Reviewing Tenax Therapeutics Inc. (TENX)’s and Neuralstem Inc. (NASDAQ:CUR)’s results – MS Wkly
By daniellenierenberg
Both Tenax Therapeutics Inc. (NASDAQ:TENX) and Neuralstem Inc. (NASDAQ:CUR) are each others competitor in the Biotechnology industry. Thus the contrast of their analyst recommendations, profitability, institutional ownership, risk, dividends, earnings and valuation.
Valuation and Earnings
Table 1 highlights Tenax Therapeutics Inc. and Neuralstem Inc.s gross revenue, earnings per share and valuation.
Profitability
Table 2 shows Tenax Therapeutics Inc. and Neuralstem Inc.s return on assets, net margins and return on equity.
Risk & Volatility
Tenax Therapeutics Inc.s 1.4 beta indicates that its volatility is 40.00% more volatile than that of S&P 500. Neuralstem Inc.s 94.00% more volatile than S&P 500 which is a result of the 1.94 beta.
Liquidity
Tenax Therapeutics Inc.s Current Ratio is 11 while its Quick Ratio is 11. On the competitive side is, Neuralstem Inc. which has a 3.8 Current Ratio and a 3.8 Quick Ratio. Tenax Therapeutics Inc. is better positioned to pay off short and long-term obligations compared to Neuralstem Inc.
Insider and Institutional Ownership
Institutional investors owned 22.2% of Tenax Therapeutics Inc. shares and 4.9% of Neuralstem Inc. shares. Tenax Therapeutics Inc.s share owned by insiders are 4.73%. On the other hand, insiders owned about 1% of Neuralstem Inc.s shares.
Performance
Here are the Weekly, Monthly, Quarterly, Half Yearly, Yearly and YTD Performance of both pretenders.
For the past year Tenax Therapeutics Inc. had bullish trend while Neuralstem Inc. had bearish trend.
Summary
Tenax Therapeutics Inc. beats Neuralstem Inc. on 5 of the 9 factors.
Tenax Therapeutics, Inc., a specialty pharmaceutical company, focused on the identification, development, and commercialization of a portfolio of products for the critical care market in the United States and Canada. It focuses on the development and commercialization of pharmaceutical products containing levosimendan, 2.5 mg/ml concentrate for solution for infusion/5ml vial for use in the reduction of morbidity and mortality in cardiac surgery patients at risk for developing Low Cardiac Output Syndrome. The company was formerly known as Oxygen Biotherapeutics, Inc. and changed its name to Tenax Therapeutics, Inc. in September 2014. Tenax Therapeutics, Inc. was founded in 1967 and is headquartered in Morrisville, North Carolina.
Neuralstem, Inc., a clinical stage biopharmaceutical company, focuses on the research and development of nervous system therapies based on its proprietary human neuronal stem cells and small molecule compounds. The companys stem cell based technology enables the isolation and expansion of human neural stem cells from various areas of the developing human brain and spinal cord enabling the generation of physiologically relevant human neurons of various types. It is developing products include NSI-189, a chemical entity, which is in Phase II clinical trial for the treatment of major depressive disorder, as well as is in preclinical programs for the MCAO stroke, type 1 and 2 diabetes related neuropathy, irradiation-induced cognition, long-term potentiation enhancement, and angelman syndrome. The company is also developing NSI-566, which has completed Phase II clinical trial for treating amyotrophic lateral sclerosis disease, as well as is in Phase I clinical trials for the treatment of chronic spinal cord injury and motor deficits due to ischemic stroke. Neuralstem, Inc. was founded in 1996 and is headquartered in Germantown, Maryland.
Receive News & Ratings Via Email - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings with our FREE daily email newsletter.
See the rest here:
Reviewing Tenax Therapeutics Inc. (TENX)'s and Neuralstem Inc. (NASDAQ:CUR)'s results - MS Wkly
Reviewing VistaGen Therapeutics Inc. (VTGN)’s and Gamida Cell Ltd. (NASDAQ:GMDA)’s results – MS Wkly
By daniellenierenberg
This is a contrast between VistaGen Therapeutics Inc. (NASDAQ:VTGN) and Gamida Cell Ltd. (NASDAQ:GMDA) based on their institutional ownership, profitability, risk, analyst recommendations, dividends, earnings and valuation. The two companies are Biotechnology and they also compete with each other.
Earnings and Valuation
Table 1 shows gross revenue, earnings per share (EPS) and valuation of the two companies.
Profitability
Table 2 provides us the return on equity, net margins and return on assets of both companies.
Liquidity
The Current Ratio of VistaGen Therapeutics Inc. is 4.9 while its Quick Ratio stands at 4.9. The Current Ratio of rival Gamida Cell Ltd. is 6.5 and its Quick Ratio is has 6.5. Gamida Cell Ltd. is better equipped to clear short and long-term obligations than VistaGen Therapeutics Inc.
Analyst Recommendations
The table shown features the ratings and recommendations for VistaGen Therapeutics Inc. and Gamida Cell Ltd.
VistaGen Therapeutics Inc. has a 1,975.47% upside potential and a consensus price target of $22. Meanwhile, Gamida Cell Ltd.s consensus price target is $16, while its potential upside is 261.17%. The data provided earlier shows that VistaGen Therapeutics Inc. appears more favorable than Gamida Cell Ltd., based on analyst view.
Insider & Institutional Ownership
Roughly 20.4% of VistaGen Therapeutics Inc. shares are owned by institutional investors while 13.1% of Gamida Cell Ltd. are owned by institutional investors. Insiders owned 0.2% of VistaGen Therapeutics Inc. shares. Comparatively, 65.61% are Gamida Cell Ltd.s share owned by insiders.
Performance
Here are the Weekly, Monthly, Quarterly, Half Yearly, Yearly and YTD Performance of both pretenders.
For the past year VistaGen Therapeutics Inc. was more bearish than Gamida Cell Ltd.
Summary
On 6 of the 11 factors VistaGen Therapeutics Inc. beats Gamida Cell Ltd.
VistaGen Therapeutics, Inc., a clinical-stage biopharmaceutical company, engages in developing and commercializing medicines for depression and other central nervous system (CNS) disorders. The company's lead product candidate is AV-101, which is in Phase II development stage, an adjunctive treatment used for major depressive disorder. It also focuses on potential commercial applications of its human pluripotent stem cell (hPSC) technology platform to discover, rescue, develop, and commercialize new chemical entities (NCEs) for CNS and other diseases; and regenerative medicine involving hPSC-derived blood, cartilage, heart, and liver cells. In addition, the company develops CardioSafe 3D, an in vitro cardiac bioassay system for predicting human heart toxicity of small molecule NCEs. VistaGen Therapeutics, Inc. has licensing, sublicensing, and collaboration agreements with BlueRock Therapeutics, LP; U.S. National Institutes of Health; Cato Research Ltd.; and University Health Network. The company was founded in 1998 and is headquartered in South San Francisco, California.
Gamida Cell Ltd., a clinical stage biopharmaceutical company, focuses on developing cell therapies to cure cancer, and rare and serious hematologic diseases in the United States, the European Union, and internationally. The company's lead product candidate is NiCord, a nicotinamide (NAM)-expanded cord blood cell therapy that is in Phase 3 clinical trials for use as a curative stem cell graft for patients in hematopoietic stem cell transplant. It is also developing NAM-NK, an innate immunotherapy of expanded natural killer cells, which is in Phase 1 clinical trials for the treatment of refractory non-Hodgkin lymphoma and multiple myeloma. The company was founded in 1998 and is headquartered in Jerusalem, Israel.
Receive News & Ratings Via Email - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings with our FREE daily email newsletter.
Read the original post:
Reviewing VistaGen Therapeutics Inc. (VTGN)'s and Gamida Cell Ltd. (NASDAQ:GMDA)'s results - MS Wkly
Cell Harvesting Market 2019 with Detailed Profiles of Key Companies Including General Electric, Perkinelmer and Thermo Fisher – ResearchAndMarkets.com…
By daniellenierenberg
DUBLIN--(BUSINESS WIRE)--The "Cell Harvesting Market" report has been added to ResearchAndMarkets.com's offering.
This report provides a summary of the cell harvesting market, including a market snapshot and profiles of key players in the market. It provides an exhaustive segmentation analysis of the market with in-depth information about each segment. The overview section of the report provides a description of market trends and market dynamics, including drivers, restraints and opportunities. it provides information about market developments and future trends that can be useful for organizations, including wholesalers and exporters. It provides market positionings of key players using yardsticks of revenue, product portfolio, and recent activities. It further includes strategies adopted by emerging market players with strategic recommendations for new market entrants. Readers will also find historical and current market sizes and a discussion of the market's future potential. The report will help market players and new entrants make informed decisions about the production and exports of goods and services.
The report includes:
Key Topics Covered:
Chapter 1 Introduction
Chapter 2 Summary and Highlights
Chapter 3 Market and Technology Background
Chapter 4 Market Breakdown by Type of Harvesting
Chapter 5 Market Breakdown by End User
Chapter 6 Market Breakdown by Application
Chapter 7 Market Breakdown by Component/Equipment
Chapter 8 Market Breakdown by Region
Chapter 9 New Developments and Patent Review
Chapter 10 Analysis of Market Opportunities
Chapter 11 Company Profiles
For more information about this report visit https://www.researchandmarkets.com/r/lahvpd
About ResearchAndMarkets.com
ResearchAndMarkets.com is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.
Continue reading here:
Cell Harvesting Market 2019 with Detailed Profiles of Key Companies Including General Electric, Perkinelmer and Thermo Fisher - ResearchAndMarkets.com...
Which Plastic Surgery Procedures Have Members of the Royal Family Had Done? – Showbiz Cheat Sheet
By daniellenierenberg
The members of the British royal family are always in the public eye. They cant blow their noses without people hearing about it. But with so much attention, comes even more scrutiny.
The royals are under pressure to be perfect at all times. Every move they make is photographed by the paparazzi and the public isunforgiving. Even after they gave birth, people expected both Meghan Markle and Kate Middleton to be back to their normal thin frames in a matter of days.
When celebrities are feeling the pressure to keep up appearances, many of them seek out plastic surgery procedures. Does the royal family do the same?
For many people, the Duchess of Cambridge is the epitome of style and grace. Youd be hardpressed to find a photo of Middleton looking less than perfect. Because of this, people have often wondered if the future Queen Consort has had any work done.
Earlier this year, Dr. Munir Somji of Dr. Medi Spa Clinic in London claimed that Middleton was one of his clients.
He shared before and after pictures of the Duchess on his Instagram.
Our Kate loves a bit of baby Botox, he wrote under the photos, which have since been deleted.
View this post on Instagram
The Duchess of Cambridge, Patron of the @Natural_History_Museum, visited the Angela Marmont Centre for UK Biodiversity to hear how it is championing and helping to protect UK wildlife. The Angela Marmont Centre (AMC) is a unique scientific hub located in the Natural History Museum, and is dedicated to the study of the UKs natural world. The AMC helps public visitors identify their finds, provides vital training in wildlife identification, and leads research and citizen science projects that are helping to transform our understanding of over 80,000 species of wildlife known to exist in the UK today. With populations of many UK species declining, and a significant proportion threatened with local extinction, the AMC brings together a host of individuals and organisations all dedicated to building understanding of the UKs wildlife, so that it can be better protected for future generations. AMC staff work with colleagues from across the Natural History Museum to carry out a range of scientific research to study how and why the UKs wildlife is changing. This ranges from applying ground-breaking scientific techniques, including analysis of environmental DNA through to detecting and identify the miniscule insects and microorganisms that play an important role in healthy environments. At the AMC today The Duchess viewed some of the Museums specimens and saw DNA sequencing live in action.
A post shared by Kensington Palace (@kensingtonroyal) on Oct 9, 2019 at 5:20am PDT
Note the reduction of fine lines on the forehead, he continued. But also note the depression of the medial (middle part) brow but elevation of the lateral tail of the brow.
So many people started believing the rumor that Kensington Palace gave a statement to the New York Post.
A spokesperson for the palace said that the post by Dr. Somji was categorically not true and in addition, The Royal Family never endorse commercial activity.
One royal who has been open about the procedures shes had done is the Duchess of York, Sarah Ferguson.
Ive had a lot of help to look like this at 60! she said in an interview withDaily Mail.
Ive started the laser treatment, but its not finished yet, she continued. The collagen needs to rebuild. I hope it will all be done by my birthday.
She also had this treatment before her daughter, Princess Eugenies, wedding last year. The procedure was done by Dr. Gabriela Mercik in a facility in London.
I dont like the frozen look, Ferguson said of why she chooses more natural procedures. Im so animated and I like to be myself. I dont like the thought of needles and am very glad if I look well and happy Im really happy to be open about what Ive had done.
Originally, the Duchess tried botox but has since switched to less invasive procedures, like her most recent treatment which refines the skins texture.
Shes also had mesotherapy, which is a non-surgical cosmetic treatment.
I need to repair the damage that was done on the beach when I was a child, she continued. Its why I had the mesotherapy, the vitamin cocktail to hydrate and boost the skin.
Not only does Ferguson get work done on her face, but she makes sure her feet are perfect as well!
I think my toes were ruined by all the riding I did when I was young, she said. They shaved the bone here. And implanted stem cells, 20 million of them taken from my midriff, into my feet to make new cartilage. It takes about six months to heal but now I can walk in heels!
See the article here:
Which Plastic Surgery Procedures Have Members of the Royal Family Had Done? - Showbiz Cheat Sheet
AVROBIO Announces First Patient Dosed in Phase 1/2 Trial of Gene Therapy for Cystinosis – Business Wire
By daniellenierenberg
CAMBRIDGE, Mass.--(BUSINESS WIRE)--AVROBIO, Inc. (NASDAQ: AVRO) (the Company) today announced that the first patient has been dosed in the Companys AVR-RD-04 investigational gene therapy program for cystinosis, a devastating lysosomal storage disease, in an ongoing Phase 1/2 clinical trial sponsored by academic collaborators at the University of California San Diego. The gene therapy is derived from the patients own hematopoietic stem cells, which are genetically modified to produce functional cystinosin, a crucial protein that patients with cystinosis lack.
The trial will enroll up to six patients with cystinosis, a rare inherited disease caused by a defect in the gene that encodes for cystinosin. The cystinosin protein enables transport of the amino acid cystine out of lysosomes. When it is absent, cystine accumulates and crystalizes, causing progressive damage to the kidneys, liver, muscles, eyes and other organs and tissues. Cystinosis affects both children and adults; they face shortened life spans and often painful symptoms, including muscle wasting, difficulty breathing, blindness and kidney failure.
Cystinosis is a debilitating and progressive disease, and new treatment options are sorely needed. The current standard of care does not avert deterioration; at best, it can attenuate symptoms. Thats why gene therapy is particularly exciting: It has the potential to change the course of disease -- and the lives of patients -- by addressing the underlying cause of cystinosis, said Birgitte Volck, MD, PhD, President of Research and Development at AVROBIO. We believe we can engineer patients own stem cells so they sustainably produce the functional protein that is needed to prevent a toxic buildup of cystine and halt progression of the disease. We are so pleased that this investigational gene therapy is now in the clinic in collaboration with Dr. Stephanie Cherqui at UC San Diego.
The single-arm trial will enroll four adults and a potential follow-on cohort of two adults or adolescents at least 14 years of age who are currently being treated with cysteamine, the standard of care for cystinosis. If started at an early age and taken on a strict dosing schedule, cysteamine can delay kidney failure. However, the treatment regimen is highly burdensome, with side effects that can be severe and unpleasant, and many patients find it difficult to adhere to this treatment regimen. Even if compliance is high, cysteamine therapy cannot prevent kidney failure or avert other complications.
For people with cystinosis, there are no healthy days. They must take dozens of pills a day, around the clock, just to stay alive. It is a relentless disease and we urgently need new treatments, said Nancy J. Stack, President of the Cystinosis Research Foundation, which supported development of the gene therapy with more than $5.4 million in grants to Dr. Cherquis lab at UC San Diego. We believe that we are now an important step closer to the potential cure that our community has been working toward for many years.
The trials primary endpoints are safety and tolerability, assessed for up to two years after treatment, as well as efficacy, as assessed by cystine levels in white blood cells. Secondary endpoints to assess efficacy include changes in cystine levels in the blood, intestinal mucosa and skin and cystine crystal counts in the eye and skin. Efficacy will also be evaluated through clinical tests of kidney function, vision, muscle strength, pulmonary function and neurological and psychometric function, as well as through assessments of participants quality of life after treatment. The trial is funded by grants to UC San Diego from the California Institute for Regenerative Medicine (CIRM) as well as the Cystinosis Research Foundation.
This investigational gene therapy starts with the patients own stem cells, which are genetically modified so that their daughter cells can produce and deliver functional cystinosin to cells throughout the body. With this approach we aim to prevent the abnormal accumulation of cystine that causes so many devastating complications, said Stephanie Cherqui, PhD, an Associate Professor of Pediatrics at UC San Diego School of Medicine, and consultant to AVROBIO. We have been working toward this trial for years and we are grateful for all the support that brought us to this moment.
About AVR-RD-04
AVR-RD-04 is a lentiviral-based gene therapy designed to potentially halt the progression of cystinosis with a single dose of the patients own hematopoietic stem cells. The stem cells are genetically modified so they can produce functional cystinosin with the aim of substantially reducing levels of cystine in cells throughout the patients body. Before the infusion of the cells, patients undergo personalized conditioning with busulfan to enable the cells to permanently engraft. The Phase 1/2 clinical trial is being conducted under the name CTNS-RD-04 by AVROBIOs academic collaborators at the University of California, San Diego.
About Cystinosis
Cystinosis is a rare, inherited lysosomal storage disorder characterized by the accumulation of cystine in all the cells of the body, resulting in serious and potentially fatal damage to multiple organs and tissues and the shortening of patients life spans. The kidneys and eyes are especially vulnerable; more than 90% of untreated patients require a kidney transplant before age 20. An estimated 1 in 170,000 people are diagnosed with cystinosis.
About AVROBIO, Inc.
AVROBIO, Inc. is a leading, Phase 2 gene therapy company focused on the development of its investigational gene therapy, AVR-RD-01, in Fabry disease, as well as additional gene therapy programs in other lysosomal storage disorders including Gaucher disease, cystinosis and Pompe disease. The Companys plato platform includes a proprietary vector system, automated cell manufacturing solution and a personalized conditioning regimen deploying state-of-the-art precision dosing. AVROBIO is headquartered in Cambridge, MA and has offices in Toronto, ON. For additional information, visit http://www.avrobio.com.
Forward-Looking Statements
This press release contains forward-looking statements, including statements made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. These statements may be identified by words such as aims, anticipates, believes, could, estimates, expects, forecasts, goal, intends, may, plans, possible, potential, seeks, will and variations of these words or similar expressions that are intended to identify forward-looking statements. These forward-looking statements include, without limitation, statements regarding the therapeutic potential of our product candidates, the design, commencement, enrollment and timing of ongoing or planned clinical trials, including the ongoing Phase 1/2 trial of the Companys AVR-RD-04 investigational gene therapy, the anticipated benefits of our gene therapy platform, the expected safety profile of our product candidates, timing and likelihood of success of our current or future product candidates, and the market opportunity for our product candidates. Any such statements in this press release that are not statements of historical fact may be deemed to be forward-looking statements. Results in preclinical or early stage clinical trials may not be indicative of results from later stage or larger scale clinical trials and do not ensure regulatory approval. You should not place undue reliance on these statements, or the scientific data presented.
Any forward-looking statements in this press release are based on AVROBIOs current expectations, estimates and projections about our industry as well as managements current beliefs and expectations of future events only as of today and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to, the risk that any one or more of AVROBIOs product candidates will not be successfully developed or commercialized, the risk of cessation or delay of any ongoing or planned clinical trials of AVROBIO or our collaborators, the risk that AVROBIO may not realize the intended benefits of our gene therapy platform, including the features of our plato platform, the risk that our product candidates or procedures in connection with the administration thereof will not have the safety or efficacy profile that we anticipate, the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical or clinical trials, will not be replicated or will not continue in ongoing or future studies or trials involving AVROBIOs product candidates, the risk that we will be unable to obtain and maintain regulatory approval for our product candidates, the risk that the size and growth potential of the market for our product candidates will not materialize as expected, risks associated with our dependence on third-party suppliers and manufacturers, risks regarding the accuracy of our estimates of expenses and future revenue, risks relating to our capital requirements and needs for additional financing, and risks relating to our ability to obtain and maintain intellectual property protection for our product candidates. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause AVROBIOs actual results to differ materially and adversely from those contained in the forward-looking statements, see the section entitled Risk Factors in AVROBIOs most recent Quarterly Report on Form 10-Q, as well as discussions of potential risks, uncertainties and other important factors in AVROBIOs subsequent filings with the Securities and Exchange Commission. AVROBIO explicitly disclaims any obligation to update any forward-looking statements except to the extent required by law.
Fred Hutch scientist on how gold nanoparticles could bring CRISPR to the developing world – GeekWire
By daniellenierenberg
Jennifer Adair, a senior scientist at Fred Hutch, speaks at the 2019 GeekWire Summit. (GeekWire Photo / Kevin Lisota)
Genetically editing cells using CRISPR could be the answer to curing genetic disorders such as sickle cell anemia. But in order for the technology to be available for people in countries like Nigeria where around a quarter of the population carries the sickle cell trait the technology will need to become substantially cheaper and less invasive.
Thats where gold nanoparticles come in.
Scientists at the Fred Hutchinson Cancer Research Center are devising an approach that vastly simplifies how CRISPR is applied. Their goal is to create a safe process for gene editing that takes place entirely within the body of a patient.
In order to edit human stem cells using CRISPR today, scientists have to follow a process that involves removing the cells from a patients bone marrow, electrocuting those cells, and modifying them with engineered virus particles.
The process gets even more invasive from there. We actually have to treat these patients with chemotherapy, radiation or other agents in order for these cells that were genetically manipulated to be taken up, Jennifer Adair, a senior scientist at Fred Hutch, said during a talk at the 2019 GeekWire Summit.
The researchers think theyve figured out the first step, which is delivering CRISPR to blood stem cells inside the body. Theyre doing that using gold nanoparticles that are about a billionth the size of a grain of table salt and able to smuggle in RNA, DNA and a protein.
Weve been able to show that not only can we make these, but they passively deliver all of those components to blood stem cells, then we do get genetic editing. And weve been able to go on to show that we can correct the sickle cell defect using this approach, said Adair.
The nanoparticles are big enough to carry the CRISPR payload but small enough to infiltrate cell membranes. Gold is a useful medium since it isnt harmful to humans.
The Fred Hutch team published their work with gold nanoparticles earlier this year in the journal Nature Materials. The system safely edited 10 to 20 percent of the target cells, which the researchers hope will increase as the method is refined.
In an ideal world, clinicians would be able to deliver gene therapy through a syringe, a process that might be accomplished in a single office visit. Adair previously published research on agene therapy in a box concept, a table-top device that could provide gene therapy treatments without the need for expensive medical infrastructure.
We need to develop technologies that make gene editing simpler, more affordable and more accessible to patients around the world, Adair said.
See the original post:
Fred Hutch scientist on how gold nanoparticles could bring CRISPR to the developing world - GeekWire
Gaucher Might Be LInked to Rare Types of Blood Cancer, Report Suggests – Gaucher Disease News
By daniellenierenberg
Gaucher disease can predispose patients to rare types of blood cancer, and doctors should be vigilant for the development of these malignancies, a case report suggests.
The study, A case of bony lytic lesions in a patient with Gaucher disease, was published in the journal Clinical Case Reports.
The most common symptoms of Gaucher disease are reduced platelet count, enlarged liver and spleen, and lesions in the bones. This disease also has been associated with an increased risk ofblood disorders.
Researchers in Canada reported the case of a 57-year-old man who developed a rare type of blood cancer cell probably related to Gaucher disease, as he had Gaucher cells cells that accumulate abnormal amounts of a fat molecule (glucocerebroside) characteristic of the condition in his bone marrow.
The man had a scalp lesion that did not heal and progressively increased in size. Doctors performed a biopsy and discovered it was caused by a plasmacytoma, a rare form of blood cancer in which myeloma cells form a tumor in the bones or soft tissues.
At the time of biopsy, the patient had mild anemia, low levels of platelets, and a family of blood proteins called gamma globulins characteristic of myeloma. His kidney function and calcium levels were normal.
Further tests showed that the man had several bony lytic lesions spots of bone damage caused by cancerous myeloma cells and abone marrow biopsy showed infiltration of both plasma cells and Gaucher cells. That led to a diagnosis of plasma cell myeloma probably associated with Gaucher disease.
Gaucher cells infiltrating the bone marrow may mask the extent of abnormal plasma cell infiltrates, and immunohistochemical staining [a method that identifies abnormal cells in biopsies] can be invaluable in identifying the true burden of plasma cells for appropriate classification of suspected plasma cell neoplasia, the researchers said.
The investigators also noted that the man had a history of abnormal spleen size and reduced blood cell count. A bone marrow biopsy performed years earlier showed the presence of possible Gaucher cells.
Gaucher disease should be considered in the differential diagnosis of unexplained hepatomegaly [abnormal liver size], splenomegaly [abnormal spleen size], or cytopenias [reduced blood cell count], the investigators said. They added that further research of the previous symptoms might have allowed diagnosing Gaucher disease before the cancer appeared.
The patient received a combination of chemotherapy, cyclophosphamide, and Velcade (bortezomib), followed by high doses of melphalan and autologous stem cell transplantation. He tolerated the transplant well and was discharged with the recommendation of long-term follow-up.
Alejandra has a PhD in Genetics from So Paulo State University (UNESP) and is currently working as a scientific writer, editor, and translator. As a writer for BioNews, she is fulfilling her passion for making scientific data easily available and understandable to the general public. Aside from her work with BioNews, she also works as a language editor for non-English speaking authors and is an author of science books for kids.
Total Posts: 20
Ins Martins holds a BSc in Cell and Molecular Biology from Universidade Nova de Lisboa and is currently finishing her PhD in Biomedical Sciences at Universidade de Lisboa. Her work has been focused on blood vessels and their role in both hematopoiesis and cancer development.
Read more from the original source:
Gaucher Might Be LInked to Rare Types of Blood Cancer, Report Suggests - Gaucher Disease News
It’s in the blood – Lab News
By daniellenierenberg
Blood, of course, plays a crucial role in keeping our bodies alive and functioning.
Red blood cells carry oxygen from our lungs to our muscles. White blood cells are the first responders of our immune systems, detecting infections and foreign agents and triggering the immune response needed to deal with the problem. Plasma, the liquid part of blood, transports not only the cells but also proteins, such as antibodies, and hormones, such as insulin, to every part of the body. It is a beautifully complex system that is the key to our bodies functioning correctly.
Parasites, viruses and bacteria all use the circulatory system to spread around the body. When cancer metastasises and spreads to other parts of the body, it is through tumour cells circulating within the bloodstream. There are also myriad blood cancers, such as leukaemias and lymphomas, and blood disorders, such as sickle cell anaemia, not to mention autoimmune diseases like diabetes or lupus. Sepsis, also known as blood poisoning, is a deadly overreaction to an infection which also has its roots in blood.
Magnetic blood filtration is a tool which enables the physical removal of specific substances from the bloodstream
Most of these diseases are treated with drugs or chemotherapies, some with great success, others, much less. There are also various methods of physically extracting different components from the blood by circulating a patients blood outside of the body through whats known as an extracorporeal circuit. Dialysis, for example, removes excess toxins from the blood, acting as a substitute for kidneys when they fail. Plasmapheresis and leukapheresis are methods of removing harmful antibodies from the plasma or white blood cells from the blood. Similar techniques are also used to harvest stem cells from the blood, which can then be used in cancer therapies (known as stem cell transplantation), if the donor and patient are a match.?
Magnetic blood filtration
Despite these methods, millions of people still die every year from blood-borne diseases. At MediSieve a small, London-based start-up company we are using nanotechnology to develop a new technology which we think can transform our ability to tackle these conditions. Magnetic blood filtration (MBF) is a tool which enables the physical removal of specific substances from the bloodstream. It is similar to other extracorporeal procedures like dialysis, but instead of removing every component of a particular size or weight, MBF removes highly specific targets to address the specific medical issue, thereby removing only the substance that doctors want to remove. Alongside this high specificity, various targets, both big and small, can be removed simultaneously, raising the prospect of removing for example specific cells and harmful antibodies in a single procedure.
To achieve this, we use magnetic nanoparticles coated with binding moieties, such as antibodies, which bind specifically to the desired targets in the blood. These particles are infused into the blood within the extracorporeal circuit, binding to their targets. The blood then flows through a magnetic filter which captures the magnetic particles and the targets bound to them, while the rest of the blood flows back into the patient. Several different particles can be used in the same procedure in order to capture different components. Using this method, anything for which there is a specific antibody or other binding moiety can theoretically be removed directly from the bloodstream. I think that in the long-term the technology could be used to remove specific cells, antibodies, bacteria, viruses, toxins, drug molecules and inflammatory cytokines, the drivers of immune conditions such as sepsis.
The MediSieve Filter is a disposable, single-use device in which the magnetic particles and their targets are captured. It is inserted into the MediSieve Magnet, a reusable medical device which activates the filter. Both can be incorporated into a variety of existing extracorporeal systems and integrate with standard blood pumps and tubing sets.
We are currently developing treatments for malaria, sepsis and leukaemia. The Filter and Magnet have completed pre-clinical testing and are now ready for clinical trials, which we hope to start shortly. Magnetic particles for various clinical targets are currently being developed and validated in the laboratory, with promising results. Animal trials for these are expected to start in 2020.
Malaria
Our potential treatment for malaria is the closest to market because malaria infected cells, uniquely, have naturally occurring magnetic properties is it therefore possible to remove them from the blood using the MediSieve Filter without the infusion of any magnetic particles. The magnetic properties arise from a core aspect of the malaria parasites lifecycle. After infecting a red blood cell, the parasite consumes the protein part of haemoglobin, leaving behind an iron-based waste-product known as haemozoin, which is stored inside the cell. Haemozoin is paramagnetic, thereby giving infected cells their unique magnetic properties.
MBF could be used in highly severe malaria cases in which the patient is hospitalised and at high risk of death. Currently, these patients receive intravenous drugs such as artesunate which can achieve parasite clearance in 36-48 hours; parasite clearance rate is the key indicator of patient recovery, and it can take up to eight doses of IV drugs to achieve complete clearance. Mortality in these cases can be as high as 20%.?
Using MBF alongside the first dose of IV drugs could drastically accelerate parasite clearance rate. We claim that, depending on the patient size and initial level of infection, this approach can remove over 90% of red blood cells containing haemozoin in just two hours. Because they have higher quantities of haemozoin, MBF is better at removing later stage infected cells, whereas drugs are much more effective against earlier stage cells, so they should be complimentary.
MBF has the additional benefit of removing free circulating haemozoin, also known as the malaria toxin, which should also improve the treatment for the patient since drugs can cause the large-scale release of haemozoin as infected cells die.
According to the WHO, in 2017 there were 219 million cases of malaria and 435,000 deaths, mostly children. While overall malaria cases and deaths have been trending downwards in recent years, the number of hospitalised patients is increasing as healthcare infrastructure improves in malaria endemic countries and more patients gain access to hospitals. In the future, MBF could be adapted for use in mobile clinics to reach harder to access areas.
While ourinitial target is severe malaria patients, I also believe MBF could be a valuable tool in the fight against drug-resistant malaria strains, which have been emerging in SE Asia and are causing great concern if drug resistance spreads to Africa, the effect could be catastrophic. It can also be used to treat patients for whom drugs cannot be used, such as pregnant women.
Sepsis
Sepsis is one of the leading causes of death in the developed world with more than 1.9M cases in Europe and the US and published mortality rates of 29% - 50%. Sepsis is a complex syndrome in which bacteria or other pathogens create a dysregulated immune response which can escalate to organ failure and death. The immune response creates an overproduction of pro-inflammatory cytokines, while cell damage over time creates damage-associated molecular patterns (DAMPs) that sustain the syndrome. ?
Our approach to sepsis, which we call SepSieve, uses a cocktail of different particles to remove a number of targets from a patients bloodstream: specific pro-inflammatory cytokines (IL-1, IL-6 and IL-18), DAMPs (HMGB-1), endotoxins (LPS), and gram-negative bacteria. This multi-modal approach tackles the disease from two key angles: Removing the pathogens and endotoxins that trigger the immune response and reducing magnitude of the immune response and preventing the cascade towards septic shock.
Like in malaria, SepSieve would be used alongside existing frontline treatments, specifically antibiotics. While antibiotics are critical for treatment of sepsis, the bacterial cell death they cause releases LPS which accelerates the dysregulated immune response MBF could remove the LPS to prevent the condition from worsening. The main benefit of MBF in sepsis is therefore not so-much the removal of bacteria itself (which is tackled by antibiotics and in any case is not present exclusively in the bloodstream), but rather the removal of all the other components driving the disease.
Gram-negative bacteria such as E. coli account for approximately 50% of sepsis patients, but thanks to the removal of other substances, particularly HMGB-1 and the inflammatory cytokines, I think the combined approach could benefit all sepsis patients. Since magnetic filtration is a purely physical method, it can also target and remove pathogens which are resistant to antibiotics, which again are a huge concern with increasing occurrences of resistant infections in hospitals.
Like in malaria, wwe plan to apply sepsis treatment to hospitalised patients and specifically those in Intensive Care Units. These are the most severe cases and those who stand to benefit the most from the treatment. The idea is to intervene early to prevent the sepsis cascade, in which the disease escalates eventually causing organ failure and death.
In fact, we managed to secure grants worth a total of 1.56M from Innovate UK, the UKs government grant funding body, and the UK National Institute of Health Research to develop and validate our sepsis particles. Currently being tested in human blood models in the companys laboratories, we plan to start animal trials in 2020 which, if successful, will be followed by clinical trials in 2021.
Leukaemia
One of the advantages of the particles we develop to remove pro-inflammatory cytokines for sepsis is that they can also be used in other diseases. This includes auto-immune diseases and cytokine storms such as cytokine release syndrome (CRS), a common side-effect of newer leukaemia treatments known as CAR T-cell therapies.?
In CAR-T therapies, T-cells, a type of white blood cell, are modified to attack cancer cells in a patients bone marrow. Taken either directly from the patient or from a matching donor, the modified cells are infused into the patient in order to directly attack the cancer. Results of clinical trials have been mixed, but these cell therapies are seen as a huge leap forward for leukaemia treatment.?
The problem is that the infused T-cells trigger massive immune reactions within the patient. Indeed, that is the intention the immune reaction is intended to kill the cancer cells but it can easily escalate into the condition called CRS. The result is similar to sepsis an immune over-reaction which attacks the patient and can be fatal. Immune mediators can be used to calm this reaction, but they then prevent the infused CAR-T cells from having their effect, eliminating the therapeutic benefit of the treatment.
Our proposal is to use MBF in CRS patients to remove cytokines from the bloodstream. This should calm the immune reaction, alleviating patient suffering and eliminating the risk of death. But since MBF only removes cytokines from the bloodstream, it shouldnt affect the immune effect of the CAR-T cells in the bone marrow, so the therapeutic benefit should be maintained. In addition, MBF can be stopped at will, so it can be used to control the immune response by maintaining the correct balance of cytokines this is of course not possible with immune mediators which are infused into the patient.
A further benefit that MBF can provide in leukaemia patients is the removal of leukaemia cells from the bloodstream leukaemia patients commonly have very high white blood cell counts due to circulating leukaemia cells. These cause a number of issues such as a reduction in immune function, making patients more vulnerable to infection. They can also prevent certain chemotherapies from working effectively, since they block the drug from targeting cancer cells in the bone marrow. High white blood cell counts also increase the risk of side-effects during treatment, since the sudden death of such a large numbers of cells causes debris to circulate in the blood, putting strain on the body and causing immune reactions like CRS; this is known as Tumour Lysis Syndrome. ?
We are currently focussing development on their sepsis particles, but plan to trial their cytokine particles in CRS at the same time as they are trialled in sepsis, since the pre-clinical validation for each disease is the same. The particles to remove white blood cells, however, are at an earlier stage and will be developed further down the line.
Our ambitions for MBF are certainly large. In the long-term we want to revolutionise the way in which blood-borne diseases are treated. Going far beyond malaria, sepsis and leukaemia, we want to develop treatments for all blood-borne diseases if its in the blood, and doctors want it out, we want to be able to take it out.
My vision is that hospitals all around the world will have Magnetic Blood Filtration Units which will address a huge variety of patients. Only time will tell if this can be achieved, or even if our technology will work at all after all, there have, as of yet, been no clinical trials.
However, the ability to remove specific substances from blood would clearly be of benefit to huge numbers of patients. It is something that we cannot do today, but we certainly should want to be able to do tomorrow. Whether it is MediSieve who gets us there or not remains to be seen.
Author:
Dr George Frodsham is CEO and founder of MediSieve
Go here to see the original:
It's in the blood - Lab News
Cellular Therapy in Oncology Market: Strategic Analysis to Understand the Competitive Outlook of the Industry, 2017 2025 – Online News Guru
By daniellenierenberg
Cellular therapy is also known as cytotherapy or cell therapy. Cellular therapy (CT) is the transplantation of cellular material into human body to repair or replace damaged tissue and damaged cells. Advancement in technology, development of innovative products, and growth in the number of research activities have helped in the discovery of several types of cells that are likely to be used in the treatment or therapy of various conditions and diseases. Several cells such as hematopoietic stem cells (HSC), mesenchymal stem cells, skeletal muscle stem cells, dendritic cells, pancreatic islet cells, and lymphocytes can be used in cellular therapy. HSC is extensively used in cellular therapy. Cellular therapy is used to treat various types of cancers, infectious diseases, autoimmune diseases, and urinary problems. The therapy also helps patients rebuild damaged cartilage in joints, improve a weakened immune system, and repair spinal cord injuries. Moreover, it also helps treat neurological disorders. Cellular cancer therapy has various approaches as the cell can be designed to stimulate the patients immune system (T cells or natural killer cells) to kill cancer cells, or to replace most of the patients immune system to enhance their immune response to cancer cells, or to directly find and kill the cancer cells.
The global cellular therapy in oncology market has been classified based on cancer type and geography. In terms of cancer type, the market has been categorized into blood cancer, prostate cancer, pancreatic cancer, brain cancer, and other cancer. The blood cancer segment accounts for a major share of cellular therapy in oncology market. Increasing prevalence of prostate cancer is expected propel the segment in the near future. According to WHO statistics, 8.2 million people die each year due to cancer which estimates about 13% of all death worldwide. There are more than 100 types of cancers that require unique diagnoses and therapies. This increases the demand for cellular therapy in oncology in near future.
Geographically, the cellular therapy in oncology market has been segmented into five major regions: North America, Europe, Latin America, Asia Pacific, and Middle East & Africa. In terms of revenue, North America dominates the cellular therapy in oncology market followed by Europe. The market in Asia Pacific and Latin America is developing. This trend is expected to continue during the forecast period. Availability of large patient pool, expansion of the health care industry, and rise in government investment to improve the health care industry are anticipated to propel the market in these regions. The cellular therapy in oncology market in countries such as Brazil, China, and India are projected to expand at substantial growth rate during the forecast period due to rise in awareness among the population about the usage of cellular therapy to treat various types of cancers and rapid innovations in cellular therapy.
Browse more detail information about this report visit at at https://www.transparencymarketresearch.com/cellular-therapy-oncology-market.html
Increasing prevalence of various cancers, affordability of cellular therapy in cancer drugs, high adoption in developed markets, and development of innovative drugs are other factors driving the cellular therapy in oncology market. High competition among existing players, high risks of failure, severity and complications involved in cellular therapy due to misdiagnosis, and lack of awareness among the rural population in underdeveloped and developing economies are likely to inhibit the market.
Major players operating in the cellular therapy in oncology market include Alkem Laboratories Limited, Amgen, Inc., Bayer AG, Sanofi, Bristol-Myers Squibb, Boehringer Ingelheim GmbH, F. Hoffmann-La Roche Ltd, Cipla, Inc., Merck & Co., Inc., Eli Lilly and Company, GlaxoSmithKline Plc., Johnson & Johnson Services, Inc., Novartis AG, Pfizer, Inc., and Teva Pharmaceutical Industries Ltd.
The report offers a comprehensive evaluation of the market. It does so via in-depth qualitative insights, historical data, and verifiable projections about market size. The projections featured in the report have been derived using proven research methodologies and assumptions. By doing so, the research report serves as a repository of analysis and information for every facet of the market, including but not limited to: Regional markets, technology, types, and applications.
The study is a source of reliable data on: Market segments and sub-segments Market trends and dynamics Supply and demand Market size Current trends/opportunities/challenges Competitive landscape Technological breakthroughs Value chain and stakeholder analysis
Request For Custom Research At https://www.transparencymarketresearch.com/sample/sample.php?flag=CR&rep_id=37538&source=atm
The regional analysis covers: North America (U.S. and Canada) Latin America (Mexico, Brazil, Peru, Chile, and others) Western Europe (Germany, U.K., France, Spain, Italy, Nordic countries, Belgium, Netherlands, and Luxembourg) Eastern Europe (Poland and Russia) Asia Pacific (China, India, Japan, ASEAN, Australia, and New Zealand) Middle East and Africa (GCC, Southern Africa, and North Africa)
The report has been compiled through extensive primary research (through interviews, surveys, and observations of seasoned analysts) and secondary research (which entails reputable paid sources, trade journals, and industry body databases). The report also features a complete qualitative and quantitative assessment by analyzing data gathered from industry analysts and market participants across key points in the industrys value chain.
A separate analysis of prevailing trends in the parent market, macro- and micro-economic indicators, and regulations and mandates is included under the purview of the study. By doing so, the report projects the attractiveness of each major segment over the forecast period.
Highlights of the report: A complete backdrop analysis, which includes an assessment of the parent market Important changes in market dynamics Market segmentation up to the second or third level Historical, current, and projected size of the market from the standpoint of both value and volume Reporting and evaluation of recent industry developments Market shares and strategies of key players Emerging niche segments and regional markets An objective assessment of the trajectory of the market Recommendations to companies for strengthening their foothold in the market
Note:Although care has been taken to maintain the highest levels of accuracy in TMRs reports, recent market/vendor-specific changes may take time to reflect in the analysis.
Request for TOC of This Report visit at https://www.transparencymarketresearch.com/sample/sample.php?flag=T&rep_id=37538&source=atm
See the rest here:
Cellular Therapy in Oncology Market: Strategic Analysis to Understand the Competitive Outlook of the Industry, 2017 2025 - Online News Guru
Vericel Corporation (VCEL) and BioTime Inc. (:) Contrasting side by side – MS Wkly
By daniellenierenberg
Both Vericel Corporation (NASDAQ:VCEL) and BioTime Inc. (:) compete on a level playing field in the Biotechnology industry. We will evaluate their performance with regards to analyst recommendations, profitability, risk, institutional ownership, dividends, earnings and valuation.
Earnings and Valuation
We can see in table 1 the earnings per share, gross revenue and valuation of Vericel Corporation and BioTime Inc.
Profitability
Table 2 shows us the return on equity, return on assets and net margins of both companies.
Volatility and Risk
Vericel Corporation has a 2.72 beta, while its volatility is 172.00% which is more volatile than S&P 500. BioTime Inc. has a 2.81 beta and it is 181.00% more volatile than S&P 500.
Liquidity
Vericel Corporations Current Ratio is 8.5 while its Quick Ratio is 8.2. On the competitive side is, BioTime Inc. which has a 3.5 Current Ratio and a 3.5 Quick Ratio. Vericel Corporation is better positioned to pay off short and long-term obligations compared to BioTime Inc.
Analyst Recommendations
The Recommendations and Ratings for Vericel Corporation and BioTime Inc. are featured in the next table.
Vericel Corporations upside potential currently stands at 48.79% and an $21.5 average price target.
Institutional and Insider Ownership
The shares of both Vericel Corporation and BioTime Inc. are owned by institutional investors at 89% and 43.7% respectively. About 0.5% of Vericel Corporations share are held by insiders. Insiders Comparatively, held 3.9% of BioTime Inc. shares.
Performance
In this table we provide the Weekly, Monthly, Quarterly, Half Yearly, Yearly and YTD Performance of both pretenders.
For the past year Vericel Corporations stock price has smaller growth than BioTime Inc.
Vericel Corporation, a commercial-stage biopharmaceutical company, researches, develops, manufactures, markets, and sells patient-specific expanded cellular therapies for use in the treatment of patients with severe diseases and conditions. It markets three autologous cell therapy products, including Carticel and MACI, which are used for the treatment of cartilage defects in the knee; and Epicel, a permanent skin replacement that is used for the treatment of patients with deep-dermal or full-thickness burns comprising greater than or equal to 30 percent of total body surface area in the United States. The company also develops ixmyelocel-T, which is in Phase IIb clinical trial, a patient-specific multicellular therapy for the treatment of advanced heart failure due to ischemic dilated cardiomyopathy. The company was formerly known as Aastrom Biosciences, Inc. Vericel Corporation was founded in 1989 and is headquartered in Cambridge, Massachusetts.
BioTime, Inc., a clinical-stage biotechnology company, focuses on developing and commercializing products addressing degenerative diseases based on pluripotent stem cells and HyStem cell/drug delivery platform technologies. Its product candidates include Renevia, a facial aesthetics product that is in pivotal clinical trial for the treatment of HIV related facial lipoatrophy; OpRegen, which is in Phase I/IIa clinical trial for the treatment of the dry form of age-related macular degeneration; HyStem-BDNF, a preclinical development program for the delivery of recombinant human brain-derived neurotrophic factor (BDNF) directly into the stroke cavity of patients for aiding in tissue repair and functional recovery; and ReGlyde that is in preclinical development as a device for viscosupplementation and a combination product for drug delivery in osteoarthritis. The company also develops AST-OPC1, a therapy derived from pluripotent stem cells that is in a Phase I/IIa clinical trial for spinal cord injuries; AST-VAC1, a patient-specific cancer immunotherapy that is in Phase II clinical trial for acute myeloid leukemia; and AST-VAC2, a non-patient specific cancer immunotherapy, which is in Phase I/IIa clinical trial to treat non-small cell lung cancer. In addition, it offers liquid biopsy tests for diagnosis of cancer; bone grafting products to treat orthopedic disorders; and mobile health software products. Further, it markets GeneCards, a human gene database; LifeMap Discovery, a database of embryonic development, stem cell research, and regenerative medicine; MalaCards, a human disease database; VarElect, an application for prioritizing gene variants; and GeneAnalytics, a novel gene set analysis tool. Additionally, the company develops and markets Hextend, a blood plasma volume expander used for the treatment of hypovolemia. BioTime, Inc. was founded in 1990 and is based in Alameda, California.
Receive News & Ratings Via Email - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings with our FREE daily email newsletter.
See the article here:
Vericel Corporation (VCEL) and BioTime Inc. (:) Contrasting side by side - MS Wkly
Postdoctoral Fellow, School of Biomedical Sciences job with THE UNIVERSITY OF HONG KONG | 182916 – Times Higher Education (THE)
By daniellenierenberg
Work type: Full-timeDepartment: School of Biomedical Sciences (22600)Categories: Academic-related Staff
Applications are invited for appointment as Post-doctoral Fellow in the School of Biomedical Sciences (Ref.: 498889), to commence as soon as possible for three years, with the possibility of renewal.
Applicants should have a Ph.D. degree in Molecular Biology, Cell Biology, Neurobiology or a related discipline. Preference will be given to those with experience in human neural stem cell culture and vivo spinal injury models. Applicants should also have a good command of both written and spoken English. The appointee will study the therapeutic potential of genetically modified human neural stem cells in rodent spinal cord injury models. Please visit http://www.sbms.hku.hk/staff/martin-chi-hang-cheung or contact Dr. Martin Cheung at mcheung9@hku.hk for further information. Applicants who have responded to the previous advertisement (Ref.: 494003) need not re-apply.
A highly competitive salary commensurate with qualifications and experience will be offered, in addition to annual leave and medical benefits
The University only accepts online application for the above post. Applicants should apply online and upload an up-to-date C.V.Review of applications will start on October 23, 2019 and continue untilJanuary 31, 2020, or until the post is filled, whichever is earlier.
Here is the original post:
Postdoctoral Fellow, School of Biomedical Sciences job with THE UNIVERSITY OF HONG KONG | 182916 - Times Higher Education (THE)
Comparing of Kura Oncology Inc. (KURA) and Neuralstem Inc. (NASDAQ:CUR) – MS Wkly
By daniellenierenberg
Kura Oncology Inc. (NASDAQ:KURA) and Neuralstem Inc. (NASDAQ:CUR) compete against each other in the Biotechnology sector. We will contrast them and contrast their profitability, institutional ownership, analyst recommendations, risk, dividends, earnings and valuation.
Earnings and Valuation
Table 1 highlights Kura Oncology Inc. and Neuralstem Inc.s gross revenue, earnings per share and valuation.
Profitability
Table 2 demonstrates the return on assets, return on equity and net margins of Kura Oncology Inc. and Neuralstem Inc.
Risk & Volatility
A beta of 2.5 shows that Kura Oncology Inc. is 150.00% more volatile than Standard & Poors 500. In other hand, Neuralstem Inc. has beta of 1.94 which is 94.00% more volatile than Standard & Poors 500.
Liquidity
The current Quick Ratio of Kura Oncology Inc. is 13.8 while its Current Ratio is 13.8. Meanwhile, Neuralstem Inc. has a Current Ratio of 3.8 while its Quick Ratio is 3.8. Kura Oncology Inc. is better positioned to pay off its short-term and long-term debts than Neuralstem Inc.
Analyst Ratings
The following table shown below contains the ratings and recommendations for Kura Oncology Inc. and Neuralstem Inc.
Kura Oncology Inc.s consensus price target is $22, while its potential upside is 58.96%.
Institutional & Insider Ownership
Kura Oncology Inc. and Neuralstem Inc. has shares owned by institutional investors as follows: 70.8% and 4.9%. Insiders owned roughly 0.8% of Kura Oncology Inc.s shares. Insiders Comparatively, owned 1% of Neuralstem Inc. shares.
Performance
In this table we show the Weekly, Monthly, Quarterly, Half Yearly, Yearly and YTD Performance of both pretenders.
For the past year Kura Oncology Inc. had bullish trend while Neuralstem Inc. had bearish trend.
Summary
Kura Oncology Inc. beats Neuralstem Inc. on 10 of the 11 factors.
Kura Oncology, Inc., a clinical stage biopharmaceutical company, develops medicines for the treatment of cancers. Its pipeline consists of small molecule product candidates that target cancer. The companys lead product candidate is Tipifarnib, an oral farnesyl transferase inhibitor that is in Phase II clinical trials for the treatment of solid tumors, peripheral T-cell lymphomas, lower risk myelodysplastic syndromes, and chronic myelomonocytic leukemia. It also develops KO-947, a small molecule inhibitor of extracellular signal related kinase used for the treatment for patients with tumors that have mutations in, or other dysregulation of, the mitogen-activated protein kinase; and KO-539, a small molecule inhibitor of the menin-mixed lineage leukemia. The company was founded in 2014 and is headquartered in La Jolla, California.
Neuralstem, Inc., a clinical stage biopharmaceutical company, focuses on the research and development of nervous system therapies based on its proprietary human neuronal stem cells and small molecule compounds. The companys stem cell based technology enables the isolation and expansion of human neural stem cells from various areas of the developing human brain and spinal cord enabling the generation of physiologically relevant human neurons of various types. It is developing products include NSI-189, a chemical entity, which is in Phase II clinical trial for the treatment of major depressive disorder, as well as is in preclinical programs for the MCAO stroke, type 1 and 2 diabetes related neuropathy, irradiation-induced cognition, long-term potentiation enhancement, and angelman syndrome. The company is also developing NSI-566, which has completed Phase II clinical trial for treating amyotrophic lateral sclerosis disease, as well as is in Phase I clinical trials for the treatment of chronic spinal cord injury and motor deficits due to ischemic stroke. Neuralstem, Inc. was founded in 1996 and is headquartered in Germantown, Maryland.
Receive News & Ratings Via Email - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings with our FREE daily email newsletter.
Here is the original post:
Comparing of Kura Oncology Inc. (KURA) and Neuralstem Inc. (NASDAQ:CUR) - MS Wkly
Minibrains Grown In The Laboratory Produce Brainwaves. Now What? – Forbes
By daniellenierenberg
Its hard to study the human brain. It is the most complex in the animal kingdom with its massive collection of neurons, 80-100 billion to be exact, three times more than chimpanzees. Research relating our brains to the brains of mice and monkeys can only go so far. And because of this complexity, scientists often came up short when studying diseases such as schizophrenia, autism, and Alzheimers in the brains of monkeys and mice.
Enter minibrains.
Minibrains are small clusters of human brain cells that can be grown in a Petri dish. Floating through the agar, these small gray lumps dont look particularly impressive, but they are allowing scientists to study actual living human brain tissue in ways they couldnt before.
Minibrains may look just like pea-sized gray globules, but once they started producing brainwaves, they received a lot of attention.
Growing these minibrains gives scientists a chance to study a host of psychological issues and diseases, and perhaps make advancements that they would not have made previously. Minibrains will even be sent to space to study how the human brain develops in zero-G.
But then came the surprise. These lab-grown brains started producing brainwaves.
These brainwaves, equivalent to brain wave patterns in a pre-term infant, were seen by a group of researchers at the University of California San Diego. They reported in a recent paper in Cell Stem Cell that these minibrains began showing neural activity after two months, and in four to six months, they reached levels of neural activity never before seen in a lab. At ten months, they were equivalent to pre-term babies, complete with lulls and flutters of activity.
Dan Zhang, a 4th year MD, PhD student, examines minibrains through a microscope. (Photo by Jessica Kourkounis for The Washington Post via Getty Images)
Minibrains are created by using stem cells, in this case, human skin cells. When stem cells are placed in a conducive environment, they can develop into any organ.
But minibrains are still a far cry from a full human brain. To develop into a mature brain, these minibrains would need to communicate with other areas of a larger brain and have some sort of connection with the outside world. But this might not be far off. Already, scientists have given minibrains retinal cells so they can sense light.
While some note that these minibrains are nowhere near real human brains, others begin to feel uneasy at seeing this neural activity. What does it mean? In this quickly developing field, how soon will these minibrains develop even further? There is an ethical code when dealing with animals in the lab - should this code apply to minibrains too? Could they one day feel pain, have memories, or even become self-aware?
There is now a need for clear guidelines for research, says Dr. Nita Farahany and collaborators in a 2018 Letter to Nature. They point out that as research develops and these minibrains become more advanced, it is less far-fetched to believe that one day these minibrains might have some sort of sentience or feelings such as pleasure or pain. The benefits of minibrain research are promising, but they caution, to ensure the success and social acceptance of this research long term, an ethical framework must be forged now, while brain surrogates remain in the early stages of development.
See the original post:
Minibrains Grown In The Laboratory Produce Brainwaves. Now What? - Forbes
BEYOND LOCAL: Expert recommends ‘path of cautious optimism’ about the future of stem cell treatment – CollingwoodToday
By daniellenierenberg
This article, written byKatharine Sedivy-Haley, University of British Columbia, originally appeared on The Conversation and is republished here with permission:
When I was applying to graduate school in 2012, it felt like stem cells were about to revolutionize medicine.
Stem cells have the ability to renew themselves, and mature into specialized cells like heart or brain cells. This allows them to multiply and repair damage.
If stem cell genes are edited to fix defects causing diseases like anemia or immune deficiency, healthy cells can theoretically be reintroduced into a patient, thereby eliminating or preventing a disease. If these stem cells are taken or made from the patient themselves, they are a perfect genetic match for that individual, which means their body will not reject the tissue transplant.
Because of this potential, I was excited that my PhD project at the University of British Columbia gave me the opportunity to work with stem cells.
However, stem cell hype has led some to pay thousands of dollars on advertised stem cell treatments that promise to cure ailments from arthritis to Parkinsons disease. These treatments often dont help and may harm patients.
Despite the potential for stem cells to improve medicine, there are many challenges as they move from lab to clinic. In general, stem cell treatment requires we have a good understanding of stem cell types and how they mature. We also need stem cell culturing methods that will reliably produce large quantities of pure cells. And we need to figure out the correct cell dose and deliver it to the right part of the body.
Embryonic, 'induced and pluripotent
Stem cells come in multiple types. Embryonic stem cells come from embryos which makes them controversial to obtain.
A newly discovered stem cell type is the induced pluripotent stem cell. These cells are created by collecting adult cells, such as skin cells, and reprogramming them by inserting control genes which activate or induce a state similar to embryonic stem cells. This embryo-like state of having the versatile potential to turn into any adult cell type, is called being pluripotent.
However, induced pluripotent and embryonic stem cells can form tumours. Induced pluripotent stem cells carry a particularly high risk of harmful mutation and cancer because of their genetic instability and changes introduced during reprogramming.
Genetic damage could be avoided by using younger tissues such as umbilical cord blood, avoiding tissues that might contain pre-existing mutations (like sun-damaged skin cells), and using better methods for reprogramming.
Stem cells used to test drugs
For now, safety concerns mean pluripotent cells have barely made it to the clinic, but they have been used to test drugs.
For drug research, it is valuable yet often difficult to get research samples with specific disease-causing mutations; for example, brain cells from people with amyotrophic lateral sclerosis (ALS).
Researchers can, however, take a skin cell sample from a patient, create an induced pluripotent stem-cell line with their mutation and then make neurons out of those stem cells. This provides a renewable source of cells affected by the disease.
This approach could also be used for personalized medicine, testing how a particular patient will respond to different drugs for conditions like heart disease.
Vision loss from fat stem cells
Stem cells can also be found in adults. While embryonic stem cells can turn into any cell in the body, aside from rare newly discovered exceptions, adult stem cells mostly turn into a subset of mature adult cells.
For example, hematopoietic stem cells in blood and bone marrow can turn into any blood cell and are widely used in treating certain cancers and blood disorders.
A major challenge with adult stem cells is getting the right kind of stem cell in useful quantities. This is particularly difficult with eye and nerve cells. Most research is done with accessible stem cell types, like stem cells from fat.
Fat stem cells are also used in stem cell clinics without proper oversight or safety testing. Three patients experienced severe vision loss after having these cells injected into their eyes. There is little evidence that fat stem cells can turn into retinal cells.
Clinical complications
Currently, stem cell based treatments are still mostly experimental, and while some results are encouraging, several clinical trials have failed.
In the brain, despite progress in developing treatment for genetic disorders and spinal cord injury, treatments for stroke have been unsuccessful. Results might depend on method of stem cell delivery, timing of treatment and age and health of the patient. Frustratingly, older and sicker tissues may be more resistant to treatment.
For eye conditions, a treatment using adult stem cells to treat corneal injuries has recently been approved. A treatment for macular degeneration using cells derived from induced pluripotent stem cells is in progress, though it had to be redesigned due to concerns about cancer-causing mutations.
A path of cautious optimism
While scientists have good reason to be interested in stem cells, miracle cures are not right around the corner. There are many questions about how to implement treatments to provide benefit safely.
In some cases, advertised stem cell treatments may not actually use stem cells. Recent research suggests mesenchymal stem cells, which are commonly isolated from fat, are really a mixture of cells. These cells have regenerative properties, but may or may not include actual stem cells. Calling something a stem cell treatment is great marketing, but without regulation patients dont know what theyre getting.
Members of the public (and grad students) are advised to moderate their excitement in favour of cautious optimism.
Katharine Sedivy-Haley, PhD Candidate in Microbiology and Immunology, University of British Columbia
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Go here to read the rest:
BEYOND LOCAL: Expert recommends 'path of cautious optimism' about the future of stem cell treatment - CollingwoodToday
Stem cell therapy helped Owen Franks but there’s still plenty to prove – Stuff.co.nz
By daniellenierenberg
Stem cell therapy, which All Blacks prop Owen Franks used to help fix a damaged shoulder, is raising hopes of a whole range of medical breakthroughs.
But there's a way to go before the medical establishment is convinced.
In late 2017, US Food and Drug Administration (FDA) Commissioner ScottGottliebhad this to say:"We're at the beginning of a paradigm change in medicine with the promise of being able to facilitate regeneration of parts of the human body, where cells and tissues can be engineered to grow healthy, functional organs to replace diseased ones; new genes can be introduced into the body to combat disease; and adult stem cells can generate replacements for cells that are lost to injury or disease."
REGEN CELLULAR
Dr Hassan Mubark takes blood from All Blacks prop Owen Franks.
Yet, as an indication of how far there is still to go, the FDA has also warnedpeople in the USagainst "unscrupulous providers" offering stem cell products that were unapproved and unproven.
READ MORE:*Rugby World Cup 2019: All Black Owen Franks thrown a stem cell lifeline*Owen Franks hits back at critics following omission from Rugby World Cup squad*Stem cell therapy for All Black Israel Dagg as he hits comeback trail with Crusaders*Experimental stem cell treatment shows results for Waikato woman with MSA Cerebella*Stem cell clinics accused of taking advantage of patients*Reported stem cell treatment could give hope to Michael Schumacher
"Researchers hope stem cells will one day be effective in the treatment of many medical conditions and diseases," it said, thenadded: "Stem cells have been called everything from cure-alls to miracle treatments. But don't believe the hype."
Looking at just the area of deteriorating joints, it's easy to see how stem cell therapies, if they deliver on the promise,could make life much better for many people with osteoarthritis who are in pain and have restricted movement.
Last week, Otago University researchers predictedthe number of knee replacement surgeries needed for osteoarthritis would increase from around 5000 a year in 2013 to abut9000 in 2038.
AP
Former Formula One champion Michael Schumacher received devastating head injuries in a ski accident six years ago. Last month it was reported he has undergone stem cell treatment in Paris.
Osteoarthritis is the area where ReGen Cellular,the clinic where Franks had the therapy, has done most of its work in the past two to three years, although ithas recently expanded its services to include a range of diagnosed auto-immune conditions, among them rheumatoid arthritis, multiple sclerosis, and type 1 diabetes.
ReGensaid 55 per cent of its patients were aged over 60, 35 per cent were 40-60 and 10 per cent were sports-based.
Theclinic usesPure Expanded Stem Cell (PESC) therapy, which involves taking 40 grams - about a teaspoon - of fat from around a patient's stomach. Mesenchymal stem cells (MSCs)in that sample are then multiplied in the clinic's Queenstown laboratory for about eight weeks. At the end of that process 100 million to 200 million cells have been produced.
Otago University
Otago University, Christchurch regenerative medicine research team have invented a bio-ink - a gel-like substance mixed with human stem cells - to be used with a bio-printer to make human body parts. Video shows the printer using bio-ink to make a body part.
For the treatment of osteoarthritis, between 50m and 100m stem cells are injected into larger joints, with 25m to 50m into smaller joints. ReGen said the therapy provided immediate pain reduction and increased mobility. MRI scans showed cartilage could and did regenerate.
ReGendescribedMSCs as the cells that "wake up damaged or lazy cells". Slightly more technically, Nature.com said MSCs wereadult stem cells present in multiple tissues, including the umbilical cord, bone marrow and fat.MSCscan self-renew by dividing and can differentiate into multiple tissues including bone, cartilage, muscle and fat cells, and connective tissue.
ReGen director of patient care Marcelle Noble said the clinic believed its treatments, if offered early enough, would save the public health system hundreds of millions of dollars through lessened replacement surgeries, and would save ACC millions of dollars in lengthy rehabilitation programmes.
The treatment for two knees was half the price of one knee replacement surgery within the public health system, she said. ReGen advertises osteoarthritis treatment for a single joint at $12,500 and for two joints at $15,000.
GETTY IMAGES
Former All Black Israel Dagg had stem cell therapy for an injured knee, but in the end had to give the game away because of the injury.
So far mainstream funding hadnot been offered for the therapy, Noble said. But the clinic had a "big breakthrough" earlier this year when two insurers in New Zealand accepted patients'PESC therapy claims. In July, ACC accepted consultation by ReGen's chief medical officer Dr Hassan Mubark.
ReGen only had data for the past five years on the success of its therapy, but the fact patients were returning to have other areas of their body treated was an indication of how people feltthe therapy was improving their quality of life, Noble said.
Globally, "massive" R&D spending was going into stem cell research. More therapies would become available and stem cell treatment would become "commonplace".
At any one time ReGen had 50-75 patients' cells growing in its incubators, Noble said. Of the patients treated, 40 per cent hadailments in therknees, 30 per cent in their hips, 20 per cent in their shoulders. The final 10 per cent were for sports and other issues, including problems with tendons, muscles, cartilage tears, fingers, elbows, ankles and hands.
SUPPLIED
Dr Ron Lopert undergoing part of the PESC treatment.
The first patient to undertake ReGen's PESC therapy was retired GP Dr Ron Lopert, who lives in Tauranga.
For five to 10 years, he had beengetting aches and pains in his hips after playing sport, and the problem was becoming more noticeable, he said. In 2013 he had an x-ray that showed he had moderate to severe osteoarthritis in both hips,more severein his right hip.
He stopped playing all sports and started researching different forms of treatment. Ideally, he wanted to be able to get some of his own cartilage back and reverse the osteoarthritis. It seemedPESCshould do that.
In 2015, aged 61, he had the therapy, with stem cells being injected into each hip joint.Within weeks henoticed an improvement in the range of motion and a decrease in pain, Lopert said.Some of that was just the anti-inflammatory component of stem cell injection, but he thought he also received a longer term benefit from cartilage regeneration.
SUPPLIED
Dr Lopert on his recent travels. He says he has much less hip pain.
He put the success of the procedure at75 per centin terms of symptoms and function, and100 per cent when it came to avoiding invasive surgery."I opted for a much more natural treatment where my own tissue is regenerating, instead of a metal prosthesis," Lopert said.
He was not sure all the improvement came from the stem cell treatment. As well as avoiding overuse of the joints, which meant he hadn't returned to playing sport, he had also switched to an anti-inflammatory diet.
His left hip continued to have hardly any symptomsbut he had started noticing the "odd twinge now and then" in his right hip.
"The vast majority of days it's fine provided I'm just walking and doing ordinary things. On the odd occasion I might carry something heavy, then I would notice it the next day and it (right hip) would stay painfulintermittentlyfor the next couple of days," Lopert said.
Sean Gallup
In this picture from February, German Chancellor Angela Merkel looks through a microscope at brain organoids grown from stem cells.
Some of his stem cells had been retained after the treatment, and he was booked in for a follow-up injection for his right hip at the end of October.
He expected the therapy would become a "go to" treatment, and would become an early intervention for osteoarthritis. But more independent research was needed to confirm the success of the treatment. "The evidence is slowly building up but there needs to be more before the Government will accept it," Lopert said.
In his case, he thought there had been cartilage regeneration in his hips, but that was based on his symptoms. "It would have been nice had I had MRI scans before and after the injection for objective evidence," he said.
From the perspective of the medical establishment, the New Zealand Orthopaedic Association said it supported a position statement on stem cell therapy produced by the Royal Australian College of Surgeons.
That paper, approved in mid-2018,noted stem cell therapy was a "rapidly advancing" area, but many proposed stem cell therapies were experimental and not yet proven. It did not support surgeons administering stem cell therapy outside of an ethically approved registered clinical trial.
"Whilst there may be scope for innovative treatment in the future, currently, the clinical effectiveness and safety of stem cell therapies remain scientifically unproven," RACS said.
In this country, an ACC spokesperson said ACC did not have an official position on stem cell therapy for the treatment of injuries. An internationally standardised evidence-based healthcare approach was used to help ACC decide how it covered injuries and funded treatments.
Dr HassanMubark, ReGen's chief medical officer, was a healthcare provider contracted to ACC in the specialty of rheumatology, and ACC had funded consultation fees with Mubark, the spokesperson said. Those consultations were for diagnostic and treatment planning purposes and did not need prior approval from ACC.
ACC had to consider legislative criteria when deciding whether to fund any particular treatment. There would be many reasons why ACC might decide to fund a client to see a rheumatologist for an opinion on the diagnosis and possible management of their condition. That would not commit ACC to funding any proposed treatment but would provide the client and ACC with information to help decision-making.
Continue reading here:
Stem cell therapy helped Owen Franks but there's still plenty to prove - Stuff.co.nz
The Connection Deeper Than Blood – Jewish Link of New Jersey
By daniellenierenberg
By JLNJ Staff | October 10, 2019
(Courtesy of Ezer Mizion) Flying 35,000 feet above the Atlantic Ocean is not an easy job! But Ofer had already spent 17 years as a fighter pilot in the IDF defending the State of Israel. In 2003 he left the reserves and joined El-Al full time. Most people dont realize that being a pilot is a very dangerous profession. When you know it is dangerous you are safe but when you think it is easy, when youre a cowboy, you are unsafe! A pilots job is to always be alert in case something happens. Ofer always remained alert with hundreds of travelers under his wing, quite literally!
But after 16 years of flying for El-Al, Ofer started to feel fatigued. It became difficult for me to walk up with steps to the plane from the tarmac. I thought I was starting to get old or out of shape. But the truth was far more devastating: after routine blood tests, Ofer was diagnosed with leukemia!
I was immediately rushed to the hospital. When I arrived they couldnt even find bone marrow inside my body for a biopsy. I had very little bone marrow left in my body.
Ofer started to think about his future. He thought, Will I ever be able to fly again? Will I be able to see my children again? Will I get to meet my grandchildren?
It was a very difficult time in my life. I was very lucky to have the best doctors in Israel. Shortly after Jan 1, 2017, Ofer was told that Ezer Mizion had a perfect bone marrow match for him! He was thrilled, but still very hesitant. I knew I was not yet out of the woods. I was on a new medication and I was starting to feel better. I did not know if I wanted to risk a transplant with possible complications. Ofer decided to take a vacation to Moscow. He had always traveled the world and Moscow was one place he had never visited but had always wanted to see. The doctors told me if I get even a small virus I can forget about the whole transplant. I put my faith in God and said, if it is meant to be, then I will return and have the transplant.
On Feb. 28, Ofer landed back in Tel Aviv, and March 1 started his preparations for a transplant.
Pushing through all the negative thoughts, Ofer decided to fight. He was absolutely determined to overcome this illness and would go to any lengths to get better.
A short six weeks later Ofer was released from the hospital and returned to his family.
David Bugoslavski was in the middle of his military service on Mt. Hermon when he received a call from Ezer Mizion that he is a perfect match for a cancer patient. Ironically, David wasnt supposed to have his phone on him while he was in the middle of active duty. Yet, as he explains, fate thought otherwise. He knew that Ezer Mizion needed him, and while he did not know Ofer personally, he jumped at the opportunity to save the pilots life.
Thanks to Davids transplant, Ofer is alive today. While the recovery process is slow and there has been some turbulence along the way, Ofer has his life back. One of Ofers dreams had always been to fly a Boeing Dreamliner. Unfortunately, due to his medical history, this dream will never come to fruition in his capacity as a pilot but he still loves to travel the world, even if hes sitting in the back of the plane.
David was able to jump on a once-in-a-lifetime opportunity to save a life. Ofer was able to be the recipient of a special and unique kindness, having his life literally saved by someone else. As Ofer explained so beautifully, David: without you, I wouldnt be here... For me, you are part of the family.
Ezer Mizions bone marrow registry has close to 1 million registrants, with over 550,000 of them IDF soldiers. At Ezer Mizion, no matter who you are or where you come from, your life matters. Ofer and David are just one example of the lifesaving mission of Ezer Mizion taking flight. At Ezer Mizion, unconditional love is not just a term thrown around, but a philosophy that is in the very DNA of the organization. As Dr. Bracha Zisser, director and founder of Ezer Mizions National Bone Marrow Registry says, We have created a true connection of blood between two people who did not know each other at all up to that point. A connection that would not have happened without the unconditional immediate enlistment of David or, as Ofer called him, my angel.
Join Ezer Mizion on November 9 at Congregation Keter Torah in Teaneck at 7:30 p.m. for an Evening of Heroes: a beautiful musical Havdalah by Shulem Lemmer, meet real IDF heroes who have saved lives by donating their stem cells, and a fireside chat with Bret Stephens and Nachum Segal. Learn more about Ezer Mizion and RSVP for the Evening of Hereos by going to http://www.eveningofheroes.com, or contact Ryan Hyman, national director of development, at [emailprotected] or 718-853-8400 ext.109.
Read the original:
The Connection Deeper Than Blood - Jewish Link of New Jersey
Drexel on the Road: Stem cell study for osteoarthritis – WKRG News 5
By daniellenierenberg
PENSACOLA, Fla. (WKRG) Osteoarthritis affects millions of people in the US. Symptoms range from minor pain to crippling pain that compromises quality of life. A groundbreaking study is underway at four prestigious research facilities in the United States. One of those is right here on the Gulf Coast. Tonight, Drexel Gilbert is on the road in Gulf Breeze.
Lori Jamison is a Pensacola native who, as a teenager, played basketball at Pine Forest High School. Today, she suffers from osteoarthritis in her knee. She believes its a result of basketball injuries.
I get stiffness, it interferes with my mobility. Sometimes its like a sharp needle going down your leg. When I go to the movie theater, I have to sit on the back row so I can stretch it out, Jamison said. She is participating in a clinical trial at Andrews Research and Education Foundation in Gulf Breeze.
The research is studying stem cell treatment for osteoarthritis in the knee. AREF is one of only four facilities in the country participating in the study. The others are Emory Orthopedics & Spine Center, Duke University and Sanford Health. Researchers hope it leads to FDA approval for the treatment. If that happens, it could be life-changing for patients.
Hopefully reduce their pain if not actually get rid of their pain. That is our goal. We want to delay, if not prevent, total knee replacement, said Dr. Josh Hackel, who is the primary investigator for the Andrews phase of the study. Were comparing three different stem cell sources. Bone marrow from their pelvis, adipose- thats tissue from their belly fat- and the third is umbilical cord tissue donated from pregnant mothers.
The bone marrow and belly fat stem cells are harvested from the study participants, under local anesthesia. The stem cells are later implanted into the knee joint using ultrasound guidance to implant the cells into the knee joint.
Jamison has already undergone stem cell harvesting.
It was very easy, very convenient, no downtime after the procedure was done, Jamison said
This $13 million clinical trial is being funded entirely by a grant from Bernie Marcus, founder of the Marcus Foundation and co-founder of Home Depot. Osteoarthritis is an issue that is close to the philanthropists heart because his mother was left disabled by the illness at a young age.
There will be around 120 participants at each of the four sites. There are plenty of openings. If youd like to be considered for the study, call AREF at 850-916-8591.
Here is the original post:
Drexel on the Road: Stem cell study for osteoarthritis - WKRG News 5
The 2019 Nobel Prize in Medicine awarded for research in cellular responses to oxygen – World Socialist Web Site
By daniellenierenberg
The 2019 Nobel Prize in Medicine awarded for research in cellular responses to oxygen By Benjamin Mateus 10 October 2019
In the course of a lifetime, the human heart will beat more than three billion times. We will have taken more than 670 million breaths before we reach the end of our lives. Yet, these critical events remain unconscious and imperceptible in everyday life, unless we exert ourselves, such as running up several flights of stairs. We quickly tire, stop to take deep breaths and become flushed.
With the deepening comprehension by medical science of how our bodies work, we have come to better understand the fundamental importance of oxygen to life. Every living organism relies on it in one form or another. However, how cells and tissues can monitor and respond to oxygen levels remained difficult to elucidate. It has only been late in the 20th century with advances in cellular biology and scientific instrumentation that these processes have finally been explained.
On Monday, the 2019 Nobel Prize in Physiology or Medicine was awarded jointly to three individuals: William G. Kaelin, Jr., Sir Peter J. Ratcliffe, and Gregg L. Semenza. Specifically, their discoveries helped elucidate the mechanisms for lifes most basic physiologic processes.
They were able to discover how oxygen levels directly affect cellular metabolism, which ultimately controls physiological functions. More importantly, their findings have significant implications for the treatments of conditions as varied as chronic low blood counts, kidney disease, patients with heart attacks or stroke and cancers. One of the hallmarks of cancer is its ability to generate new blood vessels to help sustain its growth. It also uses these oxygen cellular mechanisms to survive in low oxygen environments.
Dr. William G. Kaelin Jr. is a professor of medicine at Harvard University and the Dana-Farber Cancer Institute. The main focus of his work is on studying how mutations in what are called tumor suppressor genes lead to cancer development. Tumor suppressor genes are special segments of the DNA whose function is to check the integrity of the DNA before allowing a copy of itself to be made and undergo cell division, which prevents cells from propagating errors. Cellular mechanisms are then recruited to fix these errors or drive the cell to destroy itself if the damage is too severe or irreparable.
His interest in a rare genetic disorder called Von Hippel-Lindau disease (VHL) led him to discover that cancer cells that lacked the VHL gene expressed abnormally high levels of hypoxia-regulated genes. The protein called the Hypoxia-Inducible Factor (HIF) complex was first discovered in 1995 by Gregg L. Semenza, a co-recipient of the Nobel Prize. This complex is nearly ubiquitous to all oxygen-breathing species.
The function of the HIF complex in a condition of low oxygen concentration is to keep cells from dividing and growing, placing them in a state of rest. However, it also signals the formation of blood vessels, which is important in wound healing as well as promoting the growth of blood vessels in developing embryos. In cancer cells, the HIF complex helps stimulate a process called angiogenesis, the formation of new blood vessels, which allows the cancer cells to access nutrition and process their metabolic waste, aiding in their growth. When the VHL gene is reintroduced back into the cancer cells, the activity of the hypoxia-regulated genes returns to normal.
Dr. Gregg L. Semenza is the founding director of the vascular program at the Johns Hopkins Institute for Cell Engineering. He completed his residency in pediatrics at Duke University Hospital and followed this with a postdoctoral fellowship at Johns Hopkins. His research in biologic adaptations to low oxygen levels led him to study how the production of erythropoietin (EPO) was controlled by oxygen. EPO is a hormone secreted by our kidneys in response to anemia. The secretion of EPO signals our bone marrow to produce more red blood cells.
His cellular and mouse model studies identified a specific DNA segment located next to the EPO gene that seemed to mediate the production of EPO under conditions of low oxygen concentration. He called this DNA segment HIF.
Sir Peter J. Ratcliffe, a physician and scientist, trained as a nephrologist, was head of the Nuffield Department of Clinical Medicine at the University of Oxford until 2016, when he became Clinical Research Director at the Francis Crick Institute. Through his research on the cellular mechanisms of EPO and its interaction between the kidneys and red cell production, he found that these mechanisms for cellular detection of hypoxia, a state of low oxygen concentration, were also present in several other organs such as the spleen and brain. Virtually all tissues could sense oxygen in their micro-environment, and they could be modified to give them oxygen-sensing capabilities.
Dr. Kaelins findings had shown that the protein made by the VHL gene was somehow involved in controlling the response to low oxygen concentrations. Dr. Ratcliffe and his group made the connection through their discovery that the protein made by the VHL gene physically interacts with HIF complex, marking it for degradation at normal oxygen levels.
In 2001, both groups published similar findings that demonstrated cells under normal oxygen levels will attach a small molecular tag to the HIF complex that allows the VHL protein to recognize and bind HIF, marking it for degradation by enzymes. If the oxygen concentration is low, the HIF complex is protected from destruction. It begins to accumulate in the nucleus where it binds to a specific section of the DNA called hypoxia-regulating genes, which sets into motion the necessary mechanisms to respond to the low oxygen concentration.
The ability to sense oxygen plays a vital role in health and various disease states. Patients who suffer from chronic kidney failure also suffer from severe anemia because their ability to produce EPO is limited. This hormone is necessary for the stem cells in our bone marrow to produce red blood cells. Understanding how cancer cells utilize oxygen-sensing mechanisms has led to a variety of treatments that targets these pathways. The ability to elucidate these mechanisms offers insight into directions scientists and researchers can take to design or create novel treatments.
The WSWS recently published its 75,000th article. Become a monthly donor today and keep up this vital work. It only takes a minute. Thank you.
Excerpt from:
The 2019 Nobel Prize in Medicine awarded for research in cellular responses to oxygen - World Socialist Web Site
Penny Lancaster is reduced to tears as she gives bone marrow donor Ronnie Musselwhite, 5, The Suns Young H – The Sun
By daniellenierenberg
PENNY Lancaster was reduced to tears as she handed five-year-old Ronnie Musselwhite the Young Hero gong at The Suns Who Cares Wins health awards last night.
Spurs fan Ronnie bravely offered to give his older sister Ebonie a bone marrow transplant last year.
Eight-year-old Ebonie had leukaemia and it was her only hope.
Mum Christine Jenkins, 40, said: Ronnies stem cells worked perfectly. They did what they were supposed to do but the leukaemia came back somewhere new.
Ebonie, of Crawley, West Sussex, nominated her younger brother before her death in June.
Rod Stewarts partner Penny chatted with Ronnie about his love of football and Spurs.
She said: To say I am humbled to be here is an understatement. Sometimes you think life has turned a corner on you, but then someone else turns up to give you some inspiration.
"The courage this little man has shown is absolutely incredible. Hes only five years old, hes lost a sister.
"He was incredibly shy to stand up in front of everyone to collect his award, but he again was so brave.
Christine said: We want Ronnie to know that what he did still worked, was still brave, even though he lost his sister.
1
PM Boris Johnson was also at the awards held at The Suns London HQ near The Shard and paid tribute to our NHS heroes.
He presented an award to a pair of quick-thinking hospital porters who saved the life of a seven-week-old baby boy.
Nick Evans, 48, and Ruth Lowe, 47, sprang into action after Logan Clifford stopped breathing.
His parents, Sarah and Mike were visiting a relative at the Princess Royal Hospital in Telford, Shrops, when they noticed Logans lips had turned blue.
Sarahs screams alerted Ruth, who shouted for Nick. He grabbed Logan and performed CPR as he ran half a mile down the corridor to A&E.
Nick continued CPR until the resuscitation team took over and the porters stayed by Logans parents side until they knew he was going to be OK. Sarah, 30, has called the two porters my heroes.
As he handed the pair the Ultimate Lifesaver trophy, the PM said: The NHS is revered around the world, and in no small part due to the heroes working in it every day.
He added: My experience of the NHS is like everybody else in the NHS - one of admiration and love.
"It is the most extraordinary institution in the world. If our country was an omelette then the NHS is the egg white that holds the great British cake together.
Virgin Radio DJ Chris Evans presented the Best Nurse gong to Liz Monaghan, 53. She set up the widely praised Purple Rose initiative, which aims to improve the care for patients and their loved ones in the last days of their life.
Liz, who works at the Florence Nightingale Hospice, based at the Stoke Mandeville Hospital in Aylesbury, Bucks, said: Im a little embarrassed to have won. Im a small part of a big team.
DJ Chris said: Youve got to prepare yourself for nights like this because otherwise they hit you like an express train.
Who Cares Wins Awards: The winners
BEST HEALTH CHARITY
Winner: Matt Hampson Foundation
Former English rugby union player Matt Hampson set up a charity to help others after being left paralysed in a scrum in 2005.
Other nominees: Superhero Foundation and Team Domenica
BEST NEONATAL SPECIALIST
Winner: Professor Kypros Nicolaides
Professor Nicolaides performed pioneering keyhole surgeon on Sherrie Sharps unborn son Jaxon. By extraordinary coincidence, as a young surgeon, he also operated on Sherries mother when she was in the womb.
Other nominees: Dr Vesna Pavasovic and Professor Massimo Caputo
UNSUNG HERO
Winner: Therapeutic Care Volunteers at South Tees NHS Foundation Trust
30 therapeutic care volunteers, who all have a learning or physical disability, give up their time to support patients with spinal injuries at The James Cook University Hospital in Middlesbrough. They include Ify Nwokoro.
Other nominees: Ben Slack and Rob Allen
GROUNDBREAKING PIONEER
Winner: Guys and St Thomas London Auditory Brainstem Implant (ABI) Service
Leia Armitage, eight, was born with a rare form of deafness and was never expected to speak. But she now can thanks to pioneering brain surgery and speech therapy carried out by Guys and St Thomas London Auditory Brainstem Implant (ABI) Service.
Other nominees: Dr Helen Spencer and Girish Vajramani
BEST DOCTOR
Winner: Dr Matthew Boulter
Dr Boulter served in Afghanistan, teaches wild trauma to army medics and his surgery became the first in Cornwall to be given veteran friendly accreditation.
Other nominees: Margaret France and Dr Bijay Sinha
BEST MIDWIFE
Winner: Jane Parke
Jane helped deliver the youngest surviving twin boys in Britain when they were born at 22 weeks last year. She flew 190 miles with their mum Jennie Powell to a specialist neonatal unit.
Other nominees: Charlotte Day and Nagmeh Teymourian
ULTIMATE LIFESAVER
Winner: Ruth Lowe and Nick Evans
Porters Ruth and Nick saved the life of Sarah and Mike Cliffords seven-week-old baby Logan. He stopped breathing as they walked through the main entrance of The Princess Royal Hospital in Telford to visit a sick relative.
Other nominees: Dr Mark Forrest and Mike Merrett
BEST NURSE
Winner: Liz Monaghan
Liz is the Matron of the Florence Nightingale Hospice in Aylesbury, Bucks, and came up with the idea for the widely praised Purple Rose initiative to improve the care for patients in the last days of their lives.
Other nominees: Margaret Ballard and Carlton DeCosta
MENTAL HEALTH HERO
Winner: Ben West
Ben lost his brother Sam, 15, to suicide last year and since his death, has campaigned tirelessly to raise awareness for mental health.
Other nominees: Beth Gregan and Catherine Benfield
YOUNG HERO
Winner: Ronnie Musselwhite
Ronnie offered to help his sister Ebonie by giving her a bone marrow transplant when she was diagnosed with a rare form of leukaemia. Ebonie nominated her brother for his bravery before she died in June.
Other nominees: Bella Field and Kaitlyn Wright
I only walked ten metres into the room tonight and I already nearly burst into tears three times.
TV star Christine Lampard gave the Best Neonatal Specialist award to Prof Kypros Nicolaides, 66.
He was nominated by Sherrie Sharp, 29, of Horsham, West Sussex, for saving the life of her unborn baby son and her own.
After scans revealed Jaxson had spina bifida, Sherrie was offered a termination. But she contacted Prof Nicolaides, a surgeon at Kings College Hospital, London.
He had saved her life 30 years earlier when she developed a rare blood disorder in her mums womb.
He agreed to perform ground-breaking surgery on Jaxson while he was in Sherries womb.
Prof Nicolaides said: I was delighted to be able to help. Sherrie said: He has saved so many generations of my family. Hes our guardian angel.
The Who Cares Wins Awards were set up in 2017 by The Sun to honour the nations heroic doctors, nurses, midwives, other NHS staff and volunteers.
The Duchess of York presented an award to the parents of Natasha Ednan-Laperouse, 15, who died of an allergic reaction to a sandwich from Pret.
The duchess said: Can I just say to The Sun, I think youre incredible. Every minute Im sitting there and thinking Im so lucky. The NHS, The Sun and all of you, this is what makes Britain so great.
Lorraine Kelly, who presented the awards, said: Earlier on this year my dad was very sick and we honestly thought we were going to lose him.
"It was really difficult and it was only because of the efforts of the NHS hes still here. Its fantastic.
Who Cares Wins Awards: The winners
BEST HEALTH CHARITY
Nominees: Superhero Foundation
Team Domenica
Winner: Matt Hampson Foundation
Former English rugby union player Matt Hampson set up a charity to help others after being left paralysed in a scrum in 2005.
BEST NEONATAL SPECIALIST
Nominees: Dr Vesna Pavasovic
Professor Massimo Caputo
Winner: Professor Kypros Nicolaides
Professor Nicolaides performed pioneering keyhole surgeon on Sherrie Sharps unborn son Jaxon. By extraordinary coincidence, as a young surgeon, he also operated on Sherries mother when she was in the womb.
UNSUNG HERO
Nominees: Ben Slack
Rob Allen
Winner: Therapeutic Care Volunteers at South Tees NHS Foundation Trust
30 therapeutic care volunteers, who all have a learning or physical disability, give up their time to support patients with spinal injuries at The James Cook University Hospital in Middlesbrough. They include Ify Nwokoro.
GROUNDBREAKING PIONEER
Nominees: Dr Helen Spencer
Girish Vajramani
Winner: Guys and St Thomas London Auditory Brainstem Implant (ABI) Service
Leia Armitage, eight, was born with a rare form of deafness and was never expected to speak. But she now can thanks to pioneering brain surgery and speech therapy carried out by Guys and St Thomas London Auditory Brainstem Implant (ABI) Service.
BEST DOCTOR
Nominees: Margaret France
Dr Bijay Sinha
Read more here:
Penny Lancaster is reduced to tears as she gives bone marrow donor Ronnie Musselwhite, 5, The Suns Young H - The Sun
Biohack Your Way To Beauty And Health Using Your DNA And Stem Cells At These Wellness Retreats Around The World – Singapore Tatler
By daniellenierenberg
(Image: Four Seasons) By Chloe Pek October 11, 2019
Need a different type of getaway? From DNA and blood testing to harvesting your own stem cells, these facilities might make you want to forgo your usual spa retreats
Sign up for our weekly newsletter to get all our top stories delivered
Were on Facebook and Instagram. Follow us for the latest news, events and happenings
With so many resorts offering customised retreats tailored to every individual, today's well-travelled spa-goers are no longer satisfied with one-size-fits-all programmes. But beyond personalising activities and treatments to your fitness goals, these destinations are taking bespoke programmes to the next levelones that look into your genetic makeup and medical health to "biohack" your way to beauty and wellness.
(Related: The Tatler 10: Asia's Top Wellness Retreats)
Surrounded by the tropical rainforest in Nusa Dua, south Bali, Revivo Wellness Resort is an intimate retreat that offers 16 Balinese-style suites within three villas. The resort offers a regular schedule of three-day immersive programmes depending on individual goals, from relaxation to weight loss, as well as bespoke retreat programmes. And if you would like to take the personalisation to the next level, Revivo offers three DNA-centric plans that you can add to your programme.
In collaboration with DNA test provider GenePlanet, the Nutrifit and Nutrifit Premium plans offer individually tailored nutritional advice and lifestyle plans, based on your unique DNA makeup. Youll also return with a comprehensive report with analysis from up to 58 different DNA tests to facilitate your wellness goals. Beauty junkies can opt for the Nutriskin plan, which advises on skincare rituals, cosmetics, and diets to achieve optimum skin health.
revivoresorts.com
Surrounded by tropical gardens and white-sand beaches on Mexicos beautiful Riviera Nayarit, the newly renovated Four Seasons Resort Punta Mita offers guest rooms and suites, as well as private beach-front retreats for travellers. Besides a breathtaking oceanside golf-course, the resort also boasts the award-winning Apuane Spa, offering everything from signature massages to holistic therapies.
It is also the only spa in Four Seasons collection that offers DNA testing. Based on results from a simple cheek swab, wellness curators at the resort will create a custom programme that is tailored to your fitness goals and optimal for your genetic makeup, with recommendations to improve your health and diet.
fourseasons.com
(Related: 5 Women's Only Retreats For The Solo Female Traveller)
A preventive health and anti-ageing clinic in Switzerland, Nescens Clinique de Genolier is a luxury destination for medical tourists, overlooking Lake Geneva and the Alps. Programmes include La Cure Nescens, targetted at weight loss; Better-Aging Program which targets lifestyle issues like weight loss, fitness, detox and stress through spa treatments; and the new Nescens Stem Cell Advanced Program, which harnesses your own stem cells to combat signs of ageing.
The programme comprises a very in-depth check-up that includes physical examination, laboratory tests, diagnostic imaging, and cardiology to detect any underlying conditions. Then, following medical consultations with the specialists, a plastic surgeon will extract lipid content via liposuction. Your own stem cells are then separated and re-injected into problem areas together with lipofilling and hydrating mask treatments, to stimulate collagen production and reduce fine lines and wrinkles.
nescens.com
Tucked in a secluded cove by the Caribbean sea, BodyHoliday Saint Lucia is an all-inclusive fitness and spa resort that offers an extensive collection of wellness amenities, including an Ayurvedic temple, wellness centre, freshwater pools, fitness studios, as well as a BodyScience Clinic.
The clinics BodyScience Plus programme offers an in-depth analysis that begins prior to your arrival, requiring guests to complete an online health survey, DNA tests, and other diagnostics recommended by the clinics doctors, such as blood and urine tests. When you arrive, you will receive a personalised plan that will include Ayurvedic meals, a schedule of activities such as yoga, personal training or meditating, and also spa treatments. The programmes are specific to various wellness goals such as digestive health, weight loss, detox, destress and more.
thebodyholiday.com