Stem Cell Transplant Program Offered at UVA Medical Center
By daniellenierenberg
What used to be medical trash is now treating cancer. The University of Virginia's Medical Center is the first place in Virginia to take advantage of stem cells from umbilical cords and they are pleased with the results.
Dr. Mary Laughlin, the director of stem cell transplantation at UVA,said, "These are cells that are routinely thrown away, these cells save lives."
A lab within the UVA Medical Center contains numerous tubes where non-embryonic stem cells reside. They come from umbilical cord blood and give hope topatients suffering leukemia, multiple myeloma and lymphoma.
Dr. Laughlin added, "They can completely replace a patient's bone marrow in the immune system. Oneof 10 cancer patients are able to find those cells through existing adult registries."
Thefive million babies that are born each year will soon solve that problem. The cells that are normally tossed out attack cancer cells.
Denise Mariconda, a nurse within the stem cell transplant program, stated, "It looks like a blood transfusion." Dr. Laughlin added, "It is in many ways like a cancer vaccine."
The first transplants were made in January and the transplant program at the UVA Medical Center admits it takes getting used to.
Mariconda said, "It is a process that's not like having your heart fixed in a one-day setting and you know that it's better."
These cells are not cause for controversy. Dr. Laughlin said, "Use of cord-blood is approved by all religious groups including the Vatican."
Babies' immune systems are not fully educated at the time of birth, making these cells effective. Dr. Laughlin, added, "That allows us to cross transplant barriers."
Read this article:
Stem Cell Transplant Program Offered at UVA Medical Center
Vet-Stem Announces StemInsure(R): A Small Fat Sample Now, a Lifetime of Stem Cells Later
By daniellenierenberg
POWAY, CA--(Marketwire -03/22/12)- Vet-Stem announced today the introduction of StemInsure. The StemInsure service provides banked stem cells that can be grown to supply a lifetime of stem cell therapy for dogs. One fat collection, in conjunction with another anesthetized procedure, gives access to a lifetime of stem cells.
Vet-Stem has trained over 3,500 veterinarians, provided stem cells for over 8,000 animals in the US and Canada and currently banks more than 25,000 doses for future therapeutic use. Many veterinarians and their clients have requested a method to collect and store stem cells when a dog is young, before it needs the regenerative cells for therapy. StemInsure was designed to meet this need.
A Vet-Stem credentialed veterinarian can collect as little as 5 grams of fat (about the size of a grape) from a dog or puppy during an anesthetized procedure. Many veterinarians and owners are electing to do this fat collection in conjunction with a spay or neuter. This small amount of fat is processed and stem cells are cryopreserved in Vet-Stem's state-of-the-art facility. The cells can be cultured in the future to provide enough stem cells to last for the lifetime of the dog. More information can be found at http://www.vet-stem.com/steminsure.php.
"Vet-Stem is pleased to provide StemInsure as a solution to the thousands of veterinarians and dog owners who recognize the value of Vet-Stem cell therapy. The ability to store the cells in conjunction with another procedure is a great way to ensure that the dog will have access to a lifetime of cell therapy while reducing the number of anesthetic events," said Dr. Bob Harman, DVM, MPVM, and CEO of Vet-Stem. Dr. Harman continued, "Currently, Vet-Stem Regenerative Cell Therapy is widely used to treat osteoarthritis, and tendon/ligament injuries. It is our expectation that the therapeutic use of adipose derived stem cells will continue to expand and add to the value of a lifetime supply of stem cells for dogs."
About Vet-Stem:In January of 2004, Vet-Stem introduced the first veterinary stem cell service in the United States. Since that time there has been rapid adoption of this technology for treatment of tendon, ligament, and joint injuries by the veterinary community. Studies have shown that mesenchymal stem cells can dramatically improve the healing of injuries and diseases that have had very few treatment options in the past.
More here:
Vet-Stem Announces StemInsure(R): A Small Fat Sample Now, a Lifetime of Stem Cells Later
SA cracks stem cell conundrum
By daniellenierenberg
Scientists in SA have generated non-embryonic stem cells for the first time, the Council for Scientific and Industrial Research (CSIR) announced on Tuesday.
These "induced adult pluripotent stem cells" were developed from adult skin cells and can be prompted to grow into any type of adult cell, such as those in the heart or brain.
The technology is important for research into regenerative medicine, but is not yet widely used.
While the technology is not novel, the development of the capacity to grow these stem cells in SA is important for researchers investigating diseases affecting Africans, said CSIR post-doctoral fellow Janine Scholefield. The CSIR had replicated techniques devised by Japanese researchers in 2007.
"Cutting-edge medical research is not useful to Africans if knowledge is being created and applied only in the developed world," said CSIR head of gene expression and biophysics Musa Mhlanga. "Given the high disease burden in Africa, our aim is to become creators of knowledge, as well as innovators and expert practitioners of the newest and best technologies," The CSIR said that adult-generated stem cells were more acceptable to people who objected to using stem cells from embryos.
"The other critical thing is the cells (that will be grown) are an exact genetic match to the person who donated the skin cells, so we can circumvent the problem of tissue rejection," Dr Scholefield said.
"We can also develop models of disease in a petri dish in the laboratory," she said, explaining that this would enable researchers to investigate rare diseases without the need for human subjects.
"We are getting closer to using stem cells as part of routine medical practice, but are still a long way off from using these cells for degenerative diseases of the central nervous system," said Michael Pepper, professor of i mmunology at the University of Pretoria.
Prof Pepper said there were several hundred clinical trials using stem cells under way around the world, but most were still at an early stage.
See the original post:
SA cracks stem cell conundrum
2012 Gairdner Awards Go to Jessell, Rosbash
By daniellenierenberg
The Gairdner Foundation announced today that Howard Hughes Medical Institute (HHMI) researchers Thomas M. Jessell and Michael Rosbash are recipients of the prestigious 2012 Canada Gairdner International Awards in recognition of their contributions to medical science.
The awards, which are presented annually, recognize scientists responsible for some of the worlds most significant medical discoveries. Jessell, who became an HHMI investigator at Columbia University in 1985, was honored for discovering basic principles of communication within the nervous system. The Foundation states that Jessells work has been instrumental in revealing important steps in the process that guides the early development of neurons, as they establish the precise connections between the spinal cord and muscles.
Rosbash, who became an HHMI investigator at Brandeis University in 1989, was highlighted for discoveries that have revealed the genetic underpinnings of the circadian clock. Circadian clocks are active throughout the bodys cells, where they use a common genetic mechanism to control the rhythmic activities of various tissues. Rosbash, Jeffrey C. Hall, emeritus professor of biology at Brandeis University, and Michael W. Young of the Laboratory of Genetics at The Rockefeller University, were honored by the Gairdner Foundation for pioneering discoveries concerning the biological clock responsible for circadian rhythms.
The Canada Gairdner Awards will be presented at a dinner in Toronto in October as part of the Gairdner National Program, a month-long lecture series given by Canada Gairdner Award winners at 21 universities from St Johns to Vancouver.
Thomas M. Jessell, Ph.D.
For the past two decades, Thomas Jessell has worked to understand how nerve cells in the developing spinal cord assemble into functional circuits that control sensory perception and motor actions. Ultimately, his research may provide a more thorough understanding of how the central nervous system is constructed and suggest new ways to repair diseased or damaged neurons in the human brain and spinal cord.
There is increasingly persuasive evidence to suggest that many neurodevelopmental and psychiatric disordersfrom motor neuron diseases to autism and schizophreniaresult from defects in the initial assembly of connections in the developing brain, says Jessell. By understanding the cellular and molecular processes that control the normal wiring pattern of these connections, we may eventually be able to design more rational and effective strategies for repairing the defects that underlie brain disorders.
Jessell's work has revealed the details of a molecular pathway that converts nave progenitor cells in the early neural tube into the many different classes of motor neurons and interneurons that assemble together to form functional locomotor circuits. This molecular pathway involves critical environmental signaling molecules such as Sonic hedgehog, and a delicate interplay of nuclear transcription factors that interpret Sonic hedgehog signals to generate diverse neuronal classes.
The principles that have emerged from Jessell's studies in the spinal cord have been found to apply to many other regions of the central nervous system, thus establishing a basic ground plan for brain development. His work has also defined many of the key steps that permit newly generated neurons to form selective connections with their target cells.
One potential strategy for brain repair involves the use of stem cells, and Jessell and his colleagues have demonstrated that mouse embryonic stem cells can be converted into functional motor neurons in a simple procedure that recapitulates the normal molecular program of motor neuron differentiation. Remarkably, these stem cell-derived motor neurons can integrate into the spinal cord in vivo and contribute to functional motor circuits. This work may uncover additional aspects of the basic program of motor neuron development, as well as pointing the way to new cell and drug-based therapies for motor neuron disease and spinal cord injury.
Read more:
2012 Gairdner Awards Go to Jessell, Rosbash
Entest BioMedical Excited With Progress on 10 Dog Pilot Study of "Universal Donor" Stem Cell Treatment for Canine …
By daniellenierenberg
SAN DIEGO, CA--(Marketwire -03/21/12)- Entest BioMedical Inc. (OTCQB: ENTB.PK - News) (Pinksheets: ENTB.PK - News)
Entest BioMedical Inc. (OTCQB: ENTB.PK - News) (Pinksheets: ENTB.PK - News) and RenovoCyte LLC announced they have treated 8 canine patients of a 10 dog pilot study utilizing Canine Endometrial Regenerative Cells (CERC) licensed from Medistem Inc. (Pinksheets: MEDS.PK - News) in the treatment of canine osteoarthritis.
Previously, Entest announced the treatment of the first canine patient on November 18, 2011. Since that time Entest's McDonald Animal Hospital has treated 8 dogs in its 10 Dog Pilot Study with RenovoCyte. To date, all of the dogs participating in this study have shown dramatic improvement in their mobility and apparent reduction of pain.
Dr. Greg McDonald, Chief Veterinarian at McDonald Animal Hospital, said, "50 million CERC stem cells have been injected intravenously into eight dogs. Each dog selected for this study showed signs of arthritis. Follow-up blood tests, urinalysis and physical exams are now being scheduled for the patients that have already been treated. So far, all these canine patients have shown improvement."
Entest BioMedical Chairman David Koos stated, "Osteoarthritis is considered one of the most common causes of lameness in dogs, occurring in up to 30% of all dogs. It is caused by a deterioration of joint cartilage, followed by pain and loss of range of motion of the joint. We expect this treatment to relieve these animals from the pain associated with arthritis. This has extraordinary possibilities for dogs and may lead the way for human treatment of arthritic pain."
The CERC is a "universal donor" stem cell product that does not require matching with the recipient allowing for the generation of standardized products that can be delivered to the office of the veterinarian ready for injection. This is in stark contrast to current stem cell therapies utilized in veterinary applications which require the extraction, manipulation, and subsequent implantation of tissue from the animal being treated. CERC is the canine equivalent of Medistem's Endometrial Regenerative Cell (ERC). Medistem was recently granted approval from the FDA to initiate a clinical trial in human patients using its ERCs.
"We are extremely pleased with our research relationship with Entest BioMedical. This study of canine pets suffering from naturally occurring osteoarthritis is a better test model than laboratory induced disease because it will give us the opportunity for long term follow up of these patients. RenovoCyte sees this study as part of the supporting documentation that will be needed to obtain FDA approval for widespread usage of this therapy," said Shelly Zacharias, DVM, Director of Veterinary Operations, RenovoCyte, LLC.
A spokesperson for Entest noted the Company is also currently conducting a 10 dog safety study on its immune-therapeutic cancer vaccine for dogs, having treated 3 dogs so far.
About Entest BioMedical Inc.:Entest BioMedical Inc. (http://www.entestbio.com) is a veterinary biotechnology company focused on developing therapies that harness the animal's own reparative / immunological mechanisms. The Company's products include an immuno-therapeutic cancer vaccine for canines (ImenVax). ImenVax is less invasive and less traumatic in treating cancer. Additionally, the Company serves as the contract research organization conducting a pilot study on a stem cell based canine osteoarthritis treatment (developed by RenovoCyte LLC) utilizing a 'universal donor' stem cell. Entest is also building a network of veterinary hospitals (with its initial location in Santa Barbara, CA and anticipates acquiring other veterinary hospitals in California) -- which serve as distribution channels for its products.
DisclaimerThis news release may contain forward-looking statements. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking statements. The risks and uncertainties to which forward-looking statements are subject include, but are not limited to, the effect of government regulation, competition and other material risks.
Continued here:
Entest BioMedical Excited With Progress on 10 Dog Pilot Study of "Universal Donor" Stem Cell Treatment for Canine ...
VistaGen Therapeutics Enters Strategic Drug Screening Collaboration With Vala Sciences
By daniellenierenberg
SOUTH SAN FRANCISCO, CA--(Marketwire -03/21/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, and Vala Sciences, Inc., a biotechnology company developing and selling next-generation cell image-based instruments, reagents and analysis software tools, have entered into a strategic collaboration. Their goal is to advance drug safety screening methodologies in the most clinically relevant human in vitro bioassay systems available to researchers today.
Cardiomyocytes are the muscle cells of the heart that provide the force necessary to pump blood throughout the body, and as such are the targets of most of the drug toxicities that directly affect the heart. Many of these drug toxicities result in either arrhythmia (irregular, often fatal, beating of the heart) or reduced ability of the heart to pump the blood necessary to maintain normal health and vigor.
"Our collaboration with Vala directly supports the core drug rescue applications of our Human Clinical Trials in a Test Tube platform," said Shawn K. Singh, JD, VistaGen's Chief Executive Officer. "Our high quality human cardiomyocytes combined with Vala's high throughput electrophysiological assessment capabilities is yet another example of how we are applying our stem cell technology platform within a strategic ecosystem of complementary leading-edge companies and technologies. We seek to drive our drug rescue programs forward and generate a pipeline of new, cardiosafe drug candidates."
Through the collaboration, Vala will use its Kinetic Image Cytometer platform to demonstrate both the suitability and utility of VistaGen's human pluripotent stem cell derived-cardiomyocytes for screening new drug candidates for potential cardiotoxicity over conventional in vitro screening systems and animal models. VistaGen's validated human cardiomyocyte-based bioassay system, CardioSafe 3D, will permit Vala to demonstrate the quality, resolution, applicability and ease of use of its new instrumentation and analysis software to make information-rich, high throughput measurements and generate fundamentally new insights into heart cell drug responses. Accurate, sensitive and reproducible measurement of electrophysiological responses of stem cell-derived cardiomyocytes to new drug candidates is a key element of VistaGen's CardioSafe 3D drug rescue programs. VistaGen's strategic collaboration with Vala is directed towards this goal.
About VistaGen Therapeutics
VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube, with modern medicinal chemistry to generate new chemical variants (Drug Rescue Variants) of once-promising small-molecule drug candidates. These are drug candidates discontinued due to heart toxicity after substantial development by pharmaceutical companies, the U.S. National Institutes of Health (NIH) or university laboratories. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans, bringing human biology to the front end of the drug development process.
Additionally, VistaGen's small molecule drug candidate, AV-101, is in Phase 1b development for treatment of neuropathic pain. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. VistaGen is also exploring opportunities to leverage its current Phase 1 clinical program to enable additional Phase 2 clinical studies of AV-101 for epilepsy, Parkinson's disease and depression. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101.
About Vala Sciences
Vala Sciences is a San Diego-based biotechnology company that develops and sells cell-image-based instrumentation, reagents and analysis software tools to academic, pharmaceutical and biotechnology scientists. Vala's IC 200 class of instrumentation, and CyteSeer Automated Image Cytometry software convert labor-intensive qualitative observations of biological changes that can take from days to months, into accurate measurements delivered automatically in minutes.
Cautionary Statement Regarding Forward Looking Statements
Read the rest here:
VistaGen Therapeutics Enters Strategic Drug Screening Collaboration With Vala Sciences
Huntington's Disease – Stem Cell Therapy Potential
By daniellenierenberg
Editor's Choice Academic Journal Main Category: Huntingtons Disease Also Included In: Stem Cell Research Article Date: 19 Mar 2012 - 10:00 PDT
email to a friend printer friendly opinions
Current Article Ratings:
4 (1 votes)
3 (1 votes)
However, according to a study published March 15 in the journal Cell Stem Cell, a special type of brain cell created from stem cells could help restore the muscle coordination deficits that are responsible for uncontrollable spasms, a characteristic of the disease. The researchers demonstrated that movement in mice with a Huntington's-like condition could be restored.
Su-Chun Zhang, a University of Wisconsin-Madison neuroscientist and the senior author of the study, said:
In the study Zhang, who is an expert in creating various types of brain cells from human embryonic or induce pluripotent stem cells, and his team focused on GABA neurons. The degradation of GABA cells causes the breakdown of a vital neural circuit and loss of motor function in individuals suffering from Huntington's disease.
According to Zhang, GABA neurons generate a vital neurotransmitter, a chemical that helps support the communication network in the brain that coordinates movement.
Zhang and his team at the UW-Madison Waisman Center, discovered how to generate large quantities of GABA neurons from human embryonic stem cells. The team's goal was to determine whether these cells would safely integrate into the brain of a mouse model of Huntington's disease.
The rest is here:
Huntington's Disease - Stem Cell Therapy Potential
California's stem cell agency ponders a future without taxpayer support
By daniellenierenberg
LOS ANGELES, Calif. - The creation of California's stem cell agency in 2004 was greeted by scientists and patients as a turning point in a field mired in debates about the destruction of embryos and hampered by federal research restrictions.
The taxpayer-funded institute wielded the extraordinary power to dole out $3 billion in bond proceeds to fund embryonic stem cell work with an eye toward treatments for a host of crippling diseases. Midway through its mission, with several high-tech labs constructed, but little to show on the medicine front beyond basic research, the California Institute for Regenerative Medicine faces an uncertain future.
Is it still relevant nearly eight years later? And will it still exist when the money dries up?
The answers could depend once again on voters and whether they're willing to extend the life of the agency.
Several camps that support stem cell research think taxpayers should not pay another cent given the state's budget woes.
"It would be so wrong to ask Californians to pony up more money," said Marcy Darnovsky of the Center for Genetics and Society, a pro-stem cell research group that opposed Proposition 71, the state ballot initiative that formed CIRM.
Last December, CIRM's former chairman, Robert Klein, who used his fortune and political connections to create Prop 71, floated the possibility of another referendum.
CIRM leaders have shelved the idea of going back to voters for now, but may consider it down the road. The institute recently submitted a transition plan to Gov. Jerry Brown and the Legislature that assumes it will no longer be taxpayer-supported after the bond money runs out. CIRM is exploring creating a non-profit version of itself and tapping other players to carry on its work.
"The goal is to keep the momentum going," board Chairman Jonathan Thomas said in an interview.
So far, CIRM has spent some $1.3 billion on infrastructure and research. At the current pace, it will earmark the last grants in 2016 or 2017. Since most are multi-year awards, it is expected to stay in business until 2021.
Excerpt from:
California's stem cell agency ponders a future without taxpayer support
Should it be legal to pay for bone marrow donations?
By daniellenierenberg
14 March 2012 Last updated at 09:00 ET By Jane O'Brien BBC News, Maine
Please turn on JavaScript. Media requires JavaScript to play.
One of Doreen Flynn's daughters, 13-year-old Jordan, says the whole transplant process scares her
A mother in the US is desperate to find bone marrow donors to save the lives of her three daughters who are critically ill from a rare blood disorder. Now, she is challenging a federal law barring her from compensating prospective donors.
Thousands of Americans who need transplants die every year because they cannot find a suitable donor, advocates say.
They propose a controversial way to encourage more people to come forward: Pay them.
"It is widening the donor pool. A lot of times employers don't pay for the time off that these donors take from work," says Doreen Flynn of Lewiston, Maine.
"So I think in those instances those people can say, 'you know I can do that,' knowing that there will be a support system for them at the end."
Ms Flynn's three daughters have a rare genetic blood disorder called Fanconi Anaemia. Their bone marrow does not make enough blood cells to keep them healthy and their only hope for survival is a transplant.
It is against US law to sell body parts - including bone marrow. But last year, Ms Flynn won a court ruling in favour of compensating donors whose blood stem cells are collected using a process called aphaeresis.
Read the original:
Should it be legal to pay for bone marrow donations?
Correcting human mitochondrial mutations
By daniellenierenberg
Public release date: 12-Mar-2012 [ | E-mail | Share ]
Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences
Researchers at the UCLA stem cell center and the departments of chemistry and biochemistry and pathology and laboratory medicine have identified, for the first time, a generic way to correct mutations in human mitochondrial DNA by targeting corrective RNAs, a finding with implications for treating a host of mitochondrial diseases.
Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects and aging. There currently are no methods to successfully repair or compensate for these mutations, said study co-senior author Dr. Michael Teitell, a professor of pathology and laboratory medicine and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.
Between 1,000 and 4,000 children per year in the United States are born with a mitochondrial disease and up to one in 4,000 children in the U.S. will develop a mitochondrial disease by the age of 10, according to Mito Action, a nonprofit organization supporting research into mitochondrial diseases. In adults, many diseases of aging have been associated with defects of mitochondrial function, including diabetes, Parkinson's disease, heart disease, stroke, Alzheimer's disease and cancer.
"I think this is a finding that could change the field," Teitell said. "We've been looking to do this for a long time and we had a very reasoned approach, but some key steps were missing. Now we have developed this method and the next step is to show that what we can do in human cell lines with mutant mitochondria can translate into animal models and, ultimately, into humans."
The study appears March 12, 2012 in the peer-reviewed journal Proceedings of the National Academy of Sciences.
The current study builds on previous work published in 2010 in the peer-reviewed journal Cell, in which Teitell, Carla Koehler, a professor of chemistry and biochemistry and a Broad Stem Cell Research Center scientist, and their team uncovered a role for an essential protein that acts to shuttle RNA into the mitochondria, the energy-producing "power plant" of a cell.
Mitochondria are described as cellular power plants because they generate most of the energy supply within a cell. In addition to supplying energy, mitochondria also are involved in a broad range of other cellular processes including signaling, differentiation, death, control of the cell cycle and growth.
The import of nucleus-encoded small RNAs into mitochondria is essential for the replication, transcription and translation of the mitochondrial genome, but the mechanisms that deliver RNA into mitochondria have remained poorly understood.
See the rest here:
Correcting human mitochondrial mutations
Oklahoma bill proposes umbilical cord blood bank
By daniellenierenberg
OKLAHOMA -- An Oklahoma House subcommittee recently approved a bill that would provide state funding for an umbilical cord blood bank. Doctors say the cord blood provides a source of stem cells without causing harm to an unborn child.
Oklahoma State Representative John Enns nearly lost his life after the Tracker he was driving rolled over, breaking his back in 3 places and leaving him paralyzed.
"Before my accident which was in 2004, I was a microbiology professor I taught about these stemcells and I taught the difference between embryonic and adult stem cells, which is huge," Enns said. "My accident happened and then I got even more involved in because this is something that may help a paralyzed person in the future with spinal cord injuries help them to actually get up and walk."
Enns now spends most his time in a wheelchair but continues to research the benefits of umbilical cord blood. He recently authored a bill that would fund a public umbilical cord blood bank for the state.
"What we will do with that is because it is pretty expensive to get it started, we will increase the amount that you pay when you get a birth certificate by $5. This will have a 5 year sunset on it which means in 5 years it will go away," Enns said.
"After the baby is delivered and the placenta is about to be thrown a way the cells can save the life of someone who has luekemia or a genetic problem where replacing their existing bone marrow is important to their cure."
OBI's president, Dr. John Armitage, says the benefits of having an umbilical cord blood bank greatly outweighs its cost..
"There is this future benefit that cant be underestimated," Armitage said. "These cells are going to eventually be used by biotechnology firms to do amazing things in terms of new tissue generation and repairing anything from hearts to any tissue in the body."
See the rest here:
Oklahoma bill proposes umbilical cord blood bank
Stem Cell-Seeded Cardiopatch Could Deliver Results for Damaged Hearts
By daniellenierenberg
A new type of stem cell-seeded patch has shown promising results in promoting healing after a heart attack, according to a study released today in the journal STEM CELLS Translational Medicine.
Durham, NC (PRWEB) March 07, 2012
Ischemic heart disease, caused by vessel blockage, is a leading cause of death in many western countries. Studies have shown the potential of stem cells in regenerating heart tissue damaged during an attack. But even as the list of candidate cells for cardiac regeneration has expanded, none has emerged as the obvious choice, possibly because several cell types are needed to regenerate both the hearts muscles and its vascular components.
Aside from the choice of the right cell source for tissue regeneration, the best way to deliver the stem cells is up for debate, too, as intravenous delivery and injections can be inefficient and possibly harmful. While embryonic stem cells have shown great promise for heart repairs due to their ability to differentiate into virtually any cell type, less than 10 percent of injected cells typically survive the engraftment and of that number generally only 2 percent actually colonize the heart.
In order for this type of treatment is to be clinically effective, researchers need to find ways to deliver large numbers of stem cells in a supportive environment that can help cells survive and differentiate.
In the current cardiopatch study, conducted by researchers from the Faculty of Medicine of the Geneva University in collaboration with colleagues at the Ecole Polytechnique Federale de Lausanne (EPFL), cardiac-committed mouse embryonic stem cell (mESC) were committed toward the cardiac fate using a protein growth factor called BMP2 and then embedded into a fibrin hydrogel that is both biocompatible and biodegradable. The cells were loaded with superparamagnetic iron oxide nanoparticles so they could be tracked using magnetic resonance imaging, which also enabled the researchers to more accurately assess regional and global heart function.
The patches were engrafted onto the hearts of laboratory rats that had induced heart attacks. Six weeks later, the hearts of the animals receiving the mESC-seeded patches showed significant improvement over those receiving patches loaded with iron oxide nanoparticles alone. The patches had degraded, the cells had colonized the infarcted tissue and new blood vessels were forming in the vicinity of the transplanted patch. Improvements reached beyond the part of the heart where the patch had been applied to manifest globally.
Marisa Jaconi, PhD, of the Geneva University Department of Pathology and Immunology, and Jeffrey Hubbell, PhD, professor of bioengineering at the EPFL, were leaders on the investigative team. Their findings could make a significant impact on how heart patients are treated in the future. Altogether our data provide evidence that stem-cell based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction, said Jaconi.
###
The full article, Embryonic stem cell-based cardiopatches improve cardiac function in infarcted rats, can be accessed at: http://www.stemcellstm.com/content/early/recent.
Read the original:
Stem Cell-Seeded Cardiopatch Could Deliver Results for Damaged Hearts
Stem cell repair kit for glaucoma could mean a treatment for the most common cause of blindness
By daniellenierenberg
By Fiona Macrae
Last updated at 1:55 AM on 8th March 2012
Important breakthrough: One in ten glaucoma sufferers go blind, due to late diagnosis, drugs not working or the disease being particularly severe (file picture)
A treatment for one of the most common causes of blindness could soon be available.
British researchers have used stem cells to heal the damage caused by glaucoma.
The treatment has only been tested on rats, but scientists say it could be tested on humans by 2015 and in widespread use four years later.
At present one in ten glaucoma sufferers go blind, due to late diagnosis, drugs not working or the disease being particularly severe.
Researchers at University College London took healthy stem cells master cells capable of turning into other types of cell and widely seen as a repair kit for the body from human eyes.
They used a cocktail of chemicals to turn them into retinal ganglion cells those that die in glaucoma. They then injected these into the eyes of rats with glaucoma-like damage.
After just four weeks, the cells had connected with existing nerve cells, and the animals eyes worked 50 per cent better, the journal Stem Cells Translational Medicine reports.
See the rest here:
Stem cell repair kit for glaucoma could mean a treatment for the most common cause of blindness
Selchert Undergoes Transplant For Brother
By daniellenierenberg
GAYVILLE When it came to helping his brother, Jason Selchert was willing to do a lot more than give the shirt off his back. In January, he became a bone marrow donor for his sibling, Jeff Selchert.
Jason, 39, superintendent of the Gayville-Volin School, said he had plenty of time to prepare for the procedure.
A little over two years ago, my brother, who is four years older than I am, was diagnosed with leukemia, he stated. When he was diagnosed, they determined that probably at some point in his illness, he was going to have to undergo a bone marrow transplant. Luckily enough, he has five siblings, and we were all tested. Two of the five were a match. I was one of the two.
Since the chance that a sibling will be a match is about one in four, the fact that two were a match was fortuitous, Jason said.
Jason and his oldest brother were both perfect matches, according to the blood and DNA testing.
However, Jason was selected as the best candidate.
After undergoing treatment following the initial diagnosis, Jeffs leukemia went into remission. But a few days prior to last Thanksgiving, the cancer had returned.
It was pretty well advanced, and they determined that the only way to treat it was going to be a transplant, Jason said. I had known for more than two years that it was maybe going to be an option. Its a pretty lengthy psychological process you go through to make sure that you are mentally stable enough to go through it, and understand what is going to happen and what could be the end result for me and my brother.
Jason donated his bone marrow stem cells Jan. 30. A successful transplant to his brother occurred the next day.
The worst part of the process was the time leading up to the donation, according to Jason. During the four previous days, he was given medication that caused his body to overproduce bone marrow stem cells. The process made Jason ache and feel nauseated, similar to the flu.
Go here to read the rest:
Selchert Undergoes Transplant For Brother
Influencing stem cell fate: New screening method helps scientists identify key information rapidly
By daniellenierenberg
ScienceDaily (Mar. 6, 2012) Northwestern University scientists have developed a powerful analytical method that they have used to direct stem cell differentiation. Out of millions of possibilities, they rapidly identified the chemical and physical structures that can cue stem cells to become osteocytes, cells found in mature bone.
Researchers can use the method, called nanocombinatorics, to build enormous libraries of physical structures varying in size from a few nanometers to many micrometers for addressing problems within and outside biology.
Those in the fields of chemistry, materials engineering and nanotechnology could use this invaluable tool to assess which chemical and physical structures -- including size, shape and composition -- work best for a desired process or function.
Nanocombinatorics holds promise for screening catalysts for energy conversion, understanding properties conferred by nanostructures, identifying active molecules for drug discovery or even optimizing materials for tissue regeneration, among other applications.
Details of the method and proof of concept is published in the Proceedings of the National Academy of Sciences.
"With further development, researchers might be able to use this approach to prepare cells of any lineage on command," said Chad A. Mirkin, who led the work. "Insight into such a process is important for understanding cancer development and for developing novel cancer treatment methodologies."
Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering. He also is the director of Northwestern's International Institute for Nanotechnology (IIN).
The new analytical method utilizes a technique invented at Northwestern called polymer pen lithography, where basically a rubber stamp having as many as 11 million sharp pyramids is mounted on a transparent glass backing and precisely controlled by an atomic force microscope to generate desired patterns on a surface. Each pyramid -- a polymeric pen -- is coated with molecules for a particular purpose.
In this work, the researchers used molecules that bind proteins found in the natural cell environment, such as fibronectin, which could then be attached onto a substrate in various patterns. (Fibronectin is a protein that mediates cell adhesion.) The team rapidly prepared millions of textured features over a large area, which they call a library. The library consisted of approximately 10,000 fibronectin patterns having as many as 25 million features ranging in size from a couple hundred nanometers to several micrometers.
To make these surfaces, they intentionally tilt the stamp and its array of pens as the stamp is brought down onto the substrate, each pen delivering a spot of molecules that could then bind fibronectin. The tilt results in different amounts of pressure on the polymeric pens, which dictates the feature size of each spot. Because the pressure varies across a broad range, so does the feature size.
Read the rest here:
Influencing stem cell fate: New screening method helps scientists identify key information rapidly
Cell and signaling pathway that regulates the placental blood stem cell niche identified
By daniellenierenberg
ScienceDaily (Mar. 1, 2012) UCLA stem cell researchers have discovered a critical placental niche cell and signaling pathway that prevent blood precursors from premature differentiation in the placenta, a process necessary for ensuring proper blood supply for an individual's lifetime.
The placental niche, a stem cell "safe zone," supports blood stem cell generation and expansion without promoting differentiation into mature blood cells, allowing the establishment of a pool of precursor cells that provide blood cells for later fetal and post-natal life, said study senior author Dr. Hanna Mikkola, an associate professor of molecular cell and developmental biology and a researcher at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.
Mikkola and her team found that PDGF-B signaling in trophoblasts, specialized cells of the placenta that facilitate embryo implantation and gas and nutrient exchanges between mother and fetus, is vital to maintaining the unique microenvironment needed for the blood precursors. When PDGF-B signaling is halted, the blood precursors differentiate prematurely, creating red blood cells in the placenta, Mikkola said.
The study, done in mouse models, appears March 1, 2012, in the peer-reviewed journal Developmental Cell.
"We had previously discovered that the placenta provides a home for a large supply of blood stem cells that are maintained in an undifferentiated state. We now found that, by switching off one signaling pathway, the blood precursors in the placenta start to differentiate into red blood cells," Mikkola said. "We learned that the trophoblasts act as powerful signaling centers that govern the niche safe zone."
The study found that the PDGF-B signaling in the trophoblasts is suppressing production of Erythropoietin (EPO), a cytokine that controls red blood cell differentiation.
"When PDGF-B signaling is lost, excessive amounts of EPO are produced in the placenta, which triggers differentiation of red blood cells in the placental vasculature," said Akanksha Chhabra, study first author and a post-doctoral fellow in Mikkola's lab.
Mikkola and Chhabra used mouse models in which the placental structure was disrupted so they could observe what cells and signaling pathways were important components of the niche.
"The idea was, if we mess up the home where the blood stem cells live, how do these cells respond to the altered environment," Chhabra said. "We found that it was important to suppress EPO where blood stem cell expansion is desired and to restrict its expression to areas where red blood cell differentiation should occur."
The finding, Chhabra said, was exciting in that one single molecular change "was enough to change the function of an important blood stem cell niche."
See more here:
Cell and signaling pathway that regulates the placental blood stem cell niche identified
Children improve in rare disorder with own stem cells
By daniellenierenberg
London, Feb 29 (IANS) Children shot with their own stem cells, for the very first time in a rare immune disorder, have shown improvement.
The condition, known as X-CGD, is caused by faulty genes. Doctors were able to take a sample of the children's stem cells, manipulate them in the lab and reintroduce them. This gave the children a working copy of the faulty gene and their condition improved, enabling them to temporarily fight off infections.
It is the third immune disorder that doctors at Great Ormond Street Hospital have successfully tackled. The others were the life-threatening conditions, X-SCID and ada-SCID, and 90 percent of treated children have improved, with some showing signs that their immune system has been normalised for good.
Remy Helbawi, 16, from South London, was the first child with X-CGD to be treated. The condition only affects boys and means that while his body produces the white blood cells to fight viruses it does not have the correct cells to fight off bacterial or fungal infections, The Telegraph reports.
The resulting infections can be life-threatening. Up until now the only treatment has been a bone marrow transplant which would offer a permanent cure.
Remy's brother who also had the disease was found a bone marrow match and was successfully treated that way but no match has been found for Remy and a serious lung infection was threatening his life.
Remy said: "Until I was 10 I had the same life as anyone else, except I had eczema a lot of the time. I didn't have a fungal infection until about ten, but when I got my first fungal infection my life changed. I missed a lot of school, I had lots of tests and was in hospital. I would get exhausted after climbing stairs."
Before undergoing the gene therapy, Remy had to have chemotherapy which made his hair fall out and he was kept in isolation for a month.
Remy's nurse Helen Braggins said: "Remy had been unwell for last two years and began to miss school. He had significant fungal lung disease in January of last year, which was getting worse. Without some radical treatment intervention, Remy would not have survived and was becoming increasingly short of breath."
See the original post:
Children improve in rare disorder with own stem cells
Nuvilex Reveals Goldman Small Cap Research Cites Groundbreaking Cancer Therapy in Updating Buy Recommendation
By daniellenierenberg
SILVER SPRING, Md.--(BUSINESS WIRE)--
Nuvilex, Inc. (OTCQB:NVLX), an emerging biotechnology provider of cell and gene therapy solutions, announced today Goldman Small Cap Research has reissued its buy recommendation on Nuvilex with a short term price target of $0.50 per share.
According to the research report prepared by Goldman, The current share price represents but a fraction of its true value, in our view. With recently increased interest and valuation in the pancreatic cancer treatment arena, we believe that Nuvilex is worth $0.20 just on the oncology therapies alone and that the shares will reach $0.50 in the next six months. Looking ahead, as milestone events occur, $1.00 per share is within reach over the next 12-18 months.
Goldman bases this value projection, in part, on the pending acquisition of SG Austria assets, and with it complete control over the cell encapsulation technology that forms the backbone of Nuvilexs planned biotechnology development. The report states in part the following:
Following execution of the SG Austria asset acquisition, we expect to see a flurry of events and progress on the development side which will serve as catalysts, including when management submits its protocol for the next stage pancreatic cancer trial. We would not be surprised to see the stock break through the $0.50 price on such news as well as progress on the next stage of trials for other therapies.
One reason we are so convinced of the great buying opportunity is the fact that pancreatic cancer treatments are currently at the forefront of the biotech space and are enjoying very high valuations. Although Nuvilex is a not a drug producer, but an existing therapy enhancer through the use of its live cell encapsulation enhancement platform, the timing of these milestone events could not be better for Nuvilex and a re-valuation of its offering.
The Goldman report also compares alternative oncology therapies, including Gemzar from Threshold Pharmaceuticals and Merrimack Pharmaceuticals drug encapsulation technology, noting that, contrary to these treatments, the Nuvilex live-cell encapsulation technology is not limited to one specific use, but can be adapted to use for a host of cell types. The report states, Its difficult to compare apples-to-apples in this space as Nuvilex is the only firm utilizing live-cell encapsulation therapy for cancer, while all the other treatments are based upon a particular drug usage. Contrasting the results of different Phase II clinical trials, the Goldman report comments that the pancreatic cancer therapy, based on completed Phase 1/2 data, appears to have yielded statistically greater results than competing technologies.
Commenting on The Goldman Report, Nuvilex Chief Executive Officer, Dr. Robert Ryan, stated, The report did an excellent job highlighting the value and capabilities of our cell encapsulation technology, not just for cancer therapy, but also for the vast array of treatments where live-cell encapsulation can aid multiple diseases. In the case of the completed cancer trials, it generated superior results with lower drug dosages, and reduced chemotherapeutic side effects. As we move forward with diabetes and stem cell therapy treatments, we are confident our success will, as Goldman predicts prompt leaders in multiple treatment segments to partner with Nuvilex in order to maintain their respective market shares.
Investors are recommended to study the Goldman Research Report for a detailed review and valuation methodology regarding Nuvilex.
About Nuvilex
Here is the original post:
Nuvilex Reveals Goldman Small Cap Research Cites Groundbreaking Cancer Therapy in Updating Buy Recommendation
Stem Cell Therapy Procedure and Outcome – Video
By daniellenierenberg
28-02-2012 14:48 Albert Rodriguez, MD administers stem cell therapy for Hereditary Spastic Paraplegia. stemcelldrR.com, email airpainmd@aol.com
Researchers Use Noxious Gas To Convert Stem Cells To Liver Cells
By daniellenierenberg
February 27, 2012
Japanese scientists have recently discovered that hydrogen sulfide (H2S) – the chemical responsible for such malodorous phenomena as human flatulence, bad breath and rotten eggs – can be used to efficiently convert stem cells from human teeth into liver cells.
While the fetid chemical compound is produced in small quantities by the human body for use in a variety of biological signaling mechanisms, at high concentrations it is highly poisonous and extremely flammable.
A team of researchers at the Nippon Dental University in Tokyo collected stem cells from the teeth of patients undergoing extractions. The cells were harvested from the central part of the tooth known as the pulp which is made up predominantly of connective tissue and cells.
Stem cells recovered from the pulp were then divided into two groups and incubated in sealed chambers, one filled with hydrogen sulfide and the other a control group.
The cells from each chamber were then examined at three-day intervals to look for signs of transformation into liver cells. One such indicator is the ability to store glycogen, a compound that can be converted to glucose when the body needs energy.
According to a report of their findings that appeared this week in the Journal of Breath Research, the team was able to convert the stem cells to liver cells in relatively high numbers. And what’s more, said the team, H2S appears to help produce comparatively high quality, functional liver cells.
Lead researcher Ken Yaegaki explained that “[h]igh purity means there are less ‘wrong cells’ that are being differentiated to other tissues, or remaining as stem cells … These facts suggest that patients undergoing transplantation with the hepatic cells may have almost no possibility of developing teratomas (malignant tumors) or cancers.”
For the thousands of people around the world with chronic liver disease, this is a most welcome discovery, one that Yaegaki believes could potentially revolutionize this field of medicine.
“Until now, nobody has produced the protocol to regenerate such a huge number of hepatic cells for human transplantation,” added Yaegaki.
“Compared to the traditional method or suing fetal bovine serum to produce the cells, our method is productive and, most importantly, safe.”
Yaegaki’s hope is that his team’s discovery may eventually be fine-tuned to allow scientists to produce ample liver cells in a lab for use in repairing liver damage in human patients.
Moreover, this and similar studies in recent years have also gotten researchers in other fields questioning the possibilities for using hydrogen sulfide with other types of stem cells.
A team of researchers in China, for instance, recently reported using H2S to increase the survival rate of mesenchymal stem cells extracted from the bone marrow of rats.
—
On the Net:
Source: RedOrbit Staff & Wire Reports
Go here to see the original:
Researchers Use Noxious Gas To Convert Stem Cells To Liver Cells