Scientists turn skin cells into healthy heart tissue
By daniellenierenberg
Scientists turn skin cells into healthy heart tissue
Kate Kelland (Reuters) / 26 May 2012
The researchers said there were still many years of testing and refining ahead. But the results meant they might eventually be able to reprogramme patients cells to repair their own damaged hearts.
We have shown that its possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young - the equivalent to the stage of his heart cells when he was just born, said Lior Gepstein, who led the work.
The researchers, whose study was published in the European Heart Journal on Wednesday, said clinical trials of the technique could begin within 10 years.
Heart failure is a debilitating condition in which the heart is unable to pump enough blood around the body. It has become more prevalent in recent decades as advances in medical science mean many more people survive heart attacks. At the moment, people with severe heart failure have to rely on mechanical devices or hope for a transplant.
Researchers have been studying stem cells from various sources for more than a decade, hoping to capitalise on their ability to transform into a wide variety of other kinds of cell to treat a range of health conditions.
There are two main forms of stem cells - embryonic stem cells, which are harvested from embryos, and reprogrammed human induced pluripotent stem cells (hiPSCs), often originally from skin or blood.
Gepsteins team took skin cells from two men with heart failure aged 51 and 61 and transformed them by adding three genes and then a small molecule called valproic acid to the cell nucleus.
They found that the resulting hiPSCs were able to differentiate to become heart muscle cells, or cardiomyocytes, just as effectively as hiPSCs that had been developed from healthy, young volunteers who acted as controls for the study.
Originally posted here:
Scientists turn skin cells into healthy heart tissue
5 scientists receive stem-cell research grants
By daniellenierenberg
Five scientists from the University of California, San Diego and its School of Medicine have been awarded almost $12 million in new grants from the California Institute for Regenerative Medicine (CIRM) to conduct stem cell-based research into regenerating spinal cord injuries, repairing gene mutations that cause amyotrophic lateral sclerosis and finding new drugs to treat heart failure and Alzheimer's disease.
The awards mark the third round of funding in CIRM's Early Translational Awards program, which supports projects that are in the initial stages of identifying drugs or cell types that could become disease therapies. More than $69 million in awards were announced yesterday, including funding for first-ever collaboratively funded research projects with China and the federal government of Australia.
"With these new awards, the agency now has 52 projects in 33 diseases at varying stages of working toward clinical trials," said Jonathan Thomas, JD, PhD and CIRM governing board chair. "Californians should take pride in being at the center of this worldwide research leading toward new cures. These projects represent the best of California stem cell science and the best international experts who, together, will bring new therapies for patients."
The five new UC San Diego awards are:
CIRM was established in November 2004 with the passage of Proposition 71, the California Stem Cell Research and Cures Act. The statewide ballot measure provided $3 billion in funding for stem cell research at California universities and research institutions and called for the establishment of an entity to make grants and provide loans for stem cell research, research facilities, and other vital research opportunities.
The May 24 grants bring UC San Diego's total to more than $112 million in CIRM funding since the first awards in 2006.
Read more from the original source:
5 scientists receive stem-cell research grants
UC San Diego Scientists Net $12 Million For Stem Cell Research
By daniellenierenberg
Five UC San Diego scientists have received almost $12 million combined from the California Institute for Regenerative Medicine to pay for stem cell-based research, the university announced today.
A team led by Lawrence Goldstein, of the Department of Cellular and Molecular Medicine and director of the UC San Diego Stem Cell Program, was given $1.8 million to continue looking for new methods to find and test possible medications for Alzheimer's disease, according to UCSD. They use reprogrammed stem cells in their work.
Dr. Mark Tuszynski, professor of neurosciences and director of the Center for Neural Repair, received $4.6 million to develop more potent stem cell-based treatments for spinal cord injuries.
Gene Yeo, assistant professor in the Department of Cellular and Molecular Medicine, was awarded $1.6 million to continue research into treatments for amyotrophic lateral sclerosis. His research hopes to take advantage of recent discoveries about ALS, or Lou Gehrig's disease, which center on mutations in RNA-binding proteins that cause dysfunction and death in neurons.
Dr. Eric David Adler, an associate clinical professor of medicine and cardiologist, was granted $1.7 million to screen potential drugs for Danon disease, a type of inherited heart failure that frequently kills patients by their 20s.
Yang Xu, a professor in the Division of Biological Sciences, was given $1.8 million to research the use of human embryonic stem cells to produce a renewable source of heart muscle cells that replace cells damaged or destroyed by disease, while overcoming biological resistance to new cells.
"With these new awards, the (institute) now has 52 projects in 33 diseases at varying stages of working toward clinical trials,'' said Jonathan Thomas, chairman of the CIRM governing board. "Californians should take pride in being at the center of this worldwide research leading toward new cures.''
CIRM was established in November 2004 with voter passage of the California Stem Cell Research and Cures Act. UC San Diego has received $112 million since CIRM began providing grants six years ago.
Link:
UC San Diego Scientists Net $12 Million For Stem Cell Research
Di'Anno Wants Former Iron Maiden Bandmate To Undergo Stem Cell Therapy
By daniellenierenberg
05/24/2012 . (Classic Rock) Former Iron Maiden singer Paul Di'Anno wants his ex-bandmate Clive Burr to undergo stem cell therapy, despite the costs and risks associated with the procedure.
Burr, the drummer with Maiden from 1979 until 1982, has been in a wheelchair as a result of multiple sclerosis, which has been attacking his nervous system since before he was diagnosed in 2002.
MS reduces the ability of the brain and spinal cord to communicate with each other, resulting in a wide range of potentially severe symptoms. The cause is unknown and there is no cure; but in 2009 researchers made the first breakthrough in reversing symptoms through stem cell therapy.
Di'Anno tells Talking Metal Pirate Radio Burr's condition is "not very good at all." He had a lot to say, read it here.
Classic Rock Magazine is an official news provider for antiMusic.com. Copyright Classic Rock Magazine- Excerpted here with permission.
antiMUSIC News featured on RockNews.info and Yahoo News
...end
Originally posted here:
Di'Anno Wants Former Iron Maiden Bandmate To Undergo Stem Cell Therapy
Can Stem Cells Repair Heart Tissue?
By daniellenierenberg
People who suffer from heart failure could someday be able to use their own skin stem cells to regenerate their damaged heart tissue, according to a new Israeli study.
Researchers took stem cells from the skin of two patients with heart failure and genetically programmed them to become new heart muscle cells. They then transplanted the new cells into healthy rats and found that the cells integrated with cardiac tissue that already existed.
The study, published in European Heart Journal, marks the first time ever that scientists could use skin cells from people with heart failure and transform damaged heart tissue this way.
The newly generated cells turned out to be similar to embryonic stem cells, which can potentially be programmed to grow into any type of cell.
"What is new and exciting about our research is that we have shown that it's possible to take skin cells from an elderly patient with advanced heart failure and end up with his own beating cells in a laboratory dish that are healthy and young the equivalent to the stage of his heart cells when he was just born," Dr. Lior Gepstein, lead researcher and a senior clinical electrophysiologist at Rambam Medical Center in Haifa, Israel, said in a news release.
The findings open up the possibility, the authors wrote, that people can use their own skin cells to repair their damaged hearts, which could prevent the problems associated with using embryonic stem cells.
"This approach has a number of attractive features," said Dr. Tom Povsic, an interventional cardiologist at Duke University Medical Center. "We can get the cells that you start with from the patient himself or herself. It avoids the ethical dilemma associated with embryonic stem cells and it removes the possibility of rejection of foreign stem cells by the immune system." Povsic was not involved with the Israeli study.
Another advantage of using skin cells is that other types of cells taken from patients themselves, such as bone marrow cells, could potentially lead to the development of unhealthy tissue.
"If a patient is already sick with heart disease, one of the reasons it may develop is that stem cells weren't able to repair the heart the way they should," Povsic added. Skin cells, he explained, are generally healthy.
"It is very exciting and very interesting, but we are far away from taking this to patients," said Dr. Marrick Kukin, director of the Heart Failure Program at St. Luke's-Roosevelt Hospital who was also not involved in the Israeli study.
Read the original:
Can Stem Cells Repair Heart Tissue?
World's First Stem Cell Drug From Osiris: Approved
By daniellenierenberg
Editor's Choice Main Category: Pediatrics / Children's Health Also Included In: Stem Cell Research Article Date: 20 May 2012 - 11:00 PDT
Current ratings for: 'World's First Stem Cell Drug From Osiris: Approved'
5 (1 votes)
The decision is a historic one, as it's both the first stem cell drug going into formal use, as well as the first treatment for GvHD. The disease is a devastating breakdown occurring after a bone marrow transplant and kills around 80% of children affected, often within a matter of weeks.
Andrew Daly, M.D., Clinical Associate Professor, Department of Medicine and Oncology at the University of Calgary, Canada and Principal Investigator in the phase 3 clinical program for Prochymal confirmed :
The approval process for Prochymal was implemented under Health Canada's Notice of Compliance with conditions (NOC/c) pathway. The basis of the procedure allows a new drug to come onto the market where there are unmet medical needs. The approval is granted with the provision that the drug has demonstrated risk / reward benefits in previous clinical trials and that the manufacturer agrees to undertake additional confirmatory clinical testing.
C. Randal Mills, Ph.D., President and Chief Executive Officer of Osiris confirmed his' companies happiness at being able to help conquer the disease :
Where children with GvHD are not responding to treatment with steroids, which is presumably most of them, the use of Prochymal will now be authorized. Health Canada based it's approval on previous clinical studies of the drug, in which 64% of patients showed results; the survival rate compared to historical data was drastically improved, even in patients with severe cases. Additional clinical evaluation of Prochymal now will be undertaken, including enrolling patients in a registry to discover any long term effects.
Joanne Kurtzberg, MD, Head of the Pediatric Bone Marrow Transplant Program at Duke University and Lead Investigator for Prochymal
Osiris has 48 patents protecting Prochymal, and Health Canada's have agreed to provide Prochymal with regulatory exclusivity within their territory. Canada affords eight years of exclusivity to Innovative Drugs, such as Prochymal, with an additional six-month extension because it addresses a pediatric disease. Parents, doctors and shareholders can all rest easy.
Read more from the original source:
World's First Stem Cell Drug From Osiris: Approved
Pluristem trial finds stem cells improve cardiac dysfunction
By daniellenierenberg
Pluristem Therapeutics Ltd. (Nasdaq:PSTI; DAX: PJT: PLTR) today reported that the cardiac function in a diabetic-induced diastolic dysfunction in animals improved following PLacental eXpanded (PLX cells) administration.
The study was conducted as part of the European Commission's Seventh Framework Program (FP7) in collaboration with Prof. Doctor Carsten Tschope and his staff at the Charite Universitaetsmedizin Berlin, Berlin-Bradenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.
Dr. Tschope said, "Currently, there are limited treatment options for diastolic dysfunction and even fewer options for diabetic induced diastolic dysfunction. This study holds promise that PLX cells might be able to inhibit diabetic induced diastolic dysfunction progression as well as possibly repair the existing damage, hypotheses that will be further explored in future studies."
Diabetes was induced in thirty-six mice resulting in the development of diastolic heart failure. After seven days, the animals received either PLX cells from two separate batches or placebo (12 subjects in each of the three groups). Ten mice were not treated (controls).
After three weeks, several cardiac parameters were assessed and found to be significantly improved following the treatment with PLX cells. Important measurements included the cardiac ejection fraction and the left ventricular (LV) relaxation time constant, believed to be the best index of LV diastolic function and a determination of the stiffness of the ventricle. Cardiac ejection fraction improved 19%, the left ventricular relaxation time constant fell 16% and stiffness of the ventricle fell 19%.
Administration of either batch of PLX cells also resulted in a significant anti-inflammatory effect.
Pluristem chairman and CEO Zami Alberman said, "As we demonstrated last week with the announcement that our cells successfully treated the seven year old patient suffering from aplastic bone marrow disease, our strategy is to develop a minimally invasive cell therapy solution that can be used to treat a wide range of life-threatening diseases. Our initial testing of a treatment for diastolic heart disease opens a new potential indication where our cells can be used and potentially positions Pluristem as a "first-line of defense" for diastolic dysfunction."
Pluristem's share price jumped 5.6% in pre-market trading on Nasdaq to $3.01, giving a market cap of $126.33 million. The share rose 10.6% on the TASE today to NIS 11.50.
Published by Globes [online], Israel business news - http://www.globes-online.com - on May 15, 2012
Copyright of Globes Publisher Itonut (1983) Ltd. 2012
The rest is here:
Pluristem trial finds stem cells improve cardiac dysfunction
TiGenix Reports Business & Financial Results for the First Quarter 2012
By daniellenierenberg
LEUVEN, BELGIUM--(Marketwire -05/15/12)- TiGenix NV (TIG) a leader in the field of cell therapy, today gave a business update and announced the financial results for the first quarter ending March 31, 2012.
Business highlights
Financial highlights
"In the first quarter 2012 we continued to aggressively push our commercial efforts forward," said Eduardo Bravo, CEO of TiGenix. "As a result sales of ChondroCelect are developing in line with the improved traction we observed in the second part of last year. At the same time we are moving ahead of schedule with most of our clinical adipose stem cell programs. We closed the quarter with almost EUR 17 million cash on hand, which is sufficient to execute on our business plan and reach key inflection points."
Business update
ChondroCelect sales increase continues apaceThe Company reports net sales growth for the quarter of 123% compared with the same period of last year, and of 62% compared to Q4, 2011, a positive trend reflecting the uptake in Belgium, where we benefit from national reimbursement. In the Netherlands one of the leading private healthcare insurance companies has made treatment with ChondroCelect compulsory for its insured, and no longer reimburses non-ATMP treatments. Similarly, one of the large private insurers in the UK has expressed its intention to routinely reimburse ChondroCelect going forward. Discussions to obtain full national reimbursement keep advancing in the Netherlands, France, Spain and Germany.
Positive outcome of ChondroCelect compassionate use program published in leading journalPositive outcome data from the ChondroCelect compassionate use program (CUP), involving 43 orthopedic centers in 7 European countries, treating 370 patients with ChondroCelect over the span of four years, were published in advance online in Cartilage, the official journal of the International Cartilage Repair Society. The data show that the implantation of ChondroCelect results in a positive benefit/risk ratio when used in an unselected, heterogeneous population, irrespective of the follow-up period, lesion size and type of lesion treated. In addition, the CUP study significantly expands the data set used to obtain approval for ChondroCelect from the European Medicines Agency in 2009, increasing eight-fold, from 43 to 334, the number of patients with long-term follow up data. To date almost 700 patients have been treated with ChondroCelect.
ADMIRE-CD Phase III trial (Cx601) in complex perianal fistula on schedule The ADMIRE-CD (Adipose Derived Mesenchymal stem cells for Induction of REmission in perianal fistulizing Crohn's Disease) Phase III protocol was submitted to Ethics Committees or Health Authorities in all 8 participating countries, and to date approvals have been received in four of those countries already.
Cx611 Phase IIa in RA passes last safety hurdleOn April 17, upon review of the safety data of the first three patients of the third cohort of the company's Phase IIa clinical trial in rheumatoid arthritis (Cx611), TiGenix received the go-ahead from the independent Safety Monitoring Board to recruit and dose the remaining patients of this cohort. This fact is of major importance. In RA it ensures that the product will not be held back by any dose-limiting factors and that we will be able to move forward with the optimal treatment dose. Of almost equal importance is that, if required, we can expand the dosing range in other indications that we are exploring as well. With 6 months of follow-up, the current RA trial in 53 patients is expected to report meaningful results in H1 2013.
Last patient treated in Cx621 Phase I clinical trialAll 10 healthy volunteers have been recruited and treated in the Phase I study of Cx621. Cx621 investigates the safety and feasibility of intra-lymphatic administration of stem cells. Intra-lymphatic administration of (all) stem cells is patented by TiGenix. The final report of this trial will be available at the end of June.
Read the original here:
TiGenix Reports Business & Financial Results for the First Quarter 2012
Gamida Cell Closes $10 Million E Financing Round Earmarked to Support the Global Commercialization of the Company’s …
By daniellenierenberg
JERUSALEM--(BUSINESS WIRE)--
Gamida Cell announced today that it has closed an internal E financing round of $10 million. All major shareholders participated.
The financing will be used to support the global commercialization of the companys lead cell therapy product, StemEx, in development as an alternative therapeutic treatment for patients with blood cancers, such as leukemia and lymphoma, who can be cured by bone marrow transplantation but do not have a matched bone marrow donor. The company is currently seeking a strategic partner to join in the global commercialization of StemEx.
The financing will also support the continued development of the companys pipeline of products, primarily the NiCord clinical trial for sickle cell disease and thalassemia.
Mr. Reuven Krupik, chairman of the board of Gamida Cell said, The investors were unanimous in their decision to reinvest, understanding the importance of bringing StemEx to market as well as maintaining the companys leadership role in the stem cell industry. Gamida Cell is a game changer.
The international, multi-center, pivotal registration, Phase III clinical trial of StemEx completed enrollment in February 2012. Clinical outcome is expected in Q4/2012. The market launch of StemEx is planned for 2013. StemEx is likely to be the first allogeneic stem cell product in the market. StemEx is being developed by the Gamida Cell-TEVA joint venture.
Dr. Yael Margolin, president and chief executive officer of Gamida Cell said, With the continued support of our shareholders and the analysis of the clinical results of the StemEx trial just around the corner, we are now focused on submitting the BLA.
StemEx is a graft of an expanded population of stem/progenitor cells, derived from part of a single unit of umbilical cord blood and transplanted by IV administration along with the remaining, non-manipulated cells from the same unit. Competing products in development use two units. As the average cost of a cord blood unit in the U.S. is $40K, StemEx is expected to be a significantly less expensive treatment option. StemEx is also expected to be available in the market several years before any of the competing products.
About Gamida Cell
Gamida Cell is a world leader in stem cell population expansion technologies and stem cell therapy products for transplantation and regenerative medicine. The companys pipeline of stem cell therapy products are in development to treat a wide range of conditions including blood cancers, solid tumors, non-malignant hematological diseases such as hemoglobinopathies, neutropenia and acute radiation syndrome, autoimmune diseases and metabolic diseases as well as conditions that can be helped by regenerative medicine. Gamida Cells therapeutic candidates contain populations of adult stem cells, selected from non-controversial sources such as umbilical cord blood, bone marrow and peripheral blood, which are expanded in culture. Gamida Cells current shareholders include: Elbit Imaging, Clal Biotechnology Industries, Israel Healthcare Venture, Teva Pharmaceutical Industries, Amgen, Denali Ventures and Auriga Ventures. For more information, please visit: http://www.gamida-cell.com.
Read the rest here:
Gamida Cell Closes $10 Million E Financing Round Earmarked to Support the Global Commercialization of the Company’s ...
Julio C. Voltarelli, Pioneer in Cell Transplantation, Dies at 63
By daniellenierenberg
Dr. Julio C. Voltarelli, who made a significant impact in cell transplantation, dies at 63
Distinguished Brazilian professor pioneered bone marrow transplantation
Newswise Tampa, Fla. (May. 9th , 2012) Julio C. Voltarelli, MD, PhD, professor at the Ribeiro Preto School of Medicine at the University of So Paulo, Brazil, died March 21, 2012 at the age of 63. Dr. Voltarelli, who was on the editorial board of the Cell Transplantation journal, published by Cognizant Communication Corporation, and an important factor in the journals success, was a distinguished stem cell researcher and head of the bone marrow transplantation unit at the Ribeiro Preto School of Medicine.
Dr. Voltarelli had a significant impact on Brazilian stem cell transplantation science, said Dr. Maria C. O. Rodrigues, Dr. Voltarellis longtime colleague. He was driven to bring the benefits of the newest cellular therapies to those with ALS, MS and type 1 diabetes. His efforts and dedication will be greatly missed.
Dr. Voltarelli, a graduate of the Ribeiro Preto School of Medicine, served post-doctoral fellowships at the University of California San Francisco, the Fred Hutchinson Cancer Research Center in Seattle, and the Scripps Research Institute in San Diego. He returned to Brazil in 1992 and started a highly ranked bone marrow transplantation program at the Ribeiro Preto School of Medicine. In 2002, Dr. Voltarelli initiated the schools research efforts in stem cell transplantation for autoimmune diseases, later focusing on diabetes, graft-versus-host disease and sickle cell anemia.
At the time of his death, Dr. Voltarelli, in addition to serving as head of the bone marrow transplantation unit, also served as research coordinator for the Center for Cellular Therapy at the So Paulo Research Foundation and the National Institute of Science and Technology in Stem Cells and Cell Therapy. He was recently elected president of the Brazilian Society of Bone Marrow Transplantation.
His publications included the first books on stem cell transplantation and clinical immunology written in Portuguese. He also founded the Brazilian Society of Stem Cell Transplantation.
His colleagues in Brazil called his lifelong contributions priceless and remembered him for his leadership skills, vision, and sense of humor.
# The Coeditor-in-chiefs for CELL TRANSPLANTATION are at the Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan, and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or Camillo Ricordi, MD at ricordi@miami.edu or David Eve, PhD at celltransplantation@gmail.com #
News release by Florida Science Communications http://www.sciencescribe.net
See the article here:
Julio C. Voltarelli, Pioneer in Cell Transplantation, Dies at 63
Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes?
By daniellenierenberg
ScienceDaily (May 10, 2012) This summer's action film, "The Amazing Spider-Man," is another match-up between the superhero and his nemesis the Lizard. Moviegoers and comic book fans alike will recall that the villain, AKA Dr. Curt Connors, was a surgeon who, after losing an arm, experimented with cell generation and reptilian DNA and was eventually able to grow back his missing limb.
The latest issue of the journal Physiology contains a review article that looks at possible routes that unlock cellular regeneration in general, and the principles by which hair and feathers regenerate themselves in particular.
The authors apply what is currently known about regenerative biology to the emerging field of regenerative medicine, which is being transformed from fantasy to reality.
Review Article
While the concept of regenerative medicine is relatively new, animals are well known to remake their hair and feathers regularly by normal regenerative physiological processes. In their review, the authors focus on (1) how extrafollicular environments can regulate hair and feather stem cell activities and (2) how different configurations of stem cells can shape organ forms in different body regions to fulfill changing physiological needs.
The review outlines previous research on the role of normal regeneration of hair and feathers throughout the lifespan of various birds and mammals. The researchers include what is currently known about the mechanism behind this re-growth, as well as what gaps still exist in the knowledge base and remain ripe for future research.
The review examines dozens of papers on normal "physiological regeneration" -- the re-growth that happens over the course of an animal's life and not in response to an injury. This regeneration takes place to accommodate different stages in an animal's life (e.g., replacing downy chick feathers with an adult chicken's, or replacing the fine facial hair of a young boy with the budding beard of an adolescent), or in response to various environmental conditions (e.g., cats shedding a thick winter coat in the summer heat but re-growing it when the seasons change again, or snowshoe hares switching from brown in the summer to white in the winter for camouflage).
These changes seem to respond both to internal cues such as physiology of the hair follicle itself, or external cues such as the environment, but the mechanisms behind these normal alterations are largely unknown. Stem cells inside the follicle prompt hair and feather regeneration, but researchers are still unsure how to guide those cells to form the shape, size, and orientation of these "skin appendages" so that controlled re-growth is possible. Additionally, scientists are still unsure how to re-grow hair on skin in people after severe injuries that lead to scar tissue.
Importance of the Findings
The reviewed studies suggest that while researchers are making headway in understanding how and why hair and feathers regenerate after normal loss or in response to different life stages, much still remains unknown. This missing knowledge could hold valuable clues to learning how to regenerate much more complicated and valuable structures after loss to injury, such as fingers and toes.
Read more from the original source:
Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes?
Iranian researcher helps treating muscular dystrophy using stem cells
By daniellenierenberg
Source: ISNA, Tehran
Iranian researcher and lecturer Radbod Darabi jointly with his collogues from the University of Minnesota's Lillehei Heart Institute have effectively treated muscular dystrophy in mice using human stem cells derived from a new process which for the first time makes the production of human muscle cells from stem cells efficient and effective.
Radbod Darabi, MD, PhD with Rita Perlingeiro, PhD. (Credit: Image courtesy of University of Minnesota Academic Health Center)
The research outlines the strategy for the development of a rapidly dividing population of muscle-forming cells derived from induced pluripotent (iPS) cells.
IPS cells have all of the potential of embryonic stem (ES) cells, but are derived by reprogramming skin cells. They can be patient-specific, which renders them unlikely to be rejected, and do not involve the destruction of embryos.
This is the first time that human stem cells have been shown to be effective in the treatment of muscular dystrophy.
According to the researchers, there has been a significant lag in translating studies using mouse stem cells into therapeutically relevant studies involving human stem cells.
This lag has dramatically limited the development of cell therapies or clinical trials for human patients.
The latest research from the University of Minnesota provides the proof-of-principle for treating muscular dystrophy with human iPS cells, setting the stage for future human clinical trials.
As the researchers noted one of the biggest barriers to the development of cell-based therapies for neuromuscular disorders like muscular dystrophy has been obtaining sufficient muscle progenitor cells to produce a therapeutically effective response.
Read the rest here:
Iranian researcher helps treating muscular dystrophy using stem cells
Stem cell therapy to battle HIV?
By daniellenierenberg
(SACRAMENTO, Calif.) -- UC Davis Health System researchers are a step closer to launching human clinical trials involving the use of an innovative stem cell therapy to fight the virus that causes AIDS.
In a paper published in the May issue of the Journal of Virology, the UC Davis HIV team demonstrated both the safety and efficacy of transplanting anti-HIV stem cells into mice that represent models of infected patients. The technique, which involves replacing the immune system with stem cells engineered with a triple combination of HIV-resistant genes, proved capable of replicating a normally functioning human immune system by protecting and expanding HIV-resistant immune cells. The cells thrived and self-renewed even when challenged with an HIV viral load.
"We envision this as a potential functional cure for patients infected with HIV, giving them the ability to maintain a normal immune system through genetic resistance," said lead author Joseph Anderson, an assistant adjunct professor of internal medicine and a stem cell researcher at the UC Davis Institute for Regenerative Cures. "Ideally, it would be a one-time treatment through which stem cells express HIV-resistant genes, which in turn generate an entire HIV-resistant immune system."
To establish immunity in mice whose immune systems paralleled those of patients with HIV, Anderson and his team genetically modified human blood stem cells, which are responsible for producing the various types of immune cells in the body.
Building on work that members of the team have pursued over the last decade, they developed several anti-HIV genes that were inserted into blood stem cells using standard gene-therapy techniques and viral vectors (viruses that efficiently insert the genes they carry into host cells). The resulting combination vector contained:
These engineered blood stem cells, which could be differentiated into normal and functional human immune cells, were introduced into the mice. The goal was to validate whether this experimental treatment would result in an immune system that remained functional, even in the face of an HIV infection, and would halt or slow the progression toward AIDS.
The results were successful on all counts.
"After we challenged transplanted mice with live HIV, we demonstrated that the cells with HIV-resistant genes were protected from infection and survived in the face of a viral challenge, maintaining normal human CD4 levels," said Anderson. CD4+ T-cells are a type of specialized immune cell that HIV attacks and uses to make more copies of HIV.
"We actually saw an expansion of resistant cells after the viral challenge, because other cells which were not resistant were being killed off, and only the resistant cells remained, which took over the immune system and maintained normal CD4 levels," added Anderson.
The data provided from the study confirm the safety and efficacy of this combination anti-HIV lentiviral vector in a hematopoietic stem cell gene therapy setting for HIV and validated its potential application in future human clinical trials. The team has submitted a grant application for human clinical trials and is currently seeking regulatory approval, which is necessary to move on to clinical trials.
See the original post:
Stem cell therapy to battle HIV?
Genetically Modified T Cell Therapy Shown to be Safe, Lasting in Decade-Long Penn Medicine Study of HIV Patients
By daniellenierenberg
PHILADELPHIA HIV patients treated with genetically modified T cells remain healthy up to 11 years after initial therapy, researchers from the Perelman School of Medicine at the University of Pennsylvania report in the new issue of Science Translational Medicine. The results provide a framework for the use of this type of gene therapy as a powerful weapon in the treatment of HIV, cancer, and a wide variety of other diseases.
"We have 43 patients and they are all healthy," says senior author Carl June, MD, a professor of Pathology and Laboratory Medicine at Penn Medicine. "And out of those, 41 patients show long term persistence of the modified T cells in their bodies."
Early gene therapy studies raised concern that gene transfer to cells via retroviruses might lead to leukemia in a substantial proportion of patients, due to mutations that may arise in genes when new DNA is inserted. The new long-term data, however, allay that concern in T cells, further buoying the hope generated by work June's team published in 2011 showing the eradication of tumors in patients with chronic lymphocytic leukemia using a similar strategy.
"If you have a safe way to modify cells in patients with HIV, you can potentially develop curative approaches," June says. "Patients now have to take medicine for their whole lives to keep their virus under control, but there are a number of gene therapy approaches that might be curative." A lifetime of anti-HIV drug therapy, by contrast, is expensive and can be accompanied by significant side effects.
They also note that the approach the Penn Medicine team studied may allow patients with cancers and other diseases to avoid the complications and mortality risks associated with more conventional treatments, since patients treated with the modified T cells did not require drugs to weaken their own immune systems in order for the modified cells to proliferate in their bodies after infusion, as is customary for cancer patients who receive stem cell transplants.
To demonstrate the long-term safety of genetically modified T cells, June and colleagues have followed HIV-positive patients who enrolled in three trials between 1998 and 2002. Each patient received one or more infusions of their own T cells that had been genetically modified in the laboratory using a retroviral vector. The vector encoded a chimeric antigen receptor that recognizes the HIV envelope protein and directs the modified T cell to kill any HIV-infected cells it encounters.
As is standard for any trial, the researchers carefully monitored patients for any serious adverse events immediately after infusion -- none of which were seen. Additionally, because of the earlier concerns about long-term side effects, the U.S. Food and Drug Administration also asked the team to follow the patients for up to 15 years to ensure that the modified T cells were not causing blood cancers or other late effects. Therefore, each patient underwent an exam and provided blood samples during each of the subsequent years.
Now, with more than 500 years of combined patient safety data, June and colleagues are confident that the retroviral vector system is safe for modifying T cells. By contrast, June notes, the earlier, worrying side effects were seen when viral vectors were used to modify blood stem cells. The new results show that the target cell for gene modification plays an important role in long-term safety for patients treated. "T cells appear to be a safe haven for gene modification," June says.
The multi-year blood samples also show that the gene-modified T cell population persists in the patients' blood for more than a decade. In fact, models suggest that more than half of the T cells or their progeny are still alive 16 years after infusion, which means one treatment might be able to kill off HIV-infected cells for decades. The prolonged safety data means that it might be possible to test T cell-based gene therapy for the treatment of non-life threatening diseases, like arthritis.
"Until now, we've focused on cancer and HIV-infection, but these data provide a rationale for starting to focus on other disease types," June says. "What we have demonstrated in this study and recent studies is that gene transfer to T cells can endow these cells with enhanced and novel functions. We view this as a personalized medicine platform to target disease using a patient's own cells."
Here is the original post:
Genetically Modified T Cell Therapy Shown to be Safe, Lasting in Decade-Long Penn Medicine Study of HIV Patients
Biobank aims to collect stem cells and tissues for use in future bone grafts
By daniellenierenberg
A startup has set out to create a biobank of stem cell-rich tissues collected during surgery with the idea that customers can use their own stored biomaterials for use in future bone graft procedures and stem cell therapies.
Cleveland-based CellBank Technologies is modeling parts of its business on the cord blood bank industry, but instead of blood, it plans to store stem cells and bone-grafting tissues harvested from patients during knee and hip replacement surgeries.
Advertisement
The problem with harvesting autologous bone graft tissue is that doing so requires a second painful surgery so doctors can obtain the patients own cells. And that additional surgery is just another opportunity for the patient to develop postoperative pain or other complications. Grafting tissue can be taken from several different body parts, including the iliac crest at the hip.
Other options for bone-graft patients include allograft (human tissue harvested from someone besides the patient), synthetic materials and growth factors, which are substances that stimulate cell growth. Controversy has recently engulfed Medtronics bone growth factor Infuse, with allegations of off-label use that contributed to the company paying $85 million to settle a class-action securities fraud lawsuit.
Autograft, which involves harvesting your own bone-grafting tissue, is the gold standard, but its so hard to get, Uram said.
CellBanks plan is to collect bone, marrow and stem cells that would otherwise be discarded during knee and hip surgeries. CellBank customers would then have access to their grafting materials, a product the company has labeled GoldGraft, for future bone graft surgery. The company would also store patients stem cells for use in future stem cell therapies.
Companies that store stem cells for patients include NeoStem and ViaCord.Uram said shes not aware of any other company today that stores both autograft tissue and stem cells for a patients future use.
Thats the beauty of our offering, she said. Were playing in the stem cell collect-and-store industry, but were giving our customers a way to use that collected tissue before the stem cell industry even takes off, if they need it, through use of bone-grafting tissue. With one collection our products solve multiple health needs.
Read this article:
Biobank aims to collect stem cells and tissues for use in future bone grafts
Bellevue doctor tests stem-cell cream as anti-aging therapy
By daniellenierenberg
by JEAN ENERSEN / KING 5 News
KING5.com
Posted on April 27, 2012 at 11:01 PM
A Bellevue doctor is one of only two researchers in the country testing stem cells as an anti-aging treatment.
Working with volunteer patients, Dr. Fredric Stern extracts stem cells with a liposuction-like procedure. The cells are then mixed with a special medium.
"Half is saved cyrogenically for future use and the other half is shipped to the laboratory in Arizona where on that end the stem cells are grown further," Stern said.
The end product goes into a cream called tropoelastin. The hope is that high concentrations of a patient's own stem cells in the cream will boost the skink's ability to repair itself.
If the eye cream proves successful in the eight-week study, the company will also offer a facial cream. Both could be available within a few months.
Stern said he expects the price to be comparable to high-end cosmetic products that typically cost hundreds of dollars.
Stern said the skin treatment is just the beginning. He said wound care is another possible use.
Read more:
Bellevue doctor tests stem-cell cream as anti-aging therapy
ACT Announces Third Dry AMD Patient Treated in Clinical Trial
By daniellenierenberg
MARLBOROUGH, Mass.--(BUSINESS WIRE)--
Advanced Cell Technology, Inc. (ACT; OTCBB: ACTC), a leader in the field of regenerative medicine, announced today the dosing of the third patient in its Phase I/II trial for dry age-related macular degeneration (dry AMD) using retinal pigment epithelial (RPE) cells derived from human embryonic stem cells (hESCs). The outpatient transplantation surgery was performed successfully, and the patient is recovering uneventfully.
Gary Rabin, chairman and CEO of ACT, commented, The completion of enrollment of the first cohort of patients in our dry AMD clinical trial is a significant step forward in our RPE clinical program. The first six patients in the U.S. trials have all been treated at UCLA, and as we have recently announced, the trials should soon expand to additional sites. As we have built our clinical team, we have been fortunate to have attracted the attention of some of the highest-caliber ophthalmologists and related institutions in the U.S. and Europe and recognize the huge value that their expertise provides us as we plan for the future of our therapeutic programs. With their guidance, we have also worked with the FDA to successfully expand the criteria of eligibility for patients to participate in our dry AMD trial.
The procedures at UCLA were all conducted by the team led by Steven Schwartz, M.D., Ahmanson Professor of Ophthalmology at the David Geffen School of Medicine at UCLA and retina division chief at UCLA's Jules Stein Eye Institute.
The six patients treated at UCLA to date have tolerated the surgical procedure well. commented Dr. Schwartz. There have been no complications in the procedure, nor any issues relating to the safety of the injected stem cell-derived RPE cells in any of the patients. We continue to regularly evaluate all patients in the trial, and while still preliminary, I am encouraged by the patients progress and the relative straightforwardness of the surgical procedure.
We are extremely pleased with the progress being made in all three of our clinical trials here in the U.S. and the U.K., commented Robert Lanza, M.D., ACTs chief scientific officer. The data we are reviewing seems to be pointing in the appropriate direction, With the treatment of the latest two dry AMD patients, we look forward to having more significant points of reference to understand the progress of the trial and consider the endpoint design for the next phase. Both Stargardts disease and dry AMD are progressive diseases that result vision loss and blindness due to the thinning of the layer of RPE cells in the patient's macula, the central portion of the retina responsible for central vision. We still have many patients left to treat during the course of these trials, but our team remains hopeful that stem cell-derived RPE cells may someday provide a new therapeutic approach for the treatment of many forms of macular degeneration. We hear from patients who suffer from these diseases on nearly a daily basis, and appreciate the huge responsibility we have to them.
ACT is conducting three clinical trials in the U.S. and Europe using hESC-derived RPE cells to treat forms of macular degeneration. Each trial will enroll a total of 12 patients, with cohorts of three patients each in an ascending dosage format. These trials are prospective, open-label studies, designed to determine the safety and tolerability of hESC-derived RPE cells following sub-retinal transplantation into patients with dry-AMD or Stargardt's macular dystrophy (SMD) at 12 months, the studys primary endpoint. Preliminary results relating to both early safety and biological function for the first two patients in the United States, one SMD patient and one dry AMD patient, were recently reported in The Lancet. On January 20, 2012, the first SMD patient to be enrolled in the Companys U.K. clinical trial was treated at Moorfields Eye Hospital in London. The final patient of the first cohort in the companys SMD trial in the U.S. was treated on February 13, 2012.
Further information about patient eligibility for the dry AMD study and the concurrent study on SMD is also available on http://www.clinicaltrials.gov; ClinicalTrials.gov Identifiers: NCT01345006 , NCT01469832 and NCT01344993.
About Advanced Cell Technology, Inc.
Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.
Continue reading here:
ACT Announces Third Dry AMD Patient Treated in Clinical Trial
Your child’s milk tooth can save her life
By daniellenierenberg
Is your child about to lose her milk tooth? Instead of throwing it away, you can now opt to use it to harvest stem cells in a dental stem cell bank for future use in the face of serious ailments. Now thats a tooth fairy story coming to life.
Still relatively new in India, dental stem cell banking is fast gaining popularity as a more viable option over umbilical cord blood banking.
Stem cell therapy involves a kind of intervention strategy in which healthy, new cells are introduced into a damaged tissue to treat a disease or an injury.
The umbilical cord is a good source for blood-related cells, or hemaotopoietic cells, which can be used for blood-related diseases, like leukaemia (blood cancer). Having said that, blood-related disorders constitute only four percent of all diseases, Shailesh Gadre, founder and managing director of the company Stemade Biotech, said.
For the rest of the 96 percent tissue-related diseases, the tooth is a good source of mesenchymal (tissue-related) stem cells. These cells have potential application in all other tissues of the body, for instance, the brain, in case of diseases like Alzheimers and Parkinsons; the eye (corneal reconstruction), liver (cirrhosis), pancreas (diabetes), bone (fractures, reconstruction), skin and the like, he said.
Mesenchymal cells can also be used to regenerate cardiac cells.
Dental stem cell banking also has an advantage when it comes to the process of obtaining stem cells.
Obtaining stem cells from the tooth is a non-invasive procedure that requires no surgery, with little or no pain. A child, in the age group of 5-12, is any way going to lose his milk tooth. So when its a little shaky, it can be collected with hardly any discomfort, Savita Menon, a pedodontist, said.
Moreover, in a number of cases, when an adolescent needs braces, the doctor recommends that his pre-molars be removed. These can also be used as a source for stem cells. And over and above that, an adults wisdom tooth can also be used for the same purpose, Gadre added.
Therefore, unlike umbilical cord blood banking which gives one just one chance - during birth - the window of opportunity in dental stem cell banking is much bigger.
Continued here:
Your child’s milk tooth can save her life
Research and Markets: Strategic Development of Neural Stem & Progenitor Cell Products
By daniellenierenberg
Dublin - Research and Markets (http://www.researchandmarkets.com/research/bac5f5c5/strategic_developm) has announced the addition of the "Strategic Development of Neural Stem & Progenitor Cell Products" report to their offering.
Overview: Neurogenesis is the process by which neurons are created. This process is most active during pre-natal development when neurogenesis is responsible for populating the growing brain. Neural stem cells (NSCs) are the self-renewing, multipotent cells that differentiate into the main phenotypes of the nervous system. These cell types include neurons, astrocytes, and oligodendrocytes. Neural progenitor cells (NPCs) are the progeny of stem cell division that normally undergo a limited number of replication cycles in vivo.
The terms neuronal and neural also need to be defined. Technically speaking, neuronal means pertaining to neurons, and neural means pertaining to nerves, which are the cordlike bundles of fibers made up of neurons. Since both terms ultimately are descriptive of neurons, the scientific community uses the terms "neuronal" and "neural" interchangeably. The complexity of this issue is explored from a marketing perspective within this report.
In 1992, Reynolds and Weiss were the first to isolate neural stem cells from the striatal tissue of adult mice brain tissue, including the subventricular zone, which is a neurogenic area. Since then, neural progenitor and stem cells have been isolated from various areas of the adult brain, including non-neurogenic areas like the spinal cord, and from other species, including humans. During the development of the nervous system, neural progenitor cells can either stay in the pool of proliferating undifferentiated cells or exit the cell cycle and differentiate.
This market report focuses on recent advances in NSC research applications, explores research priorities by market segment, highlights individual labs and end-users of neuronal stem cell research products, explores the competitive environment for NSC research products, and provides 5-year growth and trend analysis. It provides detailed guidance for companies that wish to offer strategically positioned NSC research products, including cells, kits, assays, and related media and reagents.
This Market Report Includes:
- Recent advances in NSC research applications
- Research priorities by market segment
- Competitive analysis of NSC research supply companies
- Segmentation of existing NSC products
Read the rest here:
Research and Markets: Strategic Development of Neural Stem & Progenitor Cell Products
New gene therapy approach developed for red blood cell disorders
By daniellenierenberg
ScienceDaily (Mar. 27, 2012) A team of researchers led by scientists at Weill Cornell Medical College has designed what appears to be a powerful gene therapy strategy that can treat both beta-thalassemia disease and sickle cell anemia. They have also developed a test to predict patient response before treatment.
This study's findings, published in PLoS ONE, represents a new approach to treating these related, and serious, red blood cells disorders, say the investigators.
"This gene therapy technique has the potential to cure many patients, especially if we prescreen them to predict their response using just a few of their cells in a test tube," says the study's lead investigator, Dr. Stefano Rivella, Ph.D., an associate professor of genetic medicine at Weill Cornell Medical College. He led a team of 17 researchers in three countries.
Dr. Rivella says this is the first time investigators have been able to correlate the outcome of transferring a healthy beta-globin gene into diseased cells with increased production of normal hemoglobin -- which has long been a barrier to effective treatment of these disease.
So far, only one patient in France has been treated with gene therapy for beta thalassemia, and Dr. Rivella and his colleagues believe the new treatment they developed will be a significant improvement. No known patient has received gene therapy yet to treat sickle cell anemia.
A Fresh Approach to Gene Therapy
Beta-thalassemia is an inherited disease caused by defects in the beta-globin gene. This gene produces an essential part of the hemoglobin protein, which, in the form of red blood cells, carries life-sustaining oxygen throughout the body.
The new gene transfer technique developed by Dr. Rivella and his colleagues ensures that the beta-globin gene that is delivered will be active, and that it will also provide more curative beta-globin protein. "Since the defect in thalassemia is lack of production of beta-globin protein in red blood cells, this is very important," Dr. Rivella says.
The researchers achieved this advance by hooking an "ankyrin insulator" to the beta-globin gene that is carried by a lentivirus vector. During the gene transfer, this vector would be inserted into bone marrow stem cells taken from patients, and then delivered back via a bone marrow transplant. The stem cells would then produce healthy beta-globin protein and hemoglobin.
This ankyrin insulator achieves two goals. First, it protects delivery of the normal beta-globin gene. "In many gene therapy applications, a curative gene is introduced into the cells of patients in an indiscriminate fashion," Dr. Rivella explains. "The gene lands randomly in the genome of the patient, but where it lands is very important because not all regions of the genome are the same." For example, some therapeutic genes may land in an area of the genome that is normally silenced -- meaning the genes in this area are not expressed. "The role of ankyrin insulator is to create an active area in the genome where the new gene can work efficiently no matter where it lands," Dr. Rivella says. He adds that the small insulator used in his vector should eliminate the kind of side effects seen in the French patient treated with beta-thalassemia gene therapy.
Read the original:
New gene therapy approach developed for red blood cell disorders