Page 205«..1020..204205206207..210220..»

After treatment for serious illness, NBC-5 anchor Rob Stafford returning to air – Chicago Tribune

By daniellenierenberg

NBC-5 News anchor Rob Stafford will return to the air Monday, after months of grueling treatment for a rare blood disorder that gave him a harrowing look at "my own mortality."

"I thought we'd get this thing nipped in the bud," said Stafford, 58, who took a leave of absence in March after being diagnosed to be in the early stages of amyloidosis.

Instead, Stafford said, he spent much of the last six months too sick to eat, drink or walk while learning that the road back to health from serious illness is a process.

"You learn that everybody reacts to these drugs differently and there is no guarantee of any outcome," he said.

Amyloidosis occurs when abnormal protein called amyloid is produced in bone marrow and can be deposited in tissues and organs. There are more than 40 types of the disorder that affect the heart, kidneys, liver, spleen, nervous system and digestive tract. Stafford's type known as light chain amyloidosis is rare, according to Dr. Ronald Go, Stafford's hematologist at the Mayo Clinic in Rochester, Minn.

Doctors had planned to remove or "harvest" stem cells from Stafford's own bone marrow and freeze millions of healthy ones. After wiping out the unhealthy cells using chemotherapy, Stafford was to have the healthy stem cells transplanted back into his bone marrow, where they were to reproduce themselves, Go said in March.

Zbigniew Bzdak/Chicago Tribune

Rob Stafford, shown Aug. 24, 2017, is planning to return to the anchor desk at NBC-5 News on Aug. 28 after months battling amyloidosis.

Rob Stafford, shown Aug. 24, 2017, is planning to return to the anchor desk at NBC-5 News on Aug. 28 after months battling amyloidosis. (Zbigniew Bzdak/Chicago Tribune)

But Stafford ran into several complications immediately after the transplant process began that forced him to remain hospitalized for most of March.

"There were times in the hospital when I thought he might not make it," said his wife, Lisa Stafford, who would jog around the Rochester area to alleviate her stress.

"On the runs, I would stop at every church to pray and light a candle."

Stafford returned to his home in Hinsdale in early April, too weak sometimes to walk across the room, drink a milkshake or even stay awake for the news, he said.

In June, test results showed the bone marrow transplant did not work as they had planned, and Stafford would need a new course of action to fight the disease, he said.

It was a terrifying place to be, Stafford said.

"You think, 'What if nothing works?'" he said. "I have clearly thought about my own mortality."

Doctors at Rush University Medical Center started Stafford on a new regimen of weekly chemotherapy, which dramatically improved his health. While he has not yet reached the low amyloid measurements that define remission, doctors are optimistic about his recovery and have cleared Stafford to return to work, he said.

Stafford will return to the 10 p.m. news. Dick Johnson and Patrick Fazio will share anchoring duties with Allison Rosati at 5 p.m. and 6 p.m. until Stafford is ready to return to those newscasts, said Frank Whittaker, station manager and vice president of news for NBC Chicago.

"We are eagerly looking forward to Rob's return on Monday night," Whittaker said in an email. "He has inspired all of us with his courage and determination over the past six months. It will be great to have him back in our newsroom."

Stafford said he remains grateful for the support he and Lisa felt from viewers, who sent him a steady stream of Facebook messages, cards and personal stories.

"It's like running a marathon, and there are all these people along the side cheering you on," Stafford said. "It helps you get through it."

vortiz@chicagotribune.com

Follow this link:
After treatment for serious illness, NBC-5 anchor Rob Stafford returning to air - Chicago Tribune

To Read More: After treatment for serious illness, NBC-5 anchor Rob Stafford returning to air – Chicago Tribune
categoriaBone Marrow Stem Cells commentoComments Off on After treatment for serious illness, NBC-5 anchor Rob Stafford returning to air – Chicago Tribune | dataAugust 25th, 2017
Read All

‘Beating Heart’ Patch Offers New Hope for Desperately Ill Patients – NBCNews.com

By daniellenierenberg

Let our news meet your inbox.

From clot-busting drugs to bypass surgery, cardiologists have many options for treating the 700,000-plus Americans who suffer a heart attack each year. But treatment options remain limited for the 5.7 million or so Americans who suffer from heart failure, an often debilitating condition in which damage to the heart (often resulting from a heart attack) compromises its ability to pump blood.

Severe heart damage can pretty much incapacitate people, says Dr. Timothy Henry, director of cardiology at the Cedars-Sinai Medical Center in Los Angeles. You cant climb a flight of stairs, youre fatigued all the time, and youre at risk of sudden cardiac arrest.

Medication is available to treat heart failure, but its no panacea. And some heart failure patients undergo heart transplantation, but it remains an iffy proposition even 50 years after the first human heart was transplanted in 1967.

But soon, there may be another option.

A patch for the heart

Researchers are developing a new technology that would restore normal cardiac function by covering scarred areas with patches made of beating heart cells. The tiny patches would be grown in the lab from patients own cells and then surgically implanted.

The patches are now being tested in mice and pigs at Duke University, the University of Wisconsin and Stanford University. Researchers predict they could be tried in humans within five years with widespread clinical use possibly coming within a decade.

The hope is that patients will be again to live more or less normally again without having to undergo heart transplantation which has some serious downsides. Since donor hearts are in short supply, many patients experiencing heart failure die before one becomes available. And to prevent rejection of the new heart by the immune system, patients who do receive a new heart typically must take high doses of immunosuppressive drugs.

Heart transplants also require bypass machines which entails some risk and complications, says Dr. Timothy Kamp, co-director of the University of Wisconsins Stem Cell and Regenerative Medicine Center and one of the researchers leading the effort to create heart patches. Putting a patch on doesnt require any form of bypass, because the heart can continue to pump as it is.

To create heart patches, doctors first take blood cells and then use genetic engineering techniques to reprogram them into so-called pluripotent stem cells. These jack-of-all-trade cells, in turn, are used to create the various types of cells that make up heart muscle. These include cardiomonocytes, the cells responsible for muscle contraction; fibroblasts, the cells that give heart tissue its structure; and endothelial cells, the cells that line blood vessels.

These cells are then grown over a tiny scaffold that organizes and aligns them in a way that they become functional heart tissue. Since the patches would be made from the patients own blood cells, there would be no chance of rejection by the patients immune system.

Once the patch tissue matures, MRI scans of the scarred region of the patients heart would be used to create a digital template for the new patch, tailoring it to just the right size and shape. A 3D printer would then be used to fabricate the extracellular matrix, the pattern of proteins that surround heart muscle cells.

The fully formed patch would be stitched into place during open-heart surgery, with blood vessel grafts added to link the patch with the patients vascular system.

In some cases, a single patch would be enough. For patients with multiple areas of scarring, multiple patches could be used.

Inserting patches will be delicate business, in part because scarring can render heart walls thin and susceptible to rupture. Researchers anticipate that heart surgeons will look at each case individually and decide whether it makes more sense to cut out the scarred area and cover the defect with a patch or simply affix the patch over the scarred area and hope that, over time, the scars will go away.

Another challenge will be making sure the patches contract and relax in synchrony with the hearts onto which theyre grafted. We think this will happen because cells of the same type like to seek each other out and connect over time, Kamp says. We anticipate that if the patch couples with the native heart tissue, the electrical signals which pass through the heart muscle like a wave and tell it to contract, will drive the new patch to contract at the same rate.

How much would it cost to patch a damaged heart? Researchers put the price tag at about $100,000. Thats far less than the $500,000 or so it costs give a patient a heart transplant. And regardless of the cost, researchers are upbeat about the possibility of having a new way to treat heart failure.

Using these patches to repair the damaged muscle is likely to be very effective, says Henry. Were not quite there yet itll be a few years before you see the first clinical trials. But this technology may really provide a whole new avenue of hope for people with these conditions who badly need new treatment options.

FOLLOW NBC MACH ON TWITTER, FACEBOOK, AND INSTAGRAM.

Let our news meet your inbox.

Original post:
'Beating Heart' Patch Offers New Hope for Desperately Ill Patients - NBCNews.com

To Read More: ‘Beating Heart’ Patch Offers New Hope for Desperately Ill Patients – NBCNews.com
categoriaCardiac Stem Cells commentoComments Off on ‘Beating Heart’ Patch Offers New Hope for Desperately Ill Patients – NBCNews.com | dataAugust 25th, 2017
Read All

French CICABEL Mask Launched, Changing Traditional Mask Products – Markets Insider

By daniellenierenberg

- Meeting medical and beauty standards, the mask focuses on skincare and rejuvenation with advanced technologies

GUANGZHOU, China, Aug. 23, 2017 /PRNewswire/ -- French traditional medicine manufacturer Santinov has developed and launched its CICABEL mask using stem cells as the main material, through its strong technological power and years of research. The mask focuses on daily skincare based on advanced technologies, and meets medical standards, aiming to become a premium beauty product.

Based on 130 years of French brand heritage

In 1887, the great-grandfather of M.D. Jean-Pierre, the owner of the CICABEL brand, founded medical institutions and laboratories for skin wound healing. In 2007, M.D. Jean-Pierre founded a laboratory specializing in the research on facial skin based on more than 130 years of experience in skin rejuvenation and wound healing, and officially created the CICABEL brand. The CICABEL mask is the first mask product under the brand, and is one of the few beauty products on the market that feature bio-medical technologies.

Bold breakthrough, aiming to create revolutionary skin aesthetics

In terms of ingredients, the CICABEL mask selects purified elements that can provide energy for skin stem cells, to protect and activate the cells and promote the proliferation of skin epidermal cells and the anagenesis of skin fibrosis. This improves facial skin's self-healing and rejuvenation speed, achieving the goal of deep skincare.

Future mask innovator goes global

Facial rejuvenation is becoming the main theme of skincare, which provides a huge development space for CICABEL's proprietary technologies and drives the brand to go global. The brand is expected to set off an upsurge in the high-tech medical skincare sector.

CONTACT: 400-639-1958, rel="nofollow">hantao@1958difo.com

Photo - https://photos.prnasia.com/prnh/20170823/1923965-3-a Photo -https://photos.prnasia.com/prnh/20170823/1923965-3-b

SOURCE CICABEL

Go here to read the rest:
French CICABEL Mask Launched, Changing Traditional Mask Products - Markets Insider

To Read More: French CICABEL Mask Launched, Changing Traditional Mask Products – Markets Insider
categoriaSkin Stem Cells commentoComments Off on French CICABEL Mask Launched, Changing Traditional Mask Products – Markets Insider | dataAugust 24th, 2017
Read All

Buckeye Be The Match set for Saturday – Piqua Daily Call

By daniellenierenberg

TROY The second annual Buckeye Be The Match will build on its opening year by adding bikes to the event while raising awareness for bloodborne cancers this Saturday.

The Buckeye Be The Match will begin at 8 a.m. Aug. 26, at Treasure Island Park. New this year is a 15-mile and 50-mile bike route in addition to the 5K and 1K Fun Run in the park.

The event added the 15-mile family bike ride north to Piqua and back to Treasure Island as well as a more challenging 50-mile ride throughout the county to expand the use of the nearby bike paths to include cyclists of all levels. Bikers may begin to ride as early as 7:30 a.m. Saturday.

Online registration ends on Thursday, but registration in person will continue through 8 a.m. Saturday at the park. Opening events kick off at 9 a.m. All proceeds benefit the Be The Match organization, which helps build a national registry to find potential donors through a simple cheek swab.

The funding goes to Be The Match, which is dedicated to finding the bone marrow matches or stem cell matches for those with blood born cancers. It is very vital, said city council member Tom Kendall. If you dont want to run or be part of the bike ride, you do have the opportunity to save a life also. They will be taking swabs of those who would like to be put on the registry to be a potential donor for a person in need.

Kendall said Rum River Blend will provide entertainment as well as family-friendly activities through noon. There also will be a ceremony featuring the Be The Hero award, which nominates someone who has helped a survivor during their treatment and will be given out at the event.

Kendalls daughter, Lisa, was diagnosed at 28 with acute myeloid leukemia in 2011. She received a stem cell transplant that saved her life. Shes been a coordinator of the event and advocate for the Be The Match organization since it moved to Troy last year from Columbus.

Kendall said previous the Buckeye Be The Match raised more than $11,000 last year, exceeding its goal of $10,000.

For more information, visit http://www.bethematchfoundation.org.

Event to raise funds and awareness for bone marrow registry

Follow Melanie Yingst on Twitter @Troydailynews

The rest is here:
Buckeye Be The Match set for Saturday - Piqua Daily Call

To Read More: Buckeye Be The Match set for Saturday – Piqua Daily Call
categoriaBone Marrow Stem Cells commentoComments Off on Buckeye Be The Match set for Saturday – Piqua Daily Call | dataAugust 24th, 2017
Read All

This Chip Uses Electricity to Reprogram Cells for Healing – Singularity Hub

By daniellenierenberg

It sounds like science fiction: with a light zap of electricity, a tiny stamp-like device transforms your skin cells into reservoirs of blood vessels or brain cells, ready to heal you from within.

Recently, a team of medical mavericks at the Ohio State University introduced a device that does just that. The technology, dubbed tissue nanotransfection (TNT), is set to blow up the field of organ regeneration.

When zapped with a light electrical jolt, the device shoots extra bits of DNA code from its nanotube arrays directly into tiny pores in the skin. There, the DNA triggers the cells to shed their identity and reprograms them into other cell types that can be harvested to repair damaged organs.

Remarkably, the effect spreads with time. The rebooted cells release tiny membrane bubbles onto their neighboring skin cells, coaxing them to undergo transformation. Like zombies, but for good.

So far, the device has already been used to generate neurons to protect the brains of mice with experimental stroke. The team also successfully healed the legs of injured mice by turning the skin cells on their hind limbs into a forest of blood vessels.

While still a ways from human use, scientists believe future iterations of the technology could perform a myriad of medical wonders: repairing damaged organs, relieving brain degeneration, or even restoring aged tissue back to a youthful state.

By using our novel nanochip technology, injured or compromised organs can be replaced. We have shown that skin is a fertile land where we can grow the elements of any organ that is declining, says lead author Dr. Chandan Sen, who published the result in Nature Nanotechnology.

In my lab, we have ongoing research trying to understand the mechanism and do even better, adds Dr. L. James Lee, who co-led the study with Sen. So, this is the beginning, more to come.

The Ohio teams research builds on an age-old idea in regenerative medicine: that even aged bodies have the ability to produce and integrate healthy, youthful cellsgiven the right set of cues.

While some controversy remains on whether replacement cells survive in an injured body, scientistsand some rather dubious clinicsare readily exploring the potential of cell-based therapies.

All cells harbor the same set of DNA; whether they turn into heart cells, neurons, or back into stem cells depend on which genes are activated. The gatekeeper of gene expression is a set of specialized proteins. Scientists can stick the DNA code for these proteins into cells, where they hijack its DNA machinery with orders to produce the protein switchesand the cell transforms into another cell type.

The actual process works like this: scientists harvest mature cells from patients, reprogram them into stem cells inside a Petri dish, inject those cells back into the patients and wait for them to develop into the needed cell types.

Its a cumbersome process packed with landmines. Researchers often use viruses to deliver the genetic payload into cells. In some animal studies, this has led to unwanted mutations and cancer. Its also unclear whether the reprogrammed stem cells survive inside the patients. Whether they actually turn into healthy tissue is even more up for debate.

The Ohio teams device tackles many of these problems head on.

Eschewing the need for viruses, the team manufactured a stamp-sized device out of silicon that serves as a reservoir and injector for DNA. Microetched onto each device are arrays of nanochannels that connect to microscopic dents. Scientists can load DNA material into these tiny holding spots, where they sit stably until a ten-millisecond zap shoots them into the recipients tissue.

We based TNT on a bulk transfection, which is often used in the lab to deliver genes into cells, the authors explain. Like its bulk counterpart, the electrical zap opens up tiny, transient pores on the cell membrane, which allows the DNA instructions to get it.

The problem with bulk transfection is that not all genes get into each cell. Some cells may get more than they bargained for and take up more than one copy, which increases the chance of random mutations.

We found that TNT is extremely focused, with each cell receiving ample DNA, the authors say.

The device also skips an intermediary step in cell conversion: rather than turning cells back into stem cells, the team pushed mouse skin cells directly into other mature cell types using different sets of previously-discovered protein factors.

In one early experiment, the team successfully generated neurons from skin cells that seem indistinguishable from their natural counterparts: they shot off electrical pulses and had similar gene expression profiles.

Surprisingly, the team found that even non-zapped cells in the skins deeper layers transformed. Further testing found that the newly reprogrammed neurons released tiny fatty bubbles that contained the molecular instructions for transformation.

When the team harvested these bubbles and injected them into mice subjected to experimental stroke, the bubbles triggered the brain to generate new neurons and repair itself.

We dont know if the bubbles are somehow transforming other brain cell types into neurons, but they do seem to be loaded with molecules that protect the brain, the researchers say.

In an ultimate test of the devices healing potential, the researchers placed it onto the injured hind leg of a handful of mice. Three days prior, their leg arteries had been experimentally severed, whichwhen left untreatedleads to tissue decay.

The team loaded the device with factors that convert skin cells into blood vessel cells. Within a week of conversion, the team watched as new blood vessels sprouted and grew beyond the local treatment area. In the end, TNT-zapped mice had fewer signs of tissue injury and higher leg muscle metabolism compared to non-treated controls.

This is difficult to imagine, but it is achievable, successfully working about 98 percent of the time, says Sen.

A major draw of the device is that its one-touch-and-go.

There are no expensive cell isolation procedures and no finicky lab manipulations. The conversion happens right on the skin, essentially transforming patients bodies into their own prolific bioreactors.

This process only takes less than a second and is non-invasive, and then youre off. The chip does not stay with you, and the reprogramming of the cell starts,says Sen.

Because the converted cells come directly from the patient, theyre in an immune-privileged position, which reduces the chance of rejection.

This means that in the future, if the technology is used to manufacture organs immune suppression is not necessary, says Sen.

While the team plans to test the device in humans as early as next year, Sen acknowledges that theyll likely run into problems.

For one, because the device needs to be in direct contact with tissue, the skin is the only easily-accessible body part to do these conversions. Repairing deeper tissue would require surgery to insert the device into wounded areas. And to many, growing other organ cell types is a pretty creepy thought, especially because the transformation isnt completely localnon-targeted cells are also reprogrammed.

That could be because the body is trying to heal itself, the authors hypothesize. Using the chip on healthy legs didnt sprout new blood vessels, suggesting that the widespread conversion is because of injury, though (for now) there isnt much evidence supporting the idea.

For another, scientists are still working out the specialized factors required to directly convert between cell types. So far, theyve only had limited success.

But Sen and his team are optimistic.

When these things come out for the first time, its basically crossing the chasm from impossible to possible, he says. We have established feasibility.

Image Credit: Researchers demonstrate tissue nanotransfection,courtesy of The Ohio State University Wexner Medical Center.

Read the original:
This Chip Uses Electricity to Reprogram Cells for Healing - Singularity Hub

To Read More: This Chip Uses Electricity to Reprogram Cells for Healing – Singularity Hub
categoriaSkin Stem Cells commentoComments Off on This Chip Uses Electricity to Reprogram Cells for Healing – Singularity Hub | dataAugust 22nd, 2017
Read All

Archbishop Derderian Leads Prayers for ABMDR Patients at Diocese Churches – Asbarez Armenian News

By daniellenierenberg

The ABMDR team at the meeting with Archbishop Hovnan Derderian (center) and the Very Rev. Fr. Dajad Yardemian.

LOS ANGELESOn Sunday, August 20, during Holy Mass at St. Leon Cathedral in Burbank, Archbishop Hovnan Derderian, Primate of the Western Diocese, offered special prayers for patients of the Armenian Bone Marrow Donor Registry (ABMDR). In his sermon, the Archbishop praised the life-saving mission of ABMDR, and called on congregants to continue to support its work.

To raise public awareness of the ABMDR mission and encourage grassroots involvement in the organizations activities, the Western Diocese has observed a special Prayer Day in honor of ABMDR patients for the past several years. The Prayer Day is marked at St. Leon Cathedral as well as Armenian churches across Southern California.

In the course of his sermon on August 20, Archbishop Derderian stated that participating in the work of ABMDR is tantamount to praying and accomplishing a Godly mission. The Archbishop pledged the continuous support of the Diocese and appealed to all parishes to embrace the work of ABMDR, by joining its ranks as potential bone marrow stem cell donors, signing up as volunteers, and attending its public-benefit events such as the upcoming Match for Life, the ABMDRs 18th annual Gala, which will be held on Sunday, August 27, in Los Angeles.

The ABMDR team outside St. Leon Cathedral

Archbishop Derderian, who is one of ABMDRs most avid and longtime supporters, exemplifies the type of leadership that works tirelessly for the well-being of our community, said ABMDR president Dr. Frieda Jordan. We are honored and grateful for the Primates ongoing guidance and support.

Following the church service, numerous parishioners had the opportunity to become more familiar with the activities of ABMDR, as a team of Board members and volunteers from the organization answered questions and handed out information about becoming donors.

Subsequently Archbishop Derderian, along with the Very Rev. Fr. Dajad Yardemian, met with the ABMDR team at the Diocese. The discussion centered on ABMDRs most recent achievements as well as its plans for the immediate future. At the conclusion of the meeting, Archbishop Derderian presented scarves from Holy Echmiadzin to all members of the ABMDR team, as tokens of his appreciation.

Established in 1999, ABMDR, a nonprofit organization, helps Armenians and non-Armenians worldwide survive life-threatening blood-related illnesses by recruiting and matching donors to those requiring bone marrow stem cell transplants. To date, the registry has recruited over 29,000 donors in 42 countries across four continents, identified over 4,190 patients, and facilitated 30 bone marrow transplants. For more information, call (323) 663-3609 or visit abmdr.am.

Read more from the original source:
Archbishop Derderian Leads Prayers for ABMDR Patients at Diocese Churches - Asbarez Armenian News

To Read More: Archbishop Derderian Leads Prayers for ABMDR Patients at Diocese Churches – Asbarez Armenian News
categoriaBone Marrow Stem Cells commentoComments Off on Archbishop Derderian Leads Prayers for ABMDR Patients at Diocese Churches – Asbarez Armenian News | dataAugust 22nd, 2017
Read All

The power of vitamin C: Can it kill cancer stem cells? – Bel Marra Health

By daniellenierenberg

Home Cancer The power of vitamin C: Can it kill cancer stem cells?

Every three minutes, one person in the United States is diagnosed with blood cancer. Thankfully, there may be a new approach to helping these individuals fight it using vitamin C.

Researchers from Perlmutter Cancer Center at NYU Langone Health recently published a report in the journal Cell indicating that vitamin C may be able to tell faulty cells in bone marrow to mature and die instead of multiplying to cause blood cancers. They explained that specific genetic changes are able to reduce the ability of the enzyme known as TET2 to push stem cells to mature, which die in many people who suffer from leukemia. Experts discovered that vitamin C seemed to activate TET2 in mice that were engineered to be TET2 deficient. In simple terms, TET2 is a tumor suppressor that can prevent certain cells from growing uncontrollably.

Mutations that reduce TET2 function are present in about 10 percent of people with acute myeloid leukemia, 30 percent of patients with a pre-leukemia known as myelodysplastic syndrome, and close to 50 percent of people with chronic myelomonocytic leukemia. Tests indicate that about 2.5 percent of U.S. cancer patients develop TET2 mutations, including some with lymphomas.

The study focused on the relationship between TET2 and cytosine, which is one of four nucleic acid letters that make up the DNA codes in our genes. The attachment of a small molecule, referred to as a methyl group, to cytosine bases can shut down the actions of a gene. As the human body forms, the attachment and removal of methyl groups adjust gene expression in stem cells, which can mature and become muscle, bone, nerve, or other cell types. The bone marrow keeps stem cells in pools, ready to become replacement cells when and if needed. In the case of leukemia, the signals that are supposed to tell a blood stem cell to mature end up malfunctioning, leaving it to multiply instead of developing normal white cells, which are needed to help fight infection.

Medical scientists explain that TET2 allows for a change in methyl groups that are required to be removed from cytosine. This essentially turns on genes and directs stem cells to mature and eventually destroy themselves. Researchers say that this signals an anti-cancer mechanism, something that can help blood cancer patients with TET2 mutations.

The team of researchers genetically engineered mice to manipulate the TET2 gene. Techniques to turn off TET2 in mice lead to abnormal stem cell behavior. The changes were reversed when TET2 was restored. Since previous work indicated that vitamin C could stimulate TET2, the researchers theorized that high doses of vitamin C might reverse the effects of TET2 deficiency. It would be a case of turning up the action on the functional gene. As it turns out, high dose vitamin C treatment did induce stem cells to mature and also suppressed the growth of leukemia cancer cells implanted in mice.

As of now, the NYU team is working on identifying genetic changes that may contribute to the risk of leukemia in specific groups of patients. While this latest study provides some hope for blood cancer patients, the manipulation of TET2 is only a potential new treatment approach until further studies are conducted. Currently approved treatments for blood cancers include stem cell transplantation, chemotherapy, and radiation therapy.

Related: Combining antibiotics and vitamin C helps to combat cancer stem cells

Related Reading:

Mangos show signs of reducing IBS symptoms and potential cancer risk

A simple blood test may soon detect cancer

http://www.cancercenter.com/terms/blood-cancers/https://ghr.nlm.nih.gov/gene/TET2

Read this article:
The power of vitamin C: Can it kill cancer stem cells? - Bel Marra Health

To Read More: The power of vitamin C: Can it kill cancer stem cells? – Bel Marra Health
categoriaBone Marrow Stem Cells commentoComments Off on The power of vitamin C: Can it kill cancer stem cells? – Bel Marra Health | dataAugust 22nd, 2017
Read All

Scientists Discover New Hair Growth Technique Using Stem Cells … – TrendinTech

By daniellenierenberg

Those suffering from hair loss problems could soon be worry free thanks to a bunch of researchers at UCLA. The team found that by activating the stem cells in the hair follicles they could make it grow. This type of research couldnt come soon enough for some. We may have finally found a cure for patients suffering from alopecia or baldness.

Hair loss is often caused by the hair follicle stem cells inability to activate and induce a new hair growth cycle. In doing the study, researchers Heather Christofk and William Lowry, of Eli Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCLA discovered that the metabolism of hair follicle stem cells is far different to any other cell found within the skin. They found that as hair follicle stem cells absorb the glucose from the bloodstream they use it to produce a metabolite called pyruvate. The pyruvate is then either sent to the cells mitochondria to be converted back into energy or is converted into another metabolite called lactate.

Christofk is an associate professor of biological chemistry and molecular and medical pharmacology and he says, Our observations about hair follicle stem cell metabolism prompted us to examine whether genetically diminishing the entry of pyruvate into the mitochondria would force hair follicle stem cells to make more lactate and if that would activate the cells and grow hair more quickly. First, the team demonstrated how blocking the lactate production in mice prevented the hair follicle stem cells from activating. Then, with the help of colleagues at the Rutter lab at the University of Utah, they increased the lactate production in the mice and as a result saw an accelerated hair follicle stem cell activation and therefore an increase in the hair cycle.

Once we saw how altering lactate production in the mice influenced hair growth, it led us to look for potential drugs that could be applied to the skin and have the same effect, confirms Lowry, a professor of molecular, cell and developmental biology. During the study, the team found two drugs in particular that influenced hair follicle stem cells to promote lactate production when applied to the skin of mice. The first is called RCGD423. This drug is responsible for allowing the transmission of information from outside the cell right to the heart of it in the nucleus by activating the cellular signaling pathway called JAK-Stat. The results from the study did, in fact, prove that JAK-Stat activation will lead to an increased production of lactate which will enhance hair growth. UK5099 was the second drug in question, and its role was to block the pyruvate from entering the mitochondria, forcing the production of lactate and accelerating hair growth as a result.

The study brings with it some very promising results. To be able to solve a problem that affects millions of people worldwide by using drugs to stimulate hair growth is brilliant. At the moment there is a provisional patent application thats been filed in respect of using RCGD423 in the promotion of hair growth and a separate provisional patent in place for the use of UK5099 for the same purpose. The drugs have not yet been tested in humans or approved by the Food and Drug Administration as fit for human consumption.

More News to Read

comments

More here:
Scientists Discover New Hair Growth Technique Using Stem Cells ... - TrendinTech

To Read More: Scientists Discover New Hair Growth Technique Using Stem Cells … – TrendinTech
categoriaSkin Stem Cells commentoComments Off on Scientists Discover New Hair Growth Technique Using Stem Cells … – TrendinTech | dataAugust 19th, 2017
Read All

Bio-inspired materials give boost to regenerative medicine – Medical Xpress

By daniellenierenberg

In a new studyin Nature Communications, Stephanopoulos and his colleague Ronit Freeman successfully demonstrated the ability to dynamically control the environment around stem cells, to guide their behavior in new and powerful ways. Credit: Northwestern University

What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Or heal tissues by coaxing cells to multiply, repair or replace damaged regions in loved ones whose lives have been ravaged by stroke, Alzheimer's or Parkinson's disease?

Such is the vision, promise and excitement in the burgeoning field of regenerative medicine, now a major ASU initiative to boost 21st-century medical research discoveries.

ASU Biodesign Institute researcher Nick Stephanopoulos is one of several rising stars in regenerative medicine. In 2015, Stephanopoulos, along with Alex Green and Jeremy Mills, were recruited to the Biodesign Institute's Center for Molecular Design and Biomimetics (CMDB), directed by Hao Yan, a world-recognized leader in nanotechnology.

"One of the things that that attracted me most to the ASU and the Biodesign CMDB was Hao's vision to build a group of researchers that use biological molecules and design principles to make new materials that can mimic, and one day surpass, the most complex functions of biology," Stephanopoulos said.

"I have always been fascinated by using biological building blocks like proteins, peptides and DNA to construct self-assembled structures, devices and materials, and the interdisciplinary and highly collaborative team in the CMDB is the ideal place to put this vision into practice."

Yan's research center uses DNA and other basic building blocks to build their nanotechnology structuresonly at a scale 1,000 times smaller than the width of a human hair.

They've already used nanotechnology to build containers to specially deliver drugs to tissues, build robots to navigate a maze or nanowires for electronics.

To build a manufacturing industry at that tiny scale, their bricks and mortar use a colorful assortment of molecular Legos. Just combine the ingredients, and these building blocks can self-assemble in a seemingly infinite number of ways only limited by the laws of chemistry and physicsand the creative imaginations of these budding nano-architects.

Learning from nature

"The goal of the Center for Molecular Design and Biomimetics is to use nature's design rules as an inspiration in advancing biomedical, energy and electronics innovation through self-assembling molecules to create intelligent materials for better component control and for synthesis into higher-order systems," said Yan, who also holds the Milton Glick Chair in Chemistry and Biochemistry.

Prior to joining ASU, Stephanopoulos trained with experts in biological nanomaterials, obtaining his doctorate with the University of California Berkeley's Matthew Francis, and completed postdoctoral studies with Samuel Stupp at Northwestern University. At Northwestern, he was part of a team that developed a new category of quilt-like, self-assembling peptide and peptide-DNA biomaterials for regenerative medicine, with an emphasis in neural tissue engineering.

"We've learned from nature many of the rules behind materials that can self-assemble. Some of the most elegant complex and adaptable examples of self-assembly are found in biological systems," Stephanopoulos said.

Because they are built from the ground-up using molecules found in nature, these materials are also biocompatible and biodegradable, opening up brand-new vistas for regenerative medicine.

Stephanopoulos' tool kit includes using proteins, peptides, lipids and nucleic acids like DNA that have a rich biological lexicon of self-assembly.

"DNA possesses great potential for the construction of self-assembled biomaterials due to its highly programmable nature; any two strands of DNA can be coaxed to assemble to make nanoscale constructs and devices with exquisite precision and complexity," Stephanopoulos said.

Proof all in the design

During his time at Northwestern, Stephanopoulos worked on a number of projects and developed proof-of-concept technologies for spinal cord injury, bone regeneration and nanomaterials to guide stem cell differentiation.

Now, more recently, in a new study in Nature Communications, Stephanopoulos and his colleague Ronit Freeman in the Stupp laboratory successfully demonstrated the ability to dynamically control the environment around stem cells, to guide their behavior in new and powerful ways.

In the new technology, materials are first chemically decorated with different strands of DNA, each with a unique code for a different signal to cells.

To activate signals within the cells, soluble molecules containing complementary DNA strands are coupled to short protein fragments, called peptides, and added to the material to create DNA double helices displaying the signal.

By adding a few drops of the DNA-peptide mixture, the material effectively gives a green light to stem cells to reproduce and generate more cells. In order to dynamically tune the signal presentation, the surface is exposed to a soluble single-stranded DNA molecule designed to "grab" the signal-containing strand of the duplex and form a new DNA double helix, displacing the old signal from the surface.

This new duplex can then be washed away, turning the signal "off." To turn the signal back on, all that is needed is to now introduce a new copy of single-stranded DNA bearing a signal that will reattach to the material's surface.

One of the findings of this work is the possibility of using the synthetic material to signal neural stem cells to proliferate, then at a specific time selected by the scientist, trigger their differentiation into neurons for a while, before returning the stem cells to a proliferative state on demand.

One potential use of the new technology to manipulate cells could help cure a patient with neurodegenerative conditions like Parkinson's disease.

The patient's own skin cells could be converted to stem cells using existing techniques. The new technology could help expand the newly converted stem cells back in the laband then direct their growth into specific dopamine-producing neurons before transplantation back to the patient.

"People would love to have cell therapies that utilize stem cells derived from their own bodies to regenerate tissue," Stupp said. "In principle, this will eventually be possible, but one needs procedures that are effective at expanding and differentiating cells in order to do so. Our technology does that."

In the future, it might be possible to perform this process entirely within the body. The stem cells would be implanted in the clinic, encapsulated in the type of material described in the new work, and injected into a particular spot. Then the soluble peptide-DNA molecules would be given to the patient to bind to the material and manipulate the proliferation and differentiation of transplanted cells.

Scaling the barriers

One of the future challenges in this area will be to develop materials that can respond better to external stimuli and reconfigure their physical or chemical properties accordingly.

"Biological systems are complex, and treating injury or disease will in many cases necessitate a material that can mimic the complex spatiotemporal dynamics of the tissues they are used to treat," Stephanopoulos said.

It is likely that hybrid systems that combine multiple chemical elements will be necessary; some components may provide structure, others biological signaling and yet others a switchable element to imbue dynamic ability to the material.

A second challenge, and opportunity, for regenerative medicine lies in creating nanostructures that can organize material across multiple length scales. Biological systems themselves are hierarchically organized: from molecules to cells to tissues, and up to entire organisms.

Consider that for all of us, life starts simple, with just a single cell. By the time we reach adulthood, every adult human body is its own universe of cells, with recent estimates of 37 trillion or so. The human brain alone has 100 billion cells or about the same number of cells as stars in the Milky Way galaxy.

But over the course of a life, or by disease, whole constellations of cells are lost due to the ravages of time or the genetic blueprints going awry.

Collaborative DNA

To overcome these obstacles, much more research funding and recruitment of additional talent to ASU will be needed to build the necessary regenerative medicine workforce.

Last year, Stephanopoulos' research received a boost with funding from the U.S. Air Force's Young Investigator Research Program (YIP).

"The Air Force Office of Scientific Research YIP award will facilitate Nick's research agenda in this direction, and is a significant recognition of his creativity and track record at the early stage of his careers," Yan said.

They'll need this and more to meet the ultimate challenge in the development of self-assembled biomaterials and translation to clinical applications.

Buoyed by the funding, during the next research steps, Stephanopoulos wants to further expand horizons with collaborations from other ASU colleagues to take his research team's efforts one step closer to the clinic.

"ASU and the Biodesign Institute also offer world-class researchers in engineering, physics and biology for collaborations, not to mention close ties with the Mayo Clinic or a number of Phoenix-area institutes so we can translate our materials to medically relevant applications," Stephanopoulos said.

There is growing recognition that regenerative medicine in the Valley could be a win-win for the area, in delivering new cures to patients and building, person by person, a brand-new medicinal manufacturing industry.

Explore further: New technology to manipulate cells could help treat Parkinson's, arthritis, other diseases

More information: Ronit Freeman et al. Instructing cells with programmable peptide DNA hybrids, Nature Communications (2017). DOI: 10.1038/ncomms15982

More:
Bio-inspired materials give boost to regenerative medicine - Medical Xpress

To Read More: Bio-inspired materials give boost to regenerative medicine – Medical Xpress
categoriaSpinal Cord Stem Cells commentoComments Off on Bio-inspired materials give boost to regenerative medicine – Medical Xpress | dataAugust 19th, 2017
Read All

Disabled former police officer raising money for operation in Thailand – The Daily Courier

By daniellenierenberg

Twelve years ago, Robb Martin was an active police officer with Prescott Police Department when a recreational accident left him paralyzed from the chest down.

I was on a four-wheeler in the sand dunes, Martin, 42, said. I was on my way back to camp just putting along when I hit a bump. It threw me off the front, my helmet got stuck in the sand, my legs just kept going and I broke my back right at the chest level.

After getting out of the hospital and going through some rehabilitation to get his arms, shoulders and neck moving normally, he continued to work for the police department in the dispatch center and has been there ever since.

Despite his condition, Martin has remained incredibly active.

The guy is always busy, said Tom Newell, a longtime friend of Martins.

With some help from his friends, he managed to build a workshop on his property and is consistently in there modifying objects to fit his needs or assisting friends and family with various projects.

If hes not helping his wife with her business, hes in his shop welding something, making something or building something to help somebody else out, Newell said.

Since the accident, Martin has looked for ways to improve his mobility. Physical therapy has been helping, allowing him to regain back and stomach muscles in recent years.

I can do pushups and actually support my waist, which is amazing, he said.

His goal, however, is to once again be on his feet.

Just to even stand up and grab something out of a cabinet would be phenomenal, Martin said.

That dream might come true if he can raise the funds to have a recently developed procedure done in Thailand by a company called Unique Access.

The procedure, referred to as epidural stimulation, involves surgically implanting a device along a damaged portion of the nervous system, according to the companys website. The device then applies a continuous electrical current.

It acts kind of like a jumper cable, for lack of a better term, Martin said. It just connects above the affected area and allows the brain to reconnect with the spinal cord under the affected area.

In combination with the implant, several million stem cells are injected into the area to help the regenerative process. These, as well as

an assisted rehabilitation process, take about 40 days to complete.

The procedure has yet to be seriously implemented in the U.S., Martin said, because of how new it is to the medical industry. So far, however, he hasnt heard of any unusual risks associated with the procedure and has spoken with two individuals who successfully went through it.

One guy is walking up to 30 meters unassisted, Martin said. Another guy, the day after surgery, he was standing up by himself in a pool.

Altogether, Martin said its going to cost him $100,000 out of pocket.

Not able to afford that between him and his wife, hes turned to the community for help. Friends and family have already been busy contributing and organizing events.

Just last Saturday, Aug. 12, about $5,000 was raised on his behalf from two fundraising events hosted by his friends Tony and Liko Harwood.

Tony wanted to be involved and couldnt just sit still and not make any money for Rob so here we are, Liko said Saturday during one of the events.

Another $2,000 was raised from a donation bucket placed inside Scouts Gourmet Grub in Prescott.

Quite a bit more was also raised by fundraisers hosted by the Northern Arizona Regional Training Academy (NARTA), the local police academy.

Sitting at about $15,000, Martin is hoping to continue raising money in whatever way he can to reach the full $100,000.

My surgery is approved, theyre just waiting for me to set up a date, Martin said. The funding is really all Im waiting on.

For more information about Martins story and to donate, go to RobbMartin.com.

Read more:
Disabled former police officer raising money for operation in Thailand - The Daily Courier

To Read More: Disabled former police officer raising money for operation in Thailand – The Daily Courier
categoriaSpinal Cord Stem Cells commentoComments Off on Disabled former police officer raising money for operation in Thailand – The Daily Courier | dataAugust 19th, 2017
Read All

Stem cell technique could reverse a major type of infertility – New Scientist

By daniellenierenberg

Fertile sperm are rare in men with an extra sex chromosome

Dennis Kunkle Microscopy/SPL

By Andy Coghlan

Turning skin cells into sperm may one day help some infertile men have babies. Research in mice has found a way to make fertile sperm from animals born with too many sex chromosomes.

Most men have two sex chromosomes one X and one Y but some have three, which makes it difficult to produce fertile sperm. Around 1 in 500 men are born with Klinefelter syndrome, caused by having an extra X chromosome, while roughly 1 in 1000 have Double Y syndrome.

James Turner of the Francis Crick Institute in London and his team have found a way to get around the infertility caused by these extra chromosomes. First, they bred mice that each had an extra X or Y chromosome. They then tried to reprogram skin cells from the animals, turning them into induced pluripotent stem cells (iPS), which are capable of forming other types of cell.

Advertisement

To their surprise, this was enough to make around a third of the skin cells jettison their extra chromosome. When these cells were then coaxed into forming sperm cells and used to fertilise eggs, 50 to 60 per cent of the resulting pregnancies led to live births.

This suggests that a similar technique might enable men with Klinefelter or Double Y-related infertility to conceive. But there is a significant catch.

We dont yet know how to fully turn stem cells into sperm, so the team got around this by injecting the cells into mouse testes for the last stages of development. While this led to fertile sperm, it also caused tumours to form in between 29 and 50 per cent of mice.

What we really need to make this work is being able to go from iPS cells to sperm in a dish, says Turner.

It has to be done all in vitro, so only normal sperm cells would be used to fertilise eggs, says Zev Rosenwaks of the Weill Cornell Medical College in New York. The danger with all iPS cell technology is cancer.

Journal reference: Science, DOI: 10.1126/science.aam9046

More on these topics:

See the original post here:
Stem cell technique could reverse a major type of infertility - New Scientist

To Read More: Stem cell technique could reverse a major type of infertility – New Scientist
categoriaSkin Stem Cells commentoComments Off on Stem cell technique could reverse a major type of infertility – New Scientist | dataAugust 17th, 2017
Read All

Roswell Park-Led Analysis Shows Survival Benefit of Lenalidomide Maintenance Therapy Following Transplant – Benzinga

By daniellenierenberg

New research analysis published in JCO definitively shows an overall survival benefit from ongoing treatment with lenalidomide for patients with multiple myeloma who have already received bone marrow transplant.

Buffalo, NY (PRWEB) August 15, 2017

The first study to report that overall survival was extended for patients receiving lenalidomide as maintenance treatment for multiple myeloma has been completed, with the team's findings now published online ahead of print in the Journal of Clinical Oncology, or JCO. Philip L. McCarthy, MD, Director of the Blood and Marrow Transplant Program at Roswell Park Cancer Institute, was principal investigator for one of the three clinical studies that are reported in this updated analysis, and is first author of the publication that compiles the international team's findings and analysis.

The new study is a "meta-analysis" reporting updated findings from three large randomized, controlled clinical trials conducted in the U.S., France and Italy by the Alliance for Clinical Trials in Oncology (formerly CALGB), Intergroupe Francophone du Mylome (IFM) and Gruppo Italiano Malattie Ematologiche dell'Adulto (GIMEMA), respectively. The research team compared outcomes for 605 patients with newly diagnosed multiple myeloma who were treated with continuous lenalidomide (brand name Revlimid) following autologous hematopoietic stem cell transplant, also known as bone marrow transplant, and 604 patients who received either a placebo or no maintenance at all.

The meta-analysis has allowed the team to evaluate for the first time, across all three studies, whether overall survival improved for patients receiving long-term treatment with oral lenalidomide following stem cell transplant.

At seven years of observation, the authors report, 62% of those treated with maintenance lenalidomide had survived, compared to 50% of those in the control group. "The use of lenalidomide maintenance for transplantation-eligible patients can be considered a standard of care," they write, noting recent refinements that have improved the efficacy of pre-transplant induction chemotherapy and autologous stem cell transplant.

"With this complete and mature data from three large multinational studies, we now have clear evidence that ongoing treatment with lenalidomide can prevent disease progression and extend survival in patients with multiple myeloma who've received a stem cell transplant," says Dr. McCarthy, Professor of Oncology at Roswell Park and also Professor of Internal Medicine at the Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo. "All the investigators wish to express enormous gratitude to the patients who took part in these trials. Many others will benefit from their role in this research."

These study results were presented in abstract form at the 52nd annual meeting of the American Society of Clinical Oncology in Chicago and the 21st Congress of the European Hematology Association, Copenhagen, Denmark, both held in June 2016, and in March 2017 at the 16th International Myeloma Workshop in Delhi, India. Earlier this year, the U.S. Food and Drug Administration and its European counterpart, the European Medicines Agency, approved use of lenalidomide as maintenance therapy for multiple myeloma patients following transplant; this study was part of the regulatory submissions for those approvals.

The new publication, "Lenalidomide Maintenance After Autologous Stem-Cell Transplantation in Newly Diagnosed Multiple Myeloma: A Meta-Analysis," is available at ascopubs.org.

This press release is also available on the Roswell Park website: https://www.roswellpark.org/media/news/international-lenalidomide-trials-show-survival-benefit-maintenance-therapy-following

###

The mission of Roswell Park Cancer Institute (RPCI) is to understand, prevent and cure cancer. Founded in 1898, RPCI is one of the first cancer centers in the country to be named a National Cancer Institute-designated comprehensive cancer center and remains the only facility with this designation in Upstate New York. The Institute is a member of the prestigious National Comprehensive Cancer Network, an alliance of the nation's leading cancer centers; maintains affiliate sites; and is a partner in national and international collaborative programs. For more information, visit http://www.roswellpark.org, call 1-877-ASK-RPCI (1-877-275-7724) or email askrpci(at)roswellpark.org. Follow Roswell Park on Facebook and Twitter.

For the original version on PRWeb visit: http://www.prweb.com/releases/2017/08/prweb14605233.htm

The rest is here:
Roswell Park-Led Analysis Shows Survival Benefit of Lenalidomide Maintenance Therapy Following Transplant - Benzinga

To Read More: Roswell Park-Led Analysis Shows Survival Benefit of Lenalidomide Maintenance Therapy Following Transplant – Benzinga
categoriaBone Marrow Stem Cells commentoComments Off on Roswell Park-Led Analysis Shows Survival Benefit of Lenalidomide Maintenance Therapy Following Transplant – Benzinga | dataAugust 15th, 2017
Read All

Genome architecture guides stem cell fate, Stanford researchers find – Scope (blog)

By daniellenierenberg

When the sequence of the human genome was published in 2001 it was hailed as a great achievement. But now we know our genomes are much more (and much more mysterious) than a simple linear sequence of nucleotide letters. It coils around and over itself in ways that seem mindbogglingly complex. But recently researchers have begun to unravel this mystery and realize that dynamic changes in the genomes three-dimensional structure affect how and when important genes are expressed.

Now dermatologist Paul Khavari, MD, PhD, and graduate student Adam Rubin, former graduate student Brook Barajas, PhD, and researcher Mayra Furlan-Magaril, PhD, have used new mapping techniques to peer into the deepest recesses of tissue-specific stem cells progenitor cells that hang out in specialized tissues like muscle waiting for the call to divide and specialize. They identified two types of DNA contacts that help these cells answer a call to action. They published their resultsin Nature Genetics.

As Khavari explained to me in an email:

How the human genome rearranges itself to express genes needed for specific processes, such as stem cell differentiation, has been a mystery. This work shows that this not only involves physically changing DNA contacts, but also functionally activating contacts between pieces of DNA that were already established.It revises our understanding of the genome to a more living, breathing, moving entity that literally reconfigures itself as it changes its expression rather than a static template that is merely copied.

Specifically, Khavari and his colleagues found that the transformation from a tissue-specific stem cell into a more specialized cell (a process called differentiation) involves a two-step process: First the genomes of stem cells are prepped through a looping process that brings functional parts of the genome into close contact. Then the cells bide their time until the moment of differentiation, when proteins called transcription factors are unleashed to bind to these new DNA neighbors and stimulate the expression of genes necessary to launch the coming transformation.

As Khavari said:

This research illuminates a fundamental mechanism of genome regulation that has not been appreciated before. Specifically, a stem cell is pre-wired with established contacts to express a specific set of differentiation genes but only activates them when the dynamic loops are engaged. By analogy with a race, the runners are all at the starting line and ready to run in that particular event but only the firing of the gun sets the specific event in motion.

This pre-wiring not only allows the stem cells to respond quickly to differentiation signals, but it also locks them into a specific fate, the researchers believe. In this way, a muscle stem cell avoids any missteps that could result in it mistakenly becoming a skin or a blood cell rather than a muscle cell. Interestingly, the researchers also found clues suggesting that perturbations in this looping process are sometimes associated with the development of certain diseases, including skin cancer and psoriasis.

Previously: Inducible loops enable 3D gene expression studies, The quest to unravel complex DNA structures gets a boost from new technology and NIH fundingand DNA origami: How our genomes foldPhoto by Braden Collum

Read the rest here:
Genome architecture guides stem cell fate, Stanford researchers find - Scope (blog)

To Read More: Genome architecture guides stem cell fate, Stanford researchers find – Scope (blog)
categoriaSkin Stem Cells commentoComments Off on Genome architecture guides stem cell fate, Stanford researchers find – Scope (blog) | dataAugust 15th, 2017
Read All

Which research results in mice will help humans with MS? Now there’s a way to tell – UB News Center

By daniellenierenberg

BUFFALO, N.Y. People with multiple sclerosis (MS) knowall too well the frustration of hearing that success in treatingthe disease in mice had little or no effect in humans.

Unfortunately, with no large animal models for MS, results thatsuggest promising new treatments in mice often are ineffective inhumans.

Now, University at Buffalo researchers have developed andsuccessfully tested a method for determining how relevant to thehuman disease findings are from mouse models. The researchwas published Aug. 8 in Stem Cell Reports.

This is an important resource for the field as it allowsus to compare human and rodent cells, and provides a point ofreference to understand whether or not gene expression patterns areconserved between species, said Fraser Sim, PhD, seniorauthor and associate professor in the Department of Pharmacologyand Toxicology in the Jacobs School of Medicine and BiomedicalSciences at UB. Co-first authors are Suyog U. Pol PhD, now apostdoctoral fellow, and Jessie J. Polanco, a doctoral candidate,both in the medical school.

MS trial failures

There have been so many failures in clinical trials forMS when promising observations are translated from small animalmodels to the clinic, Sim said. Our primarymotivation was to try to understand, at a molecular level, how thehuman cells responsible for synthesizing myelin differ from theirmuch-better-studied mouse counterparts.

MS and some other neurological diseases occur when there isdamage to myelin the fatty sheath that allows nerve cellsto communicate. So the myelin-producing cells, called humanoligodendrocyte progenitor cells, or OPCs, found in the brain andspinal cord have been a major focus of efforts to better understandMS and develop potential new treatments for it.

Sim explained that undifferentiated OPCs are frequently found inthe brain lesions of MS patients, so boosting the differentiationof these cells could lead to myelination and a reduction ofsymptoms.

From OPCs to oligodendrocytes

One reason why so many clinical trials fail may be because offundamental differences in the types and levels of genes expressedbetween mice and humans. Sim and his colleagues addressed thisquestion by performing gene-expression analysis on differentiatinghuman OPCs.

In this paper, we describe the transcriptional eventsthat underlie how human OPCs develop into oligodendrocytes,said Sim.

To do it, they used a network analysis software tool calledweighted gene coexpression network analysis (WCGNA). The softwareclusters together genes with similar patterns of expression. Italso allows for analysis of both conserved and divergent geneexpression between humans and rodents.

WCGNA looks at the relationships between genes ratherthan absolute differences between conditions in any givenexperiment, Sim said.

He added that the information encoded in levels of geneexpression increasing or decreasing is very reliable andreproducible.

We performed WCGNA in exactly the same manner on cellsisolated from mice, rats and humans, and prepared these cells in asclose to matched conditions as possible, trying to keep things assimilar as possible to facilitate this comparison, saidSim.

It turned out several of the genes the team had identified asrelevant to human disease also are involved in mouse developmentand mouse models of myelin disease.

New myelin-repairing gene

Based on its findings from that analysis, the team had predictedthat GNB4, a protein involved in signal transduction, would beinvolved in the development of OPCs in humans. The researchersfound that over-production of GNB4, a protein involved in thetransduction of extracellular signals, could cause human OPCs torapidly undergo myelination when transplanted into a model forhuman cell therapy in MS.

So this proteins expression in oligodendrocyteprogenitor cells might ultimately become a therapeutic target,potentially promoting oligodendrocyte formation in MSpatients, said Sim.

The approach also identified several other important candidatesthat play key roles in regulating the development of humanoligodendrocytes.

Other co-authors on the paper are Melanie A. OBara,research scientist; Hani J. Shayya, a UB undergraduate and Karen C.Dietz, PhD, research assistant professor, all of the Department ofPharmacology and Toxicology and Richard A. Seidman, amasters candidate in neuroscience.

The research was funded by the National Multiple SclerosisSoociety, the Kalec Multiple Sclerosis Foundation, the SkarlowMemorial Trust and the Empire State Stem Cell Fund (NYSTEM) throughthe New York State Department of Health.

Read more from the original source:
Which research results in mice will help humans with MS? Now there's a way to tell - UB News Center

To Read More: Which research results in mice will help humans with MS? Now there’s a way to tell – UB News Center
categoriaSpinal Cord Stem Cells commentoComments Off on Which research results in mice will help humans with MS? Now there’s a way to tell – UB News Center | dataAugust 14th, 2017
Read All

Northern Ireland mum fighting MS: Russian medics are now my last hope – Belfast Telegraph

By daniellenierenberg

Northern Ireland mum fighting MS: Russian medics are now my last hope

BelfastTelegraph.co.uk

A young Co Down mum is bravely undergoing a gruelling stem cell transplant in Russia in what she believes is her last hope of enjoying some quality of life.

http://www.belfasttelegraph.co.uk/news/northern-ireland/northern-ireland-mum-fighting-ms-russian-medics-are-now-my-last-hope-36023340.html

http://www.belfasttelegraph.co.uk/life/features/article36023337.ece/4289a/AUTOCROP/h342/2017-08-12_lif_33652492_I8.JPG

A young Co Down mum is bravely undergoing a gruelling stem cell transplant in Russia in what she believes is her last hope of enjoying some quality of life.

Lindsay Rice (35) from Warrenpoint has exhausted every treatment on the health service - including chemotherapy normally given to cancer patients - in the hope of treating the chronic condition Rapidly Evolving Severe Relapsing Remitting Multiple Sclerosis.

Paralysis and temporary sight loss are just a few of the many debilitating symptoms which have left the mum-of-two unable to enjoy normal family life.

Desperate to get her help, her family launched an appeal on Facebook and Go Fund Me to raise 50,000 to send her to the National Pirogov Medical Surgical Centre in Moscow where she arrived two weeks ago to start her stem cell transplant.

The treatment alone is expected to cost up to 45,000 and, incredibly, in just 12 weeks the family has raised 32,000 towards a 50,000 target thanks to generous support from friends and the public.

Lindsay, who is married to Liam (36), a financial advisor, has two children, Jamie (17) and Olivia (8).

Liam says: "This is her last hope and she is doing it for her family and her kids and that's what she is focusing on. She just wants to be able to live a normal life and do normal things with the family."

Since starting her treatment on August 1 she has been keeping a daily dairy of her progress through a Facebook page - Lindsay's Last Hope.

While the groundbreaking treatment known as HSCT (Haematopoietic Stem Cell Transplant) is not a cure for MS, Lindsay's hope is that it will halt the progression of the disease and stop the frequent and severe relapses which are destroying her health.

Lindsay will spend a month in the clinic, most of it in isolation, and when she comes home she faces a long recovery period when she will have to remain isolated for up to a year due to the risk of infection.

HSCT aims to 'reset' the immune system to stop it attacking the central nervous system. It uses chemotherapy to remove the harmful immune cells and then rebuild the immune system using a type of stem cell found in the patient's bone marrow.

The haematopoietic stem cells used in the treatment can produce all the different cells in the blood, including immune cells. However, they can't regenerate permanently damaged nerves or other parts of the brain and spinal cord.

Lindsay has successfully had over two million stem cells extracted in a tough procedure which involved having a catheter inserted into her jugular vein. She has also had her head shaved this week in preparation for starting chemotherapy today.

The chemotherapy will wipe out her immune system and she will then have her stem cells transplanted back into her blood by a drip to help regrow a new, stronger immune system.

She will then have to spend 10 days in complete isolation while her new immune system builds.

Also, since arriving in Russia she has been told that her MS is now much worse than she realised and is now at the Secondary Progressive stage.

People with Secondary Progressive MS don't tend to recover completely from a relapse and can expect a general worsening of symptoms, making the treatment even more time-critical.

In a further blow, tests have picked up a potentially dangerous three-centimetre active lesion on her spine which wasn't spotted during MRI's here.

Lindsay faces a tough few weeks in her bid to halt the progression of the disease but as her husband Liam explains, the alternative is the prospect of life in a wheelchair: "Lindsay has come through a lot since her teens.

"She had Jamie quite young at 18 and her condition seemed to really deteriorate after that. She went to a lot of consultants and had many tests but it wasn't until after she had Olivia that she was finally diagnosed in 2011.

"She never knows from day to day how it will affect her. Fatigue is the number one problem and that is crippling. I would come home from work and after dinner she has to go to bed, and even sleep doesn't help it.

"It stops her from doing simple things like taking our daughter to the park or taking the dog for a walk.

"Her motability is not as good as an average person and the other big issue is the relapses.

"They have become very frequent and each relapse is worse in terms of how severe it is. During her last one in February she had to go into hospital and also had to use a walking frame.

"A common misconception is that after each relapse you go back to normal but that's not the case. It leaves its mark and any damage done is permanent. The nature of the relapses could leave her in a wheelchair."

It was after her last relapse and having exhausted all options for treatment on the Health Service that Lindsay decided she wanted to try HSCT.

Her neurologist in Belfast supported her decision and the family applied to the Russian clinic just 12 weeks ago expecting to wait up to two years before admission.

They were surprised to be offered a cancellation on August 1 leaving them facing a race against time to raise 50,000 to cover the cost of treatment and expenses.

Liam says: "We thought we would have at least 12 months and up to two years to get the money together and it has been amazing to see how people have rallied round and what they have done just from the kindness of their hearts, especially strangers.

"We've had quizzes and coffee mornings and online auctions and I recently did the Four Peaks challenge with a group of friends. Lindsay's mum and her best friend are organising a lot of events and we still have some way to go but we are amazed at how much has been raised and donated in such a short time."

Liam flew to Russia with Lindsay on July 31 and stayed with her for five days while she underwent tests to determine that she was suitable for the treatment.

It has already been a punishing two weeks for Lindsay who has come through a batch of invasive procedures including having a catheter inserted in her jugular to extract the stem cells.

Liam says: "It is an intense treatment and Lindsay is so positive and coping brilliantly. She got her hair cut short before she went and decided to have it shaved this week before the chemo starts and it falls out.

"She will have to spend 10 days in complete isolation to allow her immune system to build again and that will be tough.

"She will hopefully be home after 30 days and then when she comes home she will have a long recovery and will have to isolate herself from society for up to a year to keep her safe from infection.

"We will have to deep clean the house and we will all have to wear face masks as she can't risk even getting a cold."

Liam is back at work and trying to keep things as normal as possible at home for the couple's two children, who he said are coping well: "Jamie is 17 and approaching adulthood and understands why she is doing it and is okay, but obviously his mum is away and he has his sixth year exam results coming and he misses her.

"Olivia seems to be fine too. She understands her mum has MS, which stops her doing things with her and she knows this treatment is to help her to be a better mother.

"I've been trying as much as possible to keep her occupied with play dates and sleepovers."

The couple have been impressed by the level of care in the clinic and Lindsay has had the chance to meet and get to know other MS patients from all over the world.

Liam has nothing but admiration for her strength and the positive way she is enduring the extreme procedures she faces.

He adds: "Lindsay is the most determined person you could ever possibly meet. She has had bad days and it can be demoralising for her but she is determined to be as positive as she can be.

"It is not a cure. MS doesn't have a cure but we hope it will stop the progress of the disease. We just hope it will halt it by rebooting her immune system and hopefully stop the severe relapses."

Liam adds: "It is desperately hard and stressful for all of us and we have to put a positive spin, in the grand scheme of things it is just for a month of her life."

Follow Lindsay's journey at Facebook/Lindsay's Last Hope - HSCT in Russia

Fundraising continues as the family has only until the end of the month to reach their target. You can support this young mum in her bid to enjoy a normal quality of life by going to https://www.gofundme.com/lindsay-slasthope

Belfast Telegraph

Read more:
Northern Ireland mum fighting MS: Russian medics are now my last hope - Belfast Telegraph

To Read More: Northern Ireland mum fighting MS: Russian medics are now my last hope – Belfast Telegraph
categoriaSpinal Cord Stem Cells commentoComments Off on Northern Ireland mum fighting MS: Russian medics are now my last hope – Belfast Telegraph | dataAugust 12th, 2017
Read All

Stem cell therapy for heart failure gets a gold-standard trial – Salon

By daniellenierenberg

In the days after a heart attack, surviving patients and their loved ones can breathe a sigh of relief that the immediate danger is over but the scar tissue that forms during the long healing process can inflict lasting damage. Too often it restricts the hearts ability to fill properly between beats, disrupting rhythm and ultimately leading to heart failure. Yet a new possible treatment may help to revitalize an injured ticker.

A cadre of scientists and companies is now trying to prevent or reverse cardiac damage by infusing a cocktail of stem cells into weakened hearts. One company, Melbourne, Australiabased Mesoblast, is already in late-stage clinical trials, treating hundreds of chronic heart failure patients with stem cell precursors drawn from healthy donors hip bones. A randomized trial that includes a placebo group is scheduled to complete enrollment next year.

Mesoblasts earlier-stage trials, published in 2015 inCirculation Research, found that patients who received injections of its cell mixture had no further problems related to heart failure.

Promising results from the new trial would be a major step forward for a field that has long been criticized for studies that are poorly designed, incomplete or lack control-group comparisons, as well as for the peddling of unproved therapies in many clinics worldwide.

Another company, Belgium-based TiGenix, hopes to attack scar tissue before it forms by treating patients with a mixture of heart stem cells within seven days of a heart attack. This approach has just completed phase II trials, but no findings have yet been published.

There are still many unanswered questions about how stem cells typically derived from bones could help heal the heart. Leading theories suggest they may help fight inflammation, revitalize existing heart cells, or drive those cells to divide or promote new blood-vessel growth, says Richard Lee, leader of the cardiovascular program at the Harvard Stem Cell Institute. Other stem cell scientists, including Joshua Hare, who conducted earlier-stage Mesoblast research and directs the Interdisciplinary Stem Cell Institute at the University of Miami, say the cells may work in multiple ways to heal scar tissue. According to Hare, the stem cells could ultimately be a truly regenerative treatment.

Go here to see the original:
Stem cell therapy for heart failure gets a gold-standard trial - Salon

To Read More: Stem cell therapy for heart failure gets a gold-standard trial – Salon
categoriaCardiac Stem Cells commentoComments Off on Stem cell therapy for heart failure gets a gold-standard trial – Salon | dataAugust 12th, 2017
Read All

Join Jon Kempin, LA Galaxy Foundation and Gift of Life Marrow Registry for Kick Blood Cancer on August 13 – LA Galaxy

By daniellenierenberg

The LA Galaxy Foundation has teamed up with Gift of Life Marrow Registry, a club community partner curing blood cancer through marrow and stem cell donation, to co-host Kick Blood Cancer at The Grove in Los Angeles on Sunday, Aug. 13 from 1-4p.m. The event will feature family-friendly games, activities and LA Galaxy appearances in the effort to recruit potential donors to the worldwide marrow registry.

LA Galaxy goalkeeper Jon Kempin, LA Galaxy Star Squad and LA Galaxy mascot Cozmo will be in attendance. Kempin joined LA Galaxy in the off-season and is one of the brightest young talents in the organization, who earned his first MLS shutout earlier this season. He signed his first MLS contract with Sporting Kansas City at the age of 17.

Gift of Life believes every person battling blood cancer deserves a second chance at life and they are determined to make it happen. They are singularly passionate about engaging the public to help get everyone involved in curing blood cancer, whether as a donor, a volunteer or a financial supporter. It all begins with one remarkable person, one life-changing swab and one huge win finding a match and a cure.

For many patients who suffer from leukemia, lymphoma, or other types of blood cancer, transplantation of bone marrow or peripheral blood stem cells donated by unrelated volunteers offers the hope of a cure.

WHAT

Kick Blood Cancer

WHEN

Sunday, Aug. 13

1-4 p.m.

WHERE

The Grove

189 The Grove Drive

Los Angeles, CA 90036

Here is the original post:
Join Jon Kempin, LA Galaxy Foundation and Gift of Life Marrow Registry for Kick Blood Cancer on August 13 - LA Galaxy

To Read More: Join Jon Kempin, LA Galaxy Foundation and Gift of Life Marrow Registry for Kick Blood Cancer on August 13 – LA Galaxy
categoriaBone Marrow Stem Cells commentoComments Off on Join Jon Kempin, LA Galaxy Foundation and Gift of Life Marrow Registry for Kick Blood Cancer on August 13 – LA Galaxy | dataAugust 11th, 2017
Read All

Attention Knitters: Oklahoma Needs 5000 Baby Hats – Mental Floss

By daniellenierenberg

The human body is an amazing thing. For each one of us, it's the most intimate object we know. And yet most of us don't know enough about it: its features, functions, quirks, and mysteries. Our series The Body explores human anatomy, part by part. Think of it as a mini digital encyclopedia with a dose of wow.

If you say someone's getting on your nerves, you could just cut to the chase and say they're getting on your sciatic nervethis nerve is plenty big enough for both minor and major irritations. It's the largest nerve in the body, running a lengthy route from each side of your lower spine, deep into your buttock, wrapping around to the back of the thigh and into the foot. Mental Floss spoke to Loren Fishman, medical director of Manhattan Physical Medicine and Rehabilitation in NYC andassociate clinical professor at Columbia Medical School. Here are 13 things we learned about this important part of the nervous system.

No wonder this nerve hurts when it gets irritatedat its biggest point, it's one heck of a large nerve, says Fishman.

The sciatic nerve is more accurately five nerves that come together on the right and left sides of the lower spine. Technically, the fourth and fifth lumbar nerves and the first three nerves in the sacral spine come together and merge into the unified sciatic.

"The sciatic nerve gives feeling and strength to the muscles and skin of the calf and foot, supplies sensation from the joints, bones, and just about everything else below the knee," says Fishman.

The nerve connects the spinal cord with the outside of the thigh, the hamstring muscles in the back of the thigh, and the muscles in your lower leg and feet. This is why sciatic nerve impingement often results in muscle weakness, numbness and/or tingling in the leg, ankle, foot, and toes.

After severe spinal cord injury, the nerve itself is often just fine, but the connection between it and the brain has been severed, Fishman says. Until now, there's been no way to fix such injuries, but "recent work with stem cells has begun to restore the connection in dogs and other animals."

A variety of lower back problems can lead to pain that radiates along the sciatic nerve. Most commonly, sciatica pain is caused when a herniated disc at the L5 (lower lumbar back) irritates the S1 (sacrum) nerve root in the lower spine. The exiting nerve roots are highly sensitive, and the bits of the disc that herniate contain inflammatory proteins such as interleukin and tumor necrosis factor that can also aggravate the nerve.

In a small number of people, a condition called cauda equina syndrome (so named because the nerve bundle at the base of the spinal cord resembles a horse's tail) can masquerade as sciaticabut it also usually causes weakness that extends to bowel or bladder incontinence and sometimes weakness or loss of sensation in the legs that gets progressively worse. In this case, immediate medical attention should be sought, and recovery may not be as quick as with common sciatica.

When the ancient Greek and Roman physicians were treating the pain we now commonly know as sciatica, they believed it stemmed from "diseases of the hip joint," according to a 2007 study in Spinal Cord. It wasn't until 1764, write the authors, "that leg pain of 'nervous' origin was distinguished from pain of 'arthritic' origin."

Among the many treatments Hippocrates and his ilk came up with for this painful condition were: "Fumigations, fasting, and subsequently, laxatives, and ingestion of boiled milk of the female ass." In his Treatise of the Predictions, Hippocrates noted that elderly patients with "cramps and colds at the loin and the legs" would experience their pain for up to a year, whereas young people could be free of pain in about 40 days.

The modern name for the disease, according to Fishman, comes from 15th-century Florence. "They called sciatica ischiatica, since they thought it came from tuberculosis that worked its way down to the ischial tuberosity (the sit-bones)," Fishman says. These medieval doctors had the cause wrong, but the name stuck.

Different researchers in different countries began to make sciatic breakthroughs when doing autopsies on corpses with fractured or herniated discs, where they noticed compression on the sciatic nerve.

A 1991 cross sectional study of 2946 women and 2727 men published in Spine found that neither gender nor body mass made any difference in the likelihood of developing sciatica. Body height did, however, in males between the ages of 50 and 64, with taller men being more likely to have the condition. Other studies have found a similar link [PDF]. Over 5'8"? Your risk is higher.

Sciatica has a surprisingly common negative impact on daily life. "Low back pain and sciatica are the second biggest reason for lost days of workjust behind the common cold," says Fishman.The condition is most commonly found in people over 50 andrarely seen in anyone under 20 years oldand then it most often has a genetic cause.

View original post here:
Attention Knitters: Oklahoma Needs 5000 Baby Hats - Mental Floss

To Read More: Attention Knitters: Oklahoma Needs 5000 Baby Hats – Mental Floss
categoriaSpinal Cord Stem Cells commentoComments Off on Attention Knitters: Oklahoma Needs 5000 Baby Hats – Mental Floss | dataAugust 11th, 2017
Read All

Techshot system headed to space | News | newsandtribune.com – Evening News and Tribune

By daniellenierenberg

GREENVILLE Onboard the next SpaceX cargo spacecraft launching to the International Space Station (ISS) from Pad 39A at the Kennedy Space Center will be a commercial research system owned and operated by Techshot Inc. The equipment will conduct regenerative medicine experiments onboard the station before returning to Earth in the same capsule for a splashdown off the coast of Southern California approximately 30 days later.

Techshots ADvanced Space Experiment Processor (ADSEP) is a device approximately the size of a microwave oven that contains three separate modules, each of which simultaneously can process experiments in three separate on-orbit replaceable automated mini-laboratory cassettes. Two of the three cassettes on the mission will conduct research for a team led by Robert Schwartz, Ph.D., from the University of Houston.

Funded by the Center for the Advancement of Science in Space (CASIS), the study will evaluate a new approach to growing human tissue for transplant. The microgravity environment onboard the ISS could improve cell growth and development and 3D tissue formation, enabling discoveries that will advance translational disease treatments. Previous studies on Earth by Schwartz and his collaborators at the Texas Heart Institute and the Baylor College of Medicine have found that low gravity environments help specially programmed stem cells move toward becoming new heart muscle cells, which may be used to repair damaged hearts on Earth.

The third cassette contains an experiment conducted by and for Techshot itself. The company is developing a 3D bioprinter for the ISS known as the Techshot BioFabrication Facility (BFF), which it expects to launch to the station near the end of 2018. Critical to the success of the printer will be the ability to provide nutrients and mechanical stress for organs and tissues it manufactures in space strengthening them and keeping them viable for transplantation back on Earth.

Approximately 36 hours prior to launch, Techshot scientists in a laboratory at the Kennedy Space Center will 3D print a one centimeter thick construct consisting of stem cells and heart muscle cells. Theyll then place it inside the prototype BFF cell culturing subsystem, which for this mission is temporarily housed inside an ADSEP cassette. The printer used in the lab will be the same modified nScrypt unit that was the first to 3D print cardiac constructs with adult human stem cells in microgravity aboard an aircraft in parabolic flight. Video captured inside the cassette during the month-long experiment, and the tissue itself which is expected to have developed its own micro blood vessels will be evaluated for effectiveness after return from space.

Techshots space bioprinting program leverages its terrestrially based technologies for cell isolation and vascular graft development, and its decades long experience culturing cells in space, said Techshot Chief Scientist Eugene Boland, Ph.D., in a news release. Being able to test our novel approach for culturing 3D printed cells more than a year before we fly the whole BFF is invaluable. The data from this mission will get us one step closer toward our goal of helping eliminate organ shortages.

Founded in 1988, Techshot Inc., develops technologies used in the aerospace, defense and medical industries. Through its Space Act Agreement with NASA, and its role as an official CASIS Implementation Partner, the company provides equipment and services that help federal, institutional and industrial customers live and work in space. http://www.Techshot.space

Submitted

Here is the original post:
Techshot system headed to space | News | newsandtribune.com - Evening News and Tribune

To Read More: Techshot system headed to space | News | newsandtribune.com – Evening News and Tribune
categoriaCardiac Stem Cells commentoComments Off on Techshot system headed to space | News | newsandtribune.com – Evening News and Tribune | dataAugust 10th, 2017
Read All

Amniotic sac in a dish: Stem cells form structures that may aid of … – Phys.Org

By daniellenierenberg

The PASE, or post-implantation amniotic sac embryoid, is a structure grown from human pluripotent stem cells that mimics many of the properties of the amniotic sac that forms soon after an embryo implants in the uterus wall. The structures could be used to study infertility. Credit: University of Michigan

The first few weeks after sperm meets egg still hold many mysteries. Among them: what causes the process to fail, leading to many cases of infertility.

Despite the importance of this critical stage, scientists haven't had a good way to explore what can go wrong, or even what must go right, after the newly formed ball of cells implants in the wall of the human uterus.

But a new achievement using human stem cells may help change that. Tiny lab-grown structures could give researchers a chance to see what they couldn't before, while avoiding ethical issues associated with studying actual embryos.

A team from the University of Michigan reports in Nature Communications that they have coaxed pluripotent human stem cells to grow on a specially engineered surface into structures that resemble an early aspect of human development called the amniotic sac.

The cells spontaneously developed some of the same structural and molecular features seen in a natural amniotic sac, which is an asymmetric, hollow ball-like structure containing cells that will give rise to a part of the placenta as well as the embryo itself. But the structures grown at U-M lack other key components of the early embryo, so they can't develop into a fetus.

It's the first time a team has grown such a structure starting with stem cells, rather than coaxing a donated embryo to grow, as a few other teams have done.

"As many as half of all pregnancies end in the first two weeks after fertilization, often before the woman is even aware she is pregnant. For some couples, there is a chronic inability to get past these critical early developmental steps, but we have not previously had a model that would allow us to explore the reasons why," says co-senior author Deborah Gumucio, Ph.D. "We hope this work will make it possible for many scientists to dig deeper into the pathways involved in normal and abnormal development, so we can understand some of the most fascinating biology on earth." Gumucio is the Engel Collegiate Professor of Cell & Developmental Biology at Michigan Medicine, U-M's academic medical center.

A steady PASE

The researchers have dubbed the new structure a post-implantation amniotic sac embryoid, or PASE. They describe how a PASE develops as a hollow spherical structure with two distinct halves that remain stable even as cells divide.

One half is made of cells that will become amniotic ectoderm, the other half consists of pluripotent epiblast cells that in nature make up the embryonic disc. The hollow center resembles the amniotic cavity - which in normal development eventually gives rise to the fluid-filled sac that protects and cushions the fetus during development.

Gumucio likens a PASE to a mismatched plastic Easter egg or a blue-and-red Pokmon ball - with two clearly divided halves of two kinds of cells that maintain a stable form around a hollow center.

The team also reports details about the genes that became activated during the development of a PASE, and the signals that the cells in a PASE send to one another and to neighboring tissues. They show that a stable two-halved PASE structure relies on a signaling pathway called BMP-SMAD that's known to be critical to embryo development.

Gumucio notes that the PASE structures even exhibit the earliest signs of initiating a "primitive streak", although it did not fully develop. In a human embryo, the streak would start a process called gastrulation. That's the division of new cells into three cell layersendoderm, mesoderm and ectodermthat are essential to give rise to all organs and tissues in the body.

Collaboration provides the spark

The new study follows directly from previous collaborative work between Gumucio's lab and that of the other senior author, U-M mechanical engineering associate professor Jianping Fu, Ph.D.

In the previous work, reported in Nature Materials, the team succeeded in getting balls of stem cells to implant in a special surface engineered in Fu's lab to resemble a simplified uterine wall. They showed that once the cells attached themselves to this substrate, they began to differentiate into hollow cysts composed entirely of amnion - a tough extraembryonic tissue that holds the amniotic fluid.

But further analysis of these cysts by co-first authors of the new paper Yue Shao, Ph.D., a graduate student in Fu's lab, and Ken Taniguchi, a postdoctoral fellow in Gumucio's lab, revealed that a small subset of these cysts were stably asymmetric and looked exactly like early human or monkey amniotic sacs.

The team found that such structures could also grow from induced pluripotent stem cells (iPSCs)cells derived from human skin and grown in the lab under conditions that give them the ability to become any type of cell, similar to how embryonic stem cells behave. This opens the door for future work using skin cells donated by couples experiencing chronic infertility, which could be grown into iPSCs and tested for their ability to form proper amniotic sacs using the methods devised by the team.

Important notes and next steps

Besides working with genetic and infertility specialists to delve deeper into PASE biology as it relates to human infertility, the team is hoping to explore additional characteristics of amnion tissue.

For example, early rupture of the amnion tissue can endanger a fetus or be the cause of a miscarriage. The team also intends to study which aspects of human amnion formation also occur in development of mouse amnion. The mouse embryo model is very attractive as an in vivo model for investigating human genetic diseases.

The team's work is overseen by a panel that monitors all work done with pluripotent stem cells at U-M, and the studies are performed in accordance with laws regarding human stem cell research. The team ends experiments before the balls of cells effectively reach 14 developmental days, the cutoff used as an international limit on embryo researcheven though the work involves tissue that cannot form an embryo. Some of the stem cell lines were derived at U-M's privately funded MStem Cell Laboratory for human embryonic stem cells, and the U-M Pluripotent Stem Cell Core.

Explore further: Team uses stem cells to study earliest stages of amniotic sac formation

More information: Yue Shao et al, A pluripotent stem cell-based model for post-implantation human amniotic sac development, Nature Communications (2017). DOI: 10.1038/s41467-017-00236-w

Read the original here:
Amniotic sac in a dish: Stem cells form structures that may aid of ... - Phys.Org

To Read More: Amniotic sac in a dish: Stem cells form structures that may aid of … – Phys.Org
categoriaSkin Stem Cells commentoComments Off on Amniotic sac in a dish: Stem cells form structures that may aid of … – Phys.Org | dataAugust 9th, 2017
Read All

Page 205«..1020..204205206207..210220..»


Copyright :: 2025