13th, 2019
Read All

Sodium Selenite Improves The Therapeutic Effect Of BMSCs Via Promoting | OTT – Dove Medical Press

By daniellenierenberg

Dongmei Yan,1,* Botao Tang,2,* Lixin Yan,3 Lei Zhang,1 Meijuan Miao,1 Xi Chen,4 Guangyi Sui,5 Qi Zhang,1 Daoyuan Liu,1 Hui Wang1

1Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China; 2Department of Cardiology, Heilongjiang Red Cross Hospital, Harbin, Peoples Republic of China; 3Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China; 4Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China; 5Ethics Committee, The Tumor Hospital Affiliated to Harbin Medical University, Harbin, Peoples Republic of China

*These authors contributed equally to this work

Correspondence: Hui WangDepartment of Blood Transfusion, The Second Affiliated Hospital, Harbin Medical University, Xuefu Road No. 246, Nangang District, Harbin, Heilongjiang Province, Peoples Republic of ChinaTel +86-451-86605134Email wanghui@hrbmu.edu.cn

Purpose: Sodium selenite (Na2SeO3) has been known to restore the antioxidant capacity of bone marrow mesenchymal stem cells (BMSCs), reduce the production of reactive oxygen species (ROS) in the cells, and promote cell proliferation and inhibit cell apoptosis. However, it is still not clear whether selenium can mediate the differentiation and inhibit the induced hemagglutination of BMSCs. In this study, we attempted to explore the effect of Na2SeO3 on these aspects of BMSCs.Methods: We evaluated the fate of the MSCs isolated from the bone marrow of mice by studying their differentiation and proliferation after treatment with Na2SeO3. We also simultaneously evaluated the coagulation reaction induced by Na2SeO3-treated BMSCs in vitro.Results: While the mice-derived BMSCs expressed CD44, CD73, CD90, and CD105, they did not express CD45. The morphology of the derived cells was homogeneously elongated. These results showed that the isolated cells are indeed BMSCs. We found that 0.1 M and 1 M of Na2SeO3 promoted the proliferation and apoptosis of BMSCs, respectively. This showed that Na2SeO3 can be toxic and exert certain side effects on the BMSCs. The results of the osteogenic and adipogenic assay showed that 0.1 M Na2SeO3 could significantly promote the osteogenic and adipogenic differentiation of BMSCs by upregulating the lipid factors (LPL and PPRAG) and osteogenic factors, RUNX2, COL1, and BGP, in a concentration-dependent manner. Coagulation experiments in animals (mice and rats) revealed that Na2SeO3 can reduce the coagulation time of BMSCs in a concentration-dependent manner, which is related to the high expression of hematopoietic factors (SDF-1, GM-CSF, IL-7, IL-8, IL-11, and SCF).Conclusion: Na2SeO3 promotes the proliferation and differentiation as well as reduces the coagulation time of BMSCs, and this effect might enhance the therapeutic effect of BMSCs.

Keywords: sodium selenite, BMSCs, proliferation, differentiation, coagulation factors, clotting time

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Continued here:
Sodium Selenite Improves The Therapeutic Effect Of BMSCs Via Promoting | OTT - Dove Medical Press

To Read More: Sodium Selenite Improves The Therapeutic Effect Of BMSCs Via Promoting | OTT – Dove Medical Press
categoriaBone Marrow Stem Cells commentoComments Off on Sodium Selenite Improves The Therapeutic Effect Of BMSCs Via Promoting | OTT – Dove Medical Press | dataNovember 13th, 2019
Read All

Be the Match and Make a Difference – Fairfield Mirror

By daniellenierenberg

On Wednesday, Nov. 6, the Be the Match Club at Fairfield University hosted a donor registration drive to encourage students to sign up to be a bone marrow donor.

Be the Match is an organization that seeks to help people who are suffering from blood cancer or blood diseases and are in need of a transplant. Be the Match, operated by the National Marrow Donor Program, provides patients with a way to find a transplant match, which could be their last chance for a cure. There is a large number of diseases that could be treated with a transplant, including Hodgkin and non-Hodgkin lymphoma, different types of leukemia and severe aplastic anemia.

The Be the Match Club at Fairfield University started in the fall of 2018 when a group of studentswas inspired by a fellow Stag who had to withdraw from school when he was re-diagnosed with cancer. The clubs goal is to spread awareness about the organization and increase the database of donors, so there is a greater chance for a patient to find their match.

Were trying to get as many people as possible to sign up, Brian Gozzo 20, Vice President of the Be the Match Club, says. Currently were at 20 million. We hope to one day have basically the entire planet, ideally, on it.

A donor-patient match is found by having the donor swab the inside of their cheek to gather DNA that is tested against the patient. If the two have a similar human leukocyte antigen, they are a close match for a transplant. After signing up for the registry at Fairfield University, a cheek-swabbing kit will be sent to your house, and then will be sent back for the stem cells to be tested.

Its super simple, Gozzo says. All it takes is a cheek swab, and, like, five minutes of your time, and youre put on [the registry] till youre 61. If youre matched with someone right then, youll probably receive a phone call, and then that will take another couple weeks until you actually have to donate.

If a match is found, the actual donation process could go one of two ways. One way to donate is to give peripheral blood stem cells, which is a non-surgical procedure that extracts blood through a needle, puts it through a machine that separates the blood cells and then returns the remaining blood into the body. The other option for donation is to give bone marrow through a surgical procedure that removes liquid marrow from the pelvic bone.

Gozzo understands that this can sound scary, but the chances of getting a phone call is pretty slim. He says that only one in about four hundred people on the registry will ever have to donate.

One thing we want people to know is dont be scared that were gonna call you and say the next day you have to be here, across the country and donate, Gozzo said. Its a very lengthy process, theres a lot of people involved and its very safe.

For Gozzo, the most important thing is to spread awareness and increase the number of people on the registry and the chances of a life-saving donation. He says, You could just sit on the registry until you turn 61 and never once receive a phone call, but just know that, like, you still were there and youve still done your part.

Gozzo, a resident assistant, was motivated to form the Be the Match Club at Fairfield University with a few other RAs last year when the student had to withdraw. They reached out to Be the Match for help.

When the student had to withdraw, a couple of the RAs wanted to know what we could do to help. Could we find a match for this kid? Gozzo said. Course, thats very, very difficult.

However, last years drive was not the first appearance Be the Match has made at Fairfield University. Senior Julia Giampietro and her roommate brought a Be the Match drive themselves to Fairfield in their sophomore year. She reached out to the Connecticut Be the Match region leader, who helped them set up a drive that brought over 60 students to join the national bone marrow donor registry. Giampietro was influenced to raise awareness for this organization for a personal reason.

I wanted to bring [Be the Match] to Fairfield in honor of my cousin Christopher who passed away from AML Leukemia in October of my freshman year at Fairfield, Giampietro said via email. He went through a bone marrow transplant, was in remission and relapsed a year later. He received a second bone marrow transplant but the cancer took over his body He was and still is the biggest inspiration in my life and no matter what would always say its all good which is the motto my family and I live by now.

Giampietro continued work with Be the Match throughout her junior and senior years. She was also inspired by the Fairfield student who had to withdraw last year, so she worked with students in younger grades to put on another drive in the fall of 2018, which is when the Be the Match Club was born. Giampietro and her roommate decided to put together an event for the student at the Seagrape Cafe, where they raised almost $2,000 for his family from donations at the door and from other Fairfield Students.

That was probably the biggest accomplishment of our 3 years involved with Be the Match and was a great way to close the year and our time in the club, Giampietro said. It was also amazing to see how much support we got and the feeling of being able to make a small difference for a local peer and family.

Although her time with Be the Match at Fairfield University is over, Giampietro has high hopes for the club and the organization in the years to come.

My biggest hope really is to have students become more aware and educated about [Be the Match], Giampietro said. It is so important for people our age to be educated on this amazing cause because we are the ones who can save peoples lives.

Be the Match will hold their next donor registration drive in the spring of 2020. To learn more about the organization or become a donor, visit https://bethematch.org/.

See the original post here:
Be the Match and Make a Difference - Fairfield Mirror

To Read More: Be the Match and Make a Difference – Fairfield Mirror
categoriaBone Marrow Stem Cells commentoComments Off on Be the Match and Make a Difference – Fairfield Mirror | dataNovember 13th, 2019
Read All

Page 186«..1020..185186187188..200210..»


Copyright :: 2024