Page 19«..10..18192021..3040..»

Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products – Newswise

By daniellenierenberg

Abstract: The olfactory ecto-mesenchymal stem cell (OE-MSC) are mesenchymal stem cells originating from the lamina propria of the nasal mucosa. They have neurogenic and immune-modulatory properties and showed therapeutic potential in animal models of spinal cord trauma, hearing loss, Parkinsons disease, amnesia, and peripheral nerve injury. In this paper we designed a protocol that meet the requirements set by human health agencies to manufacture these stem cells for clinical applications. Once purified, OE-MSCs can be used per se or expanded in order to get the extracellular vesicles (EV) they secrete. A protocol for the extraction of these vesicles was validated and the EV from the OE-MSC were functionally tested on an in vitro model. Nasal mucosa biopsies from three donors were used to validate the manufacturing process of clinical grade OE-MSC. All stages were performed by expert staff of the cell therapy laboratory according to aseptic handling manipulations, requiring grade A laminar airflow. Enzymatic digestion provides more rapidly a high number of cells and is less likely to be contaminated. Foetal calf serum was replaced with human platelet lysate and allowed stronger cell proliferation, with the optimal percentage of platelet lysate being 10%. Cultivated OE-MSCs are sterile, highly proliferative (percentage of CFU-F progenitors was 15,5%) and their maintenance does not induce chromosomal rearrangement (karyotyping and chromosomal microarray analysis were normal). These cells express the usual phenotypic markers of OE-MSC. Purification of the EVs was performed with ultracentrifugation and size exclusion chromatography. Purified vesicles expressed the recognized markers of EVs (Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines) and promoted cell differentiation and neurite elongation in a model of neuroblastoma Neuro2a cell line. We developed a safer and more efficient manufacturing process for clinical-grade olfactory stem cells, these cells can now be used in humans. A phase I clinical trial will begin soon. An efficient protocol for the purification of the OE-MSC EVs have been validated. These EVs exert neurogenic properties in vitro. More studies are needed to understand the exact mechanisms of action of these EVs and prove their efficacy and safety in animal models.

Original post:
Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products - Newswise

To Read More: Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products – Newswise
categoriaSpinal Cord Stem Cells commentoComments Off on Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products – Newswise | dataAugust 10th, 2022
Read All

Curious kids: what is inside teeth? – The Conversation

By daniellenierenberg

What is inside teeth? Nicholas, age 5, Australian Capital Territory

Great question, Nicholas. It is important for us to know whats inside teeth as they help us eat, and eating gives us the energy to do our daily activities.

Our teeth are not just for chewing, though. We also need teeth for speaking, because different teeth contribute to different sounds. For example, we need upper front teeth to speak words starting with f or v sounds.

The teeth in the upper jaw are called as maxillary or upper teeth, and those on the lower jaw are called as mandibular or lower teeth. Then each jaw has two side-to-side halves. All up, thats four quadrants of teeth.

We have two sets of teeth. There are 20 teeth in the first set. We commonly call these milk teeth or primary teeth. They start forming while we are in the womb, even before we are born! The first one starts coming out of the gums when we are six months old, and most people have all their milk teeth by the age of three.

We keep our milk teeth until we are six years old, when we start losing them and the adult teeth or permanent teeth start coming in. By 14 or 15 years of age, most of us will have all our adult teeth except the last tooth in each side of the jaws. Some people call these wisdom teeth. There are 32 teeth in an entire adult set, with an equal number of teeth on each side.

We have four different types of teeth:

Read more: Curious Kids: what is brain freeze?

Each tooth can be divided into two parts. The crown is the part of the tooth we can see in the mouth, while the root sits within the gum and bone of the jaw. Some teeth have more than one root.

And each tooth has two layers: enamel and dentine, with pulp at the centre which has nerves and blood. Roots do not have enamel but another layer called cementum.

Enamel is the hardest substance in the body and protects the dentine and pulp, just like a helmet protects your head.

Dentine is the second layer and makes up most of the tooth.

We feel pain in the tooth when the innermost part, pulp, is involved.

Scientists have been working hard to find how special cells called stem cells in pulp could be used to repair other parts of the teeth, gums and even other body parts such as the spinal cord, brain and heart.

Read more: Curious kids: why dont whales have teeth like we do?

Hopefully youve already got into the habit of brushing twice every day with a fluoridated toothpaste for at least two minutes.

Tooth decay is caused by germs that love to feast on sugary or treat food in our mouth. We can stop that happening by saving lollies and sweets for special occasions and cleaning every tooth really well.

When teeth are not well cared for, they can develop tooth decay, which could cause pain when it involves that pulp deep inside your teeth. Its important to visit an oral health professional (such as your family dentist or hygienist) regularly. They can tell you how to take good care of your teeth and treat damaged teeth when required.

Read the rest here:
Curious kids: what is inside teeth? - The Conversation

To Read More: Curious kids: what is inside teeth? – The Conversation
categoriaSpinal Cord Stem Cells commentoComments Off on Curious kids: what is inside teeth? – The Conversation | dataAugust 10th, 2022
Read All

Increasing efforts to set up centers for Bone Marrow Transplant is expected to Boost the growth of the market, Top Key players | Lonza, Merck KgaA,…

By daniellenierenberg

A bone marrow transplant is a medical procedure that replacesthe bone marrow with healthy cells. Replacement cells might come from either ones own body or from a donor. A stem cell transplant, or more specifically, a hematopoietic stem cell transplant, is another name for a bone marrow transplant. Transplantation can be used to treat leukemia, myeloma, and lymphoma, as well as other blood and immune system illnesses that impact the bone marrow. Cancer and cancer treatment can damage the hematopoietic stem cells. Hematopoietic stem cells are blood-forming stem cells. Hematopoietic stem cells that are damaged may not develop into red blood cells, white blood cells, or platelets. These blood cells are vital, and each one serves a specific purpose. A bone marrow transplant can help the body regenerate the red blood cells, white blood cells, and platelets it requires.

The global Bone Marrow Transplant market is estimated to be valued at $10,356.1 Mn Mn in 2021 and is expected to exhibit a CAGR of 4.0% over the forecast period (2022-2028).

Receive A Full PDF Sample Copy Of Report @ https://www.coherentmarketinsights.com/insight/request-sample/232

The study provides data on the most exact revenue estimates for the complete market and its segments to aid industry leaders and new participants in this market. The purpose of this study is to help stakeholders better understand the competitive landscape and design suitable go-to-market strategies. The market size, features, and growth of theBone Marrow Transplantindustry are segmented by type, application, and consumption area in this study. Furthermore, key sections of the GlobalBone Marrow Transplantmarket are evaluated based on their performance, such as cost of production, dispatch, application, volume of usage, and arrangement.

Competitive Analysis: Global Bone Marrow Transplant Market

Detailed Segmentation:

By Type:

By Treatment Type:

:

: United States, Canada, and Mexico & : Argentina, Chile, Brazil and Others & : Saudi Arabia, UAE, Israel, Turkey, Egypt, South Africa & Rest of MEA. : UK, France, Italy, Germany, Spain, BeNeLux, Russia, NORDIC Nations and Rest of Europe. -: India, China, Japan, South Korea, Indonesia, Thailand, Singapore, Australia and Rest of APAC.

Get Quick Access To PDF Brochure @https://www.coherentmarketinsights.com/insight/request-pdf/232

Key Drivers & Barriers:

This report has looked at high-impact rendering elements and causes to help readers comprehend the overall trend. Furthermore, the report contains constraints and obstacles that may operate as roadblocks for the players. This will enable people to pay attention and make well-informed business judgments. Specialists have also focused on future business opportunities.

Competitive Outlook:

Company profiles, revenue sharing, and SWOT analyses of the major players in theBone Marrow TransplantMarket are also included in the research. TheBone Marrow Transplantindustry research offers a thorough examination of the key aspects that are changing, allowing you to stay ahead of the competition. These market measuring methods assist in the identification of market drivers, constraints, weaknesses, opportunities, and threats in the global market.

Key Reasons to Buy this Report:

Use of current statistics gathered by our own researchers. These provide you historical and projected data that is evaluated to inform you why theBone Marrow TransplantMarket is changing this allows you to anticipate market changes and stay ahead of your competition.

Youll be able to quickly pinpoint the information you need thanks to the concise analysis, clear graph, and table style.

Denotes the area and market segment that is likely to expand the fastest and dominate the market.

A geographical analysis showing the consumption of the product/service in each region as well as the variables impacting the market within each region

Comprehensive company profiles for the major market players, including company overviews, company insights, product benchmarking, and SWOT analysis for the major market players, as well as new service/product launches, partnerships, business expansions, and acquisitions in the last five years of companies profiled.

The industrys present and future market outlook, including recent changes such as growth possibilities and drivers, as well as challenges and restraints in both emerging and developed markets.

Porters five forces analysis is used to provide an in-depth examination of the market from numerous angles.

Provides industry understanding via Value Chain Market Dynamics scenario, as well as market development potential in the next years

Buy This Complete Business Report @https://www.coherentmarketinsights.com/insight/buy-now/232

FAQS:

What will be the size of the markets and the pace of growth in 2028? What are the main factors driving the global market? What are the most important market trends influencing global market growth? What are the obstacles to market expansion? Who are the major providers to the worldwide market? What are the opportunities and obstacles for sellers on the global market? What are the main findings of the five-point study of the worldwideBone Marrow TransplantMarket?

About us:

Coherent Market Insights is a global market intelligence and consulting firm that offers syndicated and customised research reports as well as consulting services. Were known for our actionable insights and reliable reports in a wide range of industries, including aerospace and defence, agriculture, food and beverage, automotive, chemicals and materials, and virtually every other domain and sub-domain imaginable. Our clients benefit from our highly reliable and accurate reports. Were also committed to continuing to provide measurable, long-term results for our clients after COVID-19 by playing a leading role in providing insights into various sectors.

Contact Us:

Mr. ShahCoherent Market Insights1001 4th Ave, #3200 Seattle, WA 98154, U.S.Email: [emailprotected]United States of America: +1-206-701-6702United Kingdom: +44-020-8133-4027Japan: +050-5539-1737India: +91-848-285-0837

See original here:
Increasing efforts to set up centers for Bone Marrow Transplant is expected to Boost the growth of the market, Top Key players | Lonza, Merck KgaA,...

To Read More: Increasing efforts to set up centers for Bone Marrow Transplant is expected to Boost the growth of the market, Top Key players | Lonza, Merck KgaA,…
categoriaBone Marrow Stem Cells commentoComments Off on Increasing efforts to set up centers for Bone Marrow Transplant is expected to Boost the growth of the market, Top Key players | Lonza, Merck KgaA,… | dataAugust 10th, 2022
Read All

See-through zebrafish, new imaging method put blood stem cells in high-resolution spotlight – University of Wisconsin-Madison

By daniellenierenberg

Tracing features in a large 3D electron microscopy dataset reveals a zebrafish blood stem cell (in green) and its surrounding niche support cells, a group photo method that will help researchers understand factors that contribute to blood stem cell health which could in turn help develop therapies for blood diseases and cancers. Image by Keunyoung Kim.

MADISON For the first time, researchers can get a high-resolution view of single blood stem cells thanks to a little help from microscopy and zebrafish.

Researchers at the University of WisconsinMadison and the University of California San Diego have developed a method for scientists to track a single blood stem cell in a live organism and then describe the ultrastructure, or architecture, of that same cell using electron microscopy. This new technique will aid researchers as they develop therapies for blood diseases and cancers.

Currently, we look at stem cells in tissues with a limited number of markers and at low resolution, but we are missing so much information, says Owen Tamplin, an assistant professor in UWMadisons Department of Cell & Regenerative Biology, a member of the Stem Cell & Regenerative Medicine Center, and a co-author on the new study, which was published Aug. 9 in eLife. Using our new techniques, we can now see not only the stem cell, but also all the surrounding niche cells that are in contact.

The niche is a microenvironment found within tissues like the bone marrow that contain the blood stem cells that support the blood system. The niche is where specialized interactions between blood stem cells and their neighboring cells occur every second, but these interactions are hard to track and not clearly understood.

As a part of the new study, Tamplin and his co-lead author, Mark Ellisman, a professor of neuroscience at UC San Diego, identified a way to integrate multiple types of microscopic imaging to investigate a cells niche. With the newly developed technique that uses confocal microscopy, X-ray microscopy, and serial block-face scanningelectron microscopy, researchers will now be able to track the once elusive cell-cell interactions occurring in this space.

This has allowed us to identify cell types in the microenvironment that we didnt even know interacted with stem cells, which is opening new research directions, Tamplin says.

As a part of this study, Tamplin, and his colleagues, including co-first authors Sobhika Agarwala and Keunyoung Kim, identified dopamine beta-hydroxylase positive ganglia cells, which were previously an uncharacterized cell type in the blood stem cell niche. This is crucial, as understanding the role of neurotransmitters like dopamine in regulating blood stem cells could lead to improved therapeutics.

Transplanted blood stem cells are used as a curative therapy for many blood diseases and cancers, but blood stem cells are very rare and difficult to locate in a living organism, Tamplin says. That makes it very challenging to characterize them and understand how they interact and connect with neighboring cells.

While blood stem cells are difficult to locate in most living organisms, the zebrafish larva, which is transparent, offers researchers a unique opportunity to view the inner workings of the blood stem cell niche more easily.

Thats the really nice thing about the zebrafish and being able to image the cells, Tamplin says of animals transparent quality. In mammals, blood stem cells develop in utero in the bone marrow, which makes it basically impossible to see those events happening in real time. But, with zebrafish you can actually watch the stem cell arrive through circulation, find the niche, attach to it, and then go in and lodge there.

While the zebrafish larva makes it easier to see blood stem cell development, specialized imaging is needed to find such small cells and then detail their ultrastructure. Tamplin and his colleagues spent over six years perfecting these imaging techniques. This allowed them to see and track the real-time development of a blood stem cell in the microenvironment of a live organism, then zoom in even further on the same cell using electron microscopy.

First, we identified single fluorescently labeledstem cells bylight sheet or confocal microscopy, Tamplin says. Next, we processed the same sample forserial block-face scanningelectron microscopy. We then aligned the 3D light and electron microscopy datasets. Byintersecting these different imaging techniques,we could see the ultrastructure of single rare cells deep inside a tissue. This also allowed us to find all the surrounding niche cellsthat contact a blood stem cell. We believe our approach will be broadly applicable for correlative light and electron microscopy in many systems.

Tamplin hopes that this approach can be used for many other types of stem cells, such as those in the gut, lung, and the tumor microenvironment, where rare cells need to be characterized at nanometer resolution. But, as a developmental biologist, Tamplin is especially excited to see how this work can improve researchers understanding of how the blood stem cell microenvironment forms.

I think this is really exciting because we generate all of our blood stem cells during embryonic development, and depending on what organism you are, a few hundred or maybe a few thousand of these stem cells will end up producing hundreds of billions of new blood cells every day throughout your life, Tamplin says. But we really dont know much about how stem cells first find their home in the niche where theyre going to be for the rest of the life of the organism. This research will really help us to understand how stem cells behave and function. A better understanding of stem cell behavior, and regulation by surrounding niche cells, could lead to improved stem cell-based therapies.

This research was supported by grants from the National Institutes of Health (R01HL142998, K01DK103908, 1U24NS120055-01, R24 GM137200) and the American Heart Association (19POST34380221).

Read the original here:
See-through zebrafish, new imaging method put blood stem cells in high-resolution spotlight - University of Wisconsin-Madison

To Read More: See-through zebrafish, new imaging method put blood stem cells in high-resolution spotlight – University of Wisconsin-Madison
categoriaBone Marrow Stem Cells commentoComments Off on See-through zebrafish, new imaging method put blood stem cells in high-resolution spotlight – University of Wisconsin-Madison | dataAugust 10th, 2022
Read All

Stem Cell Membrane-Coated Nanoparticles in Tumor Therapy – AZoNano

By daniellenierenberg

Cell membrane-coated nanoparticles, applied in targeted drug delivery strategies, combine the intrinsic advantages of synthetic nanoparticles and cell membranes. Although stem cell-based delivery systems were highlighted for their targeting capability in tumor therapy, inappropriate stem cells may promote tumor growth.

Study:Stem cell membrane-camouflaged targeted delivery system in tumor. Image Credit:pinkeyes/Shutterstock.com

A review published in the journalMaterials Today Biosummarized the role of stem cell membrane-camouflaged targeted delivery system in tumor therapy and focused on the underlying mechanisms of stem cell homing toward target tumors. Nanoparticle-coated stem cell membranes have enhanced targetability, biocompatibility, and drug loading capacity.

Furthermore, the clinical applications of induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) were investigated as membrane-camouflaged targeted delivery systems for their anti-tumor therapies. In concurrence, the stem cell membrane-coated nanoparticles have immense prospects in tumor therapy.

Cell-based targeted delivery systems have low immunogenicity and toxicity, innate targeting capability, ability to integrate receptors, and long circulation time. Cells such as red blood cells, platelets, stem cells, tumor cells, immune cells, and even viral/bacterial cells can serve as effective natural vesicles.

MSCs derived from the umbilical cord (UC-MSCs), bone marrow (BM-MSCs), and adipose tissue (ATMSCs) are utilized in clinical applications. However, iPSCs are preferable over MSCs in clinical applications due to their easy fetch by transcription factor-based reprogramming of differentiation of somatic cells.

Stem cells (MSCs/ iPSCs) can be easily isolated and used as drug delivery systems for tumor therapy. Stem cell-based delivery systems have inflammation or tumor lesions targeting capacity. However, stem cells are often entrapped in the lung due to their size, resulting in microembolism.

Cell membrane-coated nanoparticles are applied in targeted delivery strategies. To this end, stem cell membrane-coated nanoparticles have tremendous prospects in biomedical applications. Although previous reports mentioned the role of cell membrane-coated nanocarriers in tumor therapy, delivery systems based on stem cell membranes have not been explored extensively.

Stem cell membrane-coated nanoparticles obtained from stem cells have complex functioning and can achieve biological interfacing. Consequently, stem cell membrane-coated nanoparticles served as novel drug delivery systems that could effectively target the tumor.

Previous reports mentioned the preparation of doxorubicin (DOX) loaded, poly (lactic-co-glycolic acid) (PLGA) coated MSC membrane-based nanovesicles, which showed higher cellular uptake than their PLGA uncoated counterparts. Similarly, the DOX-loaded MSC membrane-coated gelatin nanogels showed enhanced storage stability and sustained drug release.

Thus, the stem cell membrane-coated nanoparticles served as novel carriers for stem cells and facilitated the targeted delivery of the drugs at the tumor site. Since the stem cell membrane-coated nanoparticles had good targeting and penetration abilities, they enhanced the efficiency of chemotherapeutic agents in tumor therapy and minimized the side effects.

Reactive oxygen species (ROS) based photodynamic therapy (PDT) is mediated by photosensitizers with laser irradiations. Previous reports mentioned the development of MSC membrane-based mesoporous silica up-conversion ([emailprotected]2) nanoparticles that efficiently targeted the tumor due to their high affinity after being coated with MSC membrane.

These cell membrane-coated nanoparticles showed high cytocompatibility (with hepatocyte cells) and hemocompatibility (with blood). Moreover, the [emailprotected]2 nanoparticles-based PDT therapy under 980-nanometer laser irradiations could inhibit the tumors in vivo and in vitro. Consequently, the stem cell membrane-coated nanoparticles had circulation for an extended time and escaped the immune system, thereby increasing their accumulation at the tumor site.

Stem cell membrane-coated nanoparticles were also applied to deliver small interfering RNA (siRNA) via magnetic hyperthermia therapy and imaging. Previous reports mentioned the preparation of superparamagnetic iron oxide (SPIO) nanoparticles using an MSC membrane that reduced the immune response.

Additionally, the CD44 adhesion receptors were preserved on the surface of the MSC membrane during preparation. These prepared nanovesicles were unrecognized by macrophages, which enabled their stability in blood circulation. The nanosize and tumor homing capacity of MSCs helped the nanovesicles generate a dark contrast in T2-weight magnetic resonance imaging (MRI).

Cell membrane-coated nanoparticles helped fabricate various targeted delivery strategies. Especially, stem cell membrane-coated nanoparticles have the following advantages: stem cells are easy to isolate and expand in vitro. Thus, multilineage potential and phenotypes could be preserved for more than 50 population doublings in vitro.

Stem cell membrane-coated nanoparticles also have an intrinsic capacity to target inflammation or tumor lesions. Hence, these nanoparticles were established for tumor therapy, building a strong foundation for stem cell membrane-mediated delivery systems.

On the other hand, stem cell membrane-coated nanoparticles have the following drawbacks: Despite various sources for collecting MSCs (UC-MSCs/BM-MSCs/ATMSCs), the number of cells obtained is limited, although iPSCs are relatively easy to fetch by reprogramming differentiated somatic cells, the reprogramming is a high-cost step, restricting the clinical applications of iPSCs.

Zhang, W., Huang, X. (2022). Stem cell membrane-camouflaged targeted delivery system in tumor. Materials Today Bio.https://www.sciencedirect.com/science/article/pii/S2590006422001752

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Link:
Stem Cell Membrane-Coated Nanoparticles in Tumor Therapy - AZoNano

To Read More: Stem Cell Membrane-Coated Nanoparticles in Tumor Therapy – AZoNano
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Membrane-Coated Nanoparticles in Tumor Therapy – AZoNano | dataAugust 10th, 2022
Read All

Fate Therapeutics Announces Preclinical Publication Highlighting Derivation of CD8 T Cells from TCR-CAR+ Induced Pluripotent Stem Cells -…

By daniellenierenberg

TCR-CAR+ iPSC-derived CD8 T Cells Induced Complete and Durable Responses In Vivo in Systemic Leukemia Model

Cell-surface Markers, Gene Transcription Profile, and In Vivo Anti-tumor Activity of TCR-CAR+ iPSC-derived CD8 T Cells Compared Favorably with Healthy-donor Peripheral Blood CAR T Cells

Phase 1 Study Ongoing of First-ever iPSC-derived T-cell Product Candidate FT819 for Off-the-shelf Treatment of Patients with Relapsed / Refractory B-cell Malignancies

SAN DIEGO, Aug. 09, 2022 (GLOBE NEWSWIRE) -- Fate Therapeutics, Inc. ( FATE), a clinical-stage biopharmaceutical company dedicated to the development of programmed cellular immunotherapies for patients with cancer, today announced the publication of preclinical study results demonstrating the successful generation, durable anti-tumor response, and functional persistence of TCR-CAR+ iPSC-derived CD8 T cells from induced pluripotent stem cells (iPSCs). The CD8 T cells were derived from a single engineered iPSC integrating a novel chimeric antigen receptor (CAR) transgene into the T-cell receptor alpha constant (TRAC) locus, ensuring complete bi-allelic disruption of T-cell receptor (TCR) expression and promoting uniform CAR expression. The discoveries were made under a multi-year research collaboration between the Company and Memorial Sloan Kettering Cancer Center (MSK) led by Michel Sadelain, M.D., Ph.D., Director, Center for Cell Engineering and Head, Gene Expression and Gene Transfer Laboratory, and were published this week in Nature Biomedical Engineering.

Scientists have previously differentiated induced pluripotent stem cells to form CAR T cells, however, it was observed that premature TCR or constitutive CAR expression resulted in the derivation of innate-like T cells that do not acquire the phenotype nor exhibit the function of conventional CD8 T cells, said Dr. Sadelain. Our published findings are the first to show the generation of iPSC-derived CD8 CAR T cells lacking a TCR, where timed and calibrated expression of the CAR in place of the TCR successfully drove T-cell maturation and promoted the acquisition of a transcriptional and functional profile more closely resembling that of natural CD8 T cells.

The mass production of TCR-CAR+ CD8 T cells from master engineered iPSC lines is a promising approach for development of off-the-shelf, cell-based cancer immunotherapies. Through a systematic assessment of factors that affect T-cell lineage commitment and induce adaptive T-cell formation, the researchers discovered that integrating the CAR construct into the TRAC locus delayed its expression and drove T-cell lineage commitment, and that regulation of CAR signaling strength promoted the generation of CD4+CD8+ double-positive cells mimicking thymic development in the absence of a TCR. Subsequent stimulation of the CAR matured the double-positive population into single-positive CD8 T cells with a phenotype highly correlated with peripheral blood CD8 effector T cells and distinct from T cells and natural killer cells. Preclinical studies showed that iPSC-derived TCR-CAR+ CD8 T cells were able to repeatedly lyse tumor cells in vitro and durably control leukemia in vivo, with persistence in the bone marrow, spleen, and blood, in a systemic NALM6 leukemia model.

These published findings continue to support our unique ability to generate TCR-CAR+ CD8 T cells from master engineered iPSC lines that exhibit a phenotypic profile and anti-tumor activity comparable to healthy donor-derived peripheral blood CAR T cells in preclinical model systems, said Scott Wolchko, President and Chief Executive Officer of Fate Therapeutics. We believe our off-the-shelf, iPSC-derived CAR T cell programs overcome the numerous challenges associated with the manufacture, consistency, and reach of autologous and allogeneic CAR T cells, and we look forward to sharing initial clinical data from our landmark Phase 1 study of FT819 later this year.

The Company is conducting a multicenter Phase 1 study of FT819, the first T-cell therapy manufactured from a clonal master iPSC line to undergo clinical investigation. The product candidates clonal engineered master iPSC line is created from a single iPSC that has a novel CD19-targeted 1XX CAR construct integrated into the TRAC locus, ensuring complete bi-allelic disruption of TCR expression to prevent graft-versus-host disease and promoting uniform CAR expression for enhanced anti-tumor activity. Dose escalation is currently ongoing in single-dose and multi-dose escalation cohorts for relapsed / refractory B-cell malignancies.

Pursuant to a license agreement with MSK, Fate Therapeutics has an exclusive license for all human therapeutic use to U.S. Patent No. 10,370,452, which covers compositions and uses of effector T cells expressing a CAR, where such T cells are derived from a pluripotent stem cell including an iPSC. In addition to the patent rights licensed from MSK, the Company owns an extensive intellectual property portfolio that broadly covers compositions and methods for the genome editing of iPSCs using CRISPR and other nucleases, including the use of CRISPR to insert a CAR in the TRAC locus for endogenous transcriptional control.

Fate Therapeutics has licensed intellectual property from MSK on which Dr. Sadelain is an inventor. As a result of the licensing arrangement, MSK has financial interests related to Fate Therapeutics.

About Fate Therapeutics iPSC Product PlatformThe Companys proprietary induced pluripotent stem cell (iPSC) product platform enables mass production of off-the-shelf, engineered, homogeneous cell products that are designed to be administered with multiple doses to deliver more effective pharmacologic activity, including in combination with other cancer treatments. Human iPSCs possess the unique dual properties of unlimited self-renewal and differentiation potential into all cell types of the body. The Companys first-of-kind approach involves engineering human iPSCs in a one-time genetic modification event and selecting a single engineered iPSC for maintenance as a clonal master iPSC line. Analogous to master cell lines used to manufacture biopharmaceutical drug products such as monoclonal antibodies, clonal master iPSC lines are a renewable source for manufacturing cell therapy products which are well-defined and uniform in composition, can be mass produced at significant scale in a cost-effective manner, and can be delivered off-the-shelf for patient treatment. As a result, the Companys platform is uniquely designed to overcome numerous limitations associated with the production of cell therapies using patient- or donor-sourced cells, which is logistically complex and expensive and is subject to batch-to-batch and cell-to-cell variability that can affect clinical safety and efficacy. Fate Therapeutics iPSC product platform is supported by an intellectual property portfolio of over 350 issued patents and 150 pending patent applications.

About FT819FT819 is an investigational, universal, off-the-shelf, T-cell receptor (TCR)-less CD19 chimeric antigen receptor (CAR) T-cell cancer immunotherapy derived from a clonal master induced pluripotent stem cell (iPSC) line, which is engineered with the following features designed to improve the safety and efficacy of CAR19 T-cell therapy: a novel 1XX CAR signaling domain, which has been shown to extend T-cell effector function without eliciting exhaustion; integration of the CAR19 transgene directly into the T-cell receptor alpha constant (TRAC) locus, which has been shown to promote uniform CAR19 expression and enhanced T-cell potency; and complete bi-allelic disruption of TCR expression for the prevention of graft-versus-host disease. FT819 demonstrated antigen-specific cytolytic activity in vitro against CD19-expressing leukemia and lymphoma cell lines comparable to that of primary CAR T cells, and persisted and maintained tumor clearance in the bone marrow in an in vivo disseminated xenograft model of lymphoblastic leukemia. FT819 is being investigated in a multicenter Phase 1 clinical trial for the treatment of relapsed / refractory B-cell malignancies, including B-cell lymphoma, chronic lymphocytic leukemia, and acute lymphoblastic leukemia (NCT04629729).

About Fate Therapeutics, Inc.Fate Therapeutics is a clinical-stage biopharmaceutical company dedicated to the development of first-in-class cellular immunotherapies for patients with cancer. The Company has established a leadership position in the clinical development and manufacture of universal, off-the-shelf cell products using its proprietary induced pluripotent stem cell (iPSC) product platform. The Companys immuno-oncology pipeline includes off-the-shelf, iPSC-derived natural killer (NK) cell and T-cell product candidates, which are designed to synergize with well-established cancer therapies, including immune checkpoint inhibitors and monoclonal antibodies, and to target tumor-associated antigens using chimeric antigen receptors (CARs). Fate Therapeutics is headquartered in San Diego, CA. For more information, please visit http://www.fatetherapeutics.com.

Forward-Looking StatementsThis release contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995 including statements regarding the advancement of and plans related to the Company's product candidates, clinical studies and preclinical research and development programs, the Companys progress, plans and timelines for the manufacture and clinical investigation of its product candidates, the Companys initiation and continuation of enrollment in its clinical trials including additional dose cohorts in ongoing clinical trials of its product candidates, the therapeutic and market potential of the Companys product candidates, and the Companys clinical development strategy, including for its product candidate FT819. These and any other forward-looking statements in this release are based on management's current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that the Companys product candidates may not demonstrate the requisite safety or efficacy to warrant further development or to achieve regulatory approval, the risk that results observed in prior studies of the Companys product candidates, including preclinical studies and clinical trials, will not be observed in ongoing or future studies involving these product candidates, the risk of a delay or difficulties in the manufacturing of the Companys product candidates or in the initiation and conduct of, or enrollment of patients in, any clinical trials, the risk that the Company may cease or delay preclinical or clinical development of any of its product candidates for a variety of reasons (including requirements that may be imposed by regulatory authorities on the initiation or conduct of clinical trials, changes in the therapeutic, regulatory, or competitive landscape for which the Companys product candidates are being developed, the amount and type of data to be generated or otherwise to support regulatory approval, difficulties or delays in patient enrollment and continuation in the Companys ongoing and planned clinical trials, difficulties in manufacturing or supplying the Companys product candidates for clinical testing, and any adverse events or other negative results that may be observed during preclinical or clinical development), the risk that results observed in preclinical studies of FT819 may not be replicated in ongoing or future clinical trials, and the risk that FT819 may not produce therapeutic benefits or may cause other unanticipated adverse effects. For a discussion of other risks and uncertainties, and other important factors, any of which could cause the Companys actual results to differ from those contained in the forward-looking statements, see the risks and uncertainties detailed in the Companys periodic filings with the Securities and Exchange Commission, including but not limited to the Companys most recently filed periodic report, and from time to time in the Companys press releases and other investor communications. Fate Therapeutics is providing the information in this release as of this date and does not undertake any obligation to update any forward-looking statements contained in this release as a result of new information, future events or otherwise.

Contact:Christina TartagliaStern Investor Relations, Inc.212.362.1200[emailprotected]

See original here:
Fate Therapeutics Announces Preclinical Publication Highlighting Derivation of CD8 T Cells from TCR-CAR+ Induced Pluripotent Stem Cells -...

To Read More: Fate Therapeutics Announces Preclinical Publication Highlighting Derivation of CD8 T Cells from TCR-CAR+ Induced Pluripotent Stem Cells -…
categoriaBone Marrow Stem Cells commentoComments Off on Fate Therapeutics Announces Preclinical Publication Highlighting Derivation of CD8 T Cells from TCR-CAR+ Induced Pluripotent Stem Cells -… | dataAugust 10th, 2022
Read All

Factors that affect haemoglobin levels and how to detect when it’s low – Jamaica Gleaner

By daniellenierenberg

HAEMOGLOBIN IS a protein in your red blood cells. Your red blood cells carry oxygen throughout your body. If you have a condition that affects your bodys ability to make red blood cells, your haemoglobin levels may drop. Low haemoglobin levels may be a symptom of several conditions, including different kinds of anaemia and cancer.

If a disease or condition affects your bodys ability to produce red blood cells, your haemoglobin levels may drop. When your haemoglobin level is low, it means your body is not getting enough oxygen, making you feel very tired and weak.

Normal haemoglobin levels are different for men and women. For men, a normal level ranges between 14.0 grams per decilitre (gm/dL) and 17.5 gm/dL. For women, a normal level ranges between 12.3 gm/dL and 15.3 gm/dL. A severe low-haemoglobin level for men is 13.5 gm/dL or lower. For women, a severe low haemoglobin level is 12 gm/dL.

Your doctor diagnoses low haemoglobin by taking samples of your blood and measuring the amount of haemoglobin in it. This is a haemoglobin test. They may also analyse different types of haemoglobin in your red blood cells, or haemoglobin electrophoresis.

Several factors affect haemoglobin levels and the following situations may be among them:

Your body produces red blood cells and white blood cells in your bone marrow. Sometimes, conditions and diseases affect your bone marrows ability to produce or support enough red blood cells.

Your body produces enough red blood cells, but the cells are dying faster than your body can replace them.

You are losing blood from injury or illness. You lose iron any time you lose blood. Sometimes, women have low haemoglobin levels when they have their periods. You may also lose blood if you have internal bleeding, such as a bleeding ulcer.

Your body cannot absorb iron, which affects your bodys ability to develop red blood cells.

You are not getting enough essential nutrients like iron and vitamins B12 and B9.

Your bone marrow produces red blood cells. Diseases, conditions and other factors that affect red blood cell production include:

Lymphoma: This is a term for cancers in your lymphatic system. If you have lymphoma cells in your bone marrow, those cells can crowd out red blood cells, reducing the number of red blood cells.

Leukaemia: This is cancer of your blood and bone marrow. Leukaemia cells in your bone marrow can limit the number of red blood cells your bone marrow produces.

Anaemia: There are many kinds of anaemias involving low-haemoglobin levels. For example, if you have aplastic anaemia, the stem cells in your bone marrow dont create enough blood cells. In pernicious anaemia, an autoimmune disorder keeps your body from absorbing vitamin B12. Without enough B12, your body produces fewer red blood cells.

Multiple Myeloma: This causes your body to develop abnormal plasma cells that may displace red blood cells.

Chronic Kidney Disease: Your kidneys dont produce the hormone that signals to your bone marrow to make red blood cells. Chronic kidney disease affects this process.

Antiretroviral medications: These medications treat certain viruses. Sometimes these medications damage your bone marrow, affecting its ability to make enough red blood cells.

Chemotherapy: Chemotherapy may affect bone marrow cells, reducing the number of red blood cells your bone marrow produces.

Doctors treat low haemoglobin by diagnosing the underlying cause. For example, if your haemoglobin levels are low, your healthcare provider may do tests that reveal you have iron-deficiency anaemia. If that is your situation, they will treat your anaemia with supplements. They may recommend that you try to follow an iron-rich diet. In most cases, treating the underlying cause of anaemia will bring the haemoglobin level up.

Many things can cause low haemoglobin, and most of the time you cannot manage low haemoglobin on your own. But eating a vitamin-rich diet can help maintain your red blood cells. Generally, a balanced diet with a focus on important nutrients is the best way to maintain healthy red blood cells and haemoglobin.

keisha.hill@gleanerjm.comSOURCE: Centres for Disease Control and Prevention

See the rest here:
Factors that affect haemoglobin levels and how to detect when it's low - Jamaica Gleaner

To Read More: Factors that affect haemoglobin levels and how to detect when it’s low – Jamaica Gleaner
categoriaBone Marrow Stem Cells commentoComments Off on Factors that affect haemoglobin levels and how to detect when it’s low – Jamaica Gleaner | dataAugust 10th, 2022
Read All

Fourth Patient Seemingly Cured of HIV Through Wild Coincidence – Good News Network

By daniellenierenberg

The media continues the one-handed count of patients that seem to be cured of HIV as a man who has lived with the disease since the 1980s has been in remission for 17 months.

The story is always the samethey seem to be cured, and they get a cool nicknamein this case the City of Hope Patient, after Duarte, California, where he was treated.

The difference in this case was the treatmenta bone marrow transplant to treat blood cancer leukemia from a donor who was naturally resistant to the virus.

The most remarkable difference however, is that he is only patient cured of HIV by coincidence.

The man had developed leukemia, and took the bone marrow transplant for that reason. As it happened, the donor was resistant to HIV, and taught the mans body to create an immune response against the virus.

RELATED: Worlds Second Person Cured of HIV: 40-Year-old Man is Confirmed to Be 30 Months Virus-Free

This is also the first one who got it during the epidemic of HIV/AIDS that took so many lives.

When I was diagnosed with HIV in 1988, like many others, I thought it was a death sentence, said the City of Hope Patient. I never thought I would live to see the day that I no longer have HIV.

SIMILAR: Two Patients Make History After Essentially Being Cured of HIV Using Stem Cell Transplant

So far, only three people have been seemingly cured of human immunodeficiency virus (HIV) which weakens the bodys immune system and leads to the more severe AIDS (autoimmune deficiency syndrome) which can be lethal.

The man no longer takes antiretroviral drugs, the only treatment for HIV. A bone marrow transplant is not a likely future cure, do to it being a tricky and side-effectual procedure.

Nevertheless, all cure cases have been those where a patient is given a transplant of some kind, mostly stem cells, that contain the very rarely occurring natural immunity to the virus.

The case was reported at the AIDS 2022 conference in Montreal, Canada.

SHARE This Serendipitous News On Social Media

Read the original post:
Fourth Patient Seemingly Cured of HIV Through Wild Coincidence - Good News Network

To Read More: Fourth Patient Seemingly Cured of HIV Through Wild Coincidence – Good News Network
categoriaBone Marrow Stem Cells commentoComments Off on Fourth Patient Seemingly Cured of HIV Through Wild Coincidence – Good News Network | dataAugust 10th, 2022
Read All

BUDDY SCOTT: Love stems from the Father | Brazos Living | thefacts.com – Brazosport Facts

By daniellenierenberg

Country

United States of AmericaUS Virgin IslandsUnited States Minor Outlying IslandsCanadaMexico, United Mexican StatesBahamas, Commonwealth of theCuba, Republic ofDominican RepublicHaiti, Republic ofJamaicaAfghanistanAlbania, People's Socialist Republic ofAlgeria, People's Democratic Republic ofAmerican SamoaAndorra, Principality ofAngola, Republic ofAnguillaAntarctica (the territory South of 60 deg S)Antigua and BarbudaArgentina, Argentine RepublicArmeniaArubaAustralia, Commonwealth ofAustria, Republic ofAzerbaijan, Republic ofBahrain, Kingdom ofBangladesh, People's Republic ofBarbadosBelarusBelgium, Kingdom ofBelizeBenin, People's Republic ofBermudaBhutan, Kingdom ofBolivia, Republic ofBosnia and HerzegovinaBotswana, Republic ofBouvet Island (Bouvetoya)Brazil, Federative Republic ofBritish Indian Ocean Territory (Chagos Archipelago)British Virgin IslandsBrunei DarussalamBulgaria, People's Republic ofBurkina FasoBurundi, Republic ofCambodia, Kingdom ofCameroon, United Republic ofCape Verde, Republic ofCayman IslandsCentral African RepublicChad, Republic ofChile, Republic ofChina, People's Republic ofChristmas IslandCocos (Keeling) IslandsColombia, Republic ofComoros, Union of theCongo, Democratic Republic ofCongo, People's Republic ofCook IslandsCosta Rica, Republic ofCote D'Ivoire, Ivory Coast, Republic of theCyprus, Republic ofCzech RepublicDenmark, Kingdom ofDjibouti, Republic ofDominica, Commonwealth ofEcuador, Republic ofEgypt, Arab Republic ofEl Salvador, Republic ofEquatorial Guinea, Republic ofEritreaEstoniaEthiopiaFaeroe IslandsFalkland Islands (Malvinas)Fiji, Republic of the Fiji IslandsFinland, Republic ofFrance, French RepublicFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabon, Gabonese RepublicGambia, Republic of theGeorgiaGermanyGhana, Republic ofGibraltarGreece, Hellenic RepublicGreenlandGrenadaGuadaloupeGuamGuatemala, Republic ofGuinea, RevolutionaryPeople's Rep'c ofGuinea-Bissau, Republic ofGuyana, Republic ofHeard and McDonald IslandsHoly See (Vatican City State)Honduras, Republic ofHong Kong, Special Administrative Region of ChinaHrvatska (Croatia)Hungary, Hungarian People's RepublicIceland, Republic ofIndia, Republic ofIndonesia, Republic ofIran, Islamic Republic ofIraq, Republic ofIrelandIsrael, State ofItaly, Italian RepublicJapanJordan, Hashemite Kingdom ofKazakhstan, Republic ofKenya, Republic ofKiribati, Republic ofKorea, Democratic People's Republic ofKorea, Republic ofKuwait, State ofKyrgyz RepublicLao People's Democratic RepublicLatviaLebanon, Lebanese RepublicLesotho, Kingdom ofLiberia, Republic ofLibyan Arab JamahiriyaLiechtenstein, Principality ofLithuaniaLuxembourg, Grand Duchy ofMacao, Special Administrative Region of ChinaMacedonia, the former Yugoslav Republic ofMadagascar, Republic ofMalawi, Republic ofMalaysiaMaldives, Republic ofMali, Republic ofMalta, Republic ofMarshall IslandsMartiniqueMauritania, Islamic Republic ofMauritiusMayotteMicronesia, Federated States ofMoldova, Republic ofMonaco, Principality ofMongolia, Mongolian People's RepublicMontserratMorocco, Kingdom ofMozambique, People's Republic ofMyanmarNamibiaNauru, Republic ofNepal, Kingdom ofNetherlands AntillesNetherlands, Kingdom of theNew CaledoniaNew ZealandNicaragua, Republic ofNiger, Republic of theNigeria, Federal Republic ofNiue, Republic ofNorfolk IslandNorthern Mariana IslandsNorway, Kingdom ofOman, Sultanate ofPakistan, Islamic Republic ofPalauPalestinian Territory, OccupiedPanama, Republic ofPapua New GuineaParaguay, Republic ofPeru, Republic ofPhilippines, Republic of thePitcairn IslandPoland, Polish People's RepublicPortugal, Portuguese RepublicPuerto RicoQatar, State ofReunionRomania, Socialist Republic ofRussian FederationRwanda, Rwandese RepublicSamoa, Independent State ofSan Marino, Republic ofSao Tome and Principe, Democratic Republic ofSaudi Arabia, Kingdom ofSenegal, Republic ofSerbia and MontenegroSeychelles, Republic ofSierra Leone, Republic ofSingapore, Republic ofSlovakia (Slovak Republic)SloveniaSolomon IslandsSomalia, Somali RepublicSouth Africa, Republic ofSouth Georgia and the South Sandwich IslandsSpain, Spanish StateSri Lanka, Democratic Socialist Republic ofSt. HelenaSt. Kitts and NevisSt. LuciaSt. Pierre and MiquelonSt. Vincent and the GrenadinesSudan, Democratic Republic of theSuriname, Republic ofSvalbard & Jan Mayen IslandsSwaziland, Kingdom ofSweden, Kingdom ofSwitzerland, Swiss ConfederationSyrian Arab RepublicTaiwan, Province of ChinaTajikistanTanzania, United Republic ofThailand, Kingdom ofTimor-Leste, Democratic Republic ofTogo, Togolese RepublicTokelau (Tokelau Islands)Tonga, Kingdom ofTrinidad and Tobago, Republic ofTunisia, Republic ofTurkey, Republic ofTurkmenistanTurks and Caicos IslandsTuvaluUganda, Republic ofUkraineUnited Arab EmiratesUnited Kingdom of Great Britain & N. IrelandUruguay, Eastern Republic ofUzbekistanVanuatuVenezuela, Bolivarian Republic ofViet Nam, Socialist Republic ofWallis and Futuna IslandsWestern SaharaYemenZambia, Republic ofZimbabwe

Read the original here:
BUDDY SCOTT: Love stems from the Father | Brazos Living | thefacts.com - Brazosport Facts

To Read More: BUDDY SCOTT: Love stems from the Father | Brazos Living | thefacts.com – Brazosport Facts
categoriaBone Marrow Stem Cells commentoComments Off on BUDDY SCOTT: Love stems from the Father | Brazos Living | thefacts.com – Brazosport Facts | dataAugust 10th, 2022
Read All

My little boy is fighting for his life after complaining of back pain you could save him… – The Sun

By daniellenierenberg

MANY people suffer with back pain, whether that's from poor posture or a sporting injury.

Teenager Daniel Greer had been struggling with this - as well as neck pain.

2

2

But rather than an injury or pull - a blood test confirmed a shocking diagnosis.

The 14-year-old from Northern Ireland was told he had acute myeloid leukaemia two months ago.

Now his family are racing to find a stem cell donor - as this is his only chance of survival.

Since his diagnosis, the music fanatic has been staying at the Royal Belfast Hospital for Sick Children and is being treated with aggressive chemotherapy.

Doctors say that a stem cell transplant will help repair his immune system - but only one in four people will find a match within their own family.

His older brother James, sadly isn't a match so Daniel will need a transplant from an unrelated donor.

Mum, Anne, is now speaking out in the hopes of getting more people to sign up to the stem cell register - with the possibility of finding her son a donor.

She said: "Daniel is an amazing, bright young man who lights up any room he walks into.

"His wicked sense of humour keeps our spirits up, even now while hes in hospital receiving chemotherapy.

"I know hes really proud that his story is inspiring people to sign up to the stem cell register.

"Those people will potentially help him, as well as many other people around the world who desperately need a stem cell transplant like Daniel."

When it comes to the stem cell register, young men make up just 18 per cent of those on it, blood cancer charity Anthony Nolan states.

However, this demographic also makes up more than half of all stem cell transplants for blood cancer and blood disorder patients.

Now the charity is helping with an international appeal to get Daniel a donor, dubbed the DoItForDaniel campaign.

Daniel, lives in Newry and so far local pharmacies have got behind the campaign - urging people to sign up to help save the lives of others.

What is leukaemia?

Leukaemia is a type of blood cancer that affects cells in bone marrow and attacks the immune system.

In most cases of leukaemia, there is no obvious cause. Little Azaylia had been diagnosed with Acute Myeloid Leukaemia (AML) , which is a rapidly progressive form of the illness.

Leukaemia is a cancer that leads to the body making too many abnormal white blood cells and means the body is less likely to be able to defend itself against infection.

These blood cells are not fully developed and are called leukaemia cells.

The disease is often classified as the type of cell affected (myeloid or lymphatic) and how it progresses (acute or chronic).

There are four main types of leukaemia.

Acute Lymphocytic Leukaemia (ALL)-A rapidly progressing form of the disease.More common in children.

Acute Myeloid Leukaemia (AML) -Rapidly progressive. More common in adults.

Chronic Lymphocytic Leukaemia (CLL) -Slowly progressing form and more common in adults.

Chronic Myeloid Leukaemia (CML) -Progresses slowly and is more common in adults

There has also been an awareness-raising drive about stem cell donation at Belfast International Airport.

It's hoped that the drive will allow the keen mountain biker and rugby player to continue to do the things he enjoys most.

Anthony Nolan chief executive Henny Braund said that finding a matching donor would mean everything to Daniel and his family.

"We are committed to supporting Daniel as he waits for news of the donor who could save his life.

Last year over 1,300 people around the world with blood cancer or a blood disorder were given a second chance of life because of the wonderful people that are signed up to the Anthony Nolan register.

But too many people, like Daniel, are told there is no matching donor for them.

Signing up to the register is quick and simple, and we urge anyone who is in good general health, especially young men aged 16-30, to come forward and potentially save the life of someone like Daniel.

Anyone aged 16-30 can sign up online through the Anthony Nolan website.

DONATING STEM CELLS & SIGNING THE REGISTER

When you join a stem cell registry you are on standby to be matched and potentially save a life although many people are never called up.

See original here:
My little boy is fighting for his life after complaining of back pain you could save him... - The Sun

To Read More: My little boy is fighting for his life after complaining of back pain you could save him… – The Sun
categoriaBone Marrow Stem Cells commentoComments Off on My little boy is fighting for his life after complaining of back pain you could save him… – The Sun | dataAugust 10th, 2022
Read All

The Role of Mesenchymal Stem Cells in the Treatment of Type 1 Diabetes – Cureus

By daniellenierenberg

Type 1 diabetes (T1D) is a chronic immune-mediated disease characterized by the destruction of pancreatic -cells, resulting in absolute insulin deficiency and hyperglycemia. It is primarily a disease of youth, accounting for approximately 85% of cases in people under the age of 20 and 5% to 10% of all diagnosed cases of diabetes [1,2]. Although the exact mechanisms are unknown, T1D is thought to develop through immune system activation against -cell antigens and the initiation of proinflammatory cytokine responses. Environmental factors, obesity, viral infections, and nutritional factors were found to play a role in the pathophysiology as well [3]. T1D predisposes to a number of comorbidities, such as obesity, chronic kidney disease, metabolic syndrome, coronary artery disease, and hypertension. Such predispositions may account for higher mortality rates, affecting up to one in 10 adult patients within a year of diagnosis [4]. In fact, diabetic nephropathy (DN) is said to account for up to 40% of end-stage renal disease (ESRD) cases worldwide. Cardiovascular events account for up to 70% of T1D deaths and are 10 times more common in diabetics than in non-diabetics [5]. Therefore, it is critical to focus on novel therapies that aim to reduce the risks of acute complications such as hypoglycemia and diabetic ketoacidosis (DKA) while avoiding long-term complications such as DN, neuropathy, and retinopathy [5].

Exogenous insulin is currently the most prevalent treatment for T1D. Although exogenous insulin administration may be life-saving, it is not a cure for the disease. If patients are unable to maintain tight glycemic control by strictly adhering to their insulin regimen, they will invariably develop severe secondary complications that may shorten their life span [6]. Exogenous insulin is not a viable substitute for normal pancreatic islet function, mainly due to the absence of accurate temporal glucose control over time [7]. The administration of insulin can also result in hypoglycemic episodes [6]. A cross-sectional study conducted in Mexico revealed that patients' fear of hypoglycemic episodes prevented them from complying with their insulin treatment plan [8].

Replacement of the defective insulin-producing cells (IPC) is yet another potential therapy for T1D. This is possible through transplantation of the pancreas. Since the first pancreatic transplant took place in 1966, over 50,000 such transplants have been performed worldwide. Patients with T1D who receive a pancreatic transplant were found to have a reduced risk of subsequent complications and a longer life expectancy [9]. However, since transplantation is a major surgical procedure, patients must be fit for surgery [6]. Transplants necessitate permanent immunosuppression, which may put patients at risk for a variety of infections. In addition, they are associated with a number of postoperative complications, such as pancreatitis, due to low tolerance to cold ischemia, bleeding, thrombosis, and anastomotic leakage, which may require relaparotomy and graft pancreatectomy in recipients [9].

An alternative to pancreatic transplantation that is both safe and effective is islet cell transplantation. Scharp et al. published the first case of allogeneic intraportal islet transplantation for T1D in 1990, which led to short-term insulin independence and paved the way for clinical islet transplantation [10]. Despite the fact that the immunosuppressive regimen reported from Edmonton, Canada, also known as the Edmonton protocol (the Edmonton protocol introduced significant adjustments to the transplantation procedure, including the use of an immunosuppressive regimen free of steroids and the transplanting of an average islet mass of 11,000 islet equivalents per kilogram) has achieved unprecedented success in islet transplantation in terms of insulin independence, a number of factors continue to influence the outcome of this minimally invasive procedure [11]. Islet cell transplantation can induce a rapid inflammatory reaction in the circulation, leading to the loss of the vast majority of transplanted islets. The use of large doses of immunosuppressants during transplantation compromises the long-term viability and function of the graft, and the need for long-term immunosuppressive medications after the transplant poses a risk of organ damage, malignancies, new infections, and new-onset T1D in patients [12]. The high cost of islet transplantation and the paucity of human cadaveric islets highlight the urgent need for innovative pancreatic islet transplantation procedures [7]. This is where stem cells (SCs) pose an important role.

SCs are a highly promising novel treatment for T1D due to their ability to differentiate into several cell types and their regenerative potential. SCs can be categorized into four basic groups based on their origin as shown in Figure 1.

Mesenchymal stem cells (MSCs), also called mesenchymal stromal cells, are non-hematopoietic, multipotent SCs. They can be extracted from a variety of sources, including bone marrow, liver, kidney, adipose tissue, urine, umbilical cord blood, umbilical tissue, Wharton's jelly, placenta, and even endometrial tissue (menstrual blood-derived endometrial stem cells - MenSC). Several surface markers, including CD73, CD90, and CD105, can be utilized to identify MSCs. Due to their ability to differentiate into numerous cell types, they can be used to repopulate damaged tissues [13,14]. MSCs have gained enormous popularity in the treatment of T1D because of their ability to regulate fibrosis and tissue regeneration, as well as their ability to modulate immunological function. In addition, they produce a variety of secretory molecules, such as cytokines and exosomes, which play an essential role in the treatment of T1D [15]. Studies on animals treated with MSCs have shown a significant reduction in hyperglycemia, as evaluated by a decrease in serum glucose and an increase in insulin and C-peptide levels. In addition, they were able to restore normal levels of lipid fractions. Using MSCs lowered the serum levels of both liver and kidney function markers in diabetic rats, demonstrating their hepato-renal protective benefits in T1D [16].

Several mechanisms have been discovered to play a role in the management of T1D by MSCs (Figure 2).

MSCs, such as bone marrow stromal cells, promote angiogenesis through the secretion of cytokines such as basic fibroblast growth factor and vascular endothelial growth factor (VEGF) [17]. In addition, they play a crucial role in immunomodulation by moving to areas of inflammation and modifying the phenotype of dendritic cells (DC), T cells, B cells, and natural killer cells. They downregulate proinflammatory cytokines and escape CD8+ T cell-mediated apoptosis, inhibit maturation of DC, while reducing T-lymphocyte proliferation via transforming growth factor-beta 1 (TGF-1), hepatocyte growth factor, and nitric oxide. By stimulating the production of regulatory T cells, TGF-1 plays a significant role in the immunomodulation of MSCs. MSCs have also been found to improve the function, survival, and graft outcome of neonatal porcine islets by increasing the expression of genes involved in the formation of endocrine cells, insulin, and platelet-derived growth factor alpha (PDGFR-). PDGFR- suppresses Notch 1 signaling (Notch 1 downregulates transcription factors involved in the formation of endocrine cells and insulin), resulting in the maturation and development of islet cells [18]. Zhou et al. discovered that wild-type p53-induced phosphatase 1 (a serine/threonine phosphatase) regulates the immunomodulatory properties of MSCs via the expression of interferon-alpha and bone marrow stromal cell antigen 2, consequently playing an important role in the therapeutic effects of MSCs in T1D [19].

Even though studies have shown that MSCs are capable of reconfiguring the immune system, they must be rescued to some extent from immune-mediated destruction, indicating that immunomodulation will be necessary even if a viable MSCs therapy for T1D is produced [20]. When using -cells from an allogeneic stem cell source, an alloreactive response to donor antigens will be generated unless we obtain SCs from the patient's own cells. To circumvent this, researchers have investigated encapsulation strategies employing semipermeable immune barriers to provide immune shielding and prevent graft rejection [21]. Some studies have also demonstrated that the use of suicide genes together with stem cell transplants promotes functional immune reconstitution and thereby prevents graft-versus-host disease in patients [22].

It has been demonstrated that MSCs undergo apoptosis in the circulation of the host or in engrafted tissues following delivery to the patient's body, which plays a significant part in their therapeutic role in T1D. During the execution of apoptosis, apoptotic extracellular vesicles (apoEVs), formerly known as apoptotic bodies, have emerged as regulators of numerous biological processes, as opposed to being only debris. Specifically, apoEVs have been shown to regulate T cell and macrophage immunological function as well as stimulate tissue repair, including skin regeneration and vascular protection [23].

This game-changing discovery of MSCs in the treatment of T1D has propelled biological sciences to a new level of sophistication, allowing for the manipulation of cell fate and the cultivation of higher-order cellular structures. However, there is still a huge gap regarding its application in actual clinical practice.

We were only able to find 12 clinical trials on PubMed that evaluated the use of MSCs in the treatment of T1D. Ten of the 12 studies were undertaken in Asia, primarily in China and India. To date, the exact pathogenesis of T1D is not fully understood. Genetic factors have been found to play a role in the development of T1D, which may have affected the outcomes of previous clinical trials. Therefore, conducting multiple different studies worldwide would not only enable us to identify the effects of ethnicity and genetics on the response to MSC therapy in T1D patientsbut also help us to generalize the efficacy of MSCs to the entire population. In order to achieve the best outcomes while using medications to treat T1D, it is also crucial to perform additional research to more clearly identify the pathophysiology of T1D.

In the course of studying the patient selection criteria utilized in clinical trials, we made a fascinating discovery. We found that every clinical study had excluded patients with immunosuppression, viral illnesses such as hepatitis B and C, comorbidities including hematologic diseases, rheumatologic diseases, and kidney diseases, and pregnant patients, all of which could have influenced the results of the studies. Our present understanding of the action of apoEVs, as described by Fu et al., leads us to believe that in order for MSCs to undergo apoptosis, their recipients must be able to initiate apoptotic activity [23]. In order for this to occur, patients must have a particular number of cytotoxic T cells or natural killer cells; hence, patients who do not meet this criterion are unlikely to benefit from MSC delivery. To further elucidate the mechanisms of action of MSCs, it is essential to undertake additional studies with immunosuppressed patients in order to identify the optimal cohort of T1D patients for MSC therapy. In addition, further clinical research should be conducted to uncover the apoptotic signals that stimulate tissue regeneration and angiogenesis, as recognizing these signals would allow us to utilize a channel in parenchymal tissue to increase its regeneration capacity.

We also observed that the majority of trials exclusively enrolled patients with recent-onset T1D. A study conducted in Iran revealed that early transplantation of MSCs resulted in superior outcomes for T1D patients compared to late transplantation. This may be due to the honeymoon phase of diabetes, which may have obscured the effects of MSCs in these studies [24]. The honeymoon phase is the period during which a person with T1D appears to improve and may only require minimal amounts of insulin or experience normal or near-normal blood sugar levels without insulin. To extrapolate the results to a larger population and unmask the effects of the honeymoon period, it is necessary to conduct trials on patients with late-onset T1D.

To date, the exact mechanism by which MSCs contribute to the remission of T1D has not been identified; therefore, further research is required to get a better knowledge of mechanisms such as immunomodulation, homing, and paracrine signaling of MSCs. It is also vital to undertake studies to discover the appropriate number of MSCs, injection frequency, and optimal infusion route in order to maximize results. Cai et al. concluded that pancreatic arterial transfusion would assist in avoiding the first pass pulmonary effect of MSCs, hence lowering the sequestration of MSCs in the lungs and allowing for optimal results [25].

A few studies have used 3D microspheres to increase the proliferation capacity of MSCs with positive results. However, there is insufficient information available regarding the proliferation capacity, revascularization, efficiency of differentiation, and survival time of MSCs. Therefore, conducting studies to elucidate these aspects of MSC therapy is an urgent necessity. We would also be able to learn more about the graft's survival time and tumorigenic potential if we followed the patients for a longer period of time.

Patient-specific variables such as age, body mass index, lifestyle, socioeconomic status, level of activity, diet, autoimmune status, and drug interactions must be taken into consideration while conducting studies and analyzing data. In order to identify the ideal conditions necessary to create the desired quantities of MSCs to achieve remission of T1D, future research must also incorporate in-depth information regarding external factors that affect the viability of MSCs, such as storage conditions, plating density, and culture media.

In this article, we aim to discuss the role of MSCsderived from various tissues in the treatment of T1D, as well as their feasibility and limitations.

We present a summary of the extraction methods, advantages, limitations, and outcomes from several studies of MSCs derived from various types of tissues.

The majority of umbilical cord tissue-derived stem cells (UC-MSCs) are found in the subcortical endothelium of the umbilical cord, the perivascular area, and Wharton's jelly [26]. According to studies, roughly1 106UC-MSC can be extracted from a 20 cm human umbilical cord [27]. MSCs isolated from Wharton's jelly have been grown for over 80 population doublings without showing any signs of senescence, morphological alterations, an increase in growth rate, or a change in their ability to develop into neurons. Recent research has demonstrated that xenotransplantation of post-differentiated human UC-MSC without immunosuppressive therapy does not result in rejection [28]. This lack of immunogenicity may be attributable to the absence of major histocompatibility II and co-stimulatory molecules such as CD80 (B7-1), CD86 (B7-2), and CD40 [29]. Chao et al. successfully differentiated human UC-MSC into clusters of mature islet-like cells with insulin-producing capacity. In the islet cells, they detected an increase in insulin and other -cell-related genes, including Pdx1, Hlxb9, Nkx2.2, Nkx6.1, and Glut-2. Moreover, they discovered that hyperglycemia in diabetic rats was greatly under control after xenotransplantation of human pancreatic islet-like cell clusters [28]. Patients with newly diagnosed T1D who received repeated intravenous doses of allogeneic UC-MSC showed improved islet cell preservation and a significant rise in postprandial C-peptide levels. However, C-peptide levels did not alter significantly in patients with juvenile-onset T1D. The number of UC-MSC contributed more than other indicators to the prediction of clinical remission, bolstering the evidence of dose-dependent therapeutic efficacy. Therefore, appropriate doses and courses of MSC transplantation should be granted importance in future research [30].

UC-MSC can also be used to treat chronic complications of T1D, such as neuropathy, DN, and retinopathy [31]. Studies have shown that intraperitoneal injection of human UC-MSC can ameliorate renal injury in streptozotocin-induced diabetic mice.[32]. A mice study conducted in China demonstrated that the combination of human UC-MSC and resveratrol can better protect renal podocyte function and the resulting reduction in blood glucose levels and renal damage is superior to those obtained with insulin administration [33]. This suggests that the combination of resveratrol and human UC-MSC may be an innovative technique for treating T1D; however, additional research on humans is necessary to determine the effects of this combination treatment on the management of DN.Another investigation involving mice revealed that UC-MSC therapy restored erectile function by suppressing toll-like receptor 4, alleviating corpora cavernosa fibrosis, and boosting the production of VEGF and endothelial nitric oxide synthase [34]. Nonetheless, a significant advantage of UC-MSC is that they are a rich source of many SCs that can be easily manipulated [27]. They are collected at delivery by clamping and severing the umbilical cord. There are no ethical concerns regarding the use of UC-MSC because the collecting process is non-invasive and retains material that would otherwise be discarded as waste.

Adipose tissue-derived mesenchymal stem cells (ADSCs) are a group of cells that arise from the mesoderm during embryonic development. Amongst several types, subcutaneous adipose tissue seems to be the most clinically relevant source, being available in abundance for harvest, and its isolation only slightly invasive [35,36].

While two major kinds of adipose tissue (white and brown) have been isolated and studied, we focus on white adipose, which produces ADSCs, as brown adipocytes have not yet demonstrated an association with insulin resistance. White adipose tissue expressing uncoupling protein 2 (an isoform of uncoupling protein 1in brown adipose) acts as a storage of excess energy in the form of triglycerides and is thus prone to causing obesity and abnormalities in metabolic pathways such as insulin resistance during hyperplasia [37].

The extracted cell group of interest consists of a putative stem cell population of fibroblast-like cells known as processed lipoaspirate (PLA), found within the stromal compartments of adipose tissue [38]. Obtaining the sample requires lipoaspiration, and although the technique does not negatively affect the function of ADSCs, the vacuum process involved can cause damage to mature adipocytes [37]. Studies have shown that successfully extracted PLA can then differentiate in vitro into multiple cell lineages (including adipogenic, myogenic, chondrogenic, and osteogenic cells), thus providing another source of SCs with multi-germ-line potential instead of the traditional bone marrow-derived MSCs [38-41]. The discovery of the ability of ADSCs to efficiently differentiate into IPC has shed new light on the approach to T1D management [41].

ADSCs utilization can help avoid ethical barriers and tumorigenic complications that are increasingly encountered during stem cell isolation from embryos and induced pluripotent SCs [36]. Yet another advantage of ADSCs for their therapeutic application happens to be the relatively painless procedure and high yields in harvested cell numbers compared to bone marrow procurement [40]. These cells are devoid of human leukocyte antigen-DR expression and therefore have been successfully transplanted via intravenous, intraperitoneal, and renal capsule administration in mice without the need for immunosuppression [36,42].

Insulin replacement therapy with the help of co-transplantation of insulin-secreting ADSCs has been studied as an alternative to lifelong insulin therapy. As with multiple studies, no adverse effects were observed with ADSCs infusion, and in fact, an impressive absence of DKA episodes in all participants was seen [43]. A prospective study conducted in 2015 on 20 patients with T1D found better diabetic control (hemoglobin A1c levels) and sustained improvements in fasting blood sugar, postprandial blood sugar, hemoglobin A1c, and C-peptide levels with the transplantation of autologous insulin-secreting ADSCs [44]. Dantas et al. concluded that combination therapy with ADSCs and Vitamin D (daily cholecalciferol for six months) without immunosuppression was safe, demonstrated immunomodulatory effects, and may play a role in -cell preservation in patients with newly diagnosed T1D [45]. The significant functional and morphological improvements in islet cells as early as two months after transplantation of IPC clusters derived from ADSCs point to the promising nature of this therapeutic approach for achieving target normoglycemia [46,47]. A recent study conducted in 2022 discovered that systemic administration of ADSCs protects male non-obese diabetic (NOD) mice against diabetes induced by programmed death-1 and programmed death-ligand 1 (PD-1/PD-L1) inhibition. Multiple injections of neutralizing antibodies against mouse PD-L1 induce a significant infiltration of immune cells in the islets and a decrease in the -cell area and insulin content of the pancreas. Despite this, systemic ADSCinjection partially protected the pancreas from -cell loss and preserved insulin content, indicating therapeutic potential in T1D [15].

Apart from the therapeutic uses in T1D, the ADSCtherapy has also been shown to reduce adverse effects brought about by complications such as DN and ESRD [48,49]. Inactivation of nuclear factor kappa B pathways and downregulation of VEGF-A, amongst others, are the major mechanisms involved in ameliorating the pathological manifestations of mice with DN [50].

The problem remaining, however, is the inability to become totally free of exogenous insulin. Research suggests that a much larger dose of IPC may be required for a sustained cure of T1D using ADSCs [51]. Therefore, the need of the hour is to conduct further research, placing emphasis on ways to either enhance the production of insulin in IPC derived from ADSCs or alter cell signaling pathways to obtain a greater number of IPC from ADSCs.

Bone marrow-derived mesenchymal stem cells (BM-MSCs) are a type of adult stem cell that is abundant in bone marrow and has low immunogenicity [52]. Bone marrow stem cells are broadly categorized into hematopoietic stem cells and MSCs. These cells are sourced from the same individual, potentially minimizing rejection problems and making it a form of therapy for T1D [53]. BM-MSCs can differentiate into functionally competent -cells in vivo, and NOD mouse studies have shown the formation of normal T cell and B cell function, implying that allogeneic bone marrow transplant could prevent islet destruction and restore self-tolerance [54,55]. Because of their well-documented hypoimmunogenic and immunomodulatory properties, BM-MSCs are an appealing therapeutic option for T1D [56].

One study looked at T1D patients with DKA and found BM-MSCs to preserve -cell function in T1D patients, reducing levels of fasting and post-prandial C-peptide levels, with one patient achieving insulin independence for a period of three months [57].

BM-MSCs have been demonstrated to mitigate the effects of metabolic and hepato-renal abnormalities, enhance lipid profiles, and improve carbohydrate and glycemic management. Following an eight-week period of injections with BM-MSCs in diabetic rats, an improvement was observed in their lipid profiles compared to diabetic rats that were not treated with BM-MSCs [16]. In addition, BM-MSCs therapy has been demonstrated to ameliorate diabetes-related liver damage by boosting endogenous hepatocyte regenerative mechanisms and enhancing liver function [58].

BM-MSCs have also been shown to effectively treat comorbidities of T1D, such as DN, poor wound healing, and erectile dysfunction (ED). Nagaishi et al. investigated a novel approach of mixing BM-MSCs with umbilical cord extracts in Wharton's Jelly to enhance the therapeutic effect of ameliorating renal injury in T1D patients with DN. The study demonstrated morphological and functional improvements of diabetes-derived BM-MSC in vitro and a therapeutic impact on DN in vivo, suggesting that this may be beneficial not only for patients with DN but also for patients with other diabetic complications [59]. One study looked to address the problem of impaired epithelial wound healing in T1D patients and found that BM-MSCs promote corneal epithelial wound healing via tumor necrosis factor-inducible gene 6-dependent stem cell activation [60]. Another promising phase I pilot clinical trial found that treating ED in T1D patients with two consecutive intracavernous injections of autologous BM-MSC was safe and effective [61].

Currently, several potential therapeutic approaches are being postulated to approach this issue of T1D from a new viewpoint. Suicide gene therapy is a strategy with potential. This method involves the introduction of suicide-inducing transgenes into the body via BM-MSC. As a result, several processes will be induced, including the suppression of gene expression, the production of intracellular antibodies that block the essential pathways of cells, and the transgenic expression of caspases and deoxyribonucleases. Current clinical trials are examining strategies to restore damaged organs with the use of stem cells as the delivery mechanism [62].

The idea of transplanting BM-MSCs provides patients with hope. Particularly significant are autologous BM-MSC (which are easy to obtain and avoid graft rejection after transplantation) in contrast to allogeneic BM-MSC transplantations, which may result in graft rejection and be accompanied by complications [52]. For stem cell therapy to be most beneficial, early delivery of stem cells following a diagnosis of T1D is necessary compared to intervention at later stages [63].

Table 1compares the properties of MSCs derived from the bone marrow, umbilical cord, and adipose tissue.

Recent research has demonstrated that menstrual blood-derived endometrial stem cells (MenSCs) have therapeutic promise for the treatment of T1D due to their exceptionally high rates of proliferation, noninvasive collection method, and significant immunomodulatory activity. In T1D model mice, MenSC and UC-MSC transplantation resulted in a significant decrease in blood glucose and insulin levels, as well as an improvement in the morphology and function of the liver, kidneys, and spleen [14]. A 2021 study found that MenSCs expressed pancreatic -cell genes such as INSULIN, GLUT-2, and NGN-3 and had a greater capacity to develop into pancreatic cells [64].

Dental pulp-derived mesenchymal stem cells (DP-MSCs) are one of the unique MSCs proposed for the treatment of T1D. DP-MSCs are derived from exfoliated human deciduous teeth and have the properties of being easy to obtain with minimal donor injury. In a study by Mo et al. DP-MSCs revealed the ability to differentiate into pancreatic -cells; nevertheless, before proceeding with larger-scale investigations to firmly establish this approach, it is necessary to devise procedures for optimal -cell differentiation in-vivo [65].

An in-vivo study revealed that conjunctiva-derived mesenchymal stem cells (C-MSCs) efficiently differentiated into pancreatic islet stem cells in 2D cultures and 3D scaffolds under optimal induction conditions. C-MSCs have a strong proliferative capacity, a spindle shape, a high potential for clonogenic differentiation, and are widely available. However, larger in vitro studies are necessary before C-MSCs can be deemed an established treatment for T1D [64].

Table 2 lists all clinical trials that have utilized MSCs in the treatment of T1D and complications related to T1D (Table 2).

Our article relies on a survey of free full-text research journals over the past decade; consequently, it is possible that we have omitted pertinent information from paid full-text as well as research articles published prior to 2010.In addition, the scope of this study is confined to studies in the English language, so we may have overlooked papers published in other languages.

MSCs are postulated to act in T1D and numerous other disorders through diverse mechanisms. Among these are homing and immunomodulation. Our review revealed that MSCs not only effectively reduce fasting blood sugar, C-peptide, and hemoglobin A1c levels but are also capable of treating microvascular complications associated with T1D. However, the specific pathophysiology of T1D diabetes is still unknown, making it difficult to develop novel treatments. To achieve remission of T1D, we must also consider the effects of additional factors on the efficacy of MSCs, including patient-specific variables such as age, body mass index, lifestyle, socioeconomic status, level of activity, diet, autoimmune status, and drug interactions, as well as external factors such as storage conditions, plating density, and culture media. Therefore, it is urgent to conduct larger-scale studies.

Read the original:
The Role of Mesenchymal Stem Cells in the Treatment of Type 1 Diabetes - Cureus

To Read More: The Role of Mesenchymal Stem Cells in the Treatment of Type 1 Diabetes – Cureus
categoriaBone Marrow Stem Cells commentoComments Off on The Role of Mesenchymal Stem Cells in the Treatment of Type 1 Diabetes – Cureus | dataAugust 2nd, 2022
Read All

Treating Multiple Myeloma Following Quadruplet Induction Therapy and ASCT – Targeted Oncology

By daniellenierenberg

CASE SUMMARY

A 54-year-oldwoman presented with Revised International Staging System stage II multiple myeloma, based on evaluations that showed a hemoglobin level of 7.0 g/dL, 2-microglobulin of 6 mg/dl, albumin 3.2 g/dL, calcium 11.3 mg/dL, lactate dehydrogenase of 200 U/L, and creatinine clearance of 45 mL/min. Bone marrow showed 22% clonal plasma cells. Serum kappa free light chains were 24 mg/dL. She had no cytogenetic abnormalities and an ECOG performance score of 1. A PET/CT scan showed multiple bone lesions in the vertebrae. She had no extramedullary disease. She was diagnosed with IgG-kappa myeloma and was considered transplant eligible.

Daratumumab (Darzalex), bortezomib (Velcade), lenalidomide (Revlimid), and dexamethasone (Dara-VRd) induction therapy was initiated. She achieved a very good partial response (VGPR) post induction therapy. She underwent stem cell mobilization and 2 months later underwent autologous stem cell transplant (ASCT). Her post-ASCT response was a VGPR.

DISCUSSION QUESTIONS

CAITLIN COSTELLO, MD: This patient did get a quadruplet regimen with dara-VRd. She achieved a VGPR post-induction, had stem cells mobilized, underwent her transplant, and post-transplant her response is a VGPR. What would you do next?

THOMAS DEKKER, MD: Consolidation with CAR [chimeric antigen receptor] T-cell therapy.

COSTELLO: With CAR T cell, sure. Youre going for it; I like it. This patient is post-transplant, they have a VGPR. The GRIFFIN study [NCT02874742] would give these patients consolidation with dara-VRd.

PREETI CHAUDHARY, MD: I would not do CAR T-cell therapy.

COSTELLO: What would you do?

CHAUDHARY: In my opinion, in multiple myeloma, patients do a maximum of 11 months with CAR T-cell therapy. It has a good response, but I dont think thats sustainable.

COSTELLO: I appreciate throwing ideas out there. That is not something we have an option to do right now. Its an interesting option, and something we can talk about; but yes, I agree with you. I think for the meantime, short of trials that are looking at doing CAR T-cell therapyparticularly for those patients who have not had an adequate response to transplant or consolidation, or patients who relapse shortly after their transplantI think the standard of care as it stands now is doing consolidation or trying to find a maintenance regimen to get them to minimal residual disease [MRD] negativity.

With all that being said, what are we going to do now for these patients? Weve talked about what these transplant eligible patients are getting consolidation and maintenance; weve talked about maintenance approaches for these patients who get quadruplets, to put them on doublets. Seeing all those deep response rates, is anyone getting cold on transplants? If we are going to get 90% remission rates, does anyone reconsider the role of transplant here?

PAMELA MIEL, MD: I dont make that call, meaning I still send patients to the transplant doctors to see if theyre going to proceed with the transplant or not. But, if theyre transplant eligible, they get referred.

COSTELLO: As a transplanter, I thank you for that. We want to see these patients, make the decisions, have the discussion with the patients so we can look at their risk/benefit profile, and understand their responses to their current therapy. So, please still send them in their third cycle, if not earlier, so we can have those discussions and make plans.

There are a lot of maintenance regimens that are out there, and different things to choose from; a whole other conversation in and of itself. Lenalidomide is the mainstay where we have an overall survival benefit, where we dont have it in any other maintenance regimens.1 But it does allow for the option of continued doublets. I think we will soon see daratumumab and lenalidomide as a doublet get added on to that maintenance therapy once we have some of these randomized trials that are going on that show the continued benefit of patients to get daratumumab in the maintenance setting if they did not receive it in the up-front setting.

DISCUSSION QUESTION

How likely are you to change your practice with respect to management of transplant eligible newly diagnosed myeloma?

DEKKER: I already use quadruplet.

MILAN SHETH, MD: I feel that we still need a lot of long-term data to get a better sense of what it is that were achieving with the quadruplet therapy. Im still not convinced everybody needs quadruplet therapy. I think somebody else had already said that we know were going to get better responses because were using great drugs, but do we need to use everything up-front? I feel like theres still a lot of unanswered questions here.

MIEL: Ive been wanting to put patients on quadruplet treatment. I dont know if you know Nina Shah, MD, over at UC San Francisco, but Ive attended some of her talks, and shes pushing for the quadruplet treatment. The only thing that changed my mind was that when I spoke to the transplant doctor at UC San Diego, he said, If its not very high-risk disease, Id go with VRd [bortezomib, lenalidomide, and dexamethasone]. So, I put the patient on VRd. But I probably would want to put someone on dara-VRd, given the chance.

COSTELLO: Yes. I think that my takeaway from the data has been that we would, of course, love long-term data to come out, butwe have to wait a long time for it. While were waiting for some of these phase 3 studies to go on, which are happening now to look at real randomized data, to play out, I find that this is just too intriguing to not do quadruplets for everybody now.

Since [these data were presented at [the 2021 American Society of Hematology annual meeting], Ive transitioned just about everyone whos at least transplant eligible over to quadruplet regimens now.2 Any patients who are on the fence, where Im not sure if theyre going to be eligible for transplant, I still will try and give them the benefit of a quadruplet regimen, and very quickly drop the bortezomib if I get worried about them, and end up with dara-Vd [daratumumab, lenalidomide, dexamethasone]. But I think these MRD negativity rates are just too good, and if that is going to be the true surrogate end point that were all aiming for, dara-VRd has been my go-to for the last 6-plus months or so for these patients, until someone tells me otherwise.

References

1. Ho M, Zanwar S, Kapoor P, et al. The effect of duration of lenalidomide maintenance and outcomes of different salvage regimens in patients with multiple myeloma (MM).Blood Cancer J. 2021;11(9):158. doi:10.1038/s41408-021-00548-7

2. Laubach JP, Kaufman JL, Sborov DW, et al. Daratumumab (DARA) plus lenalidomide, bortezomib, and dexamethasone (RVd) in patients (pts) with transplant-eligible newly diagnosed multiple myeloma (NDMM): updated analysis of GRIFFIN after 24 months of maintenance. Blood. 2021;138(Suppl_1):79. doi:10.1182/blood-2021-149024

More here:
Treating Multiple Myeloma Following Quadruplet Induction Therapy and ASCT - Targeted Oncology

To Read More: Treating Multiple Myeloma Following Quadruplet Induction Therapy and ASCT – Targeted Oncology
categoriaBone Marrow Stem Cells commentoComments Off on Treating Multiple Myeloma Following Quadruplet Induction Therapy and ASCT – Targeted Oncology | dataAugust 2nd, 2022
Read All

Scientists Unlock the Secrets of Cellular Aging: What Happens After You Turn 70? – SciTechDaily

By daniellenierenberg

Researchers have revealed the cellular mysteries behind aging.

A new explanation for aging has been developed by researchers who have shown that genetic abnormalities that develop gradually over a lifetime cause substantial alterations in how blood is generated beyond the age of 70.

According to recent research, the drastic reduction in blood production beyond the age of 70 is likely caused by genetic alterations that steadily accumulate in blood stem cells throughout life.

Researchers from the Wellcome Sanger Institute, the Wellcome-MRC Cambridge Stem Cell Institute, and others have published a study that offers a new theory of aging in the journal Nature.

Somatic mutations, or alterations to the genetic code, occur in all human cells during the course of a lifetime. Aging is most likely caused by the accumulation of numerous sorts of damage to our cells over time, with one hypothesis proposing that the accumulation of somatic mutations causes cells to gradually lose functional reserve. However, it is still unknown how such slow-building molecular damage may result in the rapid decline in organ performance around the age of 70.

The Wellcome Sanger Institute, the Cambridge Stem Cell Institute, and collaborators examined the production of blood cells from the bone marrow in 10 people ranging in age from newborns to the elderly in order to better understand how the body ages.

3,579 blood stem cells had their whole genomes sequenced, allowing researchers to determine every somatic mutation present in each cell. Using this information, the team was able to create family trees of each persons blood stem cells, providing for the first time an impartial perspective of the connections between blood cells and how these ties develop over the course of a persons lifetime.

After the age of 70 years, the researchers discovered that these family trees underwent significant change. In adults under the age of 65, 20,000 to 200,000 stem cells contributed roughly equal amounts to the creation of blood cells. In contrast, blood production was exceedingly uneven in those above the age of 70.

In every elderly person investigated, a small number of enlarged stem cell clonesas few as 10 to 20contributed as much as half of the total blood output. Because of an uncommon class of somatic mutations known as driver mutations, these highly active stem cells have gradually increased in number during that persons life.

These findings led the team to propose a model in which age-associated changes in blood production come from somatic mutations causing selfish stem cells to dominate the bone marrow in the elderly. This model, with the steady introduction of driver mutations that cause the growth of functionally altered clones over decades, explains the dramatic and inevitable shift to reduced diversity of blood cell populations after the age of 70. Which clones become dominant varies from person to person, and so the model also explains the variation seen in disease risk and other characteristics in older adults. A second study, also published in Nature, explores how different individual driver mutations affect cell growth rates over time.

Dr. Emily Mitchell, Haematology Registrar at Addenbrookes Hospital, a Ph.D. student at the Wellcome Sanger Institute, and lead researcher on the study, said: Our findings show that the diversity of blood stem cells is lost in older age due to positive selection of faster-growing clones with driver mutations.

These clones outcompete the slower-growing ones. In many cases this increased fitness at the stem cell level likely comes at a cost their ability to produce functional mature blood cells is impaired, so explaining the observed age-related loss of function in the blood system.

Dr. Elisa Laurenti, Assistant Professor and Wellcome Royal Society Sir Henry Dale Fellow at the Wellcome-MRC Cambridge Stem Cell Institute at the University of Cambridge, and joint senior researcher on this study, said: Factors such as chronic inflammation, smoking, infection, and chemotherapy cause earlier growth of clones with cancer-driving mutations. We predict that these factors also bring forward the decline in blood stem cell diversity associated with aging. It is possible that there are factors that might slow this process down, too. We now have the exciting task of figuring out how these newly discovered mutations affect blood function in the elderly, so we can learn how to minimize disease risk and promote healthy aging.

Dr. Peter Campbell, Head of the Cancer, Ageing and Somatic Mutation Programme at the Wellcome Sanger Institute, and senior researcher on the study said: Weve shown, for the first time, how steadily accumulating mutations throughout life lead to a catastrophic and inevitable change in blood cell populations after the age of 70. What is super exciting about this model is that it may well apply to other organ systems too. We see these selfish clones with driver mutations expanding with age in many other tissues of the body we know this can increase cancer risk, but it could also be contributing to other functional changes associated with aging.

References: Clonal dynamics of haematopoiesis across the human lifespan by Emily Mitchell, Michael Spencer Chapman, Nicholas Williams, Kevin J. Dawson, Nicole Mende, Emily F. Calderbank, Hyunchul Jung, Thomas Mitchell, Tim H. H. Coorens, David H. Spencer, Heather Machado, Henry Lee-Six, Megan Davies, Daniel Hayler, Margarete A. Fabre, Krishnaa Mahbubani, Federico Abascal, Alex Cagan, George S. Vassiliou, Joanna Baxter, Inigo Martincorena, Michael R. Stratton, David G. Kent, Krishna Chatterjee, Kourosh Saeb Parsy, Anthony R. Green, Jyoti Nangalia, Elisa Laurenti, and Peter J. Campbell, 1 June 2022, Nature.DOI: 10.1038/s41586-022-04786-y

The longitudinal dynamics and natural history of clonal haematopoiesis by Margarete A. Fabre, Jos Guilherme de Almeida, Edoardo Fiorillo, Emily Mitchell, Aristi Damaskou, Justyna Rak, Valeria Orr, Michele Marongiu, Michael Spencer Chapman, M. S. Vijayabaskar, Joanna Baxter, Claire Hardy, Federico Abascal, Nicholas Williams, Jyoti Nangalia, Iigo Martincorena, Peter J. Campbell, Eoin F. McKinney, Francesco Cucca, Moritz Gerstung, and George S. Vassiliou, 1 June 2022, Nature.DOI: 10.1038/s41586-022-04785-z

The study was funded by Wellcome and the William B Harrison Foundation.

Read the original here:
Scientists Unlock the Secrets of Cellular Aging: What Happens After You Turn 70? - SciTechDaily

To Read More: Scientists Unlock the Secrets of Cellular Aging: What Happens After You Turn 70? – SciTechDaily
categoriaBone Marrow Stem Cells commentoComments Off on Scientists Unlock the Secrets of Cellular Aging: What Happens After You Turn 70? – SciTechDaily | dataAugust 2nd, 2022
Read All

Immunotherapy and COVID Vaccine: Your Questions Answered – Healthline

By daniellenierenberg

For those with cancer, the threat of serious illness from COVID-19 is often a major concern. Cancer treatments can weaken your bodys immune system, increasing your risk of a serious infection.

Immunotherapy is a type of cancer treatment that boosts and supports your immune system in responding against cancer. If you or a loved one is receiving immunotherapy treatment for cancer, you may have concerns about how the COVID vaccine may affect your immune system and your treatment.

This article will answer some common questions about immunotherapy cancer treatment and the COVID vaccines.

People with a weakened immune system due to cancer are at an increased risk for poor outcomes from COVID-19. No matter where you are in your treatment plan, vaccination can reduce your risk of developing severe COVID. Vaccination is important even for those with a robust immune system.

The National Comprehensive Cancer Network (NCCN) and the American Cancer Society recommend that people with cancer, including those receiving treatment, get vaccinated as soon as possible. NCCN notes a few exceptions regarding immediacy:

Since they weaken the immune system, some cancer treatments reduce but dont eliminate vaccine effectiveness. Even if youre getting one or more of these treatments, you will gain some protection from the vaccine. Treatments include:

Vaccination combined with protective measures, such as wearing a mask and avoiding large crowds, provides you with more protection from COVID than you would have without them. For that reason, experts strongly recommend vaccination for people with cancer or a history of cancer.

But check with your oncologist first about when you should get vaccinated. If you are currently receiving treatment for cancer, it may be best to wait until your immune system recovers from treatment. This will give you the best chance of mounting a strong immune response.

Both the Pfizer BioNTech and the Moderna mRNA vaccines are appropriate for use in people who take immunotherapy drugs. Neither vaccine is known to be better than the other for this population.

A 2021 study found that the Moderna vaccine was safe for people with solid tumors receiving chemotherapy, immunotherapy, or both. Their response to the vaccine was similar to those who did not have cancer. The groups also saw similar rates of side effects.

A separate 2021 study noted that people with solid tumors who had the Pfizer vaccine had similar antibody levels to those without cancer 6 months after vaccination. In the subgroup of people on immunotherapy, about 87% still had antibodies, compared to about 84% of the control group.

If you cannot get or do not want either of these vaccines, you can also get the Johnson & Johnson (Janssen) vaccine.

Having cancer or taking immunotherapy drugs does not increase the possibility of serious side effects, such as allergic reactions or myocarditis.

Swelling in the lymph nodes under the arm on the same side as the injection site is a potential side effect of vaccination. While temporary, this can be concerning for people with breast cancer and other cancers.

Tenderness and swollen lymph nodes caused by vaccination should subside within a few days to a few weeks. Let a healthcare professional know if the swelling increases or does not go away within this timeframe.

To date, researchers do not know definitively if immunotherapy drugs affect the effectiveness of COVID-19 vaccines, either positively or negatively.

Scientific articles from 2021 and 2022 suggest that checkpoint inhibitors could theoretically boost your immune response to the COVID-19 vaccine. But both articles also state that no study has demonstrated such an effect.

Some immunotherapy drugs, such as CAR T-cells, may weaken the immune system temporarily. This may make the vaccine less effective. Other types of immunotherapy drugs, such as monoclonal antibodies, should not have this effect.

People with compromised immune systems may find it difficult to generate a robust response to the vaccine, no matter what type of cancer treatment they receive. This may be particularly true for people with blood cancers. For that reason, dosing protocols for people who are immunocompromised and have cancer differ from those used for the general public.

To date, no data indicate that the COVID vaccine reduces the effectiveness of immunotherapy medication. But there may be a 17% to 48% risk of side effects due to an overstimulated immune response, according to research.

A case report published in May 2021 suggests the potential for cytokine release syndrome after COVID vaccination in patients taking certain immunotherapy drugs. The study authors state that more data is needed and still favor vaccination for people with cancer.

A 2021 study involving 134 people found no adverse effects from immunotherapy drugs after receiving the Pfizer vaccine. The studys authors also stressed the need for larger studies and more data, but supported vaccination for people receiving immunotherapy.

However, the impact of certain immunotherapy treatments on your immune system makes the timing of vaccination important. Talk with your oncologist about when you should schedule your vaccine.

People taking immunotherapy drugs should receive an additional primary dose of the vaccine if they have active cancer or are immunocompromised. You may fall into one of these categories if any of the following situations apply:

Yes. Getting COVID does not ensure you will not get it again. In fact, with ever-changing variants continually emerging, contracting the virus more than once has become commonplace.

If youre on cancer treatments that cause you to be immunocompromised, it is vital to get vaccinated, even if youve already had COVID. Talk with your oncologist about when you should get vaccinated after having COVID-19.

If you have cancer, you may be more likely to experience serious complications from COVID-19. Cancer treatments, including certain immunotherapy drugs, may affect your scheduling for vaccination. Talk with your oncologist about when you should schedule your vaccines and how many doses you should get.

Continued here:
Immunotherapy and COVID Vaccine: Your Questions Answered - Healthline

To Read More: Immunotherapy and COVID Vaccine: Your Questions Answered – Healthline
categoriaBone Marrow Stem Cells commentoComments Off on Immunotherapy and COVID Vaccine: Your Questions Answered – Healthline | dataAugust 2nd, 2022
Read All

University of Pennsylvania: Deconstructing the mechanics of bone marrow disease | India Education – India Education Diary

By daniellenierenberg

Fibrosis is the thickening of various tissues caused by the deposition of fibrillar extracellular matrix (ECM) in tissues and organs as part of the bodys wound healing response to various forms of damage. When accompanied by chronic inflammation, fibrosis can go into overdrive and produce excess scar tissue that can no longer be degraded. This process causes many diseases in multiple organs, including lung fibrosis induced by smoking or asbestos, liver fibrosis induced by alcohol abuse, and heart fibrosis often following heart attacks. Fibrosis can also occur in the bone marrow, the spongy tissue inside some bones that houses blood-producing hematopoietic stem cells (HSCs) and can lead to scarring and the disruption of normal functions.

Chronic blood cancers known as myeloproliferative neoplasms (MPNs) are one example, in which patients can develop fibrotic bone marrow, or myelofibrosis, that disrupts the normal production of blood cells. Monocytes, a type of white blood cell belonging to the group of myeloid cells, are overproduced from HSCs in neoplasms and contribute to the inflammation in the bone marrow environment, or niche. However, how the fibrotic bone marrow niche itself impacts the function of monocytes and inflammation in the bone marrow was unknown.

Now, a collaborative team from Penn, Harvard, the Dana-Farber Cancer Institute (DFCI), and Brigham and Womens Hospital has created a programmable hydrogel-based in vitro model mimicking healthy and fibrotic human bone marrow. Combining this system with mouse in vivo models of myelofibrosis, the researchers demonstrated that monocytes decide whether to enter a pro-inflammatory state and go on to differentiate into inflammatory dendritic cells based on specific mechanical properties of the bone marrow niche with its densely packed ECM molecules. Importantly, the team found a drug that could tone down these pathological mechanical effects on monocytes, reducing their numbers as well as the numbers of inflammatory myeloid cells in mice with myelofibrosis. The findings are published in Nature Materials.

We found that stiff and more elastic slow-relaxing artificial ECMs induced immature monocytes to differentiate into monocytes with a pro-inflammatory program strongly resembling that of monocytes in myelofibrosis patients, and the monocytes to differentiate further into inflammatory dendritic cells, says co-first author Kyle Vining, who recently joined Penn. More viscous fast-relaxing artificial ECMs suppressed this myelofibrosis-like effect on monocytes. This opened up the possibility of a mechanical checkpoint that could be disrupted in myelofibrotic bone marrow and also may be at play in other fibrotic diseases. Vining will be appointed assistant professor of preventive and restorative sciences in the School of Dental Medicine and the Department of Materials Sciences in the School of Engineering and Applied Science, pending approval by Penn Dental Medicines personnel committees and the Provosts office.

Vining worked on the study as a postdoctoral fellow at Harvard in the lab of David Mooney. Our study shows that the differentiation state of monocytes, which are key players in the immune system, is highly regulated by mechanical changes in the ECM they encounter, says Mooney, who co-led the study with DFCI researcher Kai Wucherpfennig. Specifically, the ECMs viscoelasticity has been a historically under-appreciated aspect of its mechanical properties that we find correlates strongly between our in vitro and the in vivo models and human disease. It turns out that myelofibrosis is a mechano-related disease that could be treated by interfering with the mechanical signaling in bone marrow cells.

Mooney is also the Robert P. Pinkas Family Professor of Bioengineering at Harvard and leads the Wyss Institutes Immuno-Materials Platform. Wucherpfennig is director of DFCIs Center for Cancer Immunotherapy Research, professor of neurobiology at Brigham and Harvard Medical School, and an associate member of the Broad Institute of MIT and Harvard. Mooney, together with co-senior author F. Stephen Hodi, also heads the Immuno-engineering to Improve Immunotherapy (i3) Center, which aims to create new biomaterials-based approaches to enhance immune responses against tumors. The new study follows the Centers road map. Hodi is director of the Melanoma Center and The Center for Immuno-Oncology at DFCI and professor of medicine at Harvard Medical School.

Gleaning mechanical bone marrow failureThe mechanical properties of most biological materials are determined by their viscoelastic characteristics. Unlike purely elastic substances like a vibrating quartz, which store elastic energy when mechanically stressed and quickly recover to their original state once the stress is removed, slow-relaxing viscoelastic substances also have a viscous component. Like the viscosity of honey, this allows them to dissipate stress under mechanical strain by rapid stress relaxation. Viscous materials are thus fast-relaxing materials in contrast to slow-relaxing purely elastic materials.

The team developed an alginate-based hydrogel system that mimics the viscoelasticity of natural ECM and allowed them to tune the elasticity independent from other physical and biochemical properties. By tweaking the balance between elastic and viscous properties in these artificial ECMs, they could recapitulate the viscoelasticity of healthy and scarred fibrotic bone marrow, whose elasticity is increased by excess ECM fibers. Human monocytes placed into these artificial ECMs constantly push and pull at them and in turn respond to the materials mechanical characteristics.

Next, the team investigated how the mechanical characteristics of stiff and elastic hydrogels compared to those in actual bone marrow affected by myelofibrosis. They took advantage of a mouse model in which an activating mutation in a gene known as Jak2 causes MPN, pro-inflammatory signaling in the bone marrow, and development of myelofibrosis, similar to the disease process in human patients with MPN. When they investigated the mechanical properties of bone marrow in the animals femur bones, using a nanoindentation probe, the researchers measured a higher stiffness than in non-fibrotic bone marrow. Importantly, we found that the pathologic grading of myelofibrosis in the animal model was significantly correlated with changes in viscoelasticity, said co-first author Anna Marneth, who spearheaded the experiments in the mouse model as a postdoctoral fellow working with Ann Mullally, a principal investigator at Brigham and DFCI, and another senior author on the study.

Targeting dysregulated bone marrow mechanicsAn important question was whether monocytes response to the mechanical impact of the fibrotic bone marrow niche could be therapeutically targeted. The researchers focused on an isoform of the phosphoinositide 3-kinase (PI3K)-gamma protein, which is specifically expressed in monocytes and closely related immune cells. PI3K-gamma is known for regulating the assembly of a cell-stiffening filamentous cytoskeleton below the cell surface that expands in response to mechanical stress, which the team also observed in monocytes encountering a fibrotic ECM. When they added a drug that inhibits PI3K-gamma to stiff elastic artificial ECMs, it toned down their pro-inflammatory response and, when given as an oral treatment to myelofibrosis mice, significantly lowered the number of monocytes and dendritic cells in their bone marrow.

This research opens new avenues for modifying immune cell function in fibrotic diseases that are currently difficult to treat. The results are also highly relevant to human cancers with a highly fibrotic microenvironment, such as pancreatic cancer, says Wucherpfennig.

Read more:
University of Pennsylvania: Deconstructing the mechanics of bone marrow disease | India Education - India Education Diary

To Read More: University of Pennsylvania: Deconstructing the mechanics of bone marrow disease | India Education – India Education Diary
categoriaBone Marrow Stem Cells commentoComments Off on University of Pennsylvania: Deconstructing the mechanics of bone marrow disease | India Education – India Education Diary | dataAugust 2nd, 2022
Read All

How long-term Covid-19 immunity paves the way for universal Covid-19 vaccines – Vox.com

By daniellenierenberg

This week, the White House held a summit on the future of Covid-19 vaccines that brought together scientists and vaccine manufacturers to discuss new vaccine technologies. Officials said that new vaccines are an urgent priority as US Covid-19 cases and hospitalizations are rising once again, vaccination rates are hitting a plateau, Covid-19 funding is running low, and the virus itself is continuing to mutate.

But in recent months, scientists have also learned that the immune cells that provide lasting protection known as memory B cells and T cells can keep the worst effects of the most recent versions of the virus at bay, even if they were trained to corral older strains of SARS-CoV-2. Vaccine researchers are expanding their focus from antibodies to these memory immune cells as the new discoveries open a path toward universal coronavirus vaccines.

Universal vaccines, however, are still a long way off possibly years drawing on approaches never used before. Thats a scientific challenge, said Anthony Fauci, chief medical adviser to the president, during the summit.

The good news is that far fewer people are dying from the disease compared to the wave of cases this past winter spurred by the omicron variant of SARS-CoV-2, the virus that causes Covid-19. The first round of Covid-19 vaccines is still holding death rates down to around 360 per day, according to the Centers for Disease Control and Prevention. Still, health officials want to do better.

While the vaccines are terrific, hundreds of Americans, thousands of people around the world are still dying every day, Ashish Jha, the White House Covid-19 response coordinator, said Tuesday. Building a new generation of vaccines will make an enormous difference to bringing this pandemic to an end.

The National Institutes of Health is already funding several research teams developing Covid-19 vaccines that elicit protection against many different versions of the virus, shield against future changes to the virus before they arise, and protect against other coronaviruses.

From there, health officials are aiming not just to develop vaccines that provide more durable protection against a wider array of threats, but also rethinking the vaccination strategy overall. With a better understanding of long-term immunity, more robust vaccines, and a comprehensive public health approach, health officials say they have a better shot at restoring normalcy.

Much of the discussion around vaccines and immunity to Covid-19 centers on antibodies, proteins produced by the immune system that attach to the virus. And indeed, they are important.

Antibodies that prevent the virus from causing an infection in the first place are called neutralizing antibodies. A high concentration of antibodies in the body that blocks SARS-CoV-2 is a key indicator of good protection against reinfection. Antibodies can also serve as a way to mark intruders so that other immune system cells can dispose of them.

But making large quantities of antibodies takes a lot of resources from the body, so their production tapers off with time after an infection or a vaccination. Another concern is that antibodies are very particular about where they attach to the virus. If the virus has a mutation at that attachment site called an epitope antibodies have a harder time recognizing the pathogen. Thats why some antibody-based treatments for Covid-19 are a lot less effective at stopping the omicron subvariants.

Fortunately, the immune system has other tools in its chest. Inside bone marrow lie stem cells that differentiate to become B cells and T cells. Together, they form the core of the adaptive immune system, which creates a tailored response to threats. After a virus invades a cell, it hijacks its machinery to make copies of itself. White blood cells known as cytotoxic T cells, a.k.a. killer T cells, can identify the wayward cell and make it self-destruct. This mechanism doesnt prevent infections, but it stops them from growing out of control.

Another type of T cell, called a helper T cell, acts as an on switch for B cells, which are the cells that manufacture antibodies. After an infection is extinguished, some T cells and B cells turn into memory cells that stick around in parts of the body, ready to rev up if a virus dares to show up again.

So far, the adaptive immune system seems to hold up pretty well. The first round of Covid-19 vaccines was targeted against the earliest versions of the virus, so plenty of vaccinated people have had breakthrough infections, especially from the newer variants. But only a tiny fraction of those immunized have fallen severely ill or have died.

That likely means that their immune systems couldnt keep the virus out entirely, but their immune cells were able to spool up once an infection took root.

Someones neutralizing antibodies may not be up to the task, but if they have the T cell response, that may make all the difference with severe disease, said Stephen Jameson, a professor of microbiology and immunology at the University of Minnesota.

In just the past year, many studies have borne out the significance of memory B cells and T cells for long-term Covid-19 immunity and answered critical questions about whether they can respond to new variants.

Researchers have found that lower levels of memory B cells were associated with a greater risk of breakthrough infections from the delta variant. On the other hand, B cells induced by Covid-19 vaccines could reactivate months out from the initial vaccine doses to churn out antibodies.

Similarly, scientists found that T cells generated by vaccines were able to recognize SARS-CoV-2 variants like omicron months later. These data provide reasons for optimism, as most vaccine-elicited T cell responses remain capable of recognizing all known SARS-CoV-2 variants, scientists wrote in a March paper in the journal Cell.

Another study showed that Covid-19 vaccines generated strong T cell memory that protected against the virus even without neutralizing antibodies. I think the immunological memory which is induced by vaccines is pretty good and is actually sustained, said Marulasiddappa Suresh, a professor of immunology at the University of Wisconsin-Madison who co-authored the study, published in the Proceedings of the National Academy of Sciences in May.

Whether this protection will hold up over the course of years remains to be seen. Experiences with past coronaviruses like MERS showed that antibodies to the virus can last for four years. Covid-19, however, is spreading at much higher levels and mutating more than MERS did during its initial outbreak. Future protection against the disease hinges on the immune system as well as how much the virus itself will change, and scientists are closely watching both.

Most vaccines to date are designed to counter one or a handful of versions of a given virus. They present the immune system with a target that allows it to prepare its defenses should the actual virus ever invade.

In the case of Covid-19, most vaccines coach the immune system to target the spike protein of the SARS-CoV-2 virus, which it uses to start the infection process. This helps the immune system generate strong neutralizing antibodies. But the spike protein is one of the fastest mutating parts of the virus, making it a moving target.

The fact that B cells and T cells have managed to hold off newer variants hints that it may be possible to target the virus in other ways. Rather than just making neutralizing antibodies that attach to the spike, the adaptive immune system could also produce non-neutralizing antibodies that bind to other regions of the virus that mutate very little, if at all. While these antibodies may not block an infection from taking root, they may be able to provide more durable protection against severe illness that holds up against future SARS-CoV-2 variants.

Another approach is to present the immune system with a variety of different potential mutations of a virus, allowing white blood cells to prepare a response to a spectrum of threats and fill in the blanks.

Universal vaccines have not been deployed before, so researchers are in uncharted territory, and the shots likely wont be ready ahead of a potential fall spike in Covid-19 cases. But developing such a vaccine could eventually reduce the need for boosters and give health officials a head start on countering future outbreaks.

In the meantime, US health officials are planning to distribute vaccines reformulated to target newer Covid-19 variants by September, but its not clear yet what the optimal strategy will be to deploy them given the wide range of immune protection across the population. Between infections and vaccinations, the majority of people in the country have had some exposure to the virus, granting some degree of protection. And since the adaptive immune response to Covid-19 seems to be robust in most people, it may not be necessary for everyone to get an additional shot.

One option is to seek out those with weaker immune systems for boosters. Researchers have now developed a rapid test to measure T cell responses to Covid-19 that could identify people who are more vulnerable to reinfections or breakthrough infections.

Though vaccines are absorbing the most severe consequences from Covid-19, infections are still proving disruptive. Covid-19 outbreaks are contributing to staffing shortages at hospitals, schools, and airlines, leading to delays and cancellations. And the more the virus spreads, the more opportunities it has to mutate in dangerous ways. Stopping this threat requires limiting infections, which in turn still demands measures like social distancing and wearing face masks.

So as good as the next generation of vaccines may prove to be, they are only one element of a comprehensive public health strategy for containing a disease.

See the rest here:
How long-term Covid-19 immunity paves the way for universal Covid-19 vaccines - Vox.com

To Read More: How long-term Covid-19 immunity paves the way for universal Covid-19 vaccines – Vox.com
categoriaBone Marrow Stem Cells commentoComments Off on How long-term Covid-19 immunity paves the way for universal Covid-19 vaccines – Vox.com | dataAugust 2nd, 2022
Read All

Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration…

By daniellenierenberg

Abstract: Background Spinal cord injury (SCI) due to lack of restoration of damaged axons is associated with sensorimotor impairment. This study was focused on using the human Placental mesenchymal stem cells- exosome (hPMSCs- exosomes) in an animal model of severe SCI under a new myelogram protocol to confirm lumbar puncture (LP) injection accuracy and evaluate intrathecal space. Methods Mesenchymal stem cells (MSC) were extracted from human placenta tissue and were characterized. HPMSCs- exosomes were isolated by ultracentrifuge. After creating the severe SCI model, LP injection of exosomes was performed in the acute phase. Myelogram was also employed. The improved functional recovery of the animals in the treatment and control groups was followed by recording movement scores for 6 weeks. Hematoxylin-Eosin (H&E) staining was used to evaluate to detect pathological changes and glial scar size. The Immunohistochemistry (IHC) of GFAP and NF200 factors as well as the apoptosis tunnel test was investigated in the tissue samples from the injury site Results The results demonstrated that the use of the myelogram can be a feasible, appropriate and cost-effective method to confirm the accuracy of therapeutic agents LP injection and examine the subarachnoid space in the model of laboratory animals. Furthermore, intrathecal injection of hPMSCs-exosomes in the acute phase of SCI can improve motor function by attenuating apoptosis of neurons at the site of injury, decreased GFAP expression and increased NF200 in the treatment group, reducing glial scarring, and increasing axonal regeneration. Improving functional recovery by not creating bedsores in the treatment group and preventing hematuria were other effects of the exosome Conclusions In conclusion, the effects of hPMSCs-exosome can be considered to be not only in restoring function but also in preventing complications and managing symptoms. Thus, the neuroregenerative and anti-apoptotic potential of hPMSCs-exosome can be considered a therapeutic approach in SCI reconstructive medicine.

Continued here:
Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration...

To Read More: Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration…
categoriaSpinal Cord Stem Cells commentoComments Off on Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration… | dataAugust 2nd, 2022
Read All

How the Regenerative Properties of Glioblastoma Can Be Terminated – Gilmore Health News

By daniellenierenberg

Glioblastoma multiforme (GBM) or simply glioblastoma, is a type of cancer characterized by the growth of an aggressive neoplasm (tumor) in the brain or spinal cord. This type of cancer often occurs in older adults, although the younger population may also be affected.

Read Also: Targeting Hox Gene Dysregulation a Promising Approach for the Treatment of Glioblastoma Multiforme

Glioblastoma

This cancer type is known to be difficult to treat because of its high tendency to reoccur in patients, even after the combination of the three known procedures to treat cancers: surgery, radiotherapy, and chemotherapy. Glioblastoma has been a thorn in the flesh in the world of medicine amongst all cancer types due to the low survival rate of patients affected by it (average survival of 18 months, with only 5% of patients living up to five years). The following factors make this possible: no specific signs or symptoms are noticed leading to late diagnosis and the ability of the cancer cells to resist treatment procedures (the major factor).

Studies have been ongoing to uncover the mechanism behind this major factor, and it has been revealed that Glioblastoma multiforme contains a functional subset of cells known as glioblastoma stem-like cells (GSCs) which are the brain behind its reoccurrence capacity. The identity of these cells remained hidden until a recent study done by a group of scientists finally uncovered it.

Read Also: Brain Cancer: A Promising New Treatment for Destroying Aggressive Glioblastoma Cell

The team found out that these functional subsets of cells can be identified through singular mitochondrial alternative metabolisms. After intensively studying the metabolic reactions of these cells, they developed a tumor model that possessed the features of the GBM cultured in the lab. This way, they discovered that GSCs use these two metabolic reactions alpha-ketoglutarate reductive carboxylation and pyruvate carboxylation within their cells. They also discovered that these reactions are catalyzed by the enzymes isocitrate dehydrogenase and pyruvate carboxylase respectively.

They were able to uncover that their high rate of survival which facilitated the recurrence of the tumor is linked to the pyruvate carboxylation reaction. This discovery is important as it means that doctors may now be able to tackle the reoccurring ability of the tumor effectively.

It has always been known that treating glioblastoma is difficult due to its high recurring ability. However, with the revelation from this study, it is now possible for physicians to come up with more effective treatment procedures that would result in a reduced recurrence of the tumors, and an increased survival rate of patients.

This study raises the hopes of both physicians and patients as it reveals a way to hinder the recurrence of glioblastoma tumors. More research is still ongoing to hasten the innovation of a more effective treatment technique.

Read Also: Brain Cancer: Researchers Reprogram Immune Cells to Improve the Effectiveness of Treatment

Pyruvate carboxylation identifies Glioblastoma Stem-like Cells opening new metabolic strategy to prevent tumor recurrence

Continued here:
How the Regenerative Properties of Glioblastoma Can Be Terminated - Gilmore Health News

To Read More: How the Regenerative Properties of Glioblastoma Can Be Terminated – Gilmore Health News
categoriaSpinal Cord Stem Cells commentoComments Off on How the Regenerative Properties of Glioblastoma Can Be Terminated – Gilmore Health News | dataAugust 2nd, 2022
Read All

Global Stem Cells Group Expands Its Stem Cell Therapy and Regenerative Medicine Centers to Indonesia – GlobeNewswire

By daniellenierenberg

LAS VEGAS, NV, Aug. 01, 2022 (GLOBE NEWSWIRE) -- via NewMediaWire Meso Numismatics, Inc. (Meso Numismatics or the Company) (MSSV), a technology company specializing in Biotech and Numismatics, is pleased to announce additional global expansion by opening stem cell therapy and regenerative medicine facilities in Indonesia. The new facilities emphasize Global Stem Cells Group's objective of introducing its therapies and technology to meet market demands in populous parts of the world.

In partnership with the Dr. Yanti Aesthetic Clinics, which currently has 6 branches across Indonesia, this latest GSCG expansion will promote high standards of service in regenerative medicine across the country. As part of this effort, through GSCG the International Society for Stem Cells Applications (ISSCA) has granted Dr. Yanti Aesthetic Clinics membership and use of its brand, products, therapies, and training on how to apply stem cell therapies.

This new partnership seeks to expand the Global Stem Cells Group (GSCG) brand and create centers of excellence in cell therapy to meet the high demand within the vast Asian markets, said David Christensen, CEO of MSSV. GSCG is rapidly expanding its global operations as it seeks to become a significant player in the lucrative regenerative medicine industry. To achieve our expansion plans, our organization is partnering with healthcare providers specializing in regenerative medicine with at least five years of experience in the healthcare sector.

Video: https://youtu.be/T2CFjsps9qk

The vision behind the effort.

The Indonesia addition is the latest part of an expanding medical network of partners, and it will formalize and strengthen ties, establishing a global center of excellence to guarantee that we effectively use the underlying basic stem cell technology for medical conditions, where traditional therapeutic approaches seem to have failed. This is consistent with GSCG's overall strategy for developing regenerative medicine through data-driven studies, disease modeling, and cell-based therapeutics.

The Dr. Yanti Aesthetic Clinic is a key partnership because it provides the organizational and physical infrastructure needed to disseminate need-based stem cell locally. And Global Stem Cells Group's outstanding cell and stem cell biology and disease pathophysiology give an edge to patients for which they are prescribed.

The opening in Indonesia also presents the perfect opportunity to translate breakthrough therapies from basic discoveries to useful products by drawing upon the skills and local knowledge promoted within Dr. Yanti Aesthetic Clinics.

GSCG group managing director, Benito Novas, provided a clear description of the new strategic direction and objectives. "Our goal is to make regenerative medicine benefits a reality for both doctors and patients all around the world. We recently launched a very similar effort in Pakistan. Additional announcements are planned in the near future as we attempt to expand our presence." Meso Numismatics and Global Stem Cells Group Expand its Global Footprint

The current market outlook.

Stem cell therapy is striving to become an increasingly effective clinical solution to treat conditions that traditional or mainstream medicine offers only within palliative care and pain management. Patients all over the world are searching for a natural regenerative alternative without the potential risks and side effects sometimes associated with mainstream pharmaceuticals. With the opening of each new treatment center in populous regions such as Indonesia, GSCG is working to help stem cell therapy and regenerative medicine to eventually move from alternative and elective procedures to mainstream protocols.

This new clinic effort will play a significant role in the development of regenerative medicine in Indonesia and indeed the rest of the world by adding yet another opportunity for continuous improvement through research and development, Christensen continued. By adding busy clinics in population centers, we plan to consistently generate high volumes of reliable clinical data to assist us with the development and refinement of even more medicines and treatments.

About Dr. Yanti Aesthetic Clinics

Dr. Yanti Aesthetic Clinics is a premier cosmetic and aesthetics clinic based in Kelapa Gading, Jakarta Utara. Since its inception in 2004 in Surabaya by Dr. Khoe Yanti Khusmiran, the clinic has expanded to over 6 branches throughout Indonesia. Dr. Yanti clinics provide a range of skin and body enhancement treatments through minimally invasive and non-invasive procedures the expertise of which are a natural fit for the addition of a variety of stem cell therapies.

"Indonesians have a growing need for the latest medical technology that is reliable, potent, has reduced side effects, and leverages the bodys own healing biochemistry to resolve injury and aging, said Dr. Yanti. We are honored to be a part of GSCG, which has a proven 10-year track record in the market with a strong and growing international reputation. This new partnership is expected to create a wide variety of custom treatment options we can offer our patients and treat injury and illness in ways we could not before.

The newly formed partnership will deliver revolutionary medicines through Dr. Yanti clinics to assist patients in avoiding permanent harm and live a healthier life, while changing the paradigm from asymptomatic treatments to cures that may improve and restore quality of life.

More about Global Stem Cells Group

GSCG delivers leadership in regenerative medicine research, patient applications, and training through our strategic global networks. We endeavor to enable physicians to treat otherwise incurable diseases using stem cell therapy and to improve the quality of life and care across the world.

For this reason, GSCG works with innovative, next-generation therapy providers like Dr. Yanti Aesthetic Clinics to give access to one-of-a-kind holistic and safe treatment options.

More information regarding this transaction and the Global Stem Cells Group may be found at GSCG.

This press release should be read in conjunction with all other filings on http://www.sec.gov

For more information on Global Stem Cells Group please visit: http://www.stemcellsgroup.com

About Meso Numismatics: Meso Numismatics, Corp is an emerging Biotechnology and numismatic technology company. The Company has quickly become the central hub for rare, exquisite, and valuable inventory for not only the Meso region, but for exceptional items from around the world.

Meso has now added Biotechnology to its portfolio and will continue to grow the company in this new direction. With the Company's breadth of business experience and technology team, the Company will continue to help companies grow.

Forward-Looking Statements

Some information in this document constitutes forward-looking statements or statements which may be deemed or construed to be forward-looking statements, such as the closing of the share exchange agreement. The words plan, "forecast", "anticipates", "estimate", "project", "intend", "expect", "should", "believe", and similar expressions are intended to identify forward-looking statements. These forward-looking statements involve, and are subject to known and unknown risks, uncertainties and other factors which could cause the Company's actual results, performance (financial or operating) or achievements to differ from the future results, performance (financial or operating) or achievements expressed or implied by such forward-looking statements. The risks, uncertainties and other factors are more fully discussed in the Company's filings with the U.S. Securities and Exchange Commission. All forward-looking statements attributable to Meso Numismatics, Inc., herein are expressly qualified in their entirety by the above-mentioned cautionary statement. Meso Numismatics, Inc. disclaims any obligation to update forward-looking statements contained in this estimate, except as may be required by law.

For further information, please contact:investor.relations@mssvinc.com Telephone: (800) 956-3935

See more here:
Global Stem Cells Group Expands Its Stem Cell Therapy and Regenerative Medicine Centers to Indonesia - GlobeNewswire

To Read More: Global Stem Cells Group Expands Its Stem Cell Therapy and Regenerative Medicine Centers to Indonesia – GlobeNewswire
categoriaSkin Stem Cells commentoComments Off on Global Stem Cells Group Expands Its Stem Cell Therapy and Regenerative Medicine Centers to Indonesia – GlobeNewswire | dataAugust 2nd, 2022
Read All

The Role of Cell Culture Media, Sera, and Reagents Market Industry Growth, Competitors Analysis, New Technology, Trends and Forecast 2021 2031 -…

By daniellenierenberg

Cell Culture Media, Sera, and Reagents Market: Introduction

According to the report, the globalcell culture media, sera, and reagents marketwas valued at US$6.1 Bnin 2020 and is projected to expand at a CAGR of10.3%from 2021 to 2031. Cell culture media, also known as growth media, is an umbrella term that encompasses any gel or liquid created to support cellular growth in an artificial environment. It is a combination of compounds and nutrients designed to support cellular growth.

Cell culture reagents include cell culture media, media supplements, and sterile reagents. Common cell culture reagents are antibiotics and amino acid supplements. Serum is a key component for growing and maintaining cells in culture. It contains a mixture of proteins, hormones, minerals, and other growth factors. It is added to media as a growth supplement, and specialized forms can be used for different experimental conditions.

Get a sample of the report @ https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=6598

Increase in Demand for Cost-effective and Highly Efficient Cell Culture Products to Drive Global Market

Cell culture technology is applied in various domains such as research, academics, bioprocessing & manufacturing, cell therapy, and regenerative medicines. Leading pharmaceutical companies are expanding their capabilities into biopharmaceutical manufacturing in order to leverage high market potential and due to increase in demand for these products.

Rise in demand for cost-effective and highly efficient cell culture products such as bioreactors, media, reagents, and sera for the production of high-yield cell lines has led to an increase in the number of new product launches. This factor is anticipated to provide lucrative opportunities in the global cell culture market during the forecast period.

Request For Custom Research @ https://www.transparencymarketresearch.com/sample/sample.php?flag=CR&rep_id=6598

Contract Research & Manufacturing and Focus on Stem Cell Research to Propel Market

The cell culture media, sera, and reagents market is witnessing a shift toward contract manufacturing & research, primarily due to significant capital investment and specificity of each biomanufacturing process. For instance, cell cultures could be 2D, 3D, rotating, continuously stirred, batch-fed, and several other types. The expanding scope of cell culture into areas such as stem cell research is boosts the growth of the global market. Rise in importance of stem cell therapy is underlined by the fact that these therapies help treat the cause of the disease, while conventional treatment methods help in managing only the symptoms. This requires advanced capabilities in terms of capital, equipment, and resources; hence, contract manufacturing presents an economically beneficial solution.

Make an Enquiry before Buying @ https://www.transparencymarketresearch.com/sample/sample.php?flag=EB&rep_id=6598

Major Players in Global Cell Culture Media, Sera, and Reagents Market

Key players operating in the global cell culture media, sera, and reagents market include Thermo Fisher Scientific, Inc., Merck KGaA, Cytiva (Danaher Corporation), Becton, Dickinson and Company, Corning Incorporated, HiMedia Laboratories, FUJIFILM Irvine Scientific, Inc., InvivoGen, SeraCare (LGC Clinical Diagnostics, Inc.), and Lonza. Each of these players has been profiled in the cell culture media, sera, and reagents market report based on parameters such as company overview, financial overview, business strategies, application portfolio, business segments, and recent developments.

More Related Reports by Transparency Market Research

PRP and PRF in Cosmetics Market: https://www.transparencymarketresearch.com/prp-and-prf-in-cosmetics-market.html

Acellular Skin Substitutes Market: https://www.transparencymarketresearch.com/acellular-skin-substitutes-market.html

Hematology Diagnostics Market: https://www.transparencymarketresearch.com/hematology-diagnostics-market.html

Life Sciences Software Market: https://www.transparencymarketresearch.com/life-sciences-software.html

Molecular Biology Enzymes, Kits & Reagents Market: https://www.transparencymarketresearch.com/molecular-biology-enzymes-kits-reagents.html

Collagenase Clostridium Histolyticum Market: https://www.transparencymarketresearch.com/collagenase-clostridium-histolyticum-market.html

Automated Microbiology Market: https://www.transparencymarketresearch.com/automated-microbiology-market-size.html

Operating Room Equipment Market: https://www.transparencymarketresearch.com/operating-room-equipment-market.html

About Transparency Market Research

Transparency Market Research, a global market research company registered at Wilmington, Delaware, United States, provides custom research and consulting services The firm scrutinizes factors shaping the dynamics of demand in various markets.The insights and perspectives on the markets evaluate opportunities in various segments. The opportunities in the segments based on source, application, demographics, sales channel, and end-use are analysed, which will determine growth in the markets over the next decade.

Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insights for thousands of decision-makers, made possible by experienced teams of Analysts, Researchers, and Consultants. The proprietary data sources and various tools & techniques we use always reflect the latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in all of its business reports.

For More Research Insights on Leading Industries, Visit Our YouTube Channel and hit subscribe for Future Update https://www.youtube.com/channel/UC8e-z-g23-TdDMuODiL8BKQ

Contact

Rohit BhiseyTransparency Market Research Inc.CORPORATE HEADQUARTER DOWNTOWN,1000 N. West Street,Suite 1200, Wilmington, Delaware 19801 USATel: +1-518-618-1030USA Canada Toll Free: 866-552-3453Website:https://www.transparencymarketresearch.comBlog:https://tmrblog.comEmail:%5Bemailprotected%5D

Originally posted here:
The Role of Cell Culture Media, Sera, and Reagents Market Industry Growth, Competitors Analysis, New Technology, Trends and Forecast 2021 2031 -...

To Read More: The Role of Cell Culture Media, Sera, and Reagents Market Industry Growth, Competitors Analysis, New Technology, Trends and Forecast 2021 2031 -…
categoriaSkin Stem Cells commentoComments Off on The Role of Cell Culture Media, Sera, and Reagents Market Industry Growth, Competitors Analysis, New Technology, Trends and Forecast 2021 2031 -… | dataAugust 2nd, 2022
Read All

Page 19«..10..18192021..3040..»


Copyright :: 2024