Page 209«..1020..208209210211..220230..»

Stem Cells Edited to Fight Arthritis – Technology Networks

By daniellenierenberg


Technology Networks
Stem Cells Edited to Fight Arthritis
Technology Networks
Such stem cells, known as SMART cells (Stem cells Modified for Autonomous Regenerative Therapy), develop into cartilage cells that produce a biologic anti-inflammatory drug that, ideally, will replace arthritic cartilage and simultaneously protect ...
CRISPR-SMART Cells Regenerate Cartilage, Secrete Anti-Arthritis DrugGenetic Engineering & Biotechnology News

all 5 news articles »

Originally posted here:
Stem Cells Edited to Fight Arthritis - Technology Networks

To Read More: Stem Cells Edited to Fight Arthritis – Technology Networks
categoriaSkin Stem Cells commentoComments Off on Stem Cells Edited to Fight Arthritis – Technology Networks | dataApril 28th, 2017
Read All

Stem-cell screening finds statin alternative for hypercholesterolaemia – The Pharmaceutical Journal

By daniellenierenberg

Source: Shutterstock.com

Researchers have showncertain cardiac glycosides can reduce hepatocyte production of aprecursor of LDL cholesterol.

Familial hypercholesterolaemia (FH) is a rare genetic disease that affects the production of functioning low-density lipoprotein (LDL) receptors in the liver. When patients have mutations in both copies of the LDL receptor gene, they do not respond to statins and have limited pharmaceutical treatment options available because of a lack of accurate disease models.

Reporting in Cell Stem Cell on 6 April 2017[1], researchers used FH human hepatocytes derived from induced pluripotent stem cells to screen for existing drugs that might lower apolipoprotein B (apoB) a precursor of LDL cholesterol.

The team found that all nine cardiac glycosides in their drug library reduced levels of apoB in the hepatocytes. In an analysis of historical patient data, the researchers found a reduction in serum LDL-C comparable to that seen with statins in patients taking cardiac glycosides.

The researchers say the results demonstrate the potential of their stem-cell based approach for identifying new treatment candidates for inherited liver diseases.

Citation: Clinical Pharmacist, CP April 2017 online, online | DOI: 10.1211/CP.2017.20202623

See the article here:
Stem-cell screening finds statin alternative for hypercholesterolaemia - The Pharmaceutical Journal

To Read More: Stem-cell screening finds statin alternative for hypercholesterolaemia – The Pharmaceutical Journal
categoriaCardiac Stem Cells commentoComments Off on Stem-cell screening finds statin alternative for hypercholesterolaemia – The Pharmaceutical Journal | dataApril 27th, 2017
Read All

Two weeks after his transplant, Jonathan Pitre battles kidney complications – Ottawa Citizen

By daniellenierenberg


Ottawa Citizen
Two weeks after his transplant, Jonathan Pitre battles kidney complications
Ottawa Citizen
Pitre, 16, was infused two weeks ago with stem-cell rich blood and bone marrow drawn from his mother's hip. The procedure, conducted as part of an ongoing clinical trial at the University of Minnesota Masonic Children's Hospital, is the only treatment ...

and more »

See the article here:
Two weeks after his transplant, Jonathan Pitre battles kidney complications - Ottawa Citizen

To Read More: Two weeks after his transplant, Jonathan Pitre battles kidney complications – Ottawa Citizen
categoriaBone Marrow Stem Cells commentoComments Off on Two weeks after his transplant, Jonathan Pitre battles kidney complications – Ottawa Citizen | dataApril 27th, 2017
Read All

World’s 1st Stem Cell Transplant from Donor to Man’s Eye Shows Promise of Restoring Sight – EnviroNews (registration) (blog)

By daniellenierenberg

(EnviroNews World News) Kobe, Japan For more than two million Americans, straight lines may look wavy and the vision in the center of their eye may slowly disappear. Its called age-related macular degeneration (AMD), and there is no cure. But that may change soon.

A surgical team at Kobe City Medical Center General Hospital in Japan recently injected 250,000 retinal pigment epithelial (RPE) cells into the right eye of a man in his 60s. The cells were derived from donor stem cells stored at Kyoto University. It marked the first time that retinal cells derived from a donors skin have been implanted in a patients eye. The skin cells had been reprogrammed into induced pluripotent stem cells (iPS), which can be grown into most cell types in the body.

The procedure is part of a safety study authorized by Japans Ministry of Health that will involve five patients. Each will be followed closely for one year and continue to receive follow-up exams for three additional years. Project leader Dr. Masayo Takahashi at Riken, a research institution that is part of the study, told the Japan Times, A key challenge in this case is to control rejection. We need to carefully continue treatment.

A previous procedure on a different patient in 2014 used stem cells from the individuals own skin. Two years later, the patient reported showing some improvement in eyesight. But the procedure cost $900,000, leading the study team to move forward using donor cells. They expect the costs to come down to less than $200,000.

Among people over 50 in developed countries, AMD is the leading cause of vision loss. According to the National Eye Institute, 14 percent of white Americans age 80 or older will suffer some form of AMD. The condition is almost three times more common among white adults than among people of color. Women of all races comprise 65 percent of AMD cases.

The lack of a cure has led some to try unproven treatments. Three elderly women lost their sight after paying $5,000 each for a stem cell procedure at a private clinic in Florida. Clinic staff used liposuction to remove fat from the womens bellies. They then extracted stem cells from the fat, which were injected into both eyes of each patient in the same procedure, resulting in vision loss in both eyes. Two of the three victims agreed to a lawsuit settlement with the company that owned the clinic.

Stem cell therapy is still at an early stage. As of January 2016, 10 clinical uses have been approved around the world, all using adult stem cells. These include some forms of leukemia and bone marrow disease, Hodgkin and non-Hodgkin lymphoma and some rare inherited disorders including sickle cell anemia. Stem cell transplants are now often used to treat multiple myeloma, which strikes more than 24,000 people a year in the U.S.

Clinical trials to treat type 1 diabetes, Parkinsons disease, stroke, brain tumors and other conditions are being conducted. The first patient in a nationwide clinical study to receive stem cell therapy for heart failure recently underwent the procedure at the University of Wisconsin School of Medicine and Public Health. An experimental treatment at Keck Medical Center of USC last year on a paralyzed patient restored the 21-year-old mans use of his arms and hands. Harvard scientists see stem cell biology as a path to counter aging and extend human lifespans. But the International Society for Stem Cell Research warns that there are many challenges ahead before these treatments are proven safe and effective.

The U.S. Food and Drug Administration (FDA) regulates stem cells to ensure that they are safe and effective for their intended use. But, that doesnt stop some clinics from preying on worried patients. The FDA warns on its website that the hope that patients have for cures not yet available may leave them vulnerable to unscrupulous providers of stem cell treatments that are illegal and potentially harmful.

While there is yet no magic cure for AMD, the Japan study and others may one day lead there. The Harvard Stem Cell Institute (HSCI) in Boston is currently researching retina stem cell transplants. One approach uses gene therapy to generate a molecule that preserves healthy vision. Another involves Muller cells, which give fish the ability to repair an injured retina.

But these therapies are far off. We are at about the halfway mark, but there is still a precipitous path ahead of us, Takahashi said.

Read the original here:
World's 1st Stem Cell Transplant from Donor to Man's Eye Shows Promise of Restoring Sight - EnviroNews (registration) (blog)

To Read More: World’s 1st Stem Cell Transplant from Donor to Man’s Eye Shows Promise of Restoring Sight – EnviroNews (registration) (blog)
categoriaIPS Cell Therapy commentoComments Off on World’s 1st Stem Cell Transplant from Donor to Man’s Eye Shows Promise of Restoring Sight – EnviroNews (registration) (blog) | dataApril 27th, 2017
Read All

‘Minibrains’ in a dish shed a little light on autism and epilepsy – 89.3 KPCC

By daniellenierenberg

Tiny, 3-D clusters of human brain cells grown in a petri dish are providing hints about the origins of disorders like autism and epilepsy.

An experiment using these cell clusters which are only about the size of the head of a pin found that a genetic mutation associated with both autism and epilepsy kept developing cells from migrating normally from one cluster of brain cells to another, researchers report in the journal Nature.

"They were sort of left behind," says Dr. Sergiu Pasca, an assistant professor of psychiatry and behavioral sciences at Stanford. And that type of delay could be enough to disrupt the precise timing required for an actual brain to develop normally, he says.

The clusters often called minibrains, organoids or spheroids are created by transforming skin cells from a person into neural stem cells. These stem cells can then grow into structures like those found in the brain and even form networks of communicating cells.

Brain organoids cannot grow beyond a few millimeters in size or perform the functions of a complete brain. But they give scientists a way to study how parts of the brain develop during pregnancy.

"One can really understand both a process of normal human brain development, which we frankly don't understand very well, [and] also what goes wrong in the brain of patients affected by diseases," says Paola Arlotta, a professor of stem cell and regenerative biology at Harvard who was not involved in the cell migration study. Arlotta is an author of a second paper in Nature about creating a wide variety of brain cells in brain organoids.

Pasca's team began experimenting with organoids in an effort to learn more about brain disorders that begin long before birth. Animal brains are of limited use in this regard because they don't develop the way human brains do. And traditional brain cell cultures, which grow as a two-dimensional layer in a dish, don't develop the sort of networks and connections that are thought to go awry in disorders like autism, epilepsy and schizophrenia.

"So the question was really, can we capture in a dish more of these elaborate processes that are underlying brain development and brain function," Pasca says.

He was especially interested in a critical process that occurs when cells from deep in the brain migrate to areas nearer the surface. This usually happens during the second and third trimesters of pregnancy.

So Pasca's team set out to replicate this migration in a petri dish. They grew two types of clusters, representing both deep and surface areas of the forebrain. Then they placed deep clusters next to surface clusters to see whether cells would start migrating.

Pasca says the cells did migrate, in a surprising way. "They don't just simply crawl, but they actually jump," he says. "So they look for a few hours in the direction in which they want to move, they sort of decide on what they want to do, and then suddenly they make a jump."

Pasca suspected this migration process might be disrupted by a genetic disorder called Timothy syndrome, which can cause a form of autism and epilepsy. So he repeated the experiment, using stem cells derived from the skin cells of a person who had Timothy syndrome.

And sure enough, the cells carrying the genetic mutation didn't jump as far as healthy cells did. "They moved inefficiently," Pasca says.

Next Pasca wondered if there might be some way to fix the migration problem. He thought there might be, because Timothy syndrome causes cells to let in too much calcium. And he knew that several existing blood pressure drugs work by blocking calcium from entering cells.

So the team tried adding one of these calcium blockers to the petri dish containing clusters of brain cells that weren't migrating normally. And it worked. "If you do treat the cultures with this calcium blocker, you can actually restore the migration of cells in a dish," Pasca says.

Fixing the problem in a developing baby wouldn't be that simple, he says. But the experiment offers a powerful example of how brain organoids offer a way to not only see what's going wrong, but try drugs that might fix the problem.

Still, to realize their full potential, brain organoids need to get better, Arlotta says. This means finding ways to keep the cell clusters alive longer and allowing them to form more of the types of brain cells that are found in a mature brain.

Arlotta's team has developed techniques that allow brain cell clusters to continue growing and developing in a dish for many months. And what's remarkable, she says, is that over time the clusters automatically begin creating structures and networks like those in a developing brain.

"Using their own information from their genome, the cells can self-assemble and they can decide to become a variety of different cell types than you normally find," she says.

In one experiment, a brain organoid produced nearly all the cell types found in the mature retina, Arlotta says. And tests showed that some of these retinal cells even responded to light.

Read the rest here:
'Minibrains' in a dish shed a little light on autism and epilepsy - 89.3 KPCC

To Read More: ‘Minibrains’ in a dish shed a little light on autism and epilepsy – 89.3 KPCC
categoriaSkin Stem Cells commentoComments Off on ‘Minibrains’ in a dish shed a little light on autism and epilepsy – 89.3 KPCC | dataApril 26th, 2017
Read All

Skin stem cells used to generate new brain cells: Study to advance … – Science Daily

By daniellenierenberg

Skin stem cells used to generate new brain cells: Study to advance ...
Science Daily
Using human skin cells, neurobiologists have created a method to generate one of the principle cell types of the brain called microglia, which play a key role in ...

and more »

Originally posted here:
Skin stem cells used to generate new brain cells: Study to advance ... - Science Daily

To Read More: Skin stem cells used to generate new brain cells: Study to advance … – Science Daily
categoriaSkin Stem Cells commentoComments Off on Skin stem cells used to generate new brain cells: Study to advance … – Science Daily | dataApril 25th, 2017
Read All

‘It’s amazing!’ Student discovers he’s a potential life-saving bone marrow match – Lincolnshire Echo

By daniellenierenberg

Comments(0)

A Lincoln student is set to save someone's life after finding out he was a match for someone who needed a bone marrow transplant.

John-Paul Dickie, the vice-president of academic affairs at the University of Lincoln, said he joined the register after his flatmate told him about it.

He doesn't know the identity of the person whose life he saved, but said he was delighted that he's been able to help someone who was desperate for a transplant.

He said: "My flatmate was involved with Lincoln Marrow, a student-led group trying to sign people up to the British Bone Marrow Register. He was telling me the benefits of it, including the fact it could potentially save someone's life.

READ MORE: Selfless mum marks 50th blood donation with daughter's first

"I signed up in February 2014, so it was a surprise when I heard back earlier this year that I was a potential match. I had some samples taken and eventually I had a date set for the operation in May.

"I'm looking forward to it, as it's an amazing way to help somebody.

"However I'm also a bit hesitant as it will require me to be strapped to a machine for four or five hours. My partner will be there to keep me company and I'll have books and TV to stop me from getting too bored."

When bone marrow is damaged it prevents a person from creating healthy blood cells and transplants like this help to treat the condition.

The transplant requires taking stem cells from the blood or bone marrow of one person and giving them to another.

John-Paul added: "There are two ways to take stem cells. One is taking them out of your back using a needle, which is painful but only 10 per cent of people have. Fortunately, I'm having the more common method in which blood is taken out of one arm, the stem cells are removed and then it is returned in the other arm."

READ MORE: 'Gordon was denied stem cell treatment, but I'll hold him in my heart forever'

Most people who need stem cells will be a match with a close family member. However, if this doesn't work then they will have to wait on the British Bone Marrow Registry.

"It's a great way to contribute and help save someone's life. All you have to do is give a sample of spit to get on the register, the process is so simple and easy. If you're able to do it, I would definitely encourage you to give it a try.

"The procedure is anonymous in case something goes wrong. You can find out their age and sex, but at the moment I don't know anything. After two years, you can apply to find out who they are."

Bone marrow donors need to be aged between 17 and 40 and already registered as a blood donor.

If you meet these criteria interested in signing up to the British Bone Marrow Register, visit their website for more information at: http://www.nhsbt.nhs.uk/bonemarrow/

Read this article:
'It's amazing!' Student discovers he's a potential life-saving bone marrow match - Lincolnshire Echo

To Read More: ‘It’s amazing!’ Student discovers he’s a potential life-saving bone marrow match – Lincolnshire Echo
categoriaBone Marrow Stem Cells commentoComments Off on ‘It’s amazing!’ Student discovers he’s a potential life-saving bone marrow match – Lincolnshire Echo | dataApril 23rd, 2017
Read All

The quest for less addictive drugs – Foster’s Daily Democrat

By daniellenierenberg

By Marilynn MarchioneAP Chief Medical Writer

Tummy tucks really hurt. Doctors carve from hip to hip, slicing off skin, tightening muscles, tugging at innards. Patients often need strong painkillers for days or even weeks, but Mary Hernandez went home on just over-the-counter ibuprofen.

The reason may be the yellowish goo smeared on her 18-inch wound as she lay on the operating table. The Houston woman was helping test a novel medicine aimed at avoiding opioids, potent pain relievers fueling an epidemic of overuse and addiction.

Vicodin, OxyContin and similar drugs are widely used for bad backs, severe arthritis, damaged nerves and other woes. They work powerfully in brain areas that control pleasure and pain, but the body adapts to them quickly, so people need higher and higher doses to get relief.

This growing dependence on opioids has mushroomed into a national health crisis, ripping apart communities and straining police and health departments. Every day, an overdose of prescription opioids or heroin kills 91 people, and legions more are brought back from the brink of death. With some 2 million Americans hooked on these pills, evidence is growing that they're not as good a choice for treating chronic pain as once thought.

Drug companies are working on alternatives, but have had little success.

Twenty or so years ago, they invested heavily and "failed miserably," said Dr. Nora Volkow, director of the National Institute on Drug Abuse.

Pain is a pain to research. Some people bear more than others, and success can't be measured as objectively as it can be with medicines that shrink a tumor or clear an infection. Some new pain drugs that worked well were doomed by side effects Vioxx, for instance, helped arthritis but hurt hearts.

Some fresh approaches are giving hope:

"Bespoke" drugs, as Volkow calls them. These target specific pathways and types of pain rather than acting broadly in the brain. One is Enbrel, which treats a key feature of rheumatoid arthritis and, in the process, eases pain.

Drugs to prevent the need for opioids. One that Hernandez was helping test numbs a wound for a few days and curbs inflammation. If people don't have big pain after surgery, their nerves don't go on high alert and there's less chance of developing chronic pain that might require opioids.

Funky new sources for medicines. In testing: Drugs from silk, hot chili peppers and the venom of snakes, snails and other critters.

Novel uses for existing drugs. Some seizure and depression medicines, for example, can help some types of pain.

The biggest need, however, is for completely new medicines that can be used by lots of people for lots of problems. These also pose the most risk for companies and patients alike.

One drug's bumpy road

In the early 2000s, a small biotech company had a big idea: blocking nerve growth factor, a protein made in response to pain. The company's drug, now called tanezumab (tah-NAZE-uh-mab), works on outlying nerves, helping to keep pain signals from muscles, skin and organs from reaching the spinal cord and brain good for treating arthritis and bad backs.

Pfizer Inc. bought the firm in 2006 and expanded testing. But in 2010, some people on tanezumab and similar drugs being tested by rivals needed joint replacements. Besides dulling pain, nerve growth factor may affect joint repair and regeneration, so a possible safety issue needed full investigation in a medicine that would be the first of its type ever sold, said one independent expert, Dr. Jianguo Cheng, a Cleveland Clinic pain specialist and science chief for the American Academy of Pain Medicine.

Regulators put some of the studies on hold. Suddenly, some people who had been doing well on tanezumab lost access to it. Phyllis Leis in Waterfall, a small town in south-central Pennsylvania, was one.

"I was so angry," she said. "That was like a miracle drug. It really was. Unless you have arthritis in your knees and have trouble walking, you'll never understand how much relief and what a godsend it was."

Her doctor, Alan Kivitz of Altoona Center for Clinical Research, has helped run hundreds of pain studies and consults for Pfizer and many other companies. "You rarely get people to feel that good" as many of them did on the nerve growth factor drugs, he said.

A drug with that much early promise is unusual, said Ken Verburg, who has led Pfizer's pain research for several decades.

"When you do see one, you fight hard to try to bring one to the market," he said.

An independent review ultimately tied just a few serious joint problems to tanezumab and the suspension on testing was lifted in August 2012. But a new issue nervous system effects in some animal studies prompted a second hold later that year, and that wasn't lifted until 2015.

Now Eli Lilly & Co. has joined Pfizer in testing tanezumab in late-stage studies with 7,000 patients. Results are expected late next year about 17 years after the drug's conception.

Avoiding pain to avoid drugs

What if a drug could keep people from needing long-term pain relief in the first place? Heron Therapeutics Inc. is testing a novel, long-acting version of two drugs the anesthetic bupivacaine and the anti-inflammatory meloxicam for notoriously painful operations like tummy tucks, bunion removal and hernia repair.

Company studies suggest it can numb wounds for about three days and cut patients' need for opioids by 30 percent to 50 percent.

There's a good chance of preventing brain responses that lead to chronic pain if patients can get through that "initially very rough period," said Dr. Harold Minkowitz, a Houston anesthesiologist who consults for Heron and treated Hernandez in the tummy tuck study.

Hernandez was part of an experiment testing the drug versus a placebo and doesn't know whether she got the drug or a dummy medicine. But she hurt less than she expected to and never filled a prescription for pain pills.

"The goal would be to have half or more of patients not requiring an opiate after they go home," said Heron's chief executive, Barry Quart. "You have far fewer opiates going out into society, far fewer opiates sitting in medicine cabinets that make their way to a high school."

Studies so far are mid-stage too small to prove safety and effectiveness but Heron plans more aimed at winning approval.

On the horizon

Many companies have their eyes on sodium channel blockers, which affect how nerves talk to each other and thus might help various types of pain. Others are testing cell therapies for nerve pain. Stem cells can modulate immune responses and inflammation, and may "overcome a raft of problems," said Cheng of the pain medicine academy.

Some companies, including Samumed, Centrexion Therapeutics and Flexion Therapeutics, are testing long-acting medicines to inject in knees to relieve arthritis pain. Samumed's aims to regenerate cartilage.

And then there's marijuana. A cannabis extract is sold as a mouth spray in Britain for nerve pain and other problems from multiple sclerosis. But cannabinoid research in the United States has been hampered by marijuana's legal status. A special license is needed and most researchers don't even try to obtain one, said Susan Ingram, a neurosurgery scientist at Oregon Health & Science University.

She is studying cannabinoid receptors in the brain, looking at how pain affects one type but not another. Such work might someday lead to drugs that relieve pain but don't produce a high or addiction.

Selective activity has precedent: The drug buprenorphine partially binds to opioid receptors in the brain and has become "an extraordinarily successful medication" for treating addiction, said Volkow, of the national drug institute.

"It has shown pharmaceutical companies that if you come up with a good intervention, there is an opportunity to recover their costs," she said.

Marilynn Marchione can be followed at http://twitter.com/MMarchioneAP

Here is the original post:
The quest for less addictive drugs - Foster's Daily Democrat

To Read More: The quest for less addictive drugs – Foster’s Daily Democrat
categoriaSpinal Cord Stem Cells commentoComments Off on The quest for less addictive drugs – Foster’s Daily Democrat | dataApril 23rd, 2017
Read All

Study overturns seminal research about the developing nervous system – UCLA Newsroom

By daniellenierenberg

FINDINGS

New research by scientists at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLAoverturns a long-standing paradigm about how axons thread-like projections that connect cells in the nervous system grow during embryonic development. The findings of the study, led by Samantha Butler, associate professor of neurobiology, could help scientists replicate or control the way axons grow, which may be applicable for diseases that affect the nervous system, such as diabetes, as well as injuries that sever nerves.

As an embryo grows, neurons the cells in the nervous system extend axons into the developing spinal cord. Axons are then guided to reach other areas of the body, such as the brain, to establish a functioning nervous system. It has been generally understood that various guidance cues, which are cellular molecules such as proteins, either attract or repel axon growth as the axons reach out from neurons to find their destination in the nervous system.

Previous research suggested that a particular guidance cue, called netrin1, functions over a long distance to attract and organize axon growth, similar to how a lighthouse sends out a signal to orient a ship from afar. However, previous research also shows that netrin1 is produced in many places in the embryonic spinal cord, raising questions about whether it really acts over a long distance. Most notably, netrin1 is produced by tissue-specific stem cells, called neural progenitors, which can create any cell type in the nervous system. Yet, it was not understood how the netrin1 produced by neural progenitors influences axon growth.

Butler and her research team removed netrin1 from neural progenitors in different areas in mouse embryonic spinal cords. This manipulation resulted in highly disorganized and abnormal axon growth, giving the researchers a very detailed view of how netrin1 produced by neural progenitors influences axons in the developing nervous system.

They found that neural progenitors organize axon growth by producing a pathway of netrin1 that directs axons only in their local environment and not over long distances. This pathway of netrin1 acts as a sticky surface that encourages axon growth in the directions that form a normal, functioning nervous system.

Butlers study is a significant reinterpretation of the role of netrin1 in nervous system formation. The results further scientists understanding of the contribution neural progenitors make to neural circuit formation. Determining how netrin1 specifically influences axon growth could help scientists use netrin1 to regenerate axons more effectively in patients whose nerves have been damaged.

For example, because nerves grow in channels, there is much interest in trying to restore nerve channels after an injury that results in severed nerves, which is seen often in patients who have experienced an accident or in veterans with injuries to their arms or legs. One promising approach is to implant artificial nerve channels into a person with a nerve injury to give regenerating axons a conduit to grow through. Butler believes that coating such nerve channels with netrin1 could further encourage axon regrowth. Her continued research will focus on uncovering more details about how netrin1 functions and how it could be used clinically.

Butler is the senior author of the study. The first author is Supraja Varadarajan, a graduate student in Butlers lab.

The study is published today in the journal Neuron.

The study was funded by grants from the National Institutes of Health (DK097075, HL098294, HL114457, DK082509 HL109233, DK109574, HL119837, NS072804, NS089817, NS063999, NS085097 and HL133900), the Canadian Institutes of Health Research (MOP-97758 and MOP-77556), Brain Canada, the Natural Sciences and Engineering Research Council of Canada, Canada Foundation for Innovation, the W. Garfield Weston Foundation, the March of Dimes Foundation (6-FY10-296 and 1-FY07-458) and the UCLA Broad Stem Cell Research Center.

See more here:
Study overturns seminal research about the developing nervous system - UCLA Newsroom

To Read More: Study overturns seminal research about the developing nervous system – UCLA Newsroom
categoriaSpinal Cord Stem Cells commentoComments Off on Study overturns seminal research about the developing nervous system – UCLA Newsroom | dataApril 21st, 2017
Read All

Skin 2 Skin Care Anti-Sagging Renewal Serum – Truth In Aging

By daniellenierenberg

Size: 1.8 oz (50 ml)

Skin 2 Skin Care Anti-Sagging Renewal Serum is a highly-concentrated lifting serum created to restore a tighter, more youthful appearance. On application, the silky serum immediately improves the texture and feel of the skin while complex peptides and stem cells work over time to diminish the appearance of sagging and wrinkles. It provides essential nourishment that helps skin act and appear younger. After a month of use, Marta, the founder of Truth In Aging, reported firmer and more lifted skin, especially around the cheeks and jawline.

Anti-Sagging Renewal Serum features two advanced peptide complexes. Syn-Coll (Palmitoyl Tripeptide-5) has been shown to help reduce the appearance of any lip and nasal labial lines while improving facial definition. Syn-Tacks (Palmitoyl Dipeptide-5 and Palmitoyl Dipeptide-6 Diaminohydroxybutyate) supports the epidermis and stimulates collagen, laminin and elastin. In addition, green tea stem cell extract is used for its powerful ability to renew the skin. This formula is free of parabens, petroleum, mineral oil, paraffin, phthalates, sulfates, PABA, synthetic color and fragrance. Apply it to the face and neck for stronger, sag-resistant skin.

Tested for 30 days and recommended by Marta:

When I chatted to Skin 2 Skin founder Ken Simpson about Anti-Sagging Renewal Serum ($73), he went out of his way to point out that it contains dimethicone, adding that while he appreciates that some in the Truth In Aging community wont like this, the ingredient does wonders for scars. It didnt put me off when testing this serum, and I am most impressed with the results.

This serum can certainly be added to our arsenal of firming creams. I found that my skin looked a little lifted, especially around the jawline and lower cheeks. Overall, my skin is firmer and softer. As a bonus, as promised by Ken, I found that an odd little callused scar which appeared one day about a year ago on the site of a blemish, is much reduced. Nothing had helped in the past. Good job, Skin 2 Skin.

One of the things I like about this creamy-textured serum, is that the ingredients list doesnt take an everything-but-the-kitchen-sink approach. It is tightly focused on two very good peptide complexes, green tea stem cells and the aforementioned silicone.

Syn-tacks is a combination of two synthetic peptides. According to the manufacturer, they interact with the most relevant protein structures of the dermal-epidermal junction and stimulates a broad spectrum of things responsible for youthful skin laminin V, collagen types IV, VII and XVII and integrin all at once. For example, collagen IV activity is increased by a whopping 190 percent, according to the manufacturer.

Syn-Coll is a peptide molecule that works in two ways. First, it boosts collagen by mimicking the bodys own mechanism to activate transforming growth factor beta, TGF- (Tissue Growth Factor), a key element in the synthesis of collagen. It also protects collagen from degradation through the inhibition of matrix metalloproteinases (MMP).

My objection to silicone in skincare is that it has been a stalwart of department store beauty brands for decades, used to impart a superficial silkiness to the skin and inexpensively bulk up the formula. However, Skin 2 Skin has consciously introduced it here to help soften and reduce scars and blemishes. As I mentioned earlier in this review, I can attest to this working. Independent research has demonstrated that

silicone increases hydration of stratum corneum, helping to regulate fibroblast production and reduction in collagen production. The result is a softer and flatter scar.

As always with Skin 2 Skin, this is a highly effective formula that does what it sets out to do and contains no nasties. For those looking to achieve firmer, more velvety skin, this is definitely on the must try list.

Got Questions? Contact Us

Read more:
Skin 2 Skin Care Anti-Sagging Renewal Serum - Truth In Aging

To Read More: Skin 2 Skin Care Anti-Sagging Renewal Serum – Truth In Aging
categoriaSkin Stem Cells commentoComments Off on Skin 2 Skin Care Anti-Sagging Renewal Serum – Truth In Aging | dataApril 20th, 2017
Read All

Brain Organoid Created from Stem Cells | Technology Networks – Technology Networks

By daniellenierenberg


Technology Networks
Brain Organoid Created from Stem Cells | Technology Networks
Technology Networks
Technology Networks is an internationally recognised publisher that provides access to the latest scientific news, products, research, videos and posters.

and more »

Read the rest here:
Brain Organoid Created from Stem Cells | Technology Networks - Technology Networks

To Read More: Brain Organoid Created from Stem Cells | Technology Networks – Technology Networks
categoriaSkin Stem Cells commentoComments Off on Brain Organoid Created from Stem Cells | Technology Networks – Technology Networks | dataApril 20th, 2017
Read All

Cellular Dynamics International Signs Distribution Deal with STEMCELL Technologies – Yahoo Finance

By daniellenierenberg

MADISON, Wis.--(BUSINESS WIRE)--

Cellular Dynamics International (CDI), a FUJIFILM company and a leading developer and manufacturer of induced pluripotent stem cell-derived products, today announced it has signed a distribution agreement with STEMCELL Technologies, a world leader in iPS cell culture media.

This joint agreement with STEMCELL Technologies will make iPSC technology widely available to researchers worldwide, helping advance biological research leading to cellular therapies and drug discovery, said Dr. Bruce Novich, Division President-CNBD for FUJIFILM Holdings America Corporation and Executive Vice President and General Manager for CDI. We believe that STEMCELL Technologies, a leading developer, manufacturer and seller of stem cell related products, is an ideal partner for CDI, because their global sales and distribution infrastructure delivers to an established and an emerging customer base, which translates into faster access to and deeper penetration of CDIs leading edge technologies and products.

Under the terms of the agreement, STEMCELL Technologies will distribute CDIs iCell catalog of products in North America, Europe, and Singapore, with other countries under consideration. CDIs iCell products are differentiated human induced pluripotent stem cell (iPSC)-derived cells, which include cardiomyocytes, hepatocytes, and others, totaling up to 12 cell types.

STEMCELL Technologies is delighted for the opportunity to bring CDIs innovative products to the global research community. STEMCELL and CDI will work together on progressive solutions for the life science tools market. We look forward to a long and productive partnership with the shared goal of improving human health, said Dr. Allen Eaves, President and CEO of STEMCELL Technologies.

About Cellular Dynamics International:

Cellular Dynamics International (CDI), a FUJIFILM company, is a leading developer and supplier of human cells used in drug discovery, toxicity testing, and regenerative medicine applications. Leveraging technology that can be used to create induced pluripotent stem cells (iPSCs) and differentiated tissue-specific cells from any individual, CDI is committed to advancing life science research and transforming the therapeutic development process in order to fundamentally improve human health. The companys inventoried iCell products and donor-specific MyCell Products are available in the quantity, quality, purity, and reproducibility required for drug and cell therapy development. For more information please visit http://www.cellulardynamics.com.

About Fujifilm

FUJIFILM Holdings Corporation, Tokyo, Japan brings continuous innovation and leading-edge products to a broad spectrum of industries, including: healthcare, with medical systems, pharmaceuticals and cosmetics; graphic systems; highly functional materials, such as flat panel display materials; optical devices, such as broadcast and cinema lenses; digital imaging; and document products. These are based on a vast portfolio of chemical, mechanical, optical, electronic, software and production technologies. In the year ended March 31, 2016, the company had global revenues of $22.1 billion, at an exchange rate of 112.54 yen to the dollar. Fujifilm is committed to environmental stewardship and good corporate citizenship. For more information, please visit: http://www.fujifilmholdings.com.

About STEMCELL Technologies:

As Scientists Helping Scientists, STEMCELL Technologies is committed to providing high-quality cell culture media, cell isolation products, accessory tools and educational services for life science research. Driven by science and a passion for quality, STEMCELL provides over 2500 products to more than 90 countries worldwide. To learn more, visit http://www.stemcell.com.

All product and company names herein may be trademarks of their registered owners.

View source version on businesswire.com: http://www.businesswire.com/news/home/20170418005219/en/

Go here to read the rest:
Cellular Dynamics International Signs Distribution Deal with STEMCELL Technologies - Yahoo Finance

To Read More: Cellular Dynamics International Signs Distribution Deal with STEMCELL Technologies – Yahoo Finance
categoriaIPS Cell Therapy commentoComments Off on Cellular Dynamics International Signs Distribution Deal with STEMCELL Technologies – Yahoo Finance | dataApril 18th, 2017
Read All

Scientists find evidence that ALS and SMA could be treated with a … – Medical Xpress

By daniellenierenberg

April 17, 2017 by Hannah L. Robbins SMN protein (red) is necessary for the survival of spinal cord neurons (motor neurons) responsible for breathing and all movement. Harvard researchers have found a compound that stabilized this protein in mouse and human motor neurons. This may lead to the development of new treatments for motor neuron diseases including Spinal Muscular Atrophy and Lou Gehrigs disease. Credit: Natalia Rodriguez-Muela

Harvard Stem Cell Institute (HSCI) researchers have identified a compound that helps protect the cells destroyed by spinal muscular atrophy (SMA), the most frequent fatal genetic disease in children under 2 years of age.

SMA is a neurodegenerative disease targeting motor neurons, the long nerve cells that relay messages from the brain to the muscles and that are, consequently, responsible for bodily movements, including walking, swallowing, and even breathing. Patients with milder forms of SMA experience muscle wasting that may confine them to a wheelchair, while the more severe forms cause paralysis and death before the second birthday.

About one in 50 people are genetic carriers of the disease.

Because of a dysfunctional gene, many motor neurons in SMA patients are unable to produce adequate amounts of a protein called survival of motor neuron (SMN). The deficiency causes cellular stress and eventually cell death. Rather than fixing the gene, which has been the strategy of many labs looking to develop SMA therapies, the Harvard team has identified a compound that helps stabilize the SMN protein both in human neurons in a dish and in mouse models.

The findings were published in the journal Cell Reports.

"This discovery opens up new lines of drug interrogation," said Lee Rubin, HSCI principal faculty member and the senior author on the study. Rubin's lab, which operates out of in Harvard's Department of Stem Cell and Regenerative Biology, uses induced pluripotent stem cells (iPS cells) to make human models of neurological diseases.

In 2015, Rubin made a variety of neuronal types from the iPS cells of SMA patients in order to determine why motor neurons in particular were targeted, and found they experienced a fatal stress response similar to motor neurons affected by amyotrophic lateral sclerosis (ALS), the late-onset neurodegenerative disease more commonly known as Lou Gehrig's disease.

Additionally, some SMA-affected motor neurons were dying before others, though all of the neurons had the same genetic mutations and were experiencing the same stressful environment.

"Clearly, some motor neurons were surviving, so the next question was whether this is random or if there is a molecular explanation," Rubin said.

Early on in their most recent study, the researchers found that within a single petri dish of motor neurons derived from an SMA patient, some produced up to four times as much SMN protein as their neighbors. Over time, those motor neurons with higher levels of SMN were more likely to survive after exposure to toxic environments and stressors.

When the team analyzed motor neurons derived from ALS patients, they found similar results: Motor neurons with higher levels of SMN were likelier to survive than those with lower levels.

"The surprise was when we looked in a control culture and also saw differences between the individual neurons," Rubin said.

"It is clear that the SMN protein is necessary for all motor neuron survival, not just motor neurons targeted by ALS or SMA," said Natalia Rodrguez-Muela, a postdoctoral fellow in Rubin's lab and co-first author on the paper. The results suggest that if the team could increase the amount of SMN protein in any single motor neuron, they would be able to rescue the cell.

During a cell's life span, proteins are constantly being made and degraded, made and degraded again. To interrupt the process of breaking down the SMN protein, the researchers looked at a family of proteins called Cullins, which act as a part of the cell machinery that regulates protein degradation.

In 2011, the Rubin lab had determined that an enzyme called GSK3b helps control SMN stability. Nearly all proteins degraded by GSK3b are flagged for degradation by a pathway that involves a specific member of the Cullin family. Rubin said the researchers hypothesized that if they could block that Cullin-mediated process, the SMN proteins would not be flagged for degradation and would remain stable longer.

The researchers, led by co-first author Nadia Litterman, then dosed human and murine motor neurons with a compound known to block the specific Cullin and found that exposure to the compound made SMN proteins more stable and more abundant. As a consequence, the compound promoted survival of all motor neurons, both in human cells in the dish and in mouse models.

Additionally, mice with SMA, even the more severe forms of the disease, had some of their symptoms improve after exposure to the compound.

"This process points to an unexplored therapeutic direction that could benefit patients of not one, but two separate diseases," Rubin said.

Explore further: Hope against disease targeting children

More information: Natalia Rodriguez-Muela et al. Single-Cell Analysis of SMN Reveals Its Broader Role in Neuromuscular Disease, Cell Reports (2017). DOI: 10.1016/j.celrep.2017.01.035

Journal reference: Cell Reports

Provided by: Harvard University

This story is published courtesy of the Harvard Gazette, Harvard University's official newspaper. For additional university news, visit Harvard.edu.

Harvard Stem Cell Institute (HSCI) researchers studying spinal muscular atrophy (SMA) have found what they term "surprising similarities" between this childhood disorder that attacks motor neurons and amyotrophic lateral ...

Using a new stem-cell based drug screening technology with the potential to reinvent and greatly reduce the cost of the way new pharmaceuticals are developed, Harvard Stem Cell Institute (HSCI) researchers have found a compound ...

Although only 10 percent of amyotrophic lateral sclerosis (ALS) cases are hereditary, a significant number of them are caused by mutations that affect proteins that bind RNA, a type of genetic material. University of California ...

A puzzling question has lurked behind SMA (spinal muscular atrophy), the leading genetic cause of death in infants.

New research from the Advanced Gene and Cell Therapy Lab at Royal Holloway, University of London has used pioneering stem cell techniques to better understand why certain cells are more at risk of degenerating in spinal muscular ...

Cedars-Sinai scientists are seeking to build an improved stem-cell model of amyotrophic lateral sclerosis (ALS) to accelerate progress toward a cure for the devastating neurological disorder. Their findings demonstrate that ...

A new study from the Icahn School of Medicine at Mount Sinai provides important insights into how the body regulates its production of heat, a process known as thermogenesis that is currently intensely studied as a target ...

Harvard Stem Cell Institute (HSCI) researchers have identified a compound that helps protect the cells destroyed by spinal muscular atrophy (SMA), the most frequent fatal genetic disease in children under 2 years of age.

Inflammatory bowel disease (IBD), characterized by chronic relapsing inflammation of the gut, is a common problem in the industrialized world. However, how IBD develops remains unknown. There is currently no cure and treatment ...

Muscles consume a large part of the body's energy. Hence when fat metabolism in muscle cells is impaired, the organism gains weight. Scientists from the Max Planck Institute for Heart and Lung Research in Bad Nauheim have ...

Scientists at the Gladstone Institutes and the University of California, San Francisco (UCSF), identified a common mechanism in two forms of neurodegeneration that affect young adults or the elderly. The discovery advances ...

Patients with colon and rectal cancer have somatic insertions of mitochondrial DNA into the nuclear genomes of the cancer cells, University of Alabama at Birmingham researchers report in the journal Genome Medicine.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Continued here:
Scientists find evidence that ALS and SMA could be treated with a ... - Medical Xpress

To Read More: Scientists find evidence that ALS and SMA could be treated with a … – Medical Xpress
categoriaSpinal Cord Stem Cells commentoComments Off on Scientists find evidence that ALS and SMA could be treated with a … – Medical Xpress | dataApril 17th, 2017
Read All

N.Y. bowler rolls on following bone marrow transplant – USA TODAY High School Sports

By daniellenierenberg

When you think of tough athletes, football and hockey players quickly come to mind.

But a bowler?

Someone who learned that with determination and the love of family, friends, teammates and one anonymous bone marrow donor living 1,500 miles away striking down a rare and deadly blood disease is indeed possible?

Cameron Hurwitz stands 4-foot-11 and weighs 84 pounds with Skittles in his pockets.

But the Brighton (Rochester, N.Y.) High School freshman is a big man on the lanes, leading the Barons this season with a 216.5 average, making the coveted six-man state tournament composite team, where he led Section V to a third-place finish, and being named All-Greater Rochester for the second time in three seasons.

He has rolled three 300-games (two sanctioned) and just recently recorded a personal-best 799 series in competition.

There was a time when opponents sized up Hurwitz and took him for an easy mark. No more.

Hes pretty well-known now, Brighton coach Jason Wasserman said. What they cant believe is thathes only in ninth grade and doing as well as he is. He reads lane conditions as good as anyone out there. Hes able to make adjustments on the fly, he knows what equipment to use at what time and then hes just so consistent with his shots.

Thats what happens when you bowl nearly every day from the time youre eye level to a ball rack. When you have parents, Caryn and Scott Hurwitz, who nurture your gifts with unconditional love. When a big brother, Reese, a senior on the Brighton team with a fine 210 average of his own and is headed to Purdue to bowl, is always there to cheer the strikes and help you handle the splits and open frames of life.

Cameron, 14, a hard-throwing right-hander, throws a ball that takes a sharp, last-second right-to-left hook into the pocket that makes pins explode like fireworks on the Fourth of July.

He has had many mentors but in large part he is a self-taught prodigy.

As a big PBA fan who would like to compete on tour someday, he has long watched bowling on television and the internet. He reads bowling magazines, studies the history of the gameand can recite the career statistics of PBA stars. His favorite player is a kindred spirit, 5-foot-5 Norm Duke, a family friend whose autograph he wears proudly on his green Storm bowling shirt.

For good measure, Cameron drills his own balls, customizes his own bowling shoes (blue and fluorescent green on this day), and has ideas for other bowling products that his dad, who owns a motorcycle parts manufacturing business, helps bring to life. Some have already caught the attention of people in the industry.

I think it came from watching the pros on television all the time and picking it up, Cameron said when asked where his style and passion for all things bowling comes from. I love all the physics behind bowling and just the fact you have to use your mind to be able to perform. Anybody of any size can be great at bowling as long as you know the right way to do it and as long as you know what each piece of equipment does for a particular oil pattern.

Bowling alone during off-hours, wearing a mask to prevent against infection, Cameron Hurwitz never gave up on dream of normal life and returning to Brighton High School team.(Photo: CARYN HURWITZ)

Understanding bowling science helped Cameron enjoy his best season so far, but it was medical science that got him back on the lanes.

A little more than two years ago while in the seventh grade, Cameron was getting ready to leave for the Section V tournament when his mother spotted black-and-blue marks on his arms and legs. A phone call to their family doctor led to blood work, which led to instructions to take her son to the emergency room immediately.

He had extremely low platelets, which clot your blood, and they told us to pack a bag, youll be there for many days, Caryn Hurwitz said.

It was six days to be exact, during which Cameron was diagnosed with Aplastic Anemia, a rare and serious blood disorder in which the body stops making enoughnew white and red cells and platelets.

His bone marrow had just shut down and with so few platelets he was at great risk, and with no immunity he couldnt be around people, Caryn Hurwitz said.

While undergoing treatments at Golisano Childrens Hospital, Cameron was unable to attend school and was quarantined at home for over five months. When given the OK by doctors, his lone escape was making trips to area bowling centers where generous owners allowed him to practice during off-hours to the public.

Encouraged by upticks in his white cell counts, Camerons caregivers couldnt say no when he begged to compete in the prestigious United States Bowling Congress Junior Gold national championships in the Chicago area in July 2015. While wearing an antiviral mask and in between receiving seven-hour blood transfusions at a Chicago hospital, Cameron made the televised final, placing second in the U12 division.

The boy behind the mask became a media celebrity and inspiration in the bowling community. He made the cover of Bowlers Journal and PBA stars became his fans. Hall of Famer Pete Weber posted a good luck video message on Facebook to Cameron.

Hed bowl without hardly any oxygen (in his bloodstream), Caryn Hurwitz said. I dont think people really understood how hard it was for him, but as long as he could go, even with the low blood counts, he kept bowling. When I think about, Im amazed.

Unfortunately for Cameron, the treatments he received didnt produce the desired results and as his eighth-grade school year began, he was placed on the national Be the Matchbone marrow registry.

Waiting times for a match can vary, but in Camerons case one was found in just a few months. And on Dec. 29, 2015 he underwent a transplant at Boston Childrens Hospital, a painstaking procedure where a patients body is re-started with new stem cells that need time to grow and take hold.

Six weeks in the hospital were followed by six more months of isolation, school tutoring, the entire Hurwitz family living in the germ-free lane, and the family bonding like an alleys glued wooden strips.

Throughout his recovery, Cameron kept bowling after hours, determined to be ready for his freshman season. Bowling had become his medicine.

For the full story, visit the Rochester (N.Y.) Democrat and Chronicle

See more here:
N.Y. bowler rolls on following bone marrow transplant - USA TODAY High School Sports

To Read More: N.Y. bowler rolls on following bone marrow transplant – USA TODAY High School Sports
categoriaBone Marrow Stem Cells commentoComments Off on N.Y. bowler rolls on following bone marrow transplant – USA TODAY High School Sports | dataApril 17th, 2017
Read All

New hope with haplo-identical bone marrow transplant – Star2.com

By daniellenierenberg

Having worked at University Malaya Medical Centres (UMMC) Paediatrics Department for 20 years, senior consultant paediatric oncologist Prof Dr Hany Mohd Ariffin has had to tell her fair share of parents that there is nothing more that can be done for their terminally ill child.

As head of the Paediatric Haematology-Oncology and Bone Marrow Transplantation Unit, this is usually because there is no suitable donor available for a life-saving bone marrow transplant for the child.

Bone marrow transplants, also called stem cell transplants, are used in conditions where the patients bone marrow is damaged or destroyed by disease or intensive cancer treatment, and is unable to carry out its job of producing healthy red blood cells, white blood cells and platelets.

Because white blood cells or leukocytes are part of the immune system that protects our body against foreign invaders, it is critical in such a procedure to match the so-called immunological fingerprints of the patient and the donor.

As Prof Hany explains, these fingerprints are known as human leukocyte antigens (HLAs).

HLAs help the immune system distinguish between the bodys own cells and foreign cells, usually bacteria and viruses that infect us, so that our white blood cells can find and destroy them.

It is crucial that a bone marrow donor and the patient have the same HLAs in order to minimise the chances of the donated bone marrows white blood cells considering its new host body as foreign and attacking it.

Perfect match needed

Standard bone marrow transplantations require that all 10 HLAs in both patient and donor are a match.

As HLAs are inherited half from each parent, this means that only a patients siblings are a possible perfect match.

Explains Prof Hany: If you look at statistics, out of four, one sibling will be completely matched, one sibling will be completely not matched, and two siblings would be half-matched.

So, the chances of finding a match is 25%, but that is statistical randomisation.

In the real world, you can have 10 siblings and all of them might not be matched with you.

If a patient does not have a sibling that matches perfectly with them, or does not have a sibling at all, their only other option is to check for an unrelated match in international stem cell registries or blood banks.

However, Prof Hany notes that this usually requires a sum of RM100,000 for a unit of bone marrow and at least three to four months of waiting two luxuries not all patients have.

She adds: But it is not easy to get a good match for Asians as these registries are usually Caucasian.

And its even worse if you are an Indian patient, as you cant even go to a Taiwanese blood bank.

In the case of Muhammad Yusuff Iskandar Mohd Hambali, time was a critical factor.

The firstborn of two teachers had been referred to UMMC at 10 months of age for recurrent pneumonia.

His mother, secondary school physical education teacher, Aduratun Nasyihin Mokhtar shares: He started falling sick at the age of seven months he had a persistent cough.

Initially, the doctor thought it was pertussis, but it didnt get better after three months as pertussis should, so he was admitted to the hospital.

However, none of the antibiotics they tried worked, so he was referred to UMMC to check his lungs.

This filepic shows a thalassaemia patient with his infusion pump machine for iron-chelating therapy. Thalassaemia is one of the conditions curable by a bone marrow transplant.

It was in UMMC that Yusuff, as he is called, was discovered to have X-linked severe combined immunodeficiency (SCID).

This rare genetic condition, also known as bubble boy disease, results in the malfunction or lack of two specialised white blood cells called T and B cell lymphocytes.

This means that Yusuff effectively had a non-existent immune system.

This was the reason he could not fight off the pneumonia. In fact, his lungs had deteriorated so badly that he was on oxygen therapy from the age of eight months.

In addition, the Mycobacterium bovis in his BCG vaccination had spread to his back, he had chronic diarrhoea and he was very much underweight.

Yusuff needed a bone marrow transplant, and he needed it fast.

Having reached out to her international colleagues at that time, Prof Hany says: One thing constant in all their advice was that if we delayed the procedure, he would never get better from his disseminated BCG, his pneumonia would just worsen, and once you reach a critical point, there would be no turning back.

He would have been dead by six months.

The problem was that Yusuff was then an only child.

Although his mother was pregnant with his younger sister at that time, she would not have been born in time to help him, assuming that she was a match for him in the first place.

With no time to waste, Prof Hany and her team decided to try a procedure called haplo-identical bone marrow transplantation.

On whether she and her team were ready to carry out the new procedure, Prof Hany says that you will never be ready until a life is dangling precariously in front of you. Photo: The Star/Samuel Ong

In this procedure, only five out of 10 HLAs need to be matched in order for the donor to be able to give bone marrow to the patient.

The beauty of this procedure is that you always have two parents (to donate), says Prof Hany.

So, Yusuffs father, sports science and physical education teacher Mohd Hambali Din @ Ismail, could now donate his bone marrow cells to his son.

First though, Yusuff needed to be fattened up via nutritional fluids infused into his veins, his pneumonia brought under control and his M. bovis infection treated with anti-tuberculosis therapy.

This was so that he would be in a decent enough condition to withstand the procedure.

Following the protocol established by Johns Hopkins University in the United States, but modified to suit Yusuffs condition, Prof Hany and her team first killed off Yusuffs remaining bone marrow cells through chemothera-py, before infusing 30ml of his fathers donated bone marrow into him.

Prof Hany explains that it takes two to three weeks for the new bone marrow cells to grow, during which time the patient is completely vulnerable to any infection.

This is why they remain in a completely sealed room where the air is hepa-filtered, they receive no visitors, and their food and linen are completely sterile, she says.

He was also treated with high-dose cyclophosphamide, a chemotherapy drug that targets T cell lymphocytes.

This was in order to destroy the half-matched mature T cells that came with his fathers donated bone marrow.

T cells are your soldier cells. His fathers T cells would recognise Yusuff as foreign and destroy everything in their wake.

And that is what has precluded mismatched transplants all this while, explains Prof Hany.

After the mature T cells are destroyed, she says: What you then get are T cells from stem cell origin, which learn to tolerate the environment of being in Yusuffs body, and therefore, they will be less aggressive and more friendly to these cells that they consider foreign.

Despite that, Yusuff still experienced graft-versus-host disease (GvHD) where his new white blood cells attacked the cells of his skin, gut and lungs.

In between, he also had two episodes of sepsis and he had to go to the ICU once.

He also had to go on the ventilator at one point, says Prof Hany.

She explains that GvHD, which is due to aggressive donor white blood cells, and infections, which are due to the still incomplete immune system, can co-exist, creating a dilemma for the medical team.

On the one hand, to ameliorate GvHD, you have to give steroids (in addition to standard immunosuppresants) to dampen down the immune system.

You dampen down the immune system, then you allow bacteria and fungi to grow.

And that is why it is very challenging, she says.

She admits: For the first 20 days, it was all very smooth and you think, Wah, Im a hero, but then the challenges came.

There were certain moments when I thought, Thats it, were going to lose him.

It took 149 days after the transplant before Yusuff was deemed well enough to be sent home.

And it was one year before Prof Hany and her team felt confident enough to declare him cured.

We estimate anything between six months to a year for the new bone marrow cells to grow and propagate.

So usually, after a year, if the GvHD doesnt appear anymore, it is very unlikely to suddenly appear, she explains.

This first anniversary of Yusuffs transplant, celebrated at UMMC on April 6, was not just sweet because of Yusuffs survival, it was also the opening of a new path for Prof Hany and her team.

On a personal note, there were many times when you have this period of self-doubt.

So, you think that we are just a bunch of stupid, gung-ho people, who are unrealistic; this is not America, this cannot be done that sort of feeling.

There were some moments when you think, have I done a disservice to this child? Would if it have been better to just let go, for the parents to just let go? Is God just testing me? shares Prof Hany.

However, a few months after Yusuffs transplant, she received the case of a baby boy with myelodysplastic syndrome.

Myelodysplastic children will progress to develop acute myeloid leukaemia within a year, and it is only curable with transplant, or not it is certain death by two years, she explains.

And this patient had two siblings, both of whom were only half-matched.

But we were able to offer a transplant to this child, because we knew that from the experience of Yusuff, if he has very bad GvHD of the gut, skin, lung, we would be able to handle it been there, done that.

We were already scarred for life, she says with a laugh. And in fact, due to their prior experience, Prof Hany and her team were able to more precisely determine the amount of donated bone marrow cells needed for transplant.

As a result, she says: The second patient sailed through and was discharged after only five weeks, as opposed to five months for Yusuff.

Explaining the potential impact of having this treatment option available, Prof Hany shares that bone marrow transplantation is a cure for conditions like leukaemia, blood disorders like thalassaemia, congenital defective immune systems and certain rare congenital metabolic conditions.

The major reason why transplants are not being done is because of the lack of an available donor, she says.

But haplo-identical bone marrow transplantation now opens the way for many more potential donors to help the patient.

The learning curve is steep, Prof Hany admits, but adds that after Yusuff, they were able to apply what they learnt to their second patient with great effect.

Im not saying it is easy, but I think it is worth developing further, because it can solve one of the greatest health problems in our country, which is inherited blood disorders.

Giving the example of thalassaemia, she estimates that it costs some RM3.5mil to treat a patient with regular blood transfusions and iron-chelating therapy for 30 years.

A haplo-identical bone marrow transplant costs approximately RM45,000 and will cure the patient.

The risk of dying from this procedure usually because of infections and GvHD during the period when the patient has no working immune system is estimated to be about 10%.

This is at the upper limit for standard bone marrow transplants, where the risk ranges from 5% to 10%.

She adds that studies have shown that the risk of severe GvHD is similar for haplo-identical transplants and sibling-matched transplants, which are both lower than transplants from an unrelated donor.

Although Yusuff is the first successful haplo-identical bone marrow transplant patient in the country, to the best of Prof Hanys knowledge, she believes that the procedure can be easily done in other major hospitals around the country.

The facilities are already there and specialists trained in bone marrow transplants need only learn the procedure once before they should be able to conduct it, she says.

So its not just having a big celebration to tell the world that we saved one boy with SCID, its having the ability to tell parents that there is always hope, as we can now do haplo-identical transplants in our centre, says Prof Hany.

It is about no longer having to tell parents that nothing more can be done for their terminally ill child.

All comments are moderated. Your comment may not show up immediately. Please keep it clean and on topic. Offensive comments will not be published.

The rest is here:
New hope with haplo-identical bone marrow transplant - Star2.com

To Read More: New hope with haplo-identical bone marrow transplant – Star2.com
categoriaBone Marrow Stem Cells commentoComments Off on New hope with haplo-identical bone marrow transplant – Star2.com | dataApril 15th, 2017
Read All

3D-printed patch can help mend a broken heart – UMN News

By daniellenierenberg

A team of biomedical engineering researchers, led by the University of Minnesota, has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. The discovery is a major step forward in treating patients with tissue damage after a heart attack.

The research study is published today in Circulation Research, a journal published by the American Heart Association. Researchers have filed a patent on the discovery.

According to the American Heart Association, heart disease is the No. 1 cause of death in the U.S. killing more than 360,000 people a year. During a heart attack, a person loses blood flow to the heart muscle and that causes cells to die. Our bodies cant replace those heart muscle cells so the body forms scar tissue in that area of the heart, which puts the person at risk for compromised heart function and future heart failure.

In this study, researchers from the University of Minnesota-Twin Cities, University of Wisconsin-Madison, and University of Alabama-Birmingham used laser-based 3D-bioprinting techniques to incorporate stem cells derived from adult human heart cells on a matrix that began to grow and beat synchronously in a dish in the lab.

Watch a video of the cells beating on the patch.

When the cell patch was placed on a mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Since the patch was made from cells and structural proteins native to the heart, it became part of the heart and absorbed into the body, requiring no further surgeries.

This is a significant step forward in treating the No. 1 cause of death in the U.S., said Brenda Ogle, an associate professor of biomedical engineering at the University of Minnesota. We feel that we could scale this up to repair hearts of larger animals and possibly even humans within the next several years.

Ogle said that this research is different from previous research in that the patch is modeled after a digital, three-dimensional scan of the structural proteins of native heart tissue. The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells. Only with 3D printing of this type can we achieve one micron resolution needed to mimic structures of native heart tissue.

We were quite surprised by how well it worked given the complexity of the heart, Ogle said. We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch.

Ogle said they are already beginning the next step to develop a larger patch that they would test on a pig heart, which is similar in size to a human heart.

The research was funded by the National Science Foundation, National Institutes of Health, University of Minnesota Lillehei Heart Institute, and University of Minnesota Institute for Engineering in Medicine.

In addition to Ogle, other biomedical engineering researchers who were part of the team include Molly E. Kupfer, Jangwook P. Jung, Libang Yang, Patrick Zhang, and Brian T. Freeman from the University of Minnesota; Paul J. Campagnola, Yong Da Sie, Quyen Tran, and Visar Ajeti from the University of Wisconsin-Madison; and Jianyi Zhang, Ling Gao, and Vladimir G. Fast from the University of Alabama,

To read the full research paper entitled Myocardial Tissue Engineering With Cells Derived from Human Induced-Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold, visit the Circulation Research website.

Originally posted here:
3D-printed patch can help mend a broken heart - UMN News

To Read More: 3D-printed patch can help mend a broken heart – UMN News
categoriaCardiac Stem Cells commentoComments Off on 3D-printed patch can help mend a broken heart – UMN News | dataApril 14th, 2017
Read All

Scientists one step closer to turning stem cells into BRAIN | Health … – Express.co.uk

By daniellenierenberg

GETTY - STOCK IMAGE

'Cradle of life' stem cells taken from skin samples were developed into three-dimensional brain-like organisms capable of exchanging signals between each other in a network.

The petri dish cells behave in a similar way to the brain cells which produce messenger dopamine from neurons - and scientists hope they will be able to use them to come up with a cure for Parkinson's.

Dopamine maintains smooth body movements, but when the neurons die off, tremors, rigid muscles and other Parkinson's disease symptoms begin to take over.

The new developments mean scientists can now use the cells to test what environmental factors like pollutants have on the onset of the disease and potentially find a cure.

Lead author Professor Jens Schwamborn said: "Our cell cultures open new doors to brain research.

GETTY - STOCK IMAGE

"We can now use them to study the causes of Parkinson's disease and how it could possibly be effectively treated."

Our cell cultures open new doors to brain research

Professor Jens Schwamborn

The stem cells can be transformed into any cell type of the human body but cannot produce a complete organism.

PHD student Anna Monzel developed a procedure to convert the stem cells into brain cells as part of her doctoral thesis.

GETTY - STOCK IMAGE

Getty Images

1 of 9

Tremor - One of the most noticeable signs of Parkinson's is a tremor that often starts in the hands or fingers when they are relaxed

She said: "I had to develop a special, precisely defined cocktail of growth factors and a certain treatment method for the stem cells, so that they would differentiate in the desired direction."

Prof Schwamborn from the Luxembourg Centre for Systems Biomedicine at Luxembourg University said: "Our subsequent examination of these artificial tissue samples revealed that various cell types characteristic of the midbrain had developed."

"The cells can transmit and process signals.

"We were even able to detect dopaminergic cells - just like in the midbrain."

The scientists say their petri dish study can also reduce the amount of animal testing in brain research.

GETTY - STOCK IMAGE

Because cell cultures in the petri dishes are of human origin in some aspects they resemble human brains more than the brains of lab animals such as rats or mice.

Professor Schwamborn added: "There are also attractive economic opportunities in our approach.

"The production of tissue cultures is highly elaborate.

"In the scope of our spin-off Braingineering Technologies Sarl, we will be developing technologies by which we can provide the cultures for a fee to other labs or the pharmaceutical industry for their research."

The study was published in the Stem Cell Reports journal.

Link:
Scientists one step closer to turning stem cells into BRAIN | Health ... - Express.co.uk

To Read More: Scientists one step closer to turning stem cells into BRAIN | Health … – Express.co.uk
categoriaSkin Stem Cells commentoComments Off on Scientists one step closer to turning stem cells into BRAIN | Health … – Express.co.uk | dataApril 14th, 2017
Read All

Understanding Multiple Myeloma – Caswell Messenger

By daniellenierenberg

(NAPSI)You may be surprised to learn that multiple myeloma is the second most common cancer of the blood, after leukemia. It starts in plasma cells, a type of white blood cell. In time, myeloma cells collect in the bone marrow and may damage the solid part of the bone and eventually harm other tissues and organs, such as the skeleton and the kidneys.

In fact, there are approximately 114,000 new cases diagnosed every year. If you or a loved one is among the 230,000 people living with multiple myeloma worldwide there are a few facts you should know.

What Can Be Done

For many people with the disease, an autologous stem cell transplant may be an answer for eligible patients. This involves collecting the patient's own blood-forming stem cells and storing them. He or she is then treated with high doses of chemotherapy or a combination of chemotherapy and radiation. This kills cancer cells but also eliminates the remaining blood-producing stem cells in the bone marrow. Afterward, the collected stem cells are transplanted back into the patient, so the bone marrow can produce new blood cells.

To help people learn more about the disease and its treatments, the Multiple Myeloma Journey Partners Program was created.

This peer-to-peer education program for patients, caregivers and health care providers leverages storytelling as a tool to improve the patient experience. Journey Partners are multiple myeloma patients who have experienced similar emotions, faced the same challenges and asked the same questions about living with the disease. A Multiple Myeloma Journey Partner will come to any community in which 10 or more people would like to attend the free one-hour educational seminar. The main benefit is that multiple myeloma patients know they're not alone, and the program provides educational resources and services that help patients and families navigate their journey to achieve the best possible outcomes.

As John Killip, a Multiple Myeloma Journey Partner, puts it, "It was conversations with my support group, family and health care providers that influenced my decision to have a stem cell transplant in 2008, when I was first diagnosed with multiple myeloma, at the age of 65. Mentoring other multiple myeloma patients is one of the highlights of my life. I became a Journey Partner to share my story and help others with the disease make sense of the diagnosis and overcome the fear of the unknown."

Learn More

For more information or to request a program, you can visit http://www.mmjourneypartners.com. Anyone interested in becoming a Multiple Myeloma Journey Partner can contact the program coordinator listed on the website. The program is sponsored by Sanofi Genzyme, the specialty care global business unit of Sanofi focused on rare diseases, multiple sclerosis, immunology, and oncology.

On the Net:North American Precis Syndicate, Inc.(NAPSI)

Read the original:
Understanding Multiple Myeloma - Caswell Messenger

To Read More: Understanding Multiple Myeloma – Caswell Messenger
categoriaBone Marrow Stem Cells commentoComments Off on Understanding Multiple Myeloma – Caswell Messenger | dataApril 11th, 2017
Read All

Can An Artificial Thymus, Made from Stem Cells, Pump Out Enough T-Cells To Fight Cancer? – Dispatch Tribunal

By daniellenierenberg

A team of scientists from the University of California, Los Angeles has been able to synthesize an artificial thymus, a human organ that is important to the bodys immune system. An artificial thymus, they say, could produce necessary cancer-fighting T-cells for the body.

On demand.

T-cells, of course, are white blood cells which naturally fight diseases that develop in or infect the body. These T-cells are artificial, though, so they would have to be engineered to target specific forms of cancer, in order to be effective. Still, if this is manageable, then it could provide scientists and health practitioners with additional natural defensesalbeit, bionicfor attacking disease.

The thymus rests in front of the heart. It uses stem cells from the blood to make immune-boosting T-cells, which literally circulate throughout the body to specifically target things that dont belong. In this case, the thymus would create T-cells that could seek out specific cancerous growths without jeopardizing the health of existing tissue.

For the study, the Japanese researchers looked at 27 patients who had received transplants form stem cells that had been taken from their own thigh muscles. These patients showed no sign of any major complications; most patients also showed significant improvement with their symptoms.

Research team member Gay Crooks comments, We know that the key to creating a consistent and safe supply of cancer-fighting T-cells would be to control the process in a way that deactivates all T-cell receptors in the transplanted cells, except for the cancer-fighting receptors. It is important, of course, to take stem cells from the patient who needs them because the body is likely to reject any foreign stem cells (and their byproducts). Apparently, they have been at this study for more than two decades but, unfortunately, the researchers acknowledge that past attempts only showed modest results. From these results, though, they were able to devise a method for producing sheets of muscle stem cells which could then be attached to the inner layer of the sac (which encloses the heart). These stem cells will stimulate healing through the production of chemicals which encourage cardiac regeneration, though the stem cells, themselves, do not survive in the long term.

The results of this study have been published in the scientific journal Nature Methods.

Read more:
Can An Artificial Thymus, Made from Stem Cells, Pump Out Enough T-Cells To Fight Cancer? - Dispatch Tribunal

To Read More: Can An Artificial Thymus, Made from Stem Cells, Pump Out Enough T-Cells To Fight Cancer? – Dispatch Tribunal
categoriaCardiac Stem Cells commentoComments Off on Can An Artificial Thymus, Made from Stem Cells, Pump Out Enough T-Cells To Fight Cancer? – Dispatch Tribunal | dataApril 9th, 2017
Read All

Experimental Stem Cell Treatment Might Reverse Symptoms Of Multiple Sclerosis – CBS New York

By daniellenierenberg

April 6, 2017 7:01 PM

NEW YORK (CBSNewYork) Theres potentially exciting news for the two and a half million people around the world struggling with multiple sclerosis.

There is no known cure, but now an experimental treatment in Israel may be able to reverse the symptoms, CBS2s Dr. Max Gomez reports.

MS is a progressive degenerative disease where the insulation around nerve fibers in the brain and spinal cord starts to break down. Its the immune system attacking the insulation.

Medications can slow the disease but dont stop it. Stem cells may be much better.

As Dr. Max reports, walking on a treadmill is a big step for Malia Litman. She had been a top trial attorney in Dallas until she was diagnosed with multiple sclerosis 18 years ago. Slowly, the disease robbed her of her balance, her mobility and her energy.

You can imagine how contracted my world had become, she says.

After she fell and broke her leg, she was in a wheelchair for weeks. Her MS medicines werent really working anymore.

Her search for alternative treatments led toDr. Dimitrios Karussis.

Answers for our diseases and our medical problems are hidden inside our body, hesays.

Karussis heads the experimental stem cell research atHadassah Medical Organization in Israel. He harvests an MS patients own adult stem cells from their bone marrow, then injects them back into their spinal fluid.

As neurologists, we have never seen or even believed that it is possible to reverse any disability, he says.

Litman says within 24 hours of her first treatment, I picked up my leg and went, Oh my god, and I just started crying.

She says her speech is more clear and she has more energy, and shes adamant its not a placebo effect, pointing to a number of tests before and after treatment that show improvement.

Karussis says one patient was even able to walk again.

Researchers are now collaborating with teams at the Mayo Clinic and Harvard, finishing a double-blind study to prove its effectiveness.

Look what I can do now! Its amazing, Litman says.

She still uses her walker but can now get on her rowing machine. After four treatments, shes reactivated her law license and is taking on a case.

I feel like I have my life back. I dont care if I walk with a walker the rest of my life. Although I think I may actually be able to walk again with a couple more treatments, she says.

As Dr. Max reports, the theory is that the stem cells are somehow spurringthe regeneration of the insulating nerve sheaths that are deteriorating in MS.

However, the course of the disease is so variable that Litmans improvement may not be due to the stem cell treatment. Thats why the double-blind studyis so important.

Hadassah Medical Organizations researchers are also looking at the treatments effect on ALS patients.

Read the original post:
Experimental Stem Cell Treatment Might Reverse Symptoms Of Multiple Sclerosis - CBS New York

To Read More: Experimental Stem Cell Treatment Might Reverse Symptoms Of Multiple Sclerosis – CBS New York
categoriaBone Marrow Stem Cells commentoComments Off on Experimental Stem Cell Treatment Might Reverse Symptoms Of Multiple Sclerosis – CBS New York | dataApril 7th, 2017
Read All

Page 209«..1020..208209210211..220230..»


Copyright :: 2025