Kite’s CAR T-cell Therapy Tecartus Receives Positive CHMP Opinion in Relapsed or Refractory Acute Lymphoblastic Leukemia (r/r ALL) – Gilead Sciences
By daniellenierenberg
Tecartus (Brexucabtagene Autoleucel) First and Only CAR T in Europe to Receive Positive CHMP Opinion to Treat Adults 26+ with r/r ALL
If Approved, it will Address a Significant Unmet Need for a Patient Population with Limited Treatment Options
SANTA MONICA, Calif.--(BUSINESS WIRE)--Kite, a Gilead Company (Nasdaq: GILD), today announces that the European Medicines Agency (EMA) Committee for Medicinal Products for Human Use (CHMP) has issued a positive opinion for Tecartus (brexucabtagene autoleucel) for the treatment of adult patients 26 years of age and above with relapsed or refractory (r/r) B-cell precursor acute lymphoblastic leukemia (ALL). If approved, Tecartus will be the first and only Chimeric Antigen Receptor (CAR) T-cell therapy for this population of patients who have limited treatment options. Half of adults with ALL will relapse, and median overall survival (OS) for this group is only approximately eight months with current standard-of-care treatments.
Kites goal is clear: to bring the hope of survival to more patients with cancer around the world through cell therapy, said Christi Shaw, CEO, Kite. Todays CHMP positive opinion in adult ALL brings us a step closer to delivering on the promise that cell therapies have to transform the way cancer is treated.
Following this positive opinion, the European Commission will now review the CHMP opinion; the final decision on the Marketing Authorization is expected in the coming months.
Adults with relapsed or refractory ALL often undergo multiple treatments including chemotherapy, targeted therapy and stem cell transplant, creating a significant burden on a patients quality of life, said Max S. Topp, MD, professor and head of Hematology, University Hospital of Wuerzburg, Germany. If approved, patients in Europe will have a meaningful advancement in treatment. Tecartus has demonstrated durable responses, suggesting the potential for long-term remission and a new approach to care.
Results from the ZUMA-3 international multicenter, single-arm, open-label, registrational Phase 1/2 study of adult patients (18 years old) with relapsed or refractory ALL, demonstrated that 71% of the evaluable patients (n=55) achieved complete remission (CR) or CR with incomplete hematological recovery (CRi) with a median follow-up of 26.8 months. In an extended data set of all patients dosed with the pivotal dose (n=78) the median overall survival for all patients was more than two years (25.4 months) and almost four years (47 months) for responders (patients who achieved CR or CRi). Among efficacy-evaluable patients, median duration of remission (DOR) was 18.6 months. Among the patients treated with Tecartus at the target dose (n=100), Grade 3 or higher cytokine release syndrome (CRS) and neurologic events occurred in 25% and 32% of patients, respectively, and were generally well-managed.
About ZUMA-3
ZUMA-3 is an ongoing international multicenter (US, Canada, EU), single arm, open label, registrational Phase 1/2 study of Tecartus in adult patients (18 years old) with ALL whose disease is refractory to or has relapsed following standard systemic therapy or hematopoietic stem cell transplantation. The primary endpoint is the rate of overall complete remission or complete remission with incomplete hematological recovery by central assessment. Duration of remission and relapse-free survival, overall survival, minimal residual disease (MRD) negativity rate, and allo-SCT rate were assessed as secondary endpoints.
About Acute Lymphoblastic Leukemia
ALL is an aggressive type of blood cancer that develops when abnormal white blood cells accumulate in the bone marrow until there isnt any room left for blood cells to form. In some cases, these abnormal cells invade healthy organs and can also involve the lymph nodes, spleen, liver, central nervous system and other organs. The most common form is B cell precursor ALL. Globally, approximately 64,000 people are diagnosed with ALL each year, including around 3,300 people in Europe.
About Tecartus
Please see full FDA Prescribing Information, including BOXED WARNING and Medication Guide.
Tecartus is a CD19-directed genetically modified autologous T cell immunotherapy indicated for the treatment of:
This indication is approved under accelerated approval based on overall response rate and durability of response. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial.
U.S. IMPORTANT SAFETY INFORMATION
BOXED WARNING: CYTOKINE RELEASE SYNDROME and NEUROLOGIC TOXICITIES
Cytokine Release Syndrome (CRS), including life-threatening reactions, occurred following treatment with Tecartus. In ZUMA-2, CRS occurred in 91% (75/82) of patients receiving Tecartus, including Grade 3 CRS in 18% of patients. Among the patients who died after receiving Tecartus, one had a fatal CRS event. The median time to onset of CRS was three days (range: 1 to 13 days) and the median duration of CRS was ten days (range: 1 to 50 days). Among patients with CRS, the key manifestations (>10%) were similar in MCL and ALL and included fever (93%), hypotension (62%), tachycardia (59%), chills (32%), hypoxia (31%), headache (21%), fatigue (20%), and nausea (13%). Serious events associated with CRS included hypotension, fever, hypoxia, tachycardia, and dyspnea.
Ensure that a minimum of two doses of tocilizumab are available for each patient prior to infusion of Tecartus. Following infusion, monitor patients for signs and symptoms of CRS daily for at least seven days for patients with MCL and at least 14 days for patients with ALL at the certified healthcare facility, and for four weeks thereafter. Counsel patients to seek immediate medical attention should signs or symptoms of CRS occur at any time. At the first sign of CRS, institute treatment with supportive care, tocilizumab, or tocilizumab and corticosteroids as indicated.
Neurologic Events, including those that were fatal or life-threatening, occurred following treatment with Tecartus. Neurologic events occurred in 81% (66/82) of patients with MCL, including Grade 3 in 37% of patients. The median time to onset for neurologic events was six days (range: 1 to 32 days) with a median duration of 21 days (range: 2 to 454 days) in patients with MCL. Neurologic events occurred in 87% (68/78) of patients with ALL, including Grade 3 in 35% of patients. The median time to onset for neurologic events was seven days (range: 1 to 51 days) with a median duration of 15 days (range: 1 to 397 days) in patients with ALL. For patients with MCL, 54 (66%) patients experienced CRS before the onset of neurological events. Five (6%) patients did not experience CRS with neurologic events and eight patients (10%) developed neurological events after the resolution of CRS. Neurologic events resolved for 119 out of 134 (89%) patients treated with Tecartus. Nine patients (three patients with MCL and six patients with ALL) had ongoing neurologic events at the time of death. For patients with ALL, neurologic events occurred before, during, and after CRS in 4 (5%), 57 (73%), and 8 (10%) of patients; respectively. Three patients (4%) had neurologic events without CRS. The onset of neurologic events can be concurrent with CRS, following resolution of CRS or in the absence of CRS.
The most common neurologic events (>10%) were similar in MCL and ALL and included encephalopathy (57%), headache (37%), tremor (34%), confusional state (26%), aphasia (23%), delirium (17%), dizziness (15%), anxiety (14%), and agitation (12%). Serious events including encephalopathy, aphasia, confusional state, and seizures occurred after treatment with Tecartus.
Monitor patients daily for at least seven days for patients with MCL and at least 14 days for patients with ALL at the certified healthcare facility and for four weeks following infusion for signs and symptoms of neurologic toxicities and treat promptly.
REMS Program: Because of the risk of CRS and neurologic toxicities, Tecartus is available only through a restricted program under a Risk Evaluation and Mitigation Strategy (REMS) called the Yescarta and Tecartus REMS Program which requires that:
Hypersensitivity Reactions: Serious hypersensitivity reactions, including anaphylaxis, may occur due to dimethyl sulfoxide (DMSO) or residual gentamicin in Tecartus.
Severe Infections: Severe or life-threatening infections occurred in patients after Tecartus infusion. Infections (all grades) occurred in 56% (46/82) of patients with MCL and 44% (34/78) of patients with ALL. Grade 3 or higher infections, including bacterial, viral, and fungal infections, occurred in 30% of patients with ALL and MCL. Tecartus should not be administered to patients with clinically significant active systemic infections. Monitor patients for signs and symptoms of infection before and after Tecartus infusion and treat appropriately. Administer prophylactic antimicrobials according to local guidelines.
Febrile neutropenia was observed in 6% of patients with MCL and 35% of patients with ALL after Tecartus infusion and may be concurrent with CRS. The febrile neutropenia in 27 (35%) of patients with ALL includes events of febrile neutropenia (11 (14%)) plus the concurrent events of fever and neutropenia (16 (21%)). In the event of febrile neutropenia, evaluate for infection and manage with broad spectrum antibiotics, fluids, and other supportive care as medically indicated.
In immunosuppressed patients, life-threatening and fatal opportunistic infections have been reported. The possibility of rare infectious etiologies (e.g., fungal and viral infections such as HHV-6 and progressive multifocal leukoencephalopathy) should be considered in patients with neurologic events and appropriate diagnostic evaluations should be performed.
Hepatitis B virus (HBV) reactivation, in some cases resulting in fulminant hepatitis, hepatic failure, and death, can occur in patients treated with drugs directed against B cells. Perform screening for HBV, HCV, and HIV in accordance with clinical guidelines before collection of cells for manufacturing.
Prolonged Cytopenias: Patients may exhibit cytopenias for several weeks following lymphodepleting chemotherapy and Tecartus infusion. In patients with MCL, Grade 3 or higher cytopenias not resolved by Day 30 following Tecartus infusion occurred in 55% (45/82) of patients and included thrombocytopenia (38%), neutropenia (37%), and anemia (17%). In patients with ALL who were responders to Tecartus treatment, Grade 3 or higher cytopenias not resolved by Day 30 following Tecartus infusion occurred in 20% (7/35) of the patients and included neutropenia (12%) and thrombocytopenia (12%); Grade 3 or higher cytopenias not resolved by Day 60 following Tecartus infusion occurred in 11% (4/35) of the patients and included neutropenia (9%) and thrombocytopenia (6%). Monitor blood counts after Tecartus infusion.
Hypogammaglobulinemia: B cell aplasia and hypogammaglobulinemia can occur in patients receiving treatment with Tecartus. Hypogammaglobulinemia was reported in 16% (13/82) of patients with MCL and 9% (7/78) of patients with ALL. Monitor immunoglobulin levels after treatment with Tecartus and manage using infection precautions, antibiotic prophylaxis, and immunoglobulin replacement.
The safety of immunization with live viral vaccines during or following Tecartus treatment has not been studied. Vaccination with live virus vaccines is not recommended for at least six weeks prior to the start of lymphodepleting chemotherapy, during Tecartus treatment, and until immune recovery following treatment with Tecartus.
Secondary Malignancies may develop. Monitor life-long for secondary malignancies. In the event that one occurs, contact Kite at 1-844-454-KITE (5483) to obtain instructions on patient samples to collect for testing.
Effects on Ability to Drive and Use Machines: Due to the potential for neurologic events, including altered mental status or seizures, patients are at risk for altered or decreased consciousness or coordination in the 8 weeks following Tecartus infusion. Advise patients to refrain from driving and engaging in hazardous activities, such as operating heavy or potentially dangerous machinery, during this period.
Adverse Reactions: The most common non-laboratory adverse reactions ( 20%) were fever, cytokine release syndrome, hypotension, encephalopathy, tachycardia, nausea, chills, headache, fatigue, febrile neutropenia, diarrhea, musculoskeletal pain, hypoxia, rash, edema, tremor, infection with pathogen unspecified, constipation, decreased appetite, and vomiting. The most common serious adverse reactions ( 2%) were cytokine release syndrome, febrile neutropenia, hypotension, encephalopathy, fever, infection with pathogen unspecified, hypoxia, tachycardia, bacterial infections, respiratory failure, seizure, diarrhea, dyspnea, fungal infections, viral infections, coagulopathy, delirium, fatigue, hemophagocytic lymphohistiocytosis, musculoskeletal pain, edema, and paraparesis.
About Kite
Kite, a Gilead Company, is a global biopharmaceutical company based in Santa Monica, California, with manufacturing operations in North America and Europe. Kites singular focus is cell therapy to treat and potentially cure cancer. As the cell therapy leader, Kite has more approved CAR T indications to help more patients than any other company. For more information on Kite, please visit http://www.kitepharma.com. Follow Kite on social media on Twitter (@KitePharma) and LinkedIn.
About Gilead Sciences
Gilead Sciences, Inc. is a biopharmaceutical company that has pursued and achieved breakthroughs in medicine for more than three decades, with the goal of creating a healthier world for all people. The company is committed to advancing innovative medicines to prevent and treat life-threatening diseases, including HIV, viral hepatitis and cancer. Gilead operates in more than 35 countries worldwide, with headquarters in Foster City, California.
Forward-Looking Statements
This press release includes forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 that are subject to risks, uncertainties and other factors, including the ability of Gilead and Kite to initiate, progress or complete clinical trials within currently anticipated timelines or at all, and the possibility of unfavorable results from ongoing and additional clinical trials, including those involving Tecartus; the risk that physicians may not see the benefits of prescribing Tecartus for the treatment of blood cancers; and any assumptions underlying any of the foregoing. These and other risks, uncertainties and other factors are described in detail in Gileads Quarterly Report on Form 10-Q for the quarter ended March 31, 2022 as filed with the U.S. Securities and Exchange Commission. These risks, uncertainties and other factors could cause actual results to differ materially from those referred to in the forward-looking statements. All statements other than statements of historical fact are statements that could be deemed forward-looking statements. The reader is cautioned that any such forward-looking statements are not guarantees of future performance and involve risks and uncertainties and is cautioned not to place undue reliance on these forward-looking statements. All forward-looking statements are based on information currently available to Gilead and Kite, and Gilead and Kite assume no obligation and disclaim any intent to update any such forward-looking statements.
U.S. Prescribing Information for Tecartus including BOXED WARNING, is available at http://www.kitepharma.com and http://www.gilead.com .
Kite, the Kite logo, Tecartus and GILEAD are trademarks of Gilead Sciences, Inc. or its related companies .
View source version on businesswire.com: https://www.businesswire.com/news/home/20220722005258/en/
Jacquie Ross, Investorsinvestor_relations@gilead.com
Anna Padula, Mediaapadula@kitepharma.com
Source: Gilead Sciences, Inc.
Cell Culture Media Market: Competitive Approach, Breakdown And Forecast by 2027 – Digital Journal
By daniellenierenberg
Market Overview
Thecell culture media marketis expected to cross USD 4.33 billion by 2027 at a CAGR of8.33%.
Market Dynamics
The markets growth is being fueled by a diverse range of cell culture media applications, increased research and development in the pharmaceutical industry, an increase in the prevalence of chronic diseases, and increased expansion and product launches by major players. Over the last few decades, advancements in cell culture technology have accelerated. It is widely regarded as one of the most dependable, robust, and mature technologies for biotherapeutic product development.
The high cost of cell culture media and the risk of contamination, on the other hand, are impeding the markets growth. However, the growing emphasis on regenerative and personalized medicine is likely to spur growth in the global cell culture media market.
Get Sample Report: https://www.marketresearchfuture.com/sample_request/4462
Competitive Dynamics
The notable players are the Merck KGaA (Germany), Bio-Rad Laboratories, Inc. (US), Thermo Fisher Scientific Inc. (US), Lonza (Switzerland), GE Healthcare (US), Becton, Dickinson and Company (US), HiMedia Laboratories (India), Corning Incorporated (US), PromoCell (Germany), Sera Scandia A/S (Denmark), The Sartorius Group (Germany), and Fujifilm Holdings Corporation (Japan).
Segmental Analysis
The global market for cell culture media has been segmented according to product type, application, and end user.
The market has been segmented by product type into classical media, stem cell media, serum-free media, and others.
Further subcategories of stem cell culture media include bone marrow, embryonic stem cells, mesenchymal stem cells, and neural stem cells.
The market is segmented into four application segments: drug discovery and development, cancer research, genetic engineering, and tissue engineering and biochemistry.
The market is segmented by end user into biochemistry and pharmaceutical companies, research laboratories, academic institutions, and pathology laboratories.
Regional Overview
According to region, the global cell culture media market is segmented into the Americas, Europe, Asia-Pacific, and the Middle East & Africa.
The Americas dominated the global cell culture media market. The large share is attributed to the presence of major manufacturers, rising disease prevalence resulting in increased demand for drugs and other medications, technological advancements in the preclinical and clinical segments, growing public awareness, and high disposable income.
Europe ranks second in terms of market size for cell culture media. Factors such as an increase in the biopharmaceutical sector in the European region, increased government initiatives to promote research to find a cure for the growing number of chronic diseases, an increase in the number of pharmaceutical manufacturers, improving economies, a high disposable income per individual, and increased healthcare spending are all contributing to the markets growth in this region. The European market is expected to be driven by expanding R&D activities and a developing biopharmaceutical sector.
Asia-Pacific held the third-largest market share, owing to the presence of numerous research organizations, low manufacturing costs, low labor costs, developing healthcare infrastructure, and increased investment by American and European market giants in Asian countries such as China and India.
The Middle East and Africa, with limited economic development and extremely low income, held the smallest market share in 2019 but is expected to grow due to growing public awareness and demand for improved healthcare facilities in countries, as well as rising disposable income.
Browse Full Reports: https://www.marketresearchfuture.com/reports/cell-culture-media-market-4462
Related Report: Dysmenorrhea Treatment Market Research Report- Global Forecast to 2027
Syringe and Needle Market Research Report Global Forecast to 2027
Global Medical Robotics Market Research Report- Forecast To 2027
About US:
Market Research Future (MRFR) enable customers to unravel the complexity of various industries through Cooked Research Report (CRR), Half-Cooked Research Reports (HCRR), Raw Research Reports (3R), Continuous-Feed Research (CFR), and Market Research & Consulting Services.
Contact us:
Market Research Future (part of Wantstats Research and Media Private Limited),
99 Hudson Street,5Th Floor, New York,
New York 10013
View post:
Cell Culture Media Market: Competitive Approach, Breakdown And Forecast by 2027 - Digital Journal
Stem Cell Therapy Market Size, Scope, Growth Opportunities, Trends by Manufacturers And Forecast to 2029 This Is Ardee – This Is Ardee
By daniellenierenberg
New Jersey, United States TheStem Cell TherapyMarket research guides new entrants to obtain precise market data and communicates with customers to know their requirements and preferences. It spots outright business opportunities and helps to bring new products into the market. It identifies opportunities in the marketplace. It aims at doing modifications in the business to make business procedures smooth and make business forward. It helps business players to make sound decision making. Stem Cell Therapy market report helps to reduce business risks and provides ways to deal with upcoming challenges. Market information provided here helps new entrants to take informed decisions making. It emphasizes on major regions of the globe such as Europe, North America, Asia Pacific, Middle East, Africa, and Latin America along with their market size.
Such unique Stem Cell Therapy Market research report offers some extensive strategic plans that help the players to deal with the current market situation and make your position. It helps in strengthening your business position. It offers better understanding of the market and keep perspective to aid one remain ahead in this competitive market. Organizations can gauze and compare their presentation with others in the market on the basis of this prompt market report. This market report offers a clarified picture of the varying market tactics and thereby helps the business organizations gain bigger profits. You get a clear idea about the product launches, trade regulations and expansion of the market place through this market report.
Get Full PDF Sample Copy of Report: (Including Full TOC, List of Tables & Figures, Chart) @https://www.verifiedmarketresearch.com/download-sample/?rid=24113
Key Players Mentioned in the Stem Cell Therapy Market Research Report:
Osiris Therapeutics Medipost Co. Ltd., Anterogen Co. Ltd., Pharmicell Co. Ltd., HolostemTerapieAvanzateSrl, JCR Pharmaceuticals Co. Ltd., Nuvasive RTI Surgical Allosource
Stem Cell TherapyMarket report consists of important data about the entire market environment of products or services offered by different industry players. It enables industries to know the market scenario of a particular product or service including demand, supply, market structure, pricing structure, and trend analysis. It is of great assistance in the product market development. It further depicts essential data regarding customers, products, competition, and market growth factors. Stem Cell Therapy market research benefits greatly to make the proper decision. Future trends are also revealed for particular products or services to help business players in making the right investment and launching products into the market.
Stem Cell TherapyMarket Segmentation:
Stem Cell Therapy Market, By Cell Source
Adipose Tissue-Derived Mesenchymal Stem Cells Bone Marrow-Derived Mesenchymal Stem Cells Cord Blood/Embryonic Stem Cells Other Cell Sources
Stem Cell Therapy Market, By Therapeutic Application
Musculoskeletal Disorders Wounds and Injuries Cardiovascular Diseases Surgeries Gastrointestinal Diseases Other Applications
Stem Cell Therapy Market, By Type
Allogeneic Stem Cell Therapy Autologous Stem Cell Therapy
Inquire for a Discount on this Premium Report@ https://www.verifiedmarketresearch.com/ask-for-discount/?rid=24113
For Prepare TOC Our Analyst deep Researched the Following Things:
Report Overview:It includes major players of the Stem Cell Therapy market covered in the research study, research scope, market segments by type, market segments by application, years considered for the research study, and objectives of the report.
Global Growth Trends:This section focuses on industry trends where market drivers and top market trends are shed light upon. It also provides growth rates of key producers operating in the Stem Cell Therapy market. Furthermore, it offers production and capacity analysis where marketing pricing trends, capacity, production, and production value of the Stem Cell Therapy market are discussed.
Market Share by Manufacturers:Here, the report provides details about revenue by manufacturers, production and capacity by manufacturers, price by manufacturers, expansion plans, mergers and acquisitions, and products, market entry dates, distribution, and market areas of key manufacturers.
Market Size by Type:This section concentrates on product type segments where production value market share, price, and production market share by product type are discussed.
Market Size by Application:Besides an overview of the Stem Cell Therapy market by application, it gives a study on the consumption in the Stem Cell Therapy market by application.
Production by Region:Here, the production value growth rate, production growth rate, import and export, and key players of each regional market are provided.
Consumption by Region:This section provides information on the consumption in each regional market studied in the report. The consumption is discussed on the basis of country, application, and product type.
Company Profiles:Almost all leading players of the Stem Cell Therapy market are profiled in this section. The analysts have provided information about their recent developments in the Stem Cell Therapy market, products, revenue, production, business, and company.
Market Forecast by Production:The production and production value forecasts included in this section are for the Stem Cell Therapy market as well as for key regional markets.
Market Forecast by Consumption:The consumption and consumption value forecasts included in this section are for the Stem Cell Therapy market as well as for key regional markets.
Value Chain and Sales Analysis:It deeply analyzes customers, distributors, sales channels, and value chain of the Stem Cell Therapy market.
Key Findings:This section gives a quick look at the important findings of the research study.
For More Information or Query or Customization Before Buying, Visit @ https://www.verifiedmarketresearch.com/product/stem-cell-therapy-market/
About Us: Verified Market Research
Verified Market Research is a leading Global Research and Consulting firm that has been providing advanced analytical research solutions, custom consulting and in-depth data analysis for 10+ years to individuals and companies alike that are looking for accurate, reliable and up to date research data and technical consulting. We offer insights into strategic and growth analyses, Data necessary to achieve corporate goals and help make critical revenue decisions.
Our research studies help our clients make superior data-driven decisions, understand market forecast, capitalize on future opportunities and optimize efficiency by working as their partner to deliver accurate and valuable information. The industries we cover span over a large spectrum including Technology, Chemicals, Manufacturing, Energy, Food and Beverages, Automotive, Robotics, Packaging, Construction, Mining & Gas. Etc.
We, at Verified Market Research, assist in understanding holistic market indicating factors and most current and future market trends. Our analysts, with their high expertise in data gathering and governance, utilize industry techniques to collate and examine data at all stages. They are trained to combine modern data collection techniques, superior research methodology, subject expertise and years of collective experience to produce informative and accurate research.
Having serviced over 5000+ clients, we have provided reliable market research services to more than 100 Global Fortune 500 companies such as Amazon, Dell, IBM, Shell, Exxon Mobil, General Electric, Siemens, Microsoft, Sony and Hitachi. We have co-consulted with some of the worlds leading consulting firms like McKinsey & Company, Boston Consulting Group, Bain and Company for custom research and consulting projects for businesses worldwide.
Contact us:
Mr. Edwyne Fernandes
Verified Market Research
US: +1 (650)-781-4080UK: +44 (753)-715-0008APAC: +61 (488)-85-9400US Toll-Free: +1 (800)-782-1768
Email: sales@verifiedmarketresearch.com
Website:- https://www.verifiedmarketresearch.com/
Continue reading here:
Stem Cell Therapy Market Size, Scope, Growth Opportunities, Trends by Manufacturers And Forecast to 2029 This Is Ardee - This Is Ardee
No Stone Unturned: Seattle Children’s High-Risk Leukemia Experts Specialize in the Toughest Cases – On the Pulse – On the Pulse
By daniellenierenberg
Josh, Harper and Meagan in June 2022
Two years ago, Meagan stood in a hospital room at Seattle Childrens cradling her 1-year-old daughter, Harper, against her chest. Her fianc, Josh, huddled close to them and kissed the thinning hair on top of their babys head.
A feeding tube was routed through Harpers nose and her eyes were brimming with tears. Exhausted, she snuggled into her moms arms as a photographer took their picture.
Meagan and Josh feared those would be the last photos taken of their baby girl.
Six months before, Harper became seriously ill. After multiple visits to their pediatrician in Yakima, Meagan took her to an emergency room where blood tests revealed Harper had leukemia.
It was shocking, Meagan says. Thirty minutes later we were on an emergency flight to Seattle Childrens.
The family didnt return home for nearly two years.
The type of leukemia Harper had acute lymphoblastic leukemia (ALL) is typically harder to treat and has lower survival rates when it occurs in infants who are less than a year old.
Harpers case was exceptionally challenging. She didnt respond to standard chemotherapy, even after providers added a medication designed to sensitize her leukemia to the treatment.
Her care team, which included Seattle Childrens High-Risk Leukemia Program, believed a stem cell transplant would give Harper the best chance of surviving, but they had to eliminate the majority of her leukemia cells first.
Drs. Kasey Leger and Brittany Lee, Harpers primary oncologists, started her on a novel immunotherapy medication, called blinatumomab, which effectively destroyed many of her ALL cells.
Unfortunately, two weeks later, the team discovered some of Harpers ALL cells had morphed into a different blood cancer acute myeloid leukemia (AML). This rare occurrence, called lineage switch, occurs in less than 5% of infant ALL cases.
It was a roller coaster, Josh says. She didnt do anything they expected her to do. It felt like every day we had to come up with a new plan.
Drs. Leger and Lee gave Harper a different kind of chemotherapy that destroyed the new AML cells. Still, some of her ALL cells remained, so the team gave Harper blinatumomab again which finally suppressed her cancer enough for her to have a stem cell transplant just before her first birthday.
Harper and her mom, Meagan, celebrating Harpers first birthday shortly after her stem cell transplant
The team had done everything they could to get Harper healthy enough for a stem cell transplant, hopeful it would be the treatment that finally cured her. Tragically, Harpers leukemia was back less than a month later.
When leukemia comes back so soon after transplant, patients have very few treatment options, if any, says Dr. Corinne Summers, Harpers stem cell transplant specialist. Many patients will not survive long term.
Harpers parents were terrified they were going to lose her.
Her bone marrow was packed with leukemia, Josh remembers. You could tell the life was slipping out of her and she just looked like it was going to be the end.
After Harpers stem cell transplant failed, the family met with end-of-life specialists and scheduled a special photo session to create memories that they would carry forward
They struggled to decide if they should continue treatment.
How do you know when enough is enough? Meagan says. When do you say, We cant do this to her anymore? Harper couldnt tell us how she was feeling, so it was all our decision.
Meagan and Josh worked closely with the care team to decide what to do next.
Those conversations were emotional for all of us, says Dr. Lee. Thankfully, we had a close, trusting relationship with their family and were able to give recommendations that reflected what they wanted for their daughter and what they felt was most important.
After much consideration, Meagan and Josh decided Harper was strong enough to continue treatment.
Drs. Leger and Lee filed a compassionate use request with the Food and Drug Administration to give Harper an investigational chemotherapy drug called venetoclax. Unfortunately, the treatment didnt work.
Collaborating with the family, the team decided to try giving Harper blinatumomab one more time. There was no evidence suggesting the medication would work so soon after a bone marrow transplant and with such a high burden of leukemia, but within a week it eliminated 98% of Harpers cancer cells.
Family is a critical piece of the team, Dr. Leger says. And Harper is fortunate to have amazing parents who were at her bedside 24/7 and had a beautiful way of advocating for her. They challenged us to leave no stone unturned and partnered with us throughout her treatment to keep figuring out a way forward.
With Harpers leukemia under control, the team searched for a way to wipe out any remaining cancer cells and keep her disease from coming back. Doctors in Childrens Cancer and Blood Disorders Center lead national research groups such as the Childrens Oncology Group, so they have access to trials around the world. However, Harpers care team found the best treatment for her was at Seattle Childrens Hospital, in partnership with Seattle Childrens Therapeutics.
Harpers T-cells were removed through a process called apheresis before they were reprogrammed to target her cancer cells and infused back into her blood
Harper was enrolled in one of Childrens T-cell immunotherapy clinical trials. The treatment involves re-programming a patients T cells (a type of white blood cell) to target and destroy their cancer cells.
After her T-cell therapy, Harper was finally in remission.
Meagan cried with relief when she found out. Harper would not be here right now if it wasnt for everybody at Seattle Childrens, she says. From day one, theyve been comforting and compassionate. They bend over backwards to keep families involved and helped us fight for our child.
To keep her in remission, Harper was given six antigen-presenting cell boosters, which kept her reprogrammed T cells circulating through her blood longer. She received the last booster earlier this year and is still in remission today.
Harper had a very unique disease in that her leukemia manifested as both ALL and AML, says Dr. Leger. Thankfully, we have team members with deep expertise in each of those diseases. Having internationally recognized chemotherapy, transplant and immunotherapy specialists on our team allowed us to be creative with her care when she needed to go beyond the standard pathways.
Today, Harper is a joyful, boisterous 3-year-old who loves experimenting with musical toys and splashing around in her bath or kiddie pool. One of her favorite things to do is grab Meagan by the hair and squish their faces together.
Because of the treatments Harper received at such a young age and the extended time she spent in the hospital, Harper is behind on some developmental milestones like speaking and walking. Still, Meagan and Josh say shes catching up.
Shes starting to bloom and take off and its so nice to see, Meagan says. At the same time, we cant get too comfortable. We know how relentless her disease is and that it could come back one day.
Harper plays in a pool, one of her favorite activities, in June 2022
Harpers family encourages community members to support cancer research at Childrens so that new treatments can be developed for Harper and other kids like her.
Without donors, Harper probably wouldnt be alive right now, Josh says. The treatments she had were developed in just the last few years. If people dont step up and donate, those programs arent there. Those drugs arent invented. Cancer treatment has come a really long way and thats because of donors stepping up to make that happen.
Learn more about Seattle Childrens High-Risk Leukemia Program and Cancer and Blood Disorders Center.
Related
Hyperglycaemia-Induced Impairment of the Autorhythmicity and Gap Junction Activity of Mouse Embryonic Stem Cell-Derived Cardiomyocyte-Like Cells -…
By daniellenierenberg
Abstract: Diabetes mellitus with hyperglycaemia is a major risk factor for malignant cardiac dysrhythmias. However, the underlying mechanisms remain unclear, especially during the embryonic developmental phase of the heart. This study investigated the effect of hyperglycaemia on the pulsatile activity of stem cell-derived cardiomyocytes. Mouse embryonic stem cells (mESCs) were differentiated into cardiac-like cells through embryoid body (EB) formation, in either baseline glucose or high glucose conditions. Action potentials (APs) were recorded using a voltage-sensitive fluorescent dye and gap junction activity was evaluated using scrape-loading lucifer yellow dye transfer assay. Molecular components were detected using immunocytochemistry and immunoblot analyses. High glucose decreased the spontaneous beating rate of EBs and shortened the duration of onset of quinidine-induced asystole. Furthermore, it altered AP amplitude, but not AP duration, and had no impact on the expression of the hyperpolarisation-activated cyclic nucleotide-gated isoform 4 (HCN4) channel nor on the EB beating rate response to ivabradine nor isoprenaline. High glucose also decreased both the intercellular spread of lucifer yellow within an EB and the expression of the cardiac gap junction protein connexin 43 as well as upregulated the expression of transforming growth factor beta 1 (TGF1) and phosphorylated Smad3. High glucose suppressed the autorhythmicity and gap junction conduction of mESC-derived cardiomyocytes, via mechanisms probably involving TGF1/Smad3 signalling. The results allude to glucotoxicity related proarrhythmic effects, with potential clinical implications in foetal diabetic cardiac disease.
NASA’s Solution to Stem Cell Production is Out of this World – BioSpace
By daniellenierenberg
NASA and Cedars-Sinai Medical Center are launching stem cells into space. In the study, funded by NASA and being conducted by scientists at Cedars-Sinai Medical Center in Los Angeles, the stem cells have been sent into space and will orbit for just over a months time to determine whether they grow differently without G-force.
A remotely controlled container of cells, with reagents and equipment needed to remotely sustain the cells, arrived at the International Space Station over the weekend. Two queries are presented alongside the launch details: do cells age differently in low orbit and can the Earthly challenges of stem cell growth amplification be overcome in space?
The human body is comprised of a full library of cell types, cataloged by specialty and location such as the striated cardiac muscles or the branching neurons in the brain. Each of these cells began as a raw stem cell and has developed in a particular manner. The cells can multiply to become a plentiful stem cell line under the correct conditions, but laboratory settings that would generate the quantity needed for medicinal purposes pose challenges that require innovative thinking.
Despite being featured in many biologic candidates currently under research and development and in clinical trials, mass-producing stem cells for use in these therapeutics isnt feasible. To prevent conglomeration or losing the stem cells at the bottom of a reactor tank, the bioreactor must be stirred at a rate that causes probable cell death. The end result is very few stem cells suitable for therapeutic and research use. By launching stem cells into space, the Cedars-Sinai research team is hoping to overcome these production limitations.
With stem cells, the possibilities and applications are increasing each day. They can work as models for testing drug safety and efficacy, thus reducing the burden placed on animal model research, be used as regenerative cells for those that have suffered damage as a result of injury or disease and even as a basic tool to help researchers further understand the human body.
By pushing the boundaries like this, its knowledge and its science and its learning, Clive Svendsen, executive director at the Cedars-Sinai Regenerative Medicine Institute, commented. Svendsen has sent a part of himself along with the project, as the donor of the stem cells.
Various other studies are being conducted by research teams around the globe in an effort to better understand the potential of stem cells.
Just last week, researchers from the University of Malta announced the launch of a similar mission that will be conducted aboard a SpaceX craft. The Maleth II project is the second installment of the Maleth Program that is designed to evaluate how human skin tissue cell genetics react to low earth orbit. A remotely controlled biocube will orbit the Earth for 60 days while the single cells are analyzed for changes.
The student researchers at the university are being directly supported by Maltas national Research, Innovation, Development Trust and the study itself is in collaboration with the Ministry of Foreign and European Affairs, Singleron Biotechnologies
See the rest here:
NASA's Solution to Stem Cell Production is Out of this World - BioSpace
Inhibition of pancreatic EZH2 restores progenitor insulin in T1D donor | Signal Transduction and Targeted Therapy – Nature.com
By daniellenierenberg
Human samples
Rapid harvesting of cadaveric pancreatic tissues was obtained with informed consent from next of kin, from heart-beating, brain-dead donors, with research approval from the Human Research Ethics Committee at St Vincents Hospital, Melbourne. Pancreas from individuals without and with diabetes, islet, acinar and ductal samples were obtained as part of the research consented tissues through the National Islet Transplantation Programme (at Westmead Hospital, Sydney and the St Vincents Institute, Melbourne, Australia), HREC Protocol number: 011/04. The donor characteristics of islet cell donor isolations are presented in Table 1.
Islets were purified by intraductal perfusion and digestion of the pancreases with collagenase AF-1.24 (SERVA/Nordmark, Germany) followed by purification using Ficoll density gradients.25 Purified islets, from low-density gradient fractions and acinar/ductal tissue, from high-density fractions, were cultured in Miami Media 1A (Mediatech/Corning 98021, USA) supplemented with 2.5% human serum albumin (Australian Red Cross, Melbourne, VIC, Australia), in a 37C, 5% CO2 incubator.
Total RNA from human ex vivo pancreatic cells was isolated using TRIzol (Invitrogen) and RNeasy Kit (QIAGEN) including a DNase treatment. First-strand cDNA synthesis was performed using a high-capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the manufacturers instructions. cDNA primers were designed using oligoperfect designer (Thermo Fisher Scientific), as shown in Table 2. Briefly, quantitative RT-PCR analyses were undertaken using the PrecisionFast 2 qPCR Master Mix (Primerdesign) and primers using Applied Biosystems 7500 Fast Real-Time PCR System. Each qPCR reaction contained: 6.5l qPCR Master Mix, 0.5l of forward and reverse primers, 3.5l H2O and 2l of previously synthesised cDNA, diluted 1/20. Expression levels of specific genes were tested and normalised to 18s ribosomal RNA housekeeping gene.
Modification of Histone H3 and histone-associated Ezh2 protein signals were quantified in human pancreatic ductal epithelial cells (AddexBio) by the LI-COR Odyssey assay. The cells were treated with 5 or 10M of GSK 126 (S7061, Selleckchem) for 48h. Histones and their associated proteins were examined using an acid extraction and immunoblotting as described previously.18 Protein concentrations were determined using Coomassie Reagent (Sigma) with BSA as a standard. Equal amounts (3g) of acid extract were separated by Nu-PAGE (Invitrogen), transferred to a PVDF membrane (Immobilon-FL; Millipore) and then probed with antibodies against H3K27me3 (07449, Millipore), H3K27ac (ab4729, Abcam), H3K9me3 (ab8898, Abcam), H3K9me2 (ab1220, Abcam), H3K4me3 (39159, Active Motif), Ezh2 (#4905, Cell Signaling Technology), and total histone H3 (#14269, Cell Signaling Technology). Protein blotting signals were quantified by an infra-red imaging system (Odyssey; LI-COR). Modification of Histone H3 and histone-associated Ezh2 signals were quantified using total histone H3 signal as a loading control.
Chromatin immunoprecipitation assays in human exocrine cells were performed previously described.26,27 Cells were fixed for 10min with 1% formaldehyde and quenched for 10min with glycine (0.125M) solution. Fixed cells were resuspended in sodium dodecyl (lauryl) sulfate (SDS) lysis buffer (1% SDS, 10mM EDTA, 50mM Tris-HCl pH 8.1) including a protease inhibitor cocktail (Roche Diagnostics GmBH, Mannheim, Germany) and homogenised followed by incubation on ice for 5min. Soluble samples were sonicated to 200600bp and chromatin was resuspended in ChIP Dilution Buffer (0.01% SDS, 1.1% Triton X-100, 1.2mM EDTA, 16.7mM Tris-HCl pH 8.0, and 167mM NaCl) and 20l of Dynabeads Protein A (Invitrogen, Carlsbad, CA, USA) was added and pre-cleared. H3K27me3 antibody was used for immunoprecipitation of chromatin and incubated overnight at 4C as previously described.28 Immunoprecipitated DNA were collected by magnetic isolation, washed low salt followed by high salt buffers and eluted with 0.1M NaHCO3 with 1% SDS. Protein-DNA cross-links were reversed by adding Proteinase K (Sigma, St. Louis, MO, USA) and incubation at 62C for 2h. DNA was recovered using a Qiagen MinElute column (Qiagen Inc., Valencia, CA, USA). H3K27me3 content at the promoters of the INS, INS-IGF2, NGN3 and PDX1 genes were assessed by qPCR using primers designed from the integrative ENCODE resource.29 ChIP primers are shown in Table 3.
Insulin and glucagon localisation in human islets were assessed using paraffin sections (5m thickness) of human pancreas tissue fixed in 10% neutral-buffered formalin and stained with hematoxylin and eosin (H&E) or prepared for immunohistochemistry. Insulin and glucagon were detected using Guinea Pig anti-insulin (1/100, DAKO) or mouse anti-glucagon (1/50) mAbs (polyclonal Abs, Sigma-Aldrich).
Pharmacological inhibition of EZH2, human pancreatic exocrine cells were kept untreated or stimulated with 10M GSK-126 (S7061, Selleckchem) at a cell density of 1105 per well for 24h. After 24h of treatment, fresh Miami Media was added to the cells, which were treated again with 10 GSK-126 and cultured for a further 24h. All cell incubations were performed in Miami Media 1A (Mediatech/Corning 98-021, USA) supplemented with 2.5% human serum albumin (Australian Red Cross, Melbourne, VIC, Australia), in a cell culture incubator at 37C in an atmosphere of 5% CO2 for 48h using non-treated six-well culture plates (Corning).
See original here:
Inhibition of pancreatic EZH2 restores progenitor insulin in T1D donor | Signal Transduction and Targeted Therapy - Nature.com
‘My Teen Sweetheart And I Drifted Apart. 30 Years Later I Made a Shocking Discovery’ – Newsweek
By daniellenierenberg
Shortly after I was told I would need a heart transplant, in August 2014, a cardiac nurse visited my house. She scanned the room and noticed my exercise equipment. "You're not going to use that are you?", she asked me. "Yes", I replied, "why?"
My heart was operating at 13 percent and I was firmly told I couldn't be doing that sort of thing in my condition. The nurse said she would send round a physiotherapist called Nikki Simpson to tell me what I could and couldn't do while doctors tried to figure out what was going on with my heart.
"Nikki Simpson?" I asked. It couldn't be. The woman I had once known with the same name was training to be a hairdresser, plus she'd married and moved away.
We had first met as teenagers at a club in the north of England in 1984. I had wavy shoulder length hair and she always had some sort of red leather gear on. Usually, I'm not the sharpest knife in the drawer when it comes to flirting, but I could tell she liked me straight away.
We dated for about six months. I didn't drink much so we would go on long drives and spend time with mutual friends, but for some reason the relationship just fizzled out. Nothing bad happened, we just drifted apart.
I lived a bachelor life for a while. Eventually I got married and had my son, Robert. Nikki got married and had a baby girl. We only lived a village away from each other but I never saw her once.
When my son was eight my first marriage broke down and I cared for Robert. It was the hardest thing to do, but we had the best time of our lives. I did date when my son was younger, but nobody seemed to understand that Robert came first.
For years I'd been extremely fit, I was a plasterer by trade and had always had physical jobs. But in February, 2014, when I was doing some work putting up billboards in Leeds, I couldn't breathe and kept falling to my knees.
I visited the emergency room with my sister. I was told I had pneumonia and given a course of antibiotics. I took them for two weeks but still couldn't breathe properly, so I was told it was likely I had a respiratory condition and to visit my doctor.
After months of being referred to and from the hospital, my doctor told me he thought I had heart failure. He organized an MRI scan which showed my heart was globally dilated and operating at a fraction of its normal function. They said it was likely down to a virus, but had no idea which one.
I went back the next week and the doctor sat there, clicking away on his keyboard. He glanced across at me and said: "We need to discuss a heart transplant." There I was, this strapping Yorkshireman who doesn't drink, doesn't smoke, doesn't do anything untoward, who has a dodgy heart. I stopped listening to anything he said. I went back to my doctor who told me to stop whatever I was doing, go home and watch TV on the sofa.
I started going for various scans and a cardiac nurse began to visit me and curate my drugs, which is when she mentioned about a physio helping me.
One day in August 2014, this nurse she knocked on the door and said "The physio is on her way, but I need to ask your permission for her to treat you because you have a history." I said it was fine.
When Nikki knocked on my door, I swung it open and shouted "f*** off!" I grabbed her, sat her on the kitchen table and gave her a big kiss on the cheek.
It just sort of took off from there. We started seeing each other when she came round to treat me. I would go to the gym with her to do exercises and she would call round for a cup of tea in the evenings.
Robert was doing his first year at university studying aeronautical engineering and I was concerned because he was driving a fair distance home every day just so I wasn't at home by myself. Eventually, Nikki said she'd move in with me so Robert could go and live the dream.
It was ace having her around. Even at this point, when I thought I was dying and there was no cure for me, it was like this angel had walked through the door and made my life better.
The relationship with Nikki was great, but I was going to the hospital a lot. The tablets used to steady you and make you comfortable I just couldn't tolerate. I got to the stage where I spent so much time in the hospital the porters recognised me.
It looked like I was going to die. I had a mate who had his suit washed three times for my funeral. Whenever I saw him he would say: "Are you still here?"
In October 2017, we were watching TV when an interview with the Heart Cells Foundation came on. They'd created a stem-cell procedure which took bone marrow from a patient's pelvis then injected it straight into the heart. I wanted it.
The next day I phoned them and they said to come down for some tests. I qualified for the procedure and in November 2018 went down to St Bartholomew's Hospital in London and had the treatment. It changed my life overnight.
This horrific thing I was thinking about; someone dying and me taking their heart, wasn't going to happen anymore. That was three and a half years ago. I had thought I was going to be dead in months without a transplant.
From day one of leaving the hospital, I haven't had any problems at all. I go down for a yearly check up and the consultant wants me to have the treatment again. They've never done it twice but think they might get some good results.
Nikki has been ace throughout all of this. We're looking to get married next year. I didn't want to get married before the treatment. I didn't want to be pushed down the aisle in a wheelchair or go for a meal after and end up in an ambulance. But, now, I'm getting fit, strong and strapping, so we want to go with it.
Looking back, it seems so strange that Nikki and I parted ways. I don't know if I believe in fate, but since I was first told I'd need a heart transplant we've lost my dad, my brother, two aunties and Nikki's dad. All these people who have gone, I was supposed to go before them. My perspective on life has always been to live it today, because you don't know what's going to come tomorrow.
Barry Newman, 55, from Wakefield, was a plasterer before undergoing pioneering treatment with the Heart Cells Foundation, an independent charity which has run a small unit at St Bartholomew's Hospital since 2016. Earlier this year he carried the baton at the Commonwealth Games relay.
All views expressed in this article are the author's own.
As told to Monica Greep
Link:
'My Teen Sweetheart And I Drifted Apart. 30 Years Later I Made a Shocking Discovery' - Newsweek
Stem Cells Market to Expand at a CAGR of 10.4% from 2021 to 2028 Travel Adventure Cinema – Travel Adventure Cinema
By daniellenierenberg
Stem Cells Market: Introduction
According to the report, the globalstem cells marketwas valued at US$11.73Bn in 2020 and is projected to expand at a CAGR of10.4%from 2021 to 2028. Stem cells are defined as specialized cells of the human body that can develop into various different kinds of cells. Stem cells can form muscle cells, brain cells and all other cells in the body. Stem cells are used to treat various illnesses in the body.
North America was the largest market for stem cells in 2020. The region dominated the global market due to substantial investments in the field, impressive economic growth, increase in incidence of target chronic diseases, and technological progress. Moreover, technological advancements, increase in access to healthcare services, and entry of new manufacturers are the other factors likely to fuel the growth of the market in North America during the forecast period.
Request A Sample: https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=132
Asia Pacific is projected to be a highly lucrative market for stem cells during the forecast period. The market in the region is anticipated to expand at a high CAGR during the forecast period. High per capita income has increased the consumption of diagnostic and therapy products in the region. Rapid expansion of the market in the region can be attributed to numerous government initiatives undertaken to improve the health care infrastructure. The market in Asia Pacific is estimated to expand rapidly compared to other regions due to shift in base of pharmaceutical companies and clinical research industries from developed to developing regions such as China and India. Moreover, changing lifestyles and increase in urbanization in these countries have led to a gradual escalation in the incidence of lifestyle-related diseases such as cancer, diabetes, and heart diseases.
Technological Advancements to Drive Market
Several companies are developing new approaches to culturing or utilizing stem cells for various applications. Stem cell technology is a rapidly developing field that combines the efforts of cell biologists, geneticists, and clinicians, and offers hope of effective treatment for various malignant and non-malignant diseases. The stem cell technology is progressing as a result of multidisciplinary effort, and advances in this technology have stimulated a rapid growth in the understanding of embryonic and postnatal neural development.
Adult Stem Cells Segment to Dominate Global Market
In terms of product type, the global stem cells market has been classified into adult stem cells, human embryonic stem cells, and induced pluripotent stem cells. The adult stem cells segment accounted for leading share of the global market in 2020. The capability of adult stem cells to generate a large number of specialized cells lowers the risk of rejection and enables repair of damaged tissues.
Request Brochure: https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=132
Autologous Segment to Lead Market
Based on source, the global stem cells market has been bifurcated into autologous and allogenic. The autologous segment accounted for leading share of the global market in 2020. Autologous stem cells are used from ones own body to replace damaged bone marrow and hence it is safer and is commonly being practiced.
Regenerative Medicines to be Highly Lucrative
In terms of application, the global stem cells market has been categorized into regenerative medicines (neurology, oncology, cardiology, and others) and drug discovery & development. The regenerative medicines segment accounted for major share of the global market in 2020, as regenerative medicine is a stem cell therapy and the medicines are made using stem cells in order to repair an injured tissue. Increase in the number of cardiac diseases and other health conditions drive the segment.
Therapeutics Companies Emerge as Major End-users
Based on end-user, the global stem cells market has been divided into therapeutics companies, cell & tissue banks, tools & reagents companies, and service companies. The therapeutics companies segment dominated the global stem cells market in 2020. The segment is driven by increase in usage of stem cells to treat various illnesses in the body. Therapeutic companies are increasing the utilization of stem cells for providing various therapies. However, the cell & tissue banks segment is projected to expand at a high CAGR during the forecast period. Increase in number of banks that carry out research on stem cells required for tissue & cell growth and elaborative use of stem cells to grow various cells & tissues can be attributed to the growth of the segment.
Regional Analysis
In terms of region, the global stem cells market has been segmented into North America, Europe, Asia Pacific, Latin America, and Middle East & Africa. North America dominated the global stem cells market in 2020, followed by Europe. Emerging markets in Asia Pacific hold immense growth potential due to increase in income levels in emerging markets such as India and China leading to a rise in healthcare spending.
Request for covid19 Impact Analysis: https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=132
Competition Landscape
The global stem cells market is fragmented in terms of number of players. Key players in the global market include STEMCELL Technologies, Inc., Astellas Pharma, Inc., Cellular Engineering Technologies, Inc., BioTime, Inc., Takara Bio, Inc., U.S. Stem Cell, Inc., BrainStorm Cell Therapeutics, Inc., Cytori Therapeutics, Inc., Osiris Therapeutics, Inc., and Caladrius Biosciences, Inc.
Stem Cells Market, by Application
Stem Cells Market, by End-user
More Trending Reports by Transparency Market Research:
Animal Health Care Market: https://www.transparencymarketresearch.com/india-animal-health-care-market.html
Albumin Market: https://www.transparencymarketresearch.com/global-albumin-market.html
Veterinary Therapeutics Market: https://www.transparencymarketresearch.com/ksa-veterinary-therapeutics-market.html
Geriatric Care Services Market: https://www.transparencymarketresearch.com/geriatric-care-services-market.html
Gene Therapy Market: https://www.transparencymarketresearch.com/gene-therapy-market.html
Malaysia Medical Tourism Market: https://www.transparencymarketresearch.com/malaysia-medical-tourism-market.html
Pulmonary Arterial Hypertension (PAH) Market: https://www.transparencymarketresearch.com/pulmonary-arterial-hypertension-therapeutics.html
About Us
Transparency Market Research, a global market research company registered at Wilmington, Delaware, United States, provides custom research and consulting services. The firm scrutinizes factors shaping the dynamics of demand in various markets.The insights and perspectives on the markets evaluate opportunities in various segments. The opportunities in the segments based on source, application, demographics, sales channel, and end-use are analysed, which will determine growth in the markets over the next decade.
Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insights for thousands of decision-makers, made possible by experienced teams of Analysts, Researchers, and Consultants. The proprietary data sources and various tools & techniques we use always reflect the latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in all of its business reports.
For More Research Insights on Leading Industries, Visit Our YouTube Channel and hit subscribe for Future Update https://www.youtube.com/channel/UC8e-z-g23-TdDMuODiL8BKQ
Contact
Rohit BhiseyTransparency Market Research Inc.CORPORATE HEADQUARTER DOWNTOWN,1000 N. West Street,Suite 1200, Wilmington, Delaware 19801 USATel: +1-518-618-1030USA Canada Toll Free: 866-552-3453Website:https://www.transparencymarketresearch.comBlog:https://tmrblog.comEmail:%5Bemailprotected%5D
See the original post here:
Stem Cells Market to Expand at a CAGR of 10.4% from 2021 to 2028 Travel Adventure Cinema - Travel Adventure Cinema
EU: New Blood? Proposed Revisions to the EUs Blood, Tissues and Cells Rules – GlobalComplianceNews
By daniellenierenberg
In brief
In 2020, the European Commission began a review of the EUs rules on blood, tissues and cells (BTC) used for medical treatments and therapies. Now the Commission haspublisheda draft legislative proposal to amend the rules.
The proposal does not recommend a complete overhaul: the EU will not change its definitions of blood, tissue and cell products. Yet it does promise a significant update to the two Directives published in the early 2000s that continue to govern the use of BTC components in the EU. Most importantly, the proposed legislation would be packaged as a Regulation rather than a Directive, meaning it would have a direct effect in the Member States.
The legislation sets out quality and safety requirements for allactivitiesfrom donation to human application (unless the donations are used to manufacture medicinal products or medical devices, in which case the legislation only applies to donation, collection and testing).
In its press release, the European Commission states that every year, EU patients are treated with 25 million blood transfusions (during surgery, emergency, cancer or other care), a million cycles of medically assisted reproduction, over 35,000 transplants of stem cells (mainly for blood cancers) and hundred thousands of replacement tissues (e.g., for orthopedic, skin, cardiac or eye problems). These therapies are only available thanks to the willingness of fellow citizens to make altruistic donations.
In the EU, the collection, processing and supply of each individual unit is typically organized on a local small-scale by public services, (academic) hospitals and non-profit actors.
Afteralmost 20years in place, the legislationno longer addressesthe scientific and technicalstate of the art and needs to be updated to take into account developments that have taken place in the sector.
How is the Commission planning to change BTC legislation in the EU? Here are three key takeaways from the draft proposal.
Compensating Doctors
The tissue and cell directive currently in force explicitly permits the Member States to compensate donors of tissue and cell products for their trouble. The corresponding blood Directive, however, contains no such provision: in its absence, different countries have developed their own guidelines on blood donor compensation.
That disparity is addressed in the draft Regulation, which would allow the Member States to reimburse donors of all human-derived products for losses related to their participation in adonation through fixed-rate allowances. Improving access to plasma donation, advocates of compensation schemes hope, could help the EU to bolster its patchy stockpiles of the essential fluid.
Emergency Planning
The Covid-19 pandemic demonstrated the fragility of healthcare networks that rely heavily on external sources for their products. Supply chain disruptions are a particular threat to the availability of plasma-derived medicines in the bloc since much of the EUs plasma is imported from the USA.
With this in mind, the Commission wants the Member States to develop emergency plans to cope with supply shocks. Countries would be required to maintain lines of communication that could be used in emergencies, establish authorities responsible for distribution in critical situations, and detect risks to their continued access to substances of human origin.
Detecting Risks
As might be expected, the draft Regulation introduces measures to protect the health and privacy of donors and donees. Screening is mandated to prevent patients from receiving diseased blood or cancerous cells. Technical systems should be in place to preserve the anonymity of all parties to a BTC transfer.
The burden of safeguarding is particularly heavy where assisted reproduction is concerned. It would be up to the Member States, under the draft legislation, to detect and mitigate genetic risks posed by donated reproductive cells.
If approved, it is thought that the revisions will be endorsed by 2023, with implementation beginning in 2024.
For further information, please contact Julia Gillert of our London office.
Visit link:
EU: New Blood? Proposed Revisions to the EUs Blood, Tissues and Cells Rules - GlobalComplianceNews
Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study – GlobeNewswire
By daniellenierenberg
Wilmington, Delaware, United States, July 18, 2022 (GLOBE NEWSWIRE) -- Transparency Market Research Inc.: The market value of the global cell separation technologies market is estimated to be over US$ 20.3 Bn by 2031, according to a research report by Transparency Market Research (TMR). Hence, the market is expected expand at a CAGR of 11.9% during the forecast period, from 2022 to 2031.
According to the TMR insights on the cell separation technologies market, the prevalence of chronic disorders including obesity, diabetes, cardiac diseases, cancer, and arthritis is being increasing around the world. Some of the key reasons for this situation include the sedentary lifestyle of people, increase in the older population, and rise in cigarette smoking and alcohol consumption across many developed and developing nations. These factors are expected to help in the expansion of the cell separation technologies market during the forecast period.
Players in the global cell separation technologies market are increasing focus on the launch of next-gen products. Hence, they are seen increasing investments in R&Ds. Moreover, companies are focusing on different strategies including acquisitions and strengthening their distribution networks in order to stay ahead of the competition.
Request Brochure of Cell Separation Technologies Market Research Report https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=1925
As per the Imperial College London, chronic diseases are expected to account for approximately 41 million deaths per year, which seven out of 10 demises worldwide. Of these deaths, approximately 17 million are considered to be premature. Hence, surge in cases of chronic diseases globally is resulting into increased need for cellular therapies in order to treat such disease conditions, which, in turn, is boosting the investments toward R&Ds, creating sales opportunities in the cell separation technologies market.
Cell Separation Technologies Market: Key Findings
Request for Analysis of COVID-19 Impact on Cell Separation Technologies Market https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=1925
Cell Separation Technologies Market: Growth Boosters
Cell Separation Technologies Market: Regional Analysis
Get Exclusive PDF Sample Copy of Cell Separation Technologies Market Report https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=1925
Cell Separation Technologies Market: Key Players
Some of the key players profiled in the report are:
Make an Enquiry Before Buying https://www.transparencymarketresearch.com/sample/sample.php?flag=EB&rep_id=1925
Cell Separation Technologies Market Segmentation
Modernization of healthcare in terms of both infrastructure and services have pushed the healthcare industry to new heights, Stay Updated with Latest Healthcare Research Reports by Transparency Market Research:
Cell Culture Market: Rise in outsourcing activities and expansion of biopharmaceutical manufacturers are expected to drive the cell culture market during the forecast period
Cell Culture Media, Sera, and Reagents Market: The global cell culture media, sera, and reagents market is majorly driven by growth and expansion of biotechnology & pharmaceutical companies and academic & research institutes.
Stem Cells Market: The global stem cells market is majorly driven by rising applications of stem cells in regenerative medicines. Increase in the number of chronic diseases such as cardiac diseases, diabetes, cancer, etc.
Cell Line Authentication and Characterization Tests Market: Increase in the geriatric population and surge in incidence of chronic diseases are projected to drive the global cell line authentication and characterization tests market.
CAR T-cell Therapy Market: The CAR T-cell therapy market is expected to clock a CAGR of 30.6% during the assessment period. The CAR T-cell therapy is known as a revolutionary treatment option for cancer, owing to its remarkably effective and durable clinical responses.
Cell & Tissue Preservation Market: Rise in investments in the field of regenerative medicine research is estimated to propel the market. Human blood, tissues, cells, and organs own the capability to heal damaged tissues and organs with long-term advantages.
Placental Stem Cell Therapy Market: Placental stem cell therapy market is driven by prominence in treatment of age-related disorders/diseases and increase in awareness about stem cell therapies are projected to drive the global market in the near future.
Biotherapeutics Cell Line Development Market: The market growth will be largely driven by research and development activities due to which, new solutions and technologies have gradually entered the market.
About Transparency Market Research
Transparency Market Research, a global market research company registered at Wilmington, Delaware, United States, provides custom research and consulting services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insights for thousands of decision makers. Our experienced team of Analysts, Researchers, and Consultants use proprietary data sources and various tools & techniques to gather and analyze information.
Our data repository is continuously updated and revised by a team of research experts, so that it always reflects the latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in developing distinctive data sets and research material for business reports.
For More Research Insights on Leading Industries, Visit Our YouTube Channel and hit subscribe for Future Update - https://www.youtube.com/channel/UC8e-z-g23-TdDMuODiL8BKQ
Contact
Rohit BhiseyTransparency Market Research Inc.CORPORATE HEADQUARTER DOWNTOWN,1000 N. West Street,Suite 1200, Wilmington, Delaware 19801 USATel: +1-518-618-1030USA Canada Toll Free: 866-552-3453Website:https://www.transparencymarketresearch.comBlog:https://tmrblog.comEmail:sales@transparencymarketresearch.com
Go here to see the original:
Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study - GlobeNewswire
Dental Membrane and Bone Graft Substitutes Market to Exceed Value of US$ 1,337 Mn by 2031 – PR Newswire UK
By daniellenierenberg
WILMINGTON, Del., July 21, 2022 /PRNewswire/ --An in-depth demand analysis of dental membrane and bone graft substitutes found that massive demand for resorbable bone grafting materials presents value-grab opportunity. Companies in the dental membrane and bone graft substitutes market are actively leaning on development of novel biomaterials to meet the needs of bone grafting procedures. The TMR study projects the size of the market to surpass worth of US$ 1,337 Mn by 2031.
Advancements in periodontology are catalyzing introduction of new soft tissue regeneration, as emerging trends of the dental membrane and bone graft substitutes market underscore. Moreover, dental membrane and bone graft substitutes market projections in the TMR study have found that the use of xenograft for dental bone regeneration is anticipated to rise rapidly, and will unlock lucrative avenues. The fact that xenografts are cost-effective and show good results in bone tissue regeneration will spur the popularity of products in the segment.
Increasing number of bone regeneration procedures has led to the commercialization of novel biomaterials and dental bone grafts. The application of human cell sources in bone graft substitutes is growing, thus extending the canvas for companies in the dental membrane and bone graft substitutes market. Rise in oral disorders and injuries has impelled the need for bone substitute materials that can promise long-term survival rates in the patients.
Request Brochure of Dental Membrane and Bone Graft Substitutes Market Research Report https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=16340
Key Findings of Dental Membrane and Bone Graft Substitutes Market Study
Request for Analysis of COVID-19 Impact on Dental Membrane and Bone Graft Substitutes Market https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=16340
Dental Membrane and Bone Graft Substitutes Market: Key Drivers
Dental Membrane and Bone Graft Substitutes Market: Regional Growth Dynamics
Get Exclusive PDF Sample Copy of Dental Membrane and Bone Graft Substitutes Market Report https://www.transparencymarketresearch.com/sample/sample.php?flag=S&rep_id=16340
Dental Membrane and Bone Graft Substitutes Market: Key Players
High degree of fragmentation has characterized the competition landscape in the dental membrane and bone graft substitutes market, mainly due to presence of several prominent players. Some of the key players are Zimmer Biomet, OPKO Health, Inc., NovaBone Products, LLC., Nobel Biocare Services AG, Geistlich Pharma AG, Dentsply Sirona, Collagen Matrix, Inc., BioHorizons, and Institut Straumann AG.
Make an Enquiry Before Buying https://www.transparencymarketresearch.com/sample/sample.php?flag=EB&rep_id=16340
Dental Membrane and Bone Graft Substitutes Market Segmentation
Regions Covered
Countries
Modernization of healthcare in terms of both infrastructure and services have pushed the healthcare industry to new heights, Stay Updated withLatest Healthcare Research Reportsby Transparency Market Research:
Non-Invasive Prenatal Testing Market: Non-invasive prenatal testing market was worth around US$ 1.3 Bn in 2018. The market is likely to develop at a CAGR of 16.4% during the forecast period, from 2019 to 2027.
Cell Culture Media, Sera, and Reagents Market: The global cell culture media, sera, and reagents market is majorly driven by growth and expansion of biotechnology & pharmaceutical companies and academic & research institutes.
Stem Cells Market: The global stem cells market is majorly driven by rising applications of stem cells in regenerative medicines. Increase in the number of chronic diseases such as cardiac diseases, diabetes, cancer, etc.
Cell Line Authentication and Characterization Tests Market: Increase in the geriatric population and surge in incidence of chronic diseases are projected to drive the global cell line authentication and characterization tests market.
CAR T-cell Therapy Market: The CAR T-cell therapy market is expected to clock a CAGR of 30.6% during the assessment period. The CAR T-cell therapy is known as a revolutionary treatment option for cancer, owing to its remarkably effective and durable clinical responses.
Cell & Tissue Preservation Market: Rise in investments in the field of regenerative medicine research is estimated to propel the market. Human blood, tissues, cells, and organs own the capability to heal damaged tissues and organs with long-term advantages.
mHealth Monitoring Diagnostic Medical Devices Market: The global mHealth monitoring diagnostic medical devices market was valued at US$ 29.05 Bn in 2018 and is projected to expand at a CAGR of 20.5% from 2019 to 2027.
Pediatric Medical Devices Market: The global pediatric medical devices market was valued at US$ 21,000 Mn in 2017 and is projected to expand at a CAGR of 8.0% from 2018 to 2026.
About Transparency Market Research
Transparency Market Research, a global market research company registered at Wilmington, Delaware, United States, provides custom research and consulting services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insights for thousands of decision makers. Our experienced team of Analysts, Researchers, and Consultants use proprietary data sources and various tools & techniques to gather and analyze information.
Our data repository is continuously updated and revised by a team of research experts, so that it always reflects the latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in developing distinctive data sets and research material for business reports.
For More Research Insights on Leading Industries, Visit Our YouTube Channel and hit subscribe for Future Update -https://www.youtube.com/channel/UC8e-z-g23-TdDMuODiL8BKQ
Contact :Rohit BhiseyTransparency Market Research Inc.CORPORATE HEADQUARTER DOWNTOWN,1000 N. West Street,Suite 1200, Wilmington, Delaware 19801 USATel: +1-518-618-1030USA Canada Toll Free: 866-552-3453Website:https://www.transparencymarketresearch.comBlog:https://tmrblog.comEmail:sales@transparencymarketresearch.com
Logo: https://mma.prnewswire.com/media/1682871/TMR_Logo_Logo.jpg
SOURCE Transparency Market Research
Visit link:
Dental Membrane and Bone Graft Substitutes Market to Exceed Value of US$ 1,337 Mn by 2031 - PR Newswire UK
Innovative Therapies, Care Equity Highlight 2022 ASCO Annual Meeting – Targeted Oncology
By daniellenierenberg
After a meeting like the 2022 ASCO Annual Meeting, one cannot help but be reinvigorated to continue advancing cancer care and feel optimistic about the future of oncology, says John M. Burke, MD.
After seeing all the amazing presentations at the American Society of Oncology (ASCO) Annual Meeting, I cannot help but reflect on how far our field has come over the course of my 20-year career.
In 2000, I moved from San Francisco, California, to New York, New York, to begin my fellowship at Memorial Sloan Kettering Cancer Center. My first rotation was on the inpatient myeloma, lymphoma, and autologous stem cell transplant service, where I encountered patients with myeloma and painful bone lesions causing fractures and spinal cord compressions. We treated patients with myeloma with chemotherapy and autologous stem cell transplant. Thalidomide (Thalomid) was starting to make a splash by showing strong efficacy in myeloma trials, and bortezomib (Velcade) emerged during those years, as well.
Nevertheless, the state of the art was exemplified by an article in the New England Journal of Medicine in 2003, describing the results of an Intergroupe Francophone du Mylome (IFM) trial. Myeloma patients were treated with vincristine, doxorubicin, and dexamethasone induction followed by single or double autologous stem cell transplant. The median event-free survival was 2 years and the median overall survival was 4 years, which seem grim by modern standards.
Fast forward about 20 years to the Plenary Session of the 2022 ASCO Annual Meeting, at which we saw the results of modern therapy in the DETERMINATION trial (NCT01208662). Patients treated with the modern standard regimen of lenalidomide (Revlimid), bortezomib, and dexamethasone followed by autologous stem cell transplant achieved a median progression-free survival of 5.5 years. In the IFM trial 20 years ago, approximately 50% of patients were alive at 4 years. In DETERMINATION, 85% of patients were alive at 4 years. Weve come a long way.
DETERMINATION represents only an infinitesimal fraction of the degree of innovation demonstrated at the ASCO meeting: an antibody-drug conjugate besting conventional chemotherapy in patients with low expression of the HER2 target in breast cancer; a KRAS inhibitor demonstrating marked activity in KRAS-mutated nonsmall cell lung cancer; a bispecific antibody redirecting T cells to suppress diffuse large B-cell lymphoma; an antibody-drug conjugate added to chemotherapy, extending survival in Hodgkin lymphoma compared with the decades-old standard-of-care regimen; and a checkpoint inhibitor rendering mismatch repairdeficient rectal cancer completely helpless.
After a meeting like this, one cannot help but be reinvigorated to continue advancing cancer care and feel optimistic about the future of oncology. We have a lot of progress to celebrateand a lot more to accomplish.
Read more from the original source:
Innovative Therapies, Care Equity Highlight 2022 ASCO Annual Meeting - Targeted Oncology
Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% – Digital Journal
By daniellenierenberg
Global Stem Cell ManufacturingMarket Is Expected To Reach USD 21.71 Billion By 2029 At A CAGR Of 9.1 percent.
Maximize Market Research has published a report on theGlobal Stem Cell Manufacturing Marketthat provides a detailed analysis for the forecast period of 2022 to 2029.
Global Stem Cell ManufacturingMarket Scope:
The report provides comprehensive market insights for industry stakeholders, including an explanation of complicated market data in simple language, the industrys history and present situation, as well as expected market size and trends. The research investigates all industry categories, with an emphasis on key companies such as market leaders, followers, and new entrants. The paper includes a full PESTLE analysis for each country. A thorough picture of the competitive landscape of major competitors in theGlobal Stem Cell Manufacturingmarket by goods and services, revenue, financial situation, portfolio, growth plans, and geographical presence makes the study an investors guide.
Request Free Sample:@https://www.maximizemarketresearch.com/request-sample/73762
Global Stem Cell Manufacturing Market Overview:
Observing stem cells evolve into cells in bones, the circulatory system, nerve cells, and other organs of the body may help scientists understand how illnesses and disorders occur. Stem cells can be programmed to generate particular cells that can be utilized in humans to grow and mend tissues that have been damaged or harmed by sickness. Stem cell therapy may assist people with spinal cord injuries, metabolic disorders, Parkinsons disease, amyotrophic lateral sclerosis, Alzheimers disease, cardiovascular disorders, brain hemorrhage, burns, malignancy, and rheumatoid arthritis. Stem cells can be used to create new tissue for transplant and genetic engineering. Doctors are always learning more about stem cells and how they might be used in transplant and cellular therapies.
Global Stem Cell ManufacturingMarketDynamics:
Stem cells are crucial in illness treatment and specialized research initiatives such as customized therapy and genetic testing. As public and commercial stakeholders throughout the world become more aware of stem cells therapeutic potential and the scarcity of therapeutic approaches for rare illnesses, they are increasingly focusing on the development of stem cell-based technology.
Specialized procedures are required for stem cell separation, refinement, and storage (such as expansion, differentiation, cell culture media preparation, and cryopreservation). Additionally, the production scale-up of stem cell lines and associated items is frequently accompanied by major technological challenges that impede the whole production process and result in large operational expenses. As a result, stem cell products are frequently more expensive than pharmaceutical medications and biopharmaceuticals.
Additionally, the growing popularity of tailored medications is driving the market growth. Scientists are researching novel procurement strategies that can be used to manufacture tailored medications. For example, iPSC treatments are created by taking a little amount of a patients plasma or skin cells and reprogramming them to make new cells and tissue for transplant. As a result, future tailored treatments can be produced using these cells.
Global Stem Cell ManufacturingMarketRegional Insights:
North America (particularly the United States) held the largest market share in 2021, owing to factors such as the availability of significant contenders active in creating stem cell treatments, enhanced medical facilities, significant R&D financial backing available, and favorable initiatives from healthcare organizations, as well as robust reimbursement. Because of government initiatives and serious scientific activity in the country, the United States leads the continentsGlobal Stem Cell Manufacturingmarket.
Healthcare organizations are promoting cellular therapies for rising ailments. Due to higher advancement of stem cell-based treatments, federal actions for creating regenerative medications, the creation of multiple stem cell banks, and the continents increasing clinical studies for genetic manipulation and medical technology, the APACGlobal Stem Cell Manufacturingmarket is expected to grow at the fastest rate during the forecast period.
Global Stem Cell ManufacturingMarketSegmentation:
By Product:
By Application:
By Technology:
By Therapy:
Global Stem Cell ManufacturingMarket Key Competitors:
To Get A Copy Of The Sample oftheGlobal Stem Cell ManufacturingMarket, Click Here:@https://www.maximizemarketresearch.com/market-report/global-stem-cell-manufacturing-market/73762/
About Maximize Market Research:
Maximize Market Research is a multifaceted market research and consulting company with professionals from several industries. Some of the industries we cover include medical devices, pharmaceutical manufacturers, science and engineering, electronic components, industrial equipment, technology and communication, cars and automobiles, chemical products and substances, general merchandise, beverages, personal care, and automated systems. To mention a few, we provide market-verified industry estimations, technical trend analysis, crucial market research, strategic advice, competition analysis, production and demand analysis, and client impact studies.
Contact Maximize Market Research:
3rd Floor, Navale IT Park, Phase 2
Pune Banglore Highway, Narhe,
Pune, Maharashtra 411041, India
[emailprotected]
SNUH team finds a key cell that keeps top hematopoietic stem cells young – KBR
By daniellenierenberg
The Seoul National University Hospital (SNUH) said its research team has opened a way to raise bone marrow's success rate drastically.
The team has discovered a special macrophage that allows mass-producing top hematopoietic stem cells (HSCs) for the first time globally. By making the most of this special macrophage, we expect to mass-produce the youngest HSCs that are also most capable of differentiating, it said.
Bone marrow (HSC) transplantation is an important treatment that provides blood cancer patients with a chance to be cured. Medical professionals can also expand the techniques indications to treat blood diseases, such as dysplastic anemia, bone marrow dysplasia syndrome, lymphoma, multiple myeloma, complex immunodeficiency, and autoimmune diseases.
A technique is needed to amplify top HSCs to improve bone marrow transplantations efficiency, but it remains in its infancy. In addition, cells that maintain homeostasis by controlling the dormancy and proliferation of HSCs are also difficult to prove.
A joint research team of Ludwig-Maximilian University in Germany, Queen Mary University in the U.K., and Harvard University in the U.S. has claimed that red blood cells expressing large amounts of the DARC (ACKR1) protein were crucial in maintaining the homeostasis of HSCs, which, however, has failed to be proven objectively.
The SNUH team, led by Professors Kim Hyo-soo and Kwon Yoo-wook, researched key cells and the mechanisms responsible for controlling HSC homeostasis and found a few macrophages expressing triple protein markers (SMA, COX2, DARC) can maintain homeostasis of top HSCs.
When the DARC-Kai1 protein bond is dissolved, hematopoietic stem cells begin to increase, resulting in mass production of blood cells and vice versa when the macrophages DARC protein and the HSCs Kai1 protein combine. Subsequently, if this bonding is controlled, the researchers expect a culture method that mass-produces top HSCs with excellent hematopoietic function can be developed.
This mechanism can also be used to develop treatments for bone marrow dysfunction, such as leukemia and malignant anemia, and increase the success rate of bone marrow transplants.
"If a method is commercialized to mass-produce and store top HSCs while maintaining their youthfulness, it will be possible to develop a customized treatment that can quickly help patients needing a bone marrow transplant," Professor Kim said.
This study was published in the Cell Stem Cell journal.
Visit link:
SNUH team finds a key cell that keeps top hematopoietic stem cells young - KBR
Repair of Traumatic Brain Injury | SCCAA – Dove Medical Press
By daniellenierenberg
Introduction
Traumatic brain injury is one of the main causes of deaths, disabilities, and hospitalization in the world. In the USA, around 30% of all injury-related deaths are due to traumatic brain injury.1 Globally, traumatic brain injury affects the lives of about 10 million people each year.2 It happened as the brain tissue is damaged by an external force, the result of direct impact, rapid acceleration or deceleration, a piercing object, and blast waves from an explosion.3 Visual impairment, cognitive dysfunction, hearing loss, and mental health disorders are among the most common complications affecting traumatic brain injury patients and their families. The pathophysiology of traumatic brain injury is not clear since the structure of the brain is complex with many cell types such as neurons, astrocytes, oligodendrocytes, microglia, and multiple subtypes of these cells. Traumatic brain injury occurs in two phases. These are primary (acute) and secondary (late) brain injuries. The primary injury is the initial blow to the head; in this phase, brain tissue and cells such as neurons, glial cells, endothelial cells, and the bloodbrain barrier are damaged by mechanical injury. The secondary injury occurs after primary injury and in these late phases, several toxins are released from the injured cells leading to the formation of cytotoxic cascades, which increase the initial brain damage.4 The primary brain injury causes the dysfunction of the bloodbrain barrier and initiates local inflammation and secondary neuronal injury. In addition, severe and long-term inflammation causes severe neurodegenerative and inflammatory diseases. Repairing of tissue damage needs the inhibition of secondary injury and rapid regeneration of injured tissue.5 Depending on the nature of the injury, neurons and neuroglial cells may be damaged; excessive bleeding may happen, axons may be destroyed and a contusion may occur.6 Moreover, the pathogenesis of traumatic brain injury involves bloodbrain barrier damage, neural inflammation, and diffuse neuronal degeneration.7 Unlike other organs, it has long been thought that mature brain tissue cannot be able to repair itself after injury.8 However, the current research indicated that multipotent neural stem/progenitor cells are residing in some areas of the brain throughout the lifespan of an animal, implying the mature brains ability to produce new neurons and neuroglial cells.9 In the previous decades, several studies have shown that the mature neurons in the hippocampal dentate gyrus of the brain play significant roles in hippocampal-induced learning and memory activities,9 while new olfactory interneurons produced from the subventricular zone are essential for the appropriate functioning of the olfactory bulb network and some specific olfactory behaviors.10 After traumatic brain injuries, clinical evidence indicated that endogenous neural progenitor cells might play an important role in regenerative medicine to treat brain injury because an increased neurogenic regeneration ability has been reported in different types of brain injury models of animal and human studies.11 Nowadays, there is a new therapeutic approach for traumatic brain injury that involves the use of stem cells for neural regeneration and restoration. Exogenous stem cell transplantation has been found to accelerate immature neuronal development and increase endogenous cellular proliferation in the damaged brain region.12 A better understanding of the endogenous neural stem cells regenerative ability as well as the effect of exogenous neural stem cells on proliferation and differentiation may help researchers better understand how to increase functional recovery and brain tissue repair following injury. Therefore, in this study, we discussed the therapeutic effects of stem cells in the repair of traumatic brain injury.
Traumatic brain injury causes severe stress on the brain, making it extremely hard to keep appropriate cognitive abilities. Even though many organs in the body, for example, the skin, can regenerate following injury, the brain tissue may not easily repair. In the adult brain, endogenous neural stem cells are primarily localized to the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus.13 In the subventricular zone, neural stem/progenitor cells generate neuronal and oligodendroglial progenies.14 Most of the new neurons produced from the subventricular zone migrate via the rostral migratory stream, eventually becoming olfactory interneurons in the olfactory bulb.15 A few subventricular zone-derived new neurons travel into cortical areas for an unknown cause but may be related to tissue repair or renewal mechanisms.16 Similarly, newly produced dentate gyrus cells travel laterally into the dentate granule cell layer and become fully mature in a few weeks through a process known as adult hippocampus neurogenesis.17 However, it is still unknown whether these neural stem cells in the subventricular zone and dentate gyrus regions can replace the lost neurons following injury.
So far, several studies have assessed the degree of neurogenesis in these two areas and have demonstrated that significant numbers of new cells are continuously generated.9,18 For example, the rat dentate gyrus generates about 9000 new cells each day or 270,000 cells every month.18 A current clinical finding indicated that the whole granular cell population in the deep layer and half of the superficial layer of the olfactory bulb were replaced by newly produced mature neurons for a year.19 A similar study also revealed that adult-produced neurons account for around 10% of the overall number of dentate granule cells in the hippocampus and they are uniformly distributed along the anterior-posterior axis of the dentate gyrus.19 After the finding of continuous adult neurogenesis during the lifetime in the adult animal brain, the functional roles and the significance of this adult neurogenesis, mainly hippocampal neurogenesis concerning learning and memory processes, have been widely explored. Previous studies showed factors that increase hippocampal neurogenesis such as exposure to enriched environments, physical activity, or growth factor therapy may improve cognitive abilities.2022
The newly formed granular cells in the mature dentate gyrus can become functional neurons in the normal hippocampus by demonstrating passive membrane characteristics, generating action potentials, and receiving functional synaptic inputs, as seen in the adult dentate gyrus neurons.23 For instance, mouse strains hereditarily having poor levels of neurogenesis carry out low learning activities than those with a higher level of baseline neurogenesis.2325 A variety of physical and chemical signals influence the proliferation and maturational destiny of cells in the subventricular zone and dentate gyrus. For instance, biochemical variables including serotonin, glucocorticoids, ovarian hormones, and growth factors strongly regulate the proliferative response, implying that cell proliferation in these areas has a significant physiological role.26,27 Besides, physical factors such as exercise and stress produce changes in cell proliferation implying a significant role in network adaptation.28,29 For example, physical exercise might cognitively and physically enhance the production of cells and neurogenesis within the subventricular zone and dentate gyrus, but stress inhibits this type of cellular activity. Furthermore, the physiologic role of these new cells depends on the number of cells being produced, survival rate, differentiation ability, and integration of cells into existing neuronal circuity.24,30
The subventricular zone and hippocampus contain neural stem cells that respond to a variety of stimuli. Different kinds of experimental traumatic brain injury models such as fluid percussive injury,31,32 controlled cortical impact injury,33,34 closed-head weight drop injury,35 and acceleration-impact injury36 have shown increased neural stem cells activation. All of these experimental studies have shown the most prevalent and notable endogenous cell response after traumatic brain injury is an elevated cell proliferation within neurogenic areas of the dentate gyrus and subventricular zone. It is well accepted that enhanced production of new neurons following the traumatic brain injury was detected predominantly in the hippocampus in the more seriously injured animals in many experimental studies.37 More studies have discovered that injury-enhanced new granule neurons send out axonal projections into the targeted CA3 region implying their integration into the existing hippocampal circuitry,37,38 and this injury-induced endogenous neurogenic stem cells response is directly associated with the inherent cognitive functional recovery after traumatic brain injury of rodents.39,40
In the human brain, the extent and physiology of the adult neural generation are not well understood. A study on human brain samples taken from the autopsy revealed neural stem cells with proliferative ability have been observed within the subventricular zone and the hippocampus.41,42 Conversely, a more recent study has shown that neurogenesis in the subventricular zone and movement of new neurons from the subventricular zone to the olfactory bulbs and neocortex are restricted and only seen in the early childhood period.43,44 Therefore, credible evidence of traumatic brain injury-initiated neurogenesis in the human brain is inadequate because of the difficulties of collecting human brain samples and technical challenges to birth-dating neural stem cells.
After traumatic brain injury, injury-initiated neural cell loss is permanent. Given the restricted amount of endogenous neurogenic stem cells, neural transplantation supplementing exogenous stem cells to the damaged brain tissue is a potential treatment for post-traumatic brain injury regeneration.45 Especially, the transplanted cells will not only be able to replace the damaged neural cells but also give neurotrophic support in hopes of reestablishing and stabilizing the damaged brain tissue.45 Clinical evidence revealed intervention with stem cell secretome may significantly improve neural inflammation after traumatic brain injury and other neurological deficits in humans.46 Besides, the combined effects of bioscaffold and exosomes can aid in the transportation of stem cells to damaged areas as well as enhance their survival and facilitate successful treatment.47 Despite the rapid progression of brain infarction, the decreased proliferation of neural stem cells, and the delayed initiation of neurological recovery were observed in the aged rat model compared with a young rat after stroke, the restorative capability of the brain by stem cell therapy is still present in the aged rat.48 Compared to stem cell monotherapies which are still uniformly failed in clinical practice, combination therapy with hypothermia has potential therapeutic effects on the physiology of the aged brain and may be required for effective protection of the brain following stroke.49 After several years of biomaterials study for regeneration of peripheral nerve, a new 3D printing strategy is developing as a good substitution for nerve autograft over large gap injuries. The applications of 3D printing technologies can help in improving long-distance peripheral nerve regeneration since it is a leading device to give one path for better nerve guidance.50 Up to now, various categories of stem cell therapy have been tested for post-traumatic brain injury. These include embryonic stem cells, adult-derived neural stem cells, mesenchymal stem cells, and induced pluripotent stem cells.
Embryonic stem cells obtained from fetal or embryonic brain tissues are highly considered for neural transplantation because of their ability of plasticity and have the capacity to self-repair and differentiation into all germinal layers. They can differentiate, migrate, and innervate as transplanted into a receiver brain tissue.51 In previous clinical brain injury studies, neural stem cells derived from the embryonic human brain could survive for a long time, migrating to the contralateral cortex and differentiating into mature neural cells and microglia following transplantation into the damaged brain tissue.52 Implanted neurogenic stem cells obtained from human fetal stem cells may differentiate into adult neurons and release growth factors increasing the cognitive functional recovery of the damaged brain.53 Interestingly, the long-term survival rate of transplanted neural stem cells obtained from mice embryonic brains was seen for up to 1 year with a high degree of migration in the damaged brain and maturation into neurons or neuroglial cells along with enhanced motor and spatial learning functions of the brain tissue.5456 In addition, embryonic stem cells expressing growth factors or early differentiated into neurotransmitter expressing adult neurons after in vitro manipulation have revealed improved transplant survival and neuronal differentiation following grafted into the damaged brain, and the receivers have better recovery in motor and cognitive activities.5759 Even though embryonic stem cells have a high rate of survival and plasticity in neuronal transplantation, the ethical concerns, risk of transplant rejection, and the likelihood of teratoma development restrict their therapeutic use for traumatic brain injury.45
Neural stem cells are multipotent cells that can differentiate into neural cells but have a limited ability to differentiate into other tissue types.60 Neurogenic stem cells are located in the subventricular zones of the lateral ventricle, the hippocampal dentate gyrus, and other areas of the brain like the cerebral cortex, amygdala, hypothalamus, and substantia nigra. They could be isolated, developed in culture media, and produce many neural lineages that can be used in the treatment of neurological disorders as an important element of cellular-replacement therapy.61 Adult neural stem cells were transplanted into damaged parts of the brain in a traumatic brain injury rat model. These cells survived the transplantation process and moved to a damaged site when expressing markers for adult microglia and oligodendrocytes.62 Interestingly, one most recent study indicated that Korean red ginseng extract-mediated astrocytic heme oxygenase-1 induction contributes to the proliferation and differentiation of adult neural stem cells by upregulating astrocyteneuronal system cooperation.63 Another study revealed that following neural stem cell transplantation to the hippocampal region, injured rats had developed better cognitive function.64 The administration of combined therapies such as human neural stem/progenitor cells and curcumin-loaded noisome nanoparticles significantly improve brain edema, gliosis, and inflammatory responses in the traumatic brain injury rat model.65 Furthermore, in traumatic brain injury rat models, as neural stem cells were injected intravenously, they resulted in a decreased neurologic impairment and less edema because of the anti-inflammatory and anti-apoptotic features of neural stem cells.60,66 The ideal transplantation timeframe is 714 days,60 beyond which the glial scar forms, restricting perfusion and graft survival.67 The ability to transport cells to the desired location is a key obstacle with neural stem cell transplantation. Neural stem cells can be administered intrathecally, intravenously, and intra-arterial infusion. Conversely, a nanofiber scaffold implantation was proposed by Walker et al as a new strategy to be implemented to give the support essential for cell proliferation, which provides direction to future research.68
Mesenchymal stem cells are multipotent stromal that can differentiate into mesenchymal and non-mesenchymal tissue, such as neural tissue.69 They are obtained from different types of tissues.70 The accessibility, availability, and differentiation ability of these cells have drawn the attention of researchers performing studies in regenerative medicine. A previous study revealed the differentiation capacity of mesenchymal stem cells into neuronal cells. This study found that when rat and human mesenchymal stem cells are exposed to various experimental culture conditions, they can differentiate into neural and neuroglial cells.69 Besides, mesenchymal stem cells have also been demonstrated to enhance the proliferation and differentiation of native neural stem cells; the mechanism of which may be directly associated with chemokines produced by mesenchymal stem cells or indirectly through stimulation of adjacent astrocytes.70 In addition to their capacity to differentiate, mesenchymal stem cells selectively move to damaged tissues in traumatic brain injury rat models, where they develop into neurons and astrocytes and enhance motor function.71 The possible mechanism of action through which this occurs is linked to chemokines, growth factors,72 and adhesion factors, like the vascular cell adhesion molecule (VCAM-1), which permits mesenchymal stem cells to adhere to the endothelium of damaged organ.73 Mesenchymal stem cell transplantation has become a potential and safe treatment of choice for traumatic brain injuries because of its anti-inflammatory capability by regulating leukocyte and inflammatory factors such as IL-6, CRP, and TNF-a.74,75 Treatment with mesenchymal stem cell-derived extracellular vesicles greatly increased neurogenesis and neuroplasticity in a pig model of hemorrhagic stroke and traumatic brain damage.76 Currently, stem cell therapy using mesenchymal stromal cells has been widely investigated in preclinical models and clinical trials for the treatment of several neurological illnesses, including traumatic brain injury. Mesenchymal stem cells investigated for the treatment of traumatic brain injury in these clinical trials include bone marrow-derived stem cells, amnion-derived multipotent progenitor cells, adipose-derived stem cells, umbilical cord-derived stem cells, and peripheral blood-derived stem cells.7779 Those undifferentiated mesenchymal-derived cells have a heterogeneous cell population that includes stem and progenitor cells. They can be stimulated to differentiate into a neuronal cell phenotype in vitro. In the damaged brain tissue, these cells can generate a large number of growth factors, cytokines, and extracellular matrix substances that have neurotrophic or neuroprotective effects.80,81
From all mesenchymal stem cells, the effect of bone marrow-derived mesenchymal stem cells on traumatic brain injury has been fully investigated. According to previous studies, mesenchymal stem cells injected directly into the injured brain, or through intravenous or intra-arterial injections during the acute, sub-acute, or chronic phase following traumatic brain injury, have been shown to significantly reduce neurological abnormalities in motor and cognitive abilities.7779,82 The therapeutic effect of mesenchymal stem cells is mostly because of the bioactive molecules they produced to facilitate the endogenous plasticity and remodeling of the recipient brain tissue instead of direct neural repair as direct neuronal differentiation and long-term viability were rarely seen.80 A more recent study found that the injection of cell-free exosomes obtained from human bone marrow-derived mesenchymal stromal cells can increase the functional recovery of damaged animals after traumatic brain injury.83 Another study used a traumatic rodent model to evaluate the anti-inflammatory and immunoregulatory properties of mesenchymal stem cells. When compared to the control group, neurological function was improved in the treatment groups from 3 to 28 days. Mesenchymal stem cell therapy significantly decreased the amount of microglia or macrophages, neutrophils, CD3 lymphocytes, apoptotic cells in the damaged cortex, and proinflammatory cytokines.81 The main challenge of using mesenchymal stem cells for traumatic brain injury treatment is the long-term possibility of brain malignancy development because of the mesenchymal stromal cells ability to antitumor response suppression.84
In a recent study, seven traumatic brain injury patients were given a mesenchymal stem cells transplant during a cranial operation and then administered a second dose intravenously. At the end of the 6-month follow-up period, patients exhibited better neurological function with no signs of toxicity.85
Recent studies revealed that the administration of exosomes-derived human umbilical cord mesenchymal stem improves sensorimotor function and spatial learning activities in rat models following brain injuries. Furthermore, the applications of these cells extensively decreased proinflammatory cytokine expression via inhibiting the NF-B signaling pathway, reduced neuronal apoptosis, reduced inflammation, and increased neural regeneration ability in the injured cortex of rats following the injuries.86 Human umbilical cord-derived mesenchymal stem cells have better anti-inflammatory activity that may prevent and decrease secondary brain injury caused by the immediate discharge of inflammatory factors following traumatic brain injury.87 In traumatic brain injury rat models, the transplantation of umbilical cord-derived mesenchymal stem cells triggers the trans-differentiation of T-helper 17 into T regulatory, which in turn repairs neurological deficits and improves learning and memory function.88
To see the therapeutic effects of transplanted induced pluripotent stem cells compared to that of embryonic stem cells, Wang et al demonstrated animal models of ischemia and three different treatment options, which consist of pluripotent stem cells, embryonic stem cells, and phosphate-buffered saline for the control. The rodents were given an injection into the left lateral ventricle of the brain. Embryonic stem cell treatment group rodents showed a significant improvement in glucose metabolism within two-week period. However, 1 month following treatment, neuroimaging tests were done and it was revealed that both pluripotent stem cell and embryonic stem cell treatment groups had improved neurologic scores as compared to the control group, suggesting that the treatment groups showed better recovery of their cognitive function. Further investigation indicated that the implanted cells survived and traveled to the area of injury. Finally, the investigator of this study concluded that induced pluripotent stem cells may be a better option than embryonic stem cells.57 Different studies showed that induced pluripotent stem cells improved motor and cognitive function in the host mouse brain tissue, and these cells migrate the injured brain areas from the injection site.89,90 Until now, there are limited studies on induced pluripotent stem cell therapy for brain injuries. This is because of the difficulty of obtaining induced pluripotent stem cells, high therapy costs, and technique limitations.
In preclinical and clinical trials, advanced progress has been made in stem cell-based therapy for traumatic brain injury patients. Various studies reported the therapeutic effect of stem cells for regenerating damaged brain tissue. However, because of the complexity and variability of brain injuries, post-traumatic brain injury neuronal regeneration and repair remain a long-term goal. There are numerous unresolved challenges for successful stem cell treatment. For endogenous restoration via mature neural regeneration, methods guiding the movement of new neuronal cells to the area of damaged tissue and maintaining long-term survival are very important. In stem cell therapy, the inherent features of transplanted cells and the local host micro-environment influences the fate of grafted cells, an appropriate cell source, and a host environment, which are required for effective transplantation. Therefore, these problems should be solved in preclinical traumatic brain injury trials before stem cell-based treatments could be used in the clinic. The therapeutic application of neural stem cell treatment, whether via manipulation of endogenous or implantation of exogenous neural stem cells, is a method that has been shown in multiple studies to have substantial potential to increase brain function recovery in persons suffering from traumatic brain injury-related disability. However, further studies need to be done on the therapeutic application of stem cells for traumatic brain injury due to our poor understanding of possible consequences, unknown ethical issues, routes of administration, and the use of mixed treatment.
All authors declared no conflicts of interest for this study.
1. Taylor CA, Bell JM, Breiding MJ, Xu L. Traumatic brain injury-related emergency department visits, hospitalizations, and deathsUnited States, 2007 and 2013. MMWR Surveil Summaries. 2017;66(9):1.
2. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007;22(5):341353. doi:10.3233/NRE-2007-22502
3. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728741. doi:10.1016/S1474-4422(08)70164-9
4. Das M, Mayilsamy K, Mohapatra SS, Mohapatra S. Mesenchymal stem cell therapy for the treatment of traumatic brain injury: progress and prospects. Rev Neurosci. 2019;30(8):839855. doi:10.1515/revneuro-2019-0002
5. Jorge RE, Robinson RG, Moser D, Tateno A, Crespo-Facorro B, Arndt S. Major depression following traumatic brain injury. Arch Gen Psychiatry. 2004;61(1):4250. doi:10.1001/archpsyc.61.1.42
6. Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cerebral Blood Flow Metabol. 2004;24(2):133150. doi:10.1097/01.WCB.0000111614.19196.04
7. Xiong Y, Mahmood A, Lu D, et al. Histological and functional outcomes after traumatic brain injury in mice null for the erythropoietin receptor in the central nervous system. Brain Res. 2008;1230:247257. doi:10.1016/j.brainres.2008.06.127
8. Gage FH, Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013;80(3):588601. doi:10.1016/j.neuron.2013.10.037
9. Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A. 1993;90(5):20742077. doi:10.1073/pnas.90.5.2074
10. Moreno MM, Linster C, Escanilla O, Sacquet J, Didier A, Mandairon N. Olfactory perceptual learning requires adult neurogenesis. Proc Natl Acad Sci U S A. 2009;106(42):1798017985. doi:10.1073/pnas.0907063106
11. Sun D. Endogenous neurogenic cell response in the mature mammalian brain following traumatic injury. Exp Neurol. 2016;275(3):405410. doi:10.1016/j.expneurol.2015.04.017
12. Tajiri N, Kaneko Y, Shinozuka K, et al. Stem cell recruitment of newly formed host cells via a successful seduction? Filling the gap between neurogenic niche and injured brain site. PLoS One. 2013;8(9):e74857. doi:10.1371/journal.pone.0074857
13. Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol. 1998;36(2):249266. doi:10.1002/(SICI)1097-4695(199808)36:2<249::AID-NEU11>3.0.CO;2-9
14. Ortega F, Gascn S, Masserdotti G, et al. Oligodendrogliogenic and neurogenic adult subependymal zone neural stem cells constitute distinct lineages and exhibit differential responsiveness to Wnt signaling. Nat Cell Biol. 2013;15(6):602613. doi:10.1038/ncb2736
15. Gritti A, Bonfanti L, Doetsch F, et al. Multipotent neural stem cells reside in the rostral extension and olfactory bulb of adult rodents. J Neurosci. 2002;22(2):437445. doi:10.1523/JNEUROSCI.22-02-00437.2002
16. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM. Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol. 2002;52(6):802813. doi:10.1002/ana.10393
17. Kempermann G, Gage FH. Neurogenesis in the adult hippocampus. Novartis Found Symp. 2000;231:220226.
18. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435(4):406417. doi:10.1002/cne.1040
19. Imayoshi I, Sakamoto M, Ohtsuka T, et al. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci. 2008;11(10):11531161. doi:10.1038/nn.2185
20. Van Praag H, Christie BR, Sejnowski TJ, Gage FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci. 1999;96(23):1342713431. doi:10.1073/pnas.96.23.13427
21. Sun D, Bullock MR, McGinn MJ, et al. Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol. 2009;216(1):5665. doi:10.1016/j.expneurol.2008.11.011
22. Brown J, CooperKuhn CM, Kempermann G, et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci. 2003;17(10):20422046. doi:10.1046/j.1460-9568.2003.02647.x
23. Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature. 2002;415(6875):10301034. doi:10.1038/4151030a
24. Kempermann G, Brandon EP, Gage FH. Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Curr Biol. 1998;8(16):939944. doi:10.1016/S0960-9822(07)00377-6
25. Kempermann G, Kuhn HG, Gage FH. Genetic influence on neurogenesis in the dentate gyrus of adult mice. Proc Natl Acad Sci. 1997;94(19):1040910414. doi:10.1073/pnas.94.19.10409
26. Cameron H, Gould E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience. 1994;61(2):203209. doi:10.1016/0306-4522(94)90224-0
27. Banasr M, Hery M, Brezun JM, Daszuta A. Serotonin mediates estrogen stimulation of cell proliferation in the adult dentate gyrus. Eur J Neurosci. 2001;14(9):14171424. doi:10.1046/j.0953-816x.2001.01763.x
28. Kempermann G, van Praag H, Gage FH. Activity-dependent regulation of neuronal plasticity and self-repair. Prog Brain Res. 2000;127:3548.
29. Gould E, Tanapat P, Cameron HA. Adrenal steroids suppress granule cell death in the developing dentate gyrus through an NMDA receptor-dependent mechanism. Dev Brain Res. 1997;103(1):9193. doi:10.1016/S0165-3806(97)00079-5
30. Gould E, Tanapat P. Stress and hippocampal neurogenesis. Biol Psychiatry. 1999;46(11):14721479. doi:10.1016/S0006-3223(99)00247-4
31. Chirumamilla S, Sun D, Bullock M, Colello R. Traumatic brain injury-induced cell proliferation in the adult mammalian central nervous system. J Neurotrauma. 2002;19(6):693703. doi:10.1089/08977150260139084
32. Rice A, Khaldi A, Harvey H, et al. Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol. 2003;183(2):406417. doi:10.1016/S0014-4886(03)00241-3
33. Dash P, Mach S, Moore A. Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J Neurosci Res. 2001;63(4):313319. doi:10.1002/1097-4547(20010215)63:4<313::AID-JNR1025>3.0.CO;2-4
34. Gao X, Enikolopov G, Chen J. Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus. Exp Neurol. 2009;219(2):516523. doi:10.1016/j.expneurol.2009.07.007
35. Vickers NJ. Animal communication: when Im calling you, will you answer too? Curr Biol. 2017;27(14):R713R5. doi:10.1016/j.cub.2017.05.064
36. Bye N, Carron S, Han X, et al. Neurogenesis and glial proliferation are stimulated following diffuse traumatic brain injury in adult rats. J Neurosci Res. 2011;89(7):9861000. doi:10.1002/jnr.22635
37. Sun D, McGinn MJ, Zhou Z, Harvey HB, Bullock MR, Colello RJ. Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol. 2007;204(1):264272. doi:10.1016/j.expneurol.2006.11.005
38. Emery DL, Fulp CT, Saatman KE, Schtz C, Neugebauer E, McIntosh TK. Newly born granule cells in the dentate gyrus rapidly extend axons into the hippocampal CA3 region following experimental brain injury. J Neurotrauma. 2005;22(9):978988. doi:10.1089/neu.2005.22.978
39. Seth AK, Barrett AB, Barnett L. Granger causality analysis in neuroscience and neuroimaging. J Neurosci. 2015;35(8):32933297. doi:10.1523/JNEUROSCI.4399-14.2015
40. Sun D, Daniels TE, Rolfe A, Waters M, Hamm R. Inhibition of injury-induced cell proliferation in the dentate gyrus of the hippocampus impairs spontaneous cognitive recovery after traumatic brain injury. J Neurotrauma. 2015;32(7):495505. doi:10.1089/neu.2014.3545
41. Eriksson PS, Perfilieva E, Bjrk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):13131317. doi:10.1038/3305
42. Sanai N, Tramontin AD, Quinones-Hinojosa A, et al. Unique astrocyte ribbon in the adult human brain contains neural stem cells but lacks chain migration. Nature. 2004;427(6976):740744. doi:10.1038/nature02301
43. Bergmann O, Liebl J, Bernard S, et al. The age of olfactory bulb neurons in humans. Neuron. 2012;74(4):634639. doi:10.1016/j.neuron.2012.03.030
44. Sanai N, Nguyen T, Ihrie RA, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature. 2011;478(7369):382386. doi:10.1038/nature10487
45. Weston NM, Sun D. The potential of stem cells in the treatment of traumatic brain injury. Curr Neurol Neurosci Rep. 2018;18(1):110. doi:10.1007/s11910-018-0812-z
46. Muhammad SA, Abbas AY, Imam MU, Saidu Y, Bilbis LS. Efficacy of stem cell secretome in the treatment of traumatic brain injury: a systematic review and meta-analysis of preclinical studies. Mol Neurobiol. 2022;59:116. doi:10.1007/s12035-021-02552-1
47. Yuan J, Botchway BO, Zhang Y, Wang X, Liu X. Combined bioscaffold with stem cells and exosomes can improve traumatic brain injury. Stem Cell Rev Rep. 2020;16(2):323334. doi:10.1007/s12015-019-09927-x
48. Popa-Wagner A, Buga A-M, Doeppner TR, Hermann DM. Stem cell therapies in preclinical models of stroke associated with aging. Front Cell Neurosci. 2014;8:347. doi:10.3389/fncel.2014.00347
49. Joseph C, Buga A-M, Vintilescu R, et al. Prolonged gaseous hypothermia prevents the upregulation of phagocytosis-specific protein annexin 1 and causes low-amplitude EEG activity in the aged rat brain after cerebral ischemia. J Cerebral Blood Flow Metabol. 2012;32(8):16321642. doi:10.1038/jcbfm.2012.65
50. Petcu EB, Midha R, McColl E, Popa-Wagner A, Chirila TV, Dalton PD. 3D printing strategies for peripheral nerve regeneration. Biofabrication. 2018;10(3):032001. doi:10.1088/1758-5090/aaaf50
51. Hentze H, Graichen R, Colman A. Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 2007;25(1):2432. doi:10.1016/j.tibtech.2006.10.010
52. Wennersten A, Meijer X, Holmin S, Wahlberg L, Mathiesen T. Proliferation, migration, and differentiation of human neural stem/progenitor cells after transplantation into a rat model of traumatic brain injury. J Neurosurg. 2004;100(1):8896. doi:10.3171/jns.2004.100.1.0088
53. Gao J, Prough DS, McAdoo DJ, et al. Corrigendum to Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury [Exp. Neurol. 201 (2006) 281292]. Exp Neurol. 2007;204(1):490. doi:10.1016/j.expneurol.2006.10.001
54. Shear DA, Tate MC, Archer DR, et al. Neural progenitor cell transplants promote long-term functional recovery after traumatic brain injury. Brain Res. 2004;1026(1):1122. doi:10.1016/j.brainres.2004.07.087
55. Riess P, Zhang C, Saatman KE, et al. Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery. 2002;51(4):10431054. doi:10.1097/00006123-200210000-00035
56. Boockvar JA, Schouten J, Royo N, et al. Experimental traumatic brain injury modulates the survival, migration, and terminal phenotype of transplanted epidermal growth factor receptor-activated neural stem cells. Neurosurgery. 2005;56(1):163171. doi:10.1227/01.NEU.0000145866.25433.FF
57. Becerra GD, Tatko LM, Pak ES, Murashov AK, Hoane MR. Transplantation of GABAergic neurons but not astrocytes induces recovery of sensorimotor function in the traumatically injured brain. Behav Brain Res. 2007;179(1):118125. doi:10.1016/j.bbr.2007.01.024
58. Ma H, Yu B, Kong L, Zhang Y, Shi Y. Neural stem cells over-expressing Brain-Derived Neurotrophic Factor (BDNF) stimulate synaptic protein expression and promote functional recovery following transplantation in rat model of traumatic brain injury. Neurochem Res. 2012;37(1):6983. doi:10.1007/s11064-011-0584-1
59. Blaya MO, Tsoulfas P, Bramlett HM, Dietrich WD. Neural progenitor cell transplantation promotes neuroprotection, enhances hippocampal neurogenesis, and improves cognitive outcomes after traumatic brain injury. Exp Neurol. 2015;264:6781. doi:10.1016/j.expneurol.2014.11.014
60. Reis C, Gospodarev V, Reis H, et al. Traumatic brain injury and stem cell: pathophysiology and update on recent treatment modalities. Stem Cells Int. 2017;2017:113. doi:10.1155/2017/6392592
61. Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochimica et Biophysica Acta. 2013;1830(2):24352448. doi:10.1016/j.bbagen.2012.09.002
62. Sun D, Gugliotta M, Rolfe A, et al. Sustained survival and maturation of adult neural stem/progenitor cells after transplantation into the injured brain. J Neurotrauma. 2011;28(6):961972. doi:10.1089/neu.2010.1697
63. Kim M, Moon S, Jeon HS, et al. Dual effects of Korean red ginseng on astrocytes and neural stem cells in traumatic brain injury: the HO-1Tom20 axis as a putative target for mitochondrial function. Cells. 2022;11(5):892. doi:10.3390/cells11050892
64. Park D, Joo SS, Kim TK, et al. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore the Cognitive Function of Kainic Acid-Induced Learning and Memory Deficit Animals. Los Angeles, CA: SAGE Publications Sage CA; 2012.
65. Narouiepour A, Ebrahimzadeh-Bideskan A, Rajabzadeh G, Gorji A, Negah SS. Neural stem cell therapy in conjunction with curcumin loaded in niosomal nanoparticles enhanced recovery from traumatic brain injury. Sci Rep. 2022;12(1):113. doi:10.1038/s41598-022-07367-1
66. Lee S-T, Chu K, Jung K-H, et al. Anti-inflammatory mechanism of intravascular neural stem cell transplantation in hemorrhagic stroke. Brain. 2008;131(3):616629. doi:10.1093/brain/awm306
67. Bhalala OG, Pan L, Sahni V, et al. microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci. 2012;32(50):1793517947. doi:10.1523/JNEUROSCI.3860-12.2012
68. Walker PA, Aroom KR, Jimenez F, et al. Advances in progenitor cell therapy using scaffolding constructs for central nervous system injury. Stem Cell Rev Rep. 2009;5(3):283300. doi:10.1007/s12015-009-9081-1
69. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol. 2000;164(2):247256. doi:10.1006/exnr.2000.7389
70. Meirelles LS, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006;119(11):22042213. doi:10.1242/jcs.02932
71. Wang S, Kan Q, Sun Y, et al. Caveolin-1 regulates neural differentiation of rat bone mesenchymal stem cells into neurons by modulating Notch signaling. Int J Dev Neuroscie. 2013;31(1):3035. doi:10.1016/j.ijdevneu.2012.09.004
72. Ponte AL, Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007;25(7):17371745. doi:10.1634/stemcells.2007-0054
73. da Silva Meirelles L, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(56):419427. doi:10.1016/j.cytogfr.2009.10.002
74. Viet QHN, Nguyen VQ, Le Hoang DM, Thi THP, Tran HP, Thi CHC. Ability to regulate immunity of mesenchymal stem cells in the treatment of traumatic brain injury. Neurol Sci. 2022;43(3):21572164. doi:10.1007/s10072-021-05529-z
75. Zhang Y, Dong N, Hong H, Qi J, Zhang S, Wang J. Mesenchymal stem cells: therapeutic mechanisms for stroke. Int J Mol Sci. 2022;23(5):2550. doi:10.3390/ijms23052550
76. Bambakidis T, Dekker SE, Williams AM, et al. Early treatment with a single dose of mesenchymal stem cell-derived extracellular vesicles modulates the brain transcriptome to create neuroprotective changes in a porcine model of traumatic brain injury and hemorrhagic shock. Shock. 2022;57(2):281290. doi:10.1097/SHK.0000000000001889
77. Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. NeuroReport. 2001;12(3):559563. doi:10.1097/00001756-200103050-00025
78. Mahmood A, Lu D, Li Y, Chen JL, Chopp M. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg. 2001;94(4):589595. doi:10.3171/jns.2001.94.4.0589
79. Bonilla C, Zurita M, Otero L, Aguayo C, Vaquero J, Vaquero J. Delayed intralesional transplantation of bone marrow stromal cells increases endogenous neurogenesis and promotes functional recovery after severe traumatic brain injury. Brain Injury. 2009;23(9):760769. doi:10.1080/02699050903133970
80. Li Y, Chopp M. Marrow stromal cell transplantation in stroke and traumatic brain injury. Neurosci Lett. 2009;456(3):120123. doi:10.1016/j.neulet.2008.03.096
81. Zhang R, Liu Y, Yan K, et al. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation. 2013;10(1):112. doi:10.1186/1742-2094-10-106
82. Mahmood A, Lu D, Lu M, Chopp M. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery. 2003;53(3):697703. doi:10.1227/01.NEU.0000079333.61863.AA
83. Zhang Y, Chopp M, Zhang ZG, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int. 2017;111:6981. doi:10.1016/j.neuint.2016.08.003
Read more:
Repair of Traumatic Brain Injury | SCCAA - Dove Medical Press
Deconstructing the mechanics of bone marrow disease | Penn Today – Penn Today
By daniellenierenberg
Fibrosis is the thickening of various tissues caused by the deposition of fibrillar extracellular matrix (ECM) in tissues and organs as part of the bodys wound healing response to various forms of damage. When accompanied by chronic inflammation, fibrosis can go into overdrive and produce excess scar tissue that can no longer be degraded. This process causes many diseases in multiple organs, including lung fibrosis induced by smoking or asbestos, liver fibrosis induced by alcohol abuse, and heart fibrosis often following heart attacks. Fibrosis can also occur in the bone marrow, the spongy tissue inside some bones that houses blood-producing hematopoietic stem cells (HSCs) and can lead to scarring and the disruption of normal functions.
Chronic blood cancers known as myeloproliferative neoplasms (MPNs) are one example, in which patients can develop fibrotic bone marrow, or myelofibrosis, that disrupts the normal production of blood cells. Monocytes, a type of white blood cell belonging to the group of myeloid cells, are overproduced from HSCs in neoplasms and contribute to the inflammation in the bone marrow environment, or niche. However, how the fibrotic bone marrow niche itself impacts the function of monocytes and inflammation in the bone marrow was unknown.
Now, a collaborative team from Penn, Harvard, the Dana-Farber Cancer Institute (DFCI), and Brigham and Womens Hospital has created a programmable hydrogel-based in vitro model mimicking healthy and fibrotic human bone marrow. Combining this system with mouse in vivo models of myelofibrosis, the researchers demonstrated that monocytes decide whether to enter a pro-inflammatory state and go on to differentiate into inflammatory dendritic cells based on specific mechanical properties of the bone marrow niche with its densely packed ECM molecules. Importantly, the team found a drug that could tone down these pathological mechanical effects on monocytes, reducing their numbers as well as the numbers of inflammatory myeloid cells in mice with myelofibrosis. The findings are published in Nature Materials.
We found that stiff and more elastic slow-relaxing artificial ECMs induced immature monocytes to differentiate into monocytes with a pro-inflammatory program strongly resembling that of monocytes in myelofibrosis patients, and the monocytes to differentiate further into inflammatory dendritic cells, says co-first author Kyle Vining, who recently joined Penn.More viscous fast-relaxing artificial ECMs suppressed this myelofibrosis-like effect on monocytes. This opened up the possibility of a mechanical checkpoint that could be disrupted in myelofibrotic bone marrow and also may be at play in other fibrotic diseases. Vining will be appointedassistant professor of preventive and restorative sciences in theSchool of Dental Medicine and the Department of Materials Sciences in theSchool of Engineering and Applied Science, pending approval by Penn Dental Medicines personnel committees and the Provosts office.
Vining worked on the study as a postdoctoral fellow at Harvard in the lab of David Mooney. Our study shows that the differentiation state of monocytes, which are key players in the immune system, is highly regulated by mechanical changes in the ECM they encounter, says Mooney, who co-led the study with DFCI researcher Kai Wucherpfennig. Specifically, the ECMs viscoelasticity has been a historically under-appreciated aspect of its mechanical properties that we find correlates strongly between our in vitro and the in vivo models and human disease. It turns out that myelofibrosis is a mechano-related disease that could be treated by interfering with the mechanical signaling in bone marrow cells.
Mooney is also the Robert P. Pinkas Family Professor of Bioengineering at Harvard and leads the Wyss Institutes Immuno-Materials Platform. Wucherpfennig is director of DFCIs Center for Cancer Immunotherapy Research, professor of neurobiology at Brigham and Harvard Medical School, and an associate member of the Broad Institute of MIT and Harvard. Mooney, together with co-senior author F. Stephen Hodi, also heads the Immuno-engineering to Improve Immunotherapy (i3) Center, which aims to create new biomaterials-based approaches to enhance immune responses against tumors. The new study follows the Centers road map. Hodi is director of the Melanoma Center and The Center for Immuno-Oncology at DFCI and professor of medicine at Harvard Medical School.
The mechanical properties of most biological materials are determined by their viscoelastic characteristics. Unlike purely elastic substances like a vibrating quartz, which store elastic energy when mechanically stressed and quickly recover to their original state once the stress is removed, slow-relaxing viscoelastic substances also have a viscous component. Like the viscosity of honey, this allows them to dissipate stress under mechanical strain by rapid stress relaxation. Viscous materials are thus fast-relaxing materials in contrast to slow-relaxing purely elastic materials.
The team developed an alginate-based hydrogel system that mimics the viscoelasticity of natural ECM and allowed them to tune the elasticity independent from other physical and biochemical properties. By tweaking the balance between elastic and viscous properties in these artificial ECMs, they could recapitulate the viscoelasticity of healthy and scarred fibrotic bone marrow, whose elasticity is increased by excess ECM fibers. Human monocytes placed into these artificial ECMs constantly push and pull at them and in turn respond to the materials mechanical characteristics.
Next, the team investigated how the mechanical characteristics of stiff and elastic hydrogels compared to those in actual bone marrow affected by myelofibrosis. They took advantage of a mouse model in which an activating mutation in a gene known as Jak2 causes MPN, pro-inflammatory signaling in the bone marrow, and development of myelofibrosis, similar to the disease process in human patients with MPN. When they investigated the mechanical properties of bone marrow in the animals femur bones, using a nanoindentation probe, the researchers measured a higher stiffness than in non-fibrotic bone marrow. Importantly, we found that the pathologic grading of myelofibrosis in the animal model was significantly correlated with changes in viscoelasticity, said co-first author Anna Marneth, who spearheaded the experiments in the mouse model as a postdoctoral fellow working with Ann Mullally, a principal investigator at Brigham and DFCI, and another senior author on the study.
An important question was whether monocytes response to the mechanical impact of the fibrotic bone marrow niche could be therapeutically targeted. The researchers focused on an isoform of the phosphoinositide 3-kinase (PI3K)-gamma protein, which is specifically expressed in monocytes and closely related immune cells. PI3K-gamma is known for regulating the assembly of a cell-stiffening filamentous cytoskeleton below the cell surface that expands in response to mechanical stress, which the team also observed in monocytes encountering a fibrotic ECM. When they added a drug that inhibits PI3K-gamma to stiff elastic artificial ECMs, it toned down their pro-inflammatory response and, when given as an oral treatment to myelofibrosis mice, significantly lowered the number of monocytes and dendritic cells in their bone marrow.
This research opens new avenues for modifying immune cell function in fibrotic diseases that are currently difficult to treat. The results are also highly relevant to human cancers with a highly fibrotic microenvironment, such as pancreatic cancer, says Wucherpfennig.
Adapted from a press release written by Benjamin Boettner of the Wyss Institute for Biologically Inspired Engineering at Harvard University.
Other authors on the study are Harvards Kwasi Adu-Berchie, Joshua M. Grolman, Christina M. Tringides, Yutong Liu, Waihay J. Wong, Olga Pozdnyakova, Mariano Severgnini, Alexander Stafford, and Georg N. Duda.
The study was funded by the National Cancer Institute of the National Institutes of Health (Grant CA214369), National Institute of Dental & Craniofacial Research of the National Institutes of Health (grants DE025292 and DE030084), Food and Drug Administration (Grant FD006589), and Harvard University Materials Research Science and Engineering Center (Grant DMR 1420570).
Link:
Deconstructing the mechanics of bone marrow disease | Penn Today - Penn Today
Krabbe disease, which mostly affects newborns causes, symptoms, and treatment – CNBCTV18
By daniellenierenberg
Krabbe disease is one of many hundreds of inherited metabolic disorders. Named after the Danish neurologist Knud Krabbe, the disease causes progressive damage to the nervous system, eventually resulting in the death of the individual. The disease is common in newborns before they reach six months of age and treatment must start at the earliest. Most newborns affected by Krabbe disease do not reach the age of two.
Krabbe disease is caused due to genetic mutation on the 14th chromosome in an infant. A child needs to inherit two copies of the abnormal genome from both its parents, after which it has a 25 percent chance of inheriting both the recessive genes and developing the disease.
On inheriting the defective genome, the body doesnt produce enough of the enzyme galactosylceramidase (GALC). Galactosylceramidase is essential for breaking down unmetabolised lipids like glycosphingolipid and psychosine in the brain. These unmetabolised lipids are toxic to some of the non-neuron cells present in the brain.
Late-onset Krabbe disease, however, can be caused by a different genetic mutation which leads to a lack of a different enzyme, known as active saposin A.
Symptoms between early-onset and late-onset Krabbe disease differ slightly. Infants suffering from early-onset Krabbe disease suffer from symptoms like excessive irritability, difficulty swallowing, vomiting, unexplained fevers, and partial unconsciousness. Other common neuropathic symptoms include hypersensitivity to sound, muscle weakness, slowing of mental and motor development, spasticity, deafness, optic atrophy, optic nerve enlargement, blindness, and paralysis.
Late-onset Krabbe disease emerges with symptoms like the development of cross-eyes, slurred speech, slow development, and loss of motor functions.
The disease is diagnosed after a physician conducts a primary physical exam. A blood or skin tissue biopsy can test for GALC levels in the body and low levels can indicate the presence of Krabbe disease. Further testing through imaging scans (MRI), nerve conduction studies, eye examination, genetic testing and amniocentesis can also help diagnose the disease.
There is no cure for Krabbe disease. Treatment is mostly palliative in nature with a focus towards dealing with symptoms and providing supportive care. Experimental trials using hematopoietic stem cell transplant (HSCT), bone marrow transplantation, stem cell therapy, and gene therapy have seen some results in the small number of patients that they have been used on.
(Edited by : Shoma Bhattacharjee)
First Published:Jul 15, 2022, 06:32 AM IST
Go here to read the rest:
Krabbe disease, which mostly affects newborns causes, symptoms, and treatment - CNBCTV18
Scientists Discover Genes That Affect the Risk of Developing Pre-Leukemia – Newswise
By daniellenierenberg
Under embargo until Thursday 14 July 2022 at 16:00 (London time), 14 July 2022 at 11:00 (US Eastern Time).
Newswise The discovery of 14 inherited genetic changes which significantly increase the risk of a person developing a symptomless blood disorder associated with the onset of some types of cancer and heart disease is published today in Nature Genetics. The finding, made in one of the largest studies of its kind through genetic data analysis on 421,738 people, could pave the way for potential new approaches for the prevention and early detection of cancers including leukaemia.
Led by scientists from the Universities of Bristol and Cambridge, the Wellcome Sanger Institute, the Health Research Institute of Asturias in Spain, and AstraZeneca, the study reveals that specific inherited genetic changes affect the likelihood of developing clonal haematopoiesis, a common condition characterised by the development of expanding clones of multiplying blood cells in the body, driven by mutations in their DNA.
Although symptomless, the disorder becomes ubiquitous with age and is a risk factor for developing blood cancer and other age-related diseases. Its onset is a result of genetic changes in our blood-making cells.
All human cells acquire genetic changes in their DNA throughout life, known as somatic mutations, with a specific subset of somatic mutations driving cells to multiply. This is particularly common in professional blood-making cells, known as blood stem cells, and results in the growth of populations of cells with identical mutations known as clones.
Using data from the UK Biobank, a large-scale biomedical database and research resource containing genetic and health information from half a million UK participants, the team were able to show how these genetic changes relate not only to blood cancers but also to tumours that develop elsewhere in the body such as lung, prostate and ovarian cancer.
The team found that clonal haematopoiesis accelerated the process of biological ageing itself and influenced the risk of developing atrial fibrillation, a condition marked by irregular heartbeats.
The findings also clearly established that smoking is one of the strongest modifiable risk factors for developing the disorder, emphasising the importance of reducing tobacco use to prevent the conditions onset and its harmful consequences.
Dr Siddhartha Kar, UKRI Future Leaders Fellow at the University of Bristol and one of the studys lead authors from Bristols MRC Integrative Epidemiology Unit(IEU), said: Our findings implicate genes and the mechanisms involved in the expansion of aberrant blood cell clones and can help guide treatment advances to avert or delay the health consequences of clonal haematopoiesis such as progression to cancer and the development of other diseases of ageing.
Professor George Vassiliou, Professor of Haematological Medicine at the University of Cambridge and one of the studys lead authors, added: Our study reveals that the cellular mechanisms driving clonal haematopoiesis can differ depending on the mutated gene responsible. This is a challenge as we have many leads to follow, but also an opportunity as we may be able to develop treatments specific to each of the main subtypes of this common phenomenon.
Dr Pedro M. Quiros, formerly researcher at the Wellcome Sanger Institute and the University of Cambridge, and now Group Leader at the Health Research Institute of Asturias (Spain) and another of the studys lead authors says: We were particularly pleased to see that some of the genetic pathways driving clonal haematopoiesis appear to be susceptible to pharmacological manipulation and represent prioritised targets for the development of new treatments.
The study was funded by UK Research and Innovation (UKRI), Cancer Research UK (CRUK), Wellcome, the Royal Society, the Carlos III Health Institute, the Leukaemia and Lymphoma Society, and the Rising Tide Foundation for Clinical Cancer Research.
Paper
Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis by Kar SP, et al. in Nature Genetics.
Ends
Further information:
Clonal haematopoiesis is the development of mutations in genes involved in blood cell production. It is diagnosedwhen a test on a person's blood or bone marrow sample shows that blood cells are carrying one of the genetic mutations associated with the condition. Clonal haematopoiesis becomes increasingly common with age, affecting more than one in every ten individuals older than 60 years.
Notes to editors
Paper: an embargoed copy of the paper is available to download here.
Issued by the University of Bristol Media Team.
Continued here:
Scientists Discover Genes That Affect the Risk of Developing Pre-Leukemia - Newswise
Live Cell Metabolic Analysis Paving the Way for Metabolic Research and Cell & Gene Therapy, Upcoming Webinar Hosted by Xtalks – Benzinga
By daniellenierenberg
In this free webinar, learn how live cell metabolic analysis paves the way not only for metabolic research, but also the manufacturing of significant cell and gene therapy (CGT) products. Attendees will learn how glycolysis metabolic process can be measured directly through the continuous measuring of glucose and lactate amounts in the culture media using electrochemical sensors which provides new scientific insights. The featured speakers will discuss how continuous monitoring is effectively utilized for the process development stage of CGT products and quality control during the manufacturing stage of CGT products. The speakers will also discuss how glucose and lactate can be monitored in the traditional lab environment using conventional 24-well plate and CO2 incubators without any sampling.
TORONTO (PRWEB) July 12, 2022
Among the various biological functions cells carry out to maintain life, metabolism is the key activity used to process nutrient molecules. It is also closely associated with cell proliferation and differentiation. Cell metabolic analysis would be very helpful to monitor these activities.
In the field of cancer immunotherapy such as CAR T and TCR-T therapy, stem cell research including embryonic stem (ES) and induced pluripotent stem (iPS) cells and commercial cell and gene therapy (CGT) manufacturing process development investigating and understanding the metabolic activities of cells are critical. To meet this need in the field, PHC Corporation will launch a continuous metabolic analyzer which leads to real-time visualization of the metabolic condition of living cells. This development will encourage new discoveries that have not been seen in previous studies.
Register for this webinar to learn how live cell metabolic analysis paves the way not only for metabolic research, but also the manufacturing of significant CGT products.
Join experts from PHC Corporation of North America, Ryosuke Takahashi, PhD VP, Cell and Gene Therapy Business; and Kenan Moss, Application Specialist, for the live webinar on Tuesday, July 26, 2022, at 11am EDT (4pm BST).
For more information, or to register for this event, visit Live Cell Metabolic Analysis Paving the Way for Metabolic Research and Cell & Gene Therapy.
ABOUT XTALKS
Xtalks, powered by Honeycomb Worldwide Inc., is a leading provider of educational webinars to the global life science, food and medical device community. Every year, thousands of industry practitioners (from life science, food and medical device companies, private & academic research institutions, healthcare centers, etc.) turn to Xtalks for access to quality content. Xtalks helps Life Science professionals stay current with industry developments, trends and regulations. Xtalks webinars also provide perspectives on key issues from top industry thought leaders and service providers.
To learn more about Xtalks visit http://xtalks.comFor information about hosting a webinar visit http://xtalks.com/why-host-a-webinar/
For the original version on PRWeb visit: https://www.prweb.com/releases/live_cell_metabolic_analysis_paving_the_way_for_metabolic_research_and_cell_gene_therapy_upcoming_webinar_hosted_by_xtalks/prweb18784251.htm
Read more here:
Live Cell Metabolic Analysis Paving the Way for Metabolic Research and Cell & Gene Therapy, Upcoming Webinar Hosted by Xtalks - Benzinga