Stem-cell transplant claims debunked
By daniellenierenberg
Hisashi Moriguchi presented his work at the New York Stem Cell Foundation meeting this week.
AP/Press Association
From the beginning, it seemed too good to be true. Days after Kyoto University biologist Shinya Yamanaka won a Nobel prize for his 2006 discovery of induced pluripotent stem (iPS) cells (see 'Cell rewind wins medicine Nobel'), Hisashi Moriguchi a visiting researcher at the University of Tokyo claimed to have modified that technology to treat a person with terminal heart failure. Eight months after surgical treatment in February, said a front-page splash in the Japanese newspaper Yomiuri Shimbun yesterday, the patient was healthy.
But after being alerted to the story by Nature, Harvard Medical School and Massachusetts General Hospital (MGH), where Moriguchi claimed to have done the work, denied that the procedure had taken place. No clinical trials related to Dr Moriguchi's work have been approved by institutional review boards at either Harvard University or MGH, wrote David Cameron, a spokesman for Harvard Medical School in Boston, Massachusetts. The work he is reporting was not done at MGH, says Ryan Donovan, a public-affairs official at MGH, also in Boston.
A video clip posted online by the Nippon News Network and subsequently removed showed Moriguchi presenting his research at the New York Stem Cell Foundation meeting this week.
If true, Moriguchis feat would have catapulted iPS cells into use in a wide range of clinical situations, years ahead of most specialists' predictions. I hope this therapy is realized in Japan as soon as possible, the head of a Tokyo-based organization devoted to helping children with heart problems told Yomiuri Shimbun.
But there were reasons to be suspicious. Moriguchi said he had invented a method to reprogram cells using just two chemicals: microRNA-145 inhibitor and TGF- ligand1. But Hiromitsu Nakauchi, a stem-cell researcher at the University of Tokyo, says that he has never heard of success with that method. He adds that he had also never heard of Moriguchi before this week.
Moriguchi also said that the cells could be differentiated into cardiac cells using a 'supercooling' method that he had invented. Thats another weird thing, says Nakauchi.
The article in which Moriguchi presented his two-chemical method, published in a book1 describing advances in stem-cell research, includes paragraphs copied almost verbatim from other papers. The section headed 2.3 Western blotting, for example, is identical to a passage from a 2007 paper by Yamanaka2. Section 2.1.1, in which Moriguchi describes human liver biopsies, matches the number of patients and timing of specimen extractions described in an earlier article3, although the name of the institution has been changed.
When contacted by Nature, Moriguchi stood by his publication. We are all doing similar things so it makes sense that wed use similar words, he says. He did admit to using other papers as reference.
See the rest here:
Stem-cell transplant claims debunked
SLU to open outpatient bone marrow transplant center
By daniellenierenberg
ST. LOUIS Local cancer patients who need bone marrow transplants could soon have the option of sleeping in their own beds instead of staying in the hospital for weeks or months.
The region's first outpatient bone marrow transplant center is set to open later this month at St. Louis University Hospital.
Bone marrow transplants are most commonly used for certain patients with cancers of the blood including leukemia and lymphoma. Stem cells from bone marrow harvested from the patient or a donor are transplanted into the patient's bloodstream to replace diseased cells. Patients require chemotherapy before the transplant to kill the cancer cells, and antibiotics, blood transfusions and daily monitoring afterward.
Historically, patients were hospitalized up to two months or longer because side effects from the transplant can be life-threatening. In an effort to reduce costs of the transplant, which can reach several hundred thousand dollars, several U.S. cancer centers in the last 20 years pursued an outpatient option.
Since then, research published in the journal Nature has shown that infection rates and outcomes do not vary significantly if they are treated as inpatients or outpatients.
"We have patients who really don't need to be (in the hospital), they're as bored as can be," said Fran Poglajen, administrative director of nursing for hematology/oncology at SLU.
Stronger patients at low risk of transplant rejection will now have the option of going home each night, as long as they have a caregiver available 24 hours a day. If they develop a fever or other complications, they need to be admitted to the hospital.
The outpatient treatments can last two to 10 hours and are given each day for about a month.
The $3 million center at SLU Hospital includes 16 rooms in about 10,000 square feet. It was built on the site of the operating rooms of the former Bethesda Hospital. About 10 new jobs were created with the opening, and within a few years about 100 patients a year are expected to receive transplants there.
"Bone marrow transplant really has revolutionized treatment of malignant blood diseases," said Dr. Friedrich Schuening, SLU's director of hematology and oncology. Schuening ran the inpatient/outpatient bone marrow transplant center at Vanderbilt University before coming to St. Louis last year.
View original post here:
SLU to open outpatient bone marrow transplant center
Stem Cell Scientists Awarded Nobel Prize in Physiology and Medicine
By daniellenierenberg
Kyodo / Reuters
Kyoto University Professor Shinya Yamanaka (left) and John Gurdon of the Gurdon Institute in Cambridge, England, at a symposium on induced pluripotent stem cells in Tokyo in April 2008
In a testament to the revolutionary potential of the field of regenerative medicine, in which scientists are able to create and replace any cells that are at fault in disease, the Nobel Prize committee on Monday awarded the 2012 Nobel in Physiology or Medicine to two researchers whose discoveries have made such cellular alchemy possible.
The prize went to John B. Gurdon of the University of Cambridge in England, who was among the first to clone an animal, a frog, in 1962, and to Shinya Yamanaka of Kyoto University in Japan who in 2006 discovered the four genes necessary to reprogram an adult cell back to an embryonic state.
Sir John Gurdon, who is now a professor at an institute that bears his name, earned the ridicule of many colleagues back in the 1960s when he set out on a series of experiments to show that the development of cells could be reversed. At the time, biologists knew that all cells in an embryo had the potential to become any cell in the body, but they believed that once a developmental path was set for each cell toward becoming part of the brain, or a nerve or muscle it could not be returned to its embryonic state. The thinking was that as a cell developed, it would either shed or silence the genes it no longer used, so that it would be impossible for a cell from an adult animal, for example, to return to its embryonic state and make other cells.
(MORE: Stem Cell Miracle? New Therapies May Cure Chronic Conditions Like Alzheimers)
Working with frogs, Gurdon proved his critics wrong, showing that some reprogramming could occur. Gurdon took the DNA from a mature frogs gut cell and inserted it into an egg cell. The resulting egg, when fertilized, developed into a normal tadpole, a strong indication that the genes of the gut cell were amenable to reprogramming; they had the ability to function as more than just an intestinal cell, and could give rise to any of the cells needed to create an entirely new frog.
Just as Gurdon was facing his critics in England, a young boy was born in Osaka, Japan, who would eventually take Gurdons finding to unthinkable extremes. Initially, Shinya Yamanaka would follow his fathers wishes and become an orthopedic surgeon, but he found himself ill-suited to the surgeons life. Intrigued more by the behind-the-scenes biological processes that make the body work, he found himself drawn to basic research, and began his career by trying to find a way to lower cholesterol production. That work also wasnt successful, but it drew him to the challenge of understanding what makes cells divide, proliferate and develop in specific ways.
In 2006, while at Kyoto University, Yamanaka stunned scientists by announcing he had successfully achieved what Gurdon had with the frog cells, but without using eggs at all. Yamanaka mixed four genes in with skin cells from adult mice and turned those cells back to an embryo-like state, essentially erasing their development and turning back their clock. The four genes reactivated other genes that are prolific in the early embryo, and turned off those that directed the cells to behave like skin.
(MORE: Ovary Stem Cells Can Produce New Human Eggs)
Go here to see the original:
Stem Cell Scientists Awarded Nobel Prize in Physiology and Medicine
Stem Cell Discoveries Snag Nobel Prize in Medicine
By daniellenierenberg
Two scientists who discovered the developmental clock could be turned back in mature cells, transforming them into immature cells with the ability to become any tissue in the body pluripotent stem cells are being honored with the Nobel Prize in Physiology or Medicine.
The Nobel Prize honoring Sir John B. Gurdon and Shinya Yamanaka was announced today (Oct. 8) by the Royal Swedish Academy of Sciences.
Th duo's work revealed what scientists had thought impossible. Just after conception, an embryo contains immature cells that can give rise to any cell type such as nerve, muscle and liver cells in the adult organism; these are called pluripotent stem cells, and scientists believed once these stem cells become specialized to carry out a specific body task there was no turning back.
Gurdon, now at the Gurdon Institute in Cambridge, England, found this wasn't the case when in 1962 he replaced the nucleus of a frog's egg cell with the nucleus taken from a mature intestinal cell from a tadpole. And voila, the altered frog egg developed into a tadpole, suggesting the mature nucleus held the instructions needed to become all cells in the frog, as if it were a young unspecialized cell. In fact, later experiments using nuclear transfer have produced cloned mammals. [5 Amazing Stem Cell Discoveries]
Then in 2006, Yamanaka, who was born in 1962 when Gurdon reported his discovery and is now at Kyoto University, genetically reprogrammed mature skin cells in mice to become immature cells able to become any cell in the adult mice, which he named induced pluripotent stem cells (iPS). Scientists can now derive such induced pluripotent stem cells from adult nerve, heart and liver cells, allowing new ways to study diseases.
When Yamanaka received the call from Stockholm about his award, he was doing housework, according to an interview with the Nobel Prize website. "It is a tremendous honor to me," Yamanaka said during that interview.
As for his hopes for mankind with regard to stem cells, he said, "My goal, all my life, is to bring this technology, stem cell technology, to the bedside, to patients, to clinics." He added that the first clinical trials of iPS cells will begin next year.
Follow LiveScience on Twitter @livescience. We're also on Facebook& Google+.
Read the original:
Stem Cell Discoveries Snag Nobel Prize in Medicine
Stem cell pioneers win Nobel for medicine
By daniellenierenberg
Shinya Yamanaka of Japan and John Gurdon of Britain won the Nobel Prize for work in cell programming, a frontier that has nourished dreams of replacement tissue for people crippled by disease.
The two scientists found that adult cells can be transformed back to an infant state called stem cells, the key ingredient in the vision of regenerative medicine.
"Their findings have revolutionised our understanding of how cells and organisms develop," the Nobel jury declared on Monday. "By reprogramming human cells, scientists have created new opportunities to study diseases and develop methods for diagnosis and therapy."
Among those who acclaimed the award were Britain's Royal Society, Ian Wilmut, "father" of Dolly the cloned sheep, and a leading ethicist, who said it eased a storm about the use of embryonic cells.
Stem cells are precursor cells which differentiate into the various organs of the body.
They have stirred huge excitement, with hopes that they can be coaxed into growing into replacement tissue for victims of Alzheimer's, Parkinson's and other diseases.
Gurdon, 79, said he was grateful but also surprised by the honour, since his main research was done a half-century ago.
In 1962, he discovered that the DNA code in the nucleus of an adult frog cell held all the information to develop into every kind of cell.
This meant that an adult cell could in essence be reprogrammed.
His landmark discovery was initially met with scepticism, as the journey from immature to specialised cell was previously deemed irreversible.
See the original post here:
Stem cell pioneers win Nobel for medicine
Cellerant Awarded SBIR Contract Funding to Develop CLT-009 for Treatment of Thrombocytopenia
By daniellenierenberg
SAN CARLOS, Calif.--(BUSINESS WIRE)--
Cellerant Therapeutics Inc., a biotechnology company developing novel hematopoietic stem cell-based cellular and antibody therapies for blood disorders and cancer, announced today that it has been awarded a Small Business Innovation Research (SBIR) Phase 1 contract and a Phase 2 option from the National Cancer Institute (NCI) valued up to $1,683,503. The SBIR Contract funds the development of CLT-009, a first-in-class, human allogeneic Megakaryocyte Progenitor Cell therapy for the treatment of thrombocytopenia in cancer patients and allows the Company to conduct studies to enable an Investigational New Drug (IND) Application to be filed with the FDA in the next two years.
Thrombocytopenia is characterized as a significant reduction in the concentration of circulating platelets. Platelets are crucial in the process of coagulation to stop bleeding, and thrombocytopenia can increase the risk of severe bleeding in patients. It is becoming an increasingly common problem among oncology patients and a significant dose-limiting toxicity, especially in the treatment of hematological malignancies. Chemotherapy and radiation therapy are the most common causes of thrombocytopenia because the platelet-producing cells, megakaryocytes, and their precursors are highly sensitive to myelosuppressive cytotoxics and ionizing radiation. Thrombocytopenia typically occurs during the initial cycles of high-dose chemotherapy and radiation therapy, usually 614 days after administration. According to Datamonitor, the estimated incidence of cancer patients who suffer from significant chemotherapy-induced thrombocytopenia worldwide was approximately 200,000 in 2008.
Occurrence of severe thrombocytopenia may require dose reductions for chemotherapy regimens which can impact subsequent disease control and survival, especially in the treatment of hematological malignancies such as acute leukemia and high-risk myelodysplastic syndrome. Current treatment options include platelet transfusions which are costly and labor intensive and are associated with risks such as contamination and transmission of viral and bacterial infections. Recombinant human interleukin-11 is the only approved agent for chemotherapy induced thrombocytopenia but its use is limited and has only modest efficacy and significant side effects. CLT-009, a human Megakaryocyte Progenitor Cell product, would be an alternative treatment option, providing the critical megakayocyte progenitor cellular support to rapidly produce platelets in vivo and shorten the duration of severe thrombocytopenia following chemotherapy treatment.
We are delighted to receive this contract from NCI to support the development of our novel, off-the-shelf, platelet product and address a high unmet need, said Ram Mandalam, Ph.D., President and Chief Executive Officer of Cellerant Therapeutics. This contract allows us to not only leverage our experience in developing cellular therapies but also provides us with the ability to bring CLT-009 closer to the clinic. Our unique product portfolio, which now includes CLT-009, along with our CLT-008 myeloid progenitor cell product and our therapeutic antibodies targeting cancer stem cells, demonstrates our continued commitment to developing novel products for the benefit of cancer patients.
In addition to this SBIR contract, Cellerant has previously received grants from the National Institute of Health (NIH) in 2008 2010 to conduct research studies in platelet recovery which it has successfully completed. In its previous studies, Cellerant demonstrated that megakaryocyte progenitor cells were able to produce human platelets in preclinical models with in vivo functionality similar to that of normal human platelets.
This program is funded with Federal funds from the National Institute of Health, Department of Health and Human Services, under Contract No.HHSN261201200076C.
About CLT-009
CLT-009 is a unique, off-the-shelf, cryopreserved, cell-based therapy that contains human Megakaryocyte Progenitor Cells derived from adult hematopoietic stem cells that have the ability to mature into functional platelets in vivo. Cellerant is developing CLT-009 as an effective treatment for chemotherapy and radiation-induced thrombocytopenia in cancer patients.
About Cellerant Therapeutics
Go here to read the rest:
Cellerant Awarded SBIR Contract Funding to Develop CLT-009 for Treatment of Thrombocytopenia
Stem Cell Transplant May Spur Heart Disease Risk: Study
By daniellenierenberg
WEDNESDAY, Oct. 3 (HealthDay News) -- People who undergo the transplantation of stem cells taken from bone marrow, circulating blood or umbilical cord blood are more likely to develop risk factors for heart disease, such as high blood pressure, diabetes and high cholesterol, a new study contends.
Researchers from the American Society of Hematology noted that patients who were treated with chemotherapy or radiation before such a transplant -- called a "hematopoietic cell transplant," or HCT -- had a significantly higher risk for heart disease later in life.
"While we know that heart disease is a real concern for long-term HCT survivors, small sample sizes and a lack of long-term follow-up in previous studies have only allowed us to look at a small piece of the puzzle of how this chronic condition develops in these patients," the study's first author, Dr. Saro Armenian, medical director of the Pediatric Survivorship Clinic in the Childhood Cancer Survivorship Program at City of Hope in Duarte, Calif., said in a society news release.
"Our study sought to better determine the specific factors before and after transplant that can lead to heart disease in a large group of transplant recipients," Armenian explained.
In conducting the study, the researchers examined the medical records of nearly 1,900 hematopoietic cell transplant recipients to identify factors that could affect their development of risk factors for heart disease. The transplants occurred between 1995 and 2004, and the patients survived for at least one year after the treatment.
The investigators considered the patients' exposure to chemotherapy or radiation before the transplant, the type of hematopoietic cell transplant and whether they were treated for a serious transplant complication known as graft-versus-host disease.
Using the U.S. National Health and Nutrition Examination Survey, the researchers also projected heart disease risk factor rates for the general population.
The study found that high blood pressure, diabetes and high cholesterol were more common among long-term survivors of the blood-forming stem cell transplants.
The risk for developing diabetes was 1.5 times higher for hematopoietic cell transplant survivors who underwent total body radiation. Their risk for high cholesterol was 1.4 times higher. The researchers noted this was true regardless of the type of blood-forming stem cell transplant the patient received.
Although it's unclear why total body radiation increased these patients' risk for diabetes and high cholesterol, previous studies have shown that abdominal radiation may contribute to insulin resistance and an increase in belly fat among cancer patients.
Visit link:
Stem Cell Transplant May Spur Heart Disease Risk: Study
Stem cells: of mice and women?
By daniellenierenberg
And rightly so: stem-cell scientists have derived many types of cells from stem-cell precursors, but have in the past struggled with sex cells. The research by a team at Kyoto University provides a powerful model into mammalian development and infertility, but it is still a long way off from being used in human therapy.
Despite this fact, it did not stop the headlines in some of today's press screaming that infertile women could one day become pregnant by creating eggs from stem cells.
Evelyn Telfer, a reproductive biologist at the University of Edinburgh, told me this study has no clinical application to humans whatsoever because the tissue used in this study were all foetal and not adult cells.
Mitinori Saitou led a team using foetal mouse tissue from embryos or skin cells to create stem cells. Those stem cells were then genetically reprogrammed to become germ cells egg precursor cells.
These were then given a cocktail of "factors" to support their growth into mature eggs. The eggs were fertilised by IVF in the lab and then implanted into surrogate mice. Three baby mice were born and grew into fertile adults.
The fact that artificially manufactured eggs have gone on to produce healthy mice which are fertile is absolutely astounding and a great step forward for science. The results are published in the journal, Science.
But there are huge differences between human and mouse cells, not to mention the medical and ethical issues surrounding human ovarian tissue to culture cells.
Further clinical trials would be necessary using adult mouse cells first before we can start projecting that we can manufacture babies, and scientists need to learn so much more about how women form eggs.
So while this is major contribution to the field of reproductive biology, the study is not a ready-made cure for women with fertility problems.
See original here:
Stem cells: of mice and women?
Fertility hope in stem cell eggs
By daniellenierenberg
Hopes of a cure for infertility in humans were raised Friday after Japanese stem cell researchers announced they had created viable eggs using normal cells from adult mice.
The breakthrough raises the possibility that women who are unable to produce eggs naturally could have them created in a test tube from their own cells and then planted back into their body.
A team at Kyoto University harvested stem cells from mice and altered a number of genes to create cells very similar to the primordial germ cells that generate sperm in men and oocytes -- or eggs -- in women.
They then nurtured these with cells that would become ovaries and transplanted the mixture into living mice, where the cells matured into fully-grown oocytes.
They extracted the matured oocytes, fertilised them in vitro -- in a test tube -- and implanted them into surrogate mother mice.
The resulting mice pups were born healthy and were even able to reproduce once they matured.
Writing in the US journal Science, which published the findings, research leader professor Michinori Saito said the work provided a promising basis for hope in reproductive medicine.
"Our system serves as a robust foundation to investigate and further reconstitute female germline development in vitro, not only in mice, but also in other mammals, including humans," he said.
Saito cautioned that this was not a ready-made cure for people with fertility problems, adding that a lot of work remained.
"This achievement is expected to help us understand further the egg-producing mechanism and contribute to clarifying the causes of infertility," he told reporters.
Skin cells become 'grandparents'
By daniellenierenberg
4 October 2012 Last updated at 18:31 ET By James Gallagher Health and science reporter, BBC News
Stem cells made from skin have become "grandparents" after generations of life were created in experiments by scientists in Japan.
The cells were used to create eggs, which were fertilised to produce baby mice. These later had their own babies.
If the technique could be adapted for people, it could help infertile couples have children and even allow women to overcome the menopause.
But experts say many scientific and ethical hurdles must be overcome.
Stem cells are able to become any other type of cell in the body from blood to bone, nerves to skin.
Last year the team at Kyoto University managed to make viable sperm from stem cells. Now they have performed a similar feat with eggs.
They used stem cells from two sources: those collected from an embryo and skin-like cells which were reprogrammed into becoming stem cells.
I just thought wow! The science is quite brilliant
The first step, reported in the journal Science, was to turn the stem cells into early versions of eggs.
See the article here:
Skin cells become 'grandparents'
StemCells, Inc. Announces First Transplant of Neural Stem Cells Into Patient in Clinical Trial for Dry Age-Related …
By daniellenierenberg
NEWARK, Calif., Oct. 4, 2012 (GLOBE NEWSWIRE) -- StemCells, Inc. (STEM) today announced that the first patient in its Phase I/II clinical trial in dry age-related macular degeneration (AMD) has been enrolled and transplanted. The trial is designed to evaluate the safety and preliminary efficacy of the Company's proprietary HuCNS-SC(R) product candidate (purified human neural stem cells) as a treatment for dry AMD, and the patient was transplanted with the cells yesterday at the Retina Foundation of the Southwest (RFSW) in Dallas, Texas, one of the leading independent vision research centers in the United States. AMD afflicts approximately 30 million people worldwide and is the leading cause of vision loss and blindness in people over 55 years of age.
"This trial signifies an exciting extension of our on-going clinical research with neural stem cells from disorders of the brain and spinal cord to now include the eye," said Stephen Huhn, MD, FACS, FAAP, Vice President and Head of the CNS Program at StemCells, Inc. "Studies in the relevant animal model demonstrate that the Company's neural stem cells preserve vision in animals that would otherwise go blind and support the therapeutic potential of the cells to halt retinal degeneration. Unlike others in the field, we are looking to intervene early in the course of the disease with the goal of preserving visual function before it is lost."
David G. Birch, Ph.D., Chief Scientific and Executive Officer of the RFSW and Director of the Rose-Silverthorne Retinal Degenerations Laboratory and principal investigator of the study, added, "We are excited to be working with StemCells on this ground breaking clinical trial. There currently are no effective treatments for dry AMD, which is the most common form of the disease, and there is a clear need to explore novel therapeutic approaches."
In February 2012, the Company published preclinical data that demonstrated HuCNS-SC cells protect host photoreceptors and preserve vision in the Royal College of Surgeons (RCS) rat, a well-established animal model of retinal disease which has been used extensively to evaluate potential cell therapies. Moreover, the number of cone photoreceptors, which are responsible for central vision, remained constant over an extended period, consistent with the sustained visual acuity and light sensitivity observed in the study. In humans, degeneration of the cone photoreceptors accounts for the unique pattern of vision loss in dry AMD. The data was published in the international peer-reviewed European Journal of Neuroscience.
About Age-Related Macular Degeneration
Age-related macular degeneration refers to a loss of photoreceptors (rods and cones) from the macula, the central part of the retina. AMD is a degenerative retinal disease that typically strikes adults in their 50s or early 60s, and progresses painlessly, gradually destroying central vision. According to the RFSW website, there are approximately 1.75 million Americans age 40 years and older with some form of age-related macular degeneration, and the disease continues to be the number one cause of irreversible vision loss among senior citizens in the United States with more than seven million at risk of developing AMD.
About the Trial
The Phase I/II trial will evaluate the safety and preliminary efficacy of HuCNS-SC cells as a treatment for dry AMD. The trial will be an open-label, dose-escalation study, and is expected to enroll a total of 16 patients. The HuCNS-SC cells will be administered by a single injection into the space beneath the retina in the most affected eye. Patients' vision will be evaluated using both conventional and advanced state-of-the-art methods of ophthalmological assessment. Evaluations will be performed at predetermined intervals over a one-year period to assess safety and signs of visual benefit. Patients will then be followed for an additional four years in a separate observational study. Patients interested in participating in the clinical trial should contact the site at (214) 363-3911.
About HuCNS-SC Cells
StemCells' proprietary product candidate, HuCNS-SC cells, is a highly purified composition of human neural stem cells that are expanded and stored as banks of cells. The Company's preclinical research has shown that HuCNS-SC cells can be directly transplanted in the central nervous system (CNS) with no sign of tumor formation or adverse effects. Because the transplanted HuCNS-SC cells have been shown to engraft and survive long-term, there is the possibility of a durable clinical effect following a single transplantation. StemCells believes that HuCNS-SC cells may have broad therapeutic application for many diseases and disorders of the CNS, and to date has demonstrated human safety data from completed and ongoing clinical studies.
Read the rest here:
StemCells, Inc. Announces First Transplant of Neural Stem Cells Into Patient in Clinical Trial for Dry Age-Related ...
Windsor Broadcast Productions Launches New 30 Minute Series “Innovations in Medicine”
By daniellenierenberg
LOS ANGELES--(BUSINESS WIRE)--
The producers of the longest running television health series American Health Journal, Windsor Broadcast Productions, are launching Innovations in Medicine, a new series to air on PBS SoCal. Produced by Windsor Broadcast Productions, the series will feature new developments, technology, procedures, and products in healthcare. The company is currently in production of its first six segments for the premiere 30-minute episode.
"Audiences have been demanding for this type of programming for years," said Executive Producer Roland Perez. "We regularly receive great feedback from stories we've produced on new medical equipment in beta testing that's not even FDA approved. People want to know whats going to be available to them."
With Innovations in Medicine Windsor will offer the first weekly show devoted to revealing compelling healthcare information previously available only from trade shows, healthcare insiders, medical journals and research newsletters.
Segments featured in the premiere episode include the glucose sensor company Dexcom and AVIIR Labs which focuses on advancing cardiovascular disease risk assessment, monitoring and an international stem cell story. The first episode of Innovations in Medicine is slated to premiere on SoCal PBS in November of 2012.
About Windsor Broadcast Productions
Founded in 1976, Windsor Broadcast Productions is located in Palm Desert, California. In 1988, they launched the nationwide syndicated program The American Health Journal which now reaches over 30 million homes. The American Health Journal has received over 92 national and international awards. The show is sponsored by Toshiba America and HF Healthcare.
Read the original here:
Windsor Broadcast Productions Launches New 30 Minute Series “Innovations in Medicine”
Houston Stem Cell Summit Announces Extraordinary Lineup of Keynote Speakers
By daniellenierenberg
HOUSTON, Oct. 1, 2012 /PRNewswire/ --The Houston Stem Cell Summit will host an extraordinary lineup of keynote speakers who represent the most accomplished stem cell scientists, clinicians and entrepreneurs in the United States. Joining these distinguished speakers will be Governor of Texas, Rick Perry, consistent champion of adult stem cell therapies.
(Logo: http://photos.prnewswire.com/prnh/20120831/NY66463LOGO )
The Houston Stem Cell Summit will be held October 26 27 in its namesake city and will highlight the latest therapeutic research regarding the use of adult stem and progenitor cell therapies. The Summit will also provide a forum for entrepreneurs to discuss their latest efforts to commercialize stem cell therapies, and to debate and discuss FDA and other legal and regulatory issues impacting stem cell research and commercialization.
Opening Keynote Address October 26, 2012 Arnold I. Caplan, PhD, Professor of Biology and Professor of General Medical Sciences (Oncology) Case Western Reserve University
Dr. Caplan has helped shape the direction and focus of adult stem cell research and commercialization. Virtually every adult stem cell company and literally tens of thousands of research papers are based on Dr. Caplan's original and ground breaking research. Professor Caplan is considered to be the "father" of the mesenchymal stem cell and first described this progenitor cell in his landmark paper; "Mesenchymal stem cells", Journal of Orthopaedic Research 1991;9(5):641-650. Since that foundational study, Dr. Caplan has published over 360 manuscripts and articles in peer reviewed journals. Dr. Caplan has been Chief Scientific Officer at OrthoCyte Corporation since 2010. In addition, Dr. Caplan co-founded Cell Targeting Inc. and has served as President of Skeletech, Inc. as its founder. He is the recipient of several honors and awards from the orthopedic research community. Dr. Caplan holds a Ph. D. from Johns Hopkins University Medical School and a B.S. in chemistry from the Illinois Institute of Technology.
Summit Keynote Address October 26, 2012 Texas Governor Rick Perry
Governor Perry is the 47th and current Governor of Texas. Governor Perry has long championed the role of medical technologies in building the future of not only Texas, but also the United States. In many ways, his strong advocacy on behalf of research and advanced medical technologies is one of his strongest and as yet underappreciated legacies. In addition to his service to the state of Texas, Governor Perry has also served as Chairman of the Republican Governors Association in 2008 and again in 2011. Despite a rigorous schedule, particularly in the teeth of this election season, Governor Perry has graciously made time to speak and encourage the researchers, patients, companies and physicians who form the fabric and future of the stem cell therapy community.
Texas Medical Center Keynote Address, October 27, 2012 James T. Willerson, MD
Over the course of his career, Dr. James T. Willerson has served as a medical, scientific and administrative leader for each of the major institutions that are the foundation of the Texas Medical Center. Dr. Willerson is currently President and Medical Director, Director of Cardiology Research, and Co-Director of the Cullen Cardiovascular Research Laboratories at Texas Heart Institute (THI). Dr. Willerson was appointed President-Elect of THI in 2004 and became President and Medical Director in 2008. He is also an adjunct professor of Medicine at Baylor College of Medicine and at The University of Texas MD Anderson Cancer Center. He is the former chief of Cardiology at St. Luke's Episcopal Hospital and the former chief of Medical Services at Memorial Hermann Hospital.
Dr. Willerson has served as a visiting professor and invited lecturer at more than 170 institutions.
Continue reading here:
Houston Stem Cell Summit Announces Extraordinary Lineup of Keynote Speakers
Immune system harnessed to improve stem cell transplant outcomes
By daniellenierenberg
ScienceDaily (Oct. 1, 2012) A novel therapy in the early stages of development at Virginia Commonwealth University Massey Cancer Center shows promise in providing lasting protection against the progression of multiple myeloma following a stem cell transplant by making the cancer cells easier targets for the immune system.
Outlined in the British Journal of Hematology, the Phase II clinical trial was led by Amir Toor, M.D., hematologist-oncologist in the Bone Marrow Transplant Program and research member of the Developmental Therapeutics program at VCU Massey Cancer Center. The multi-phased therapy first treats patients with a combination of the drugs azacitidine and lenalidomide. Azacitidine forces the cancer cells to express proteins called cancer testis antigens (CTA) that immune system cells called T-cell lymphocytes recognize as foreign. The lenalidomide then boosts the production of T-cell lymphocytes. Using a process called autologous lymphocyte infusion (ALI), the T-cell lymphocytes are then extracted from the patient and given back to them after they undergo a stem cell transplant to restore the stem cells' normal function. Now able to recognize the cancer cells as foreign, the T-cell lymphocytes can potentially protect against a recurrence of multiple myeloma following the stem cell transplant.
"Every cell in the body expresses proteins on their surface that immune system cells scan like a barcode in order to determine whether the cells are normal or if they are foreign. Because multiple myeloma cells are spawned from bone marrow, immune system cells cannot distinguish them from normal healthy cells," says Toor. "Azacitidine essentially changes the barcode on the multiple myeloma cells, causing the immune system cells to attack them," says Toor.
The goal of the trial was to determine whether it was safe, and even possible, to administer the two drugs in combination with an ALI. In total, 14 patients successfully completed the investigational drug therapy. Thirteen of the participants successfully completed the investigational therapy and underwent a stem cell transplant. Four patients had a complete response, meaning no trace of multiple myeloma was detected, and five patients had a very good partial response in which the level of abnormal proteins in their blood decreased by 90 percent.
In order to determine whether the azacitidine caused an increased expression of CTA in the multiple myeloma cells, Toor collaborated with Masoud Manjili, D.V.M., Ph.D., assistant professor of microbiology and immunology at VCU Massey, to conduct laboratory analyses on bone marrow biopsies taken from trial participants before and after treatments. Each patient tested showed an over-expression of multiple CTA, indicating the treatment was successful at forcing the cancer cells to produce these "targets" for the immune system.
"We designed this therapy in a way that could be replicated, fairly inexpensively, at any facility equipped to perform a stem cell transplant," says Toor. "We plan to continue to explore the possibilities of immunotherapies in multiple myeloma patients in search for more effective therapies for this very hard-to-treat disease."
In addition to Manjili, Toor collaborated with John McCarty, M.D., director of the Bone Marrow Transplant Program at VCU Massey, and Harold Chung, M.D., William Clark, M.D., Catherine Roberts, Ph.D., and Allison Hazlett, also all from Massey's Bone Marrow Transplant Program; Kyle Payne, Maciej Kmieciak, Ph.D., from Massey and the Department of Microbiology and Immunology at VCU School of Medicine; Roy Sabo, Ph.D., from VCU Department of Biostatistics and the Developmental Therapeutics program at Massey; and David Williams, M.D., Ph.D., from the Department of Pathology at VCU School of Medicine, co-director of the Tissue and Data Acquisition and Analysis Core and research member of the Developmental Therapeutics program at Massey.
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
View original post here:
Immune system harnessed to improve stem cell transplant outcomes
Stem Cell Therapy—Breakthrough in Health Paradigm
By daniellenierenberg
By Sharmistha Banerjee - September 25, 2012 | Tickers: NBS, OSIR, PSTI | 0 Comments
Sharmistha is a member of The Motley Fool Blog Network -- entries represent the personal opinions of our bloggers and are not formally edited.
Far-reaching accomplishments in the biotechnology sector meet its most ambitious expectations, stem cell therapy. The birth of this new industry has boosted the enthusiasm and energy of investors and has brought unprecedented capability and optimistic predictions. New developments in regenerative medicine are bringing about exciting, novel approaches to create therapies for hard to treat diseases. The biotechnology industry has been soaring in 2012 as companies both large and small have shown impressive growth.
The cell therapy space has seen relatively small companies making strides in the right direction with increased government support. Osiris Therapeutics (NASDAQ: OSIR) a leading stem cell company is currently the only company with an approved cell therapy. The approval is more of a first step in a long walk for Osiris. Reuters reported that shares of Osiris Therapeutics rose 15% on May 30, 2012, after U.S. health regulators said the stem cell technology company's wound treatment was eligible for reimbursement when used in hospitals in out-patient settings or in ambulances. The company carries over a $300 million market capitalization and trades at $9.50 per share, primarily on the strength of a recent Canadian approval for its stem cell drug for graft-versus-host disease. Osiris Therapeutics has a 1-year low of $4.12 and a 1-year high of $14.46. The company has a market cap of $311.3 million and a price-to-earnings ratio of 90.98. Investors are impressed and optimistic with Osiris progress in cell-based therapies. They currently have a $9.75 target price on the stock. Despite having to negotiate a more challenging regulation process the company has continued to show investors strong gains in 2012.With a current ratio of 8.51 and debt equity of (0.00%) the company boasts of a financially secure position in the market.
Pluristem Therapeutics (NASDAQ: PSTI) a small firm with a market cap of less than $180 million has been concentrating on its placenta-based cell therapies, is considered one of the more advanced in the cell therapy arena, and unlike OSIR, its lead candidates treat diseases that could potentially return significant revenue. The upside for PSTI is lower costs, quicker healing time, ease of administration, and most importantly, it can grow vessels and provide the possibility of a cure, which has led to optimism surrounding the stock. Shares of Pluristem Therapeutics are up over 3.98% and most likely headed higher in the days ahead. It has traded higher by 85% during the last three months and is now valued at $200 million. Pluristem may actually beat OSIR in the race to become the first U.S. approved cell therapy with its bone marrow therapy, in which it has recently applied for approval. Pluristem is a company that I think is showing great promise. From the stock's action in the last several months, it is clear investors recognize that Pluristem's unique platform technology has the potential for tremendous value in a lucrative range of medical markets both the very large and the very small. The company wins both ways. Its clinical segment is creating candidates with large revenue potential, with analysts projecting peak sales of $700 million for AMR-001, which treats patients following acute myocardial infarction. The company is reasonably well funded with around $42 million in cash and cash equivalents.
NeoStem (NYSEMKT: NBS) is by far the leader in regards to the manufacturing business, and no other company comes close. In addition, its stock has returned the most over in the last three months, with a 100% gain. NeoStem stocks looks promising as a biotechnology investment. First, the company is focusing on several promising areas of new stem cell treatment development. Second, its contract manufacturing business brings in revenues to offset some of its drug development expenditures. Third, the contract manufacturing business could earn substantial royalties if any of the products on which it works with customers proves to be a commercial success. NeoStem's manufacturing segment which is also known as PCT, is well positioned to return larger gains over the next 24 months with several late stage candidates under development. a $110 million company that has increased in value by 70% during the last three months, In addition to the PCT business, NeoStem's most promising therapy is aimed at preventing major cardiac problems following acute myocardial infarction (AMI), an area that is potentially a multibillion-dollar business. NeoStem's therapy is meeting endpoints never before reached,
The three companies discussed above are showing much potential for growth and each present a significant upward shift in the current stock prices while contributing greatly to the advances of cell therapy.
Osiris is the closest to generating substantial revenue by already having two approvals, and is currently testing its therapy on other diseases, thereby leaving open the possibility of future gains. Pluristem has candidates to treat diseases in potentially large markets, and is expanding with its manufacturing facility. Although Stem Cells is in the early phases of development, it still has a very innovating therapy that, if proven effective, could advance the space even further. NeoStem possesses all the benefits of an innovating technology, a diversified pipeline, and is a candidate with significant revenue potential.
At this point, it appears that the entire space is moving forward and has lifted observers' expectations by making rapid progress. It makes sense that these three stocks would trade with such considerable gains, as investors can now identify the benefits of cell therapies. And as more approvals occur, it could be a space that trades considerably higher regardless of the market's indecisiveness. With the sector growing and maturing, investing in biotech stocks seems a promising choice in future.
SharmisthaB has no positions in the stocks mentioned above. The Motley Fool has no positions in the stocks mentioned above. Try any of our Foolish newsletter services free for 30 days. We Fools may not all hold the same opinions, but we all believe that considering a diverse range of insights makes us better investors. The Motley Fool has a disclosure policy.If you have questions about this post or the Fools blog network, click here for information.
Go here to read the rest:
Stem Cell Therapy—Breakthrough in Health Paradigm
Making it easier to make stem cells: Kinase inhibitors lower barrier to producing stem cells in lab
By daniellenierenberg
ScienceDaily (Sep. 25, 2012) The process researchers use to generate induced pluripotent stem cells (iPSCs) -- a special type of stem cell that can be made in the lab from any type of adult cell -- is time consuming and inefficient. To speed things up, researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) turned to kinase inhibitors. These chemical compounds block the activity of kinases, enzymes responsible for many aspects of cellular communication, survival, and growth.
As they outline in a paper published September 25 in Nature Communications, the team found several kinase inhibitors that, when added to starter cells, help generate many more iPSCs than the standard method. This new capability will likely speed up research in many fields, better enabling scientists around the world to study human disease and develop new treatments.
"Generating iPSCs depends on the regulation of communication networks within cells," explained Tariq Rana, Ph.D., program director in Sanford-Burnham's Sanford Children's Health Research Center and senior author of the study. "So, when you start manipulating which genes are turned on or off in cells to create pluripotent stem cells, you are probably activating a large number of kinases. Since many of these active kinases are likely inhibiting the conversion to iPSCs, it made sense to us that adding inhibitors might lower the barrier."
According to Tony Hunter, Ph.D., professor in the Molecular and Cell Biology Laboratory at the Salk Institute for Biological Studies and director of the Salk Institute Cancer Center, "The identification of small molecules that improve the efficiency of generating iPSCs is an important step forward in being able to use these cells therapeutically. Tariq Rana's exciting new work has uncovered a class of protein kinase inhibitors that override the normal barriers to efficient iPSC formation, and these inhibitors should prove useful in generating iPSCs from new sources for experimental and ultimately therapeutic purposes." Hunter, a kinase expert, was not involved in this study.
The promise of iPSCs
At the moment, the only treatment option available to many heart failure patients is a heart transplant. Looking for a better alternative, many researchers are coaxing stem cells into new heart muscle. In Alzheimer's disease, researchers are also interested in stem cells, using them to reproduce a person's own malfunctioning brain cells in a dish, where they can be used to test therapeutic drugs. But where do these stem cells come from? Since the advent of iPSC technology, the answer in many cases is the lab. Like their embryonic cousins, iPSCs can be used to generate just about any cell type -- heart, brain, or muscle, to name a few -- that can be used to test new therapies or potentially to replace diseased or damaged tissue.
It sounds simple enough: you start with any type of differentiated cell, such as skin cells, add four molecules that reprogram the cells' genomes, and then try to catch those that successfully revert to unspecialized iPSCs. But the process takes a long time and isn't very efficient -- you can start with thousands of skin cells and end up with just a few iPSCs.
Inhibiting kinases to make more iPSCs
Zhonghan Li, a graduate student in Rana's laboratory, took on the task of finding kinase inhibitors that might speed up the iPSC-generating process. Scientists in the Conrad Prebys Center for Chemical Genomics, Sanford-Burnham's drug discovery facility, provided Li with a collection of more than 240 chemical compounds that inhibit kinases. Li painstakingly added them one-by-one to his cells and waited to see what happened. Several kinase inhibitors produced many more iPSCs than the untreated cells -- in some cases too many iPSCs for the tiny dish housing them. The most potent inhibitors targeted three kinases in particular: AurkA, P38, and IP3K.
Working with the staff in Sanford-Burnham's genomics, bioinformatics, animal modeling, and histology core facilities -- valuable resources and expertise available to all Sanford-Burnham scientists and the scientific community at large -- Rana and Li further confirmed the specificity of their findings and even nailed down the mechanism behind one inhibitor's beneficial actions.
See the original post:
Making it easier to make stem cells: Kinase inhibitors lower barrier to producing stem cells in lab
Eastday-Shanghai doctors reveal face-change leap
By daniellenierenberg
SHANGHAI doctors announced the success of a novel technology that uses people's own skin via stem cells to grow a new face for seriously disfigured patients.
It's an alternative to the surgery used in the West in which doctors transplant the face from a dead body to a patient.
Facial tissue developed with the new technology is more readily accepted physically and psychologically by patients and has no ethical issues, doctors from Shanghai No. 9 People's Hospital said yesterday.
Since adopting the new technology, doctors have used it on more than 60 patients, including seven who needed their whole face replaced or major facial changes.
Of the seven, six were a success, while one case failed as skin on part of the face died, doctors said.
Patients include women disfigured by having sulfuric acid splashed in their faces, people who lost their nose during a fight and a person whose face was seriously burned in a fire.
Under the technology, doctors remove certain blood vessels from the patient's leg to build a small vessel net and transplant it into a place on the body to grow the new face, usually on the a patient's upper chest.
Then doctors use a skin dilator to expand the skin like a bulging ball. Later they inject the patient's own stem cells to help the skin grow stronger and stimulate the growth of blood vessels.
Soft bones which are shaped into facial features like a nose and upper jaw bone in line with the patient's own facial skeleton are then transplanted under the new facial skin.
Finally, the new face is transplanted onto the disfigured face. The new face, which is thin and comprised of a whole piece of living skin, will join with the facial muscles, thus giving a patient natural facial expressions and function to the greatest extent possible.
NeoStem to Present at Noble Capital Markets' Life Sciences Exposition on September 24
By daniellenierenberg
NEW YORK, Sept. 19, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE MKT:NBS) ("NeoStem" or the "Company"), a rapidly emerging market leader in the fast growing cell therapy market, today announced that Company management has been invited to participate at BIOX, the Noble Financial Capital Markets' Life Sciences Exposition on Monday, September 24. Company management will make a webcasted company presentation and participate in a cell therapy panel.
Noble Financial Capital Markets Investor Conference - BIOX Life Sciences Exposition
For more information about the conference, please visit http://www.nobleresearch.com/BIOX.htm.
About NeoStem, Inc.
NeoStem, Inc. continues to develop and build on its core capabilities in cell therapy, capitalizing on the paradigm shift that we see occurring in medicine. In particular, we anticipate that cell therapy will have a significant role in the fight against chronic disease and in lessening the economic burden that these diseases pose to modern society. We are emerging as a technology and market leading company in this fast developing cell therapy market. Our multi-faceted business strategy combines a state-of-the-art contract development and manufacturing subsidiary, Progenitor Cell Therapy, LLC ("PCT"), with a medically important cell therapy product development program, enabling near and long-term revenue growth opportunities. We believe this expertise and existing research capabilities and collaborations will enable us to achieve our mission of becoming a premier cell therapy company.
Our contract development and manufacturing service business supports the development of proprietary cell therapy products. NeoStem's most clinically advanced therapeutic, AMR-001, is being developed at Amorcyte, LLC ("Amorcyte"), which we acquired in October 2011. Amorcyte is developing a cell therapy for the treatment of cardiovascular disease and is enrolling patients in a Phase 2 trial to investigate AMR-001's efficacy in preserving heart function after a heart attack. Athelos Corporation ("Athelos"), which is approximately 80%-owned by our subsidiary, PCT, is collaborating with Becton-Dickinson in the early clinical exploration of a T-cell therapy for autoimmune conditions. In addition, pre-clinical assets include our VSELTM Technology platform as well as our mesenchymal stem cell product candidate for regenerative medicine. Our service business and pipeline of proprietary cell therapy products work in concert, giving us a competitive advantage that we believe is unique to the biotechnology and pharmaceutical industries. Supported by an experienced scientific and business management team and a substantial intellectual property estate, we believe we are well positioned to succeed.
For more information on NeoStem, please visit http://www.neostem.com.
Forward-Looking Statements for NeoStem, Inc.
This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Forward-looking statements reflect management's current expectations, as of the date of this press release, and involve certain risks and uncertainties. Forward-looking statements include statements herein with respect to the successful execution of the Company's business strategy, including with respect to the Company's or its partners' successful development of AMR-001 and other cell therapeutics, the size of the market for such products, its competitive position in such markets, the Company's ability to successfully penetrate such markets and the market for its CDMO business, and the efficacy of protection from its patent portfolio, as well as the future of the cell therapeutics industry in general, including the rate at which such industry may grow. Forward looking statements also include statements with respect to satisfying all conditions to closing the disposition of Erye, including receipt of all necessary regulatory approvals in the PRC. The Company's actual results could differ materially from those anticipated in these forward- looking statements as a result of various factors, including but not limited to (i) the Company's ability to manage its business despite operating losses and cash outflows, (ii) its ability to obtain sufficient capital or strategic business arrangement to fund its operations, including the clinical trials for AMR-001, (iii) successful results of the Company's clinical trials of AMR-001 and other cellular therapeutic products that may be pursued, (iv) demand for and market acceptance of AMR-001 or other cell therapies if clinical trials are successful and the Company is permitted to market such products, (v) establishment of a large global market for cellular-based products, (vi) the impact of competitive products and pricing, (vii) the impact of future scientific and medical developments, (viii) the Company's ability to obtain appropriate governmental licenses and approvals and, in general, future actions of regulatory bodies, including the FDA and foreign counterparts, (ix) reimbursement and rebate policies of government agencies and private payers, (x) the Company's ability to protect its intellectual property, (xi) the company's ability to successfully divest its interest in Erye, and (xii) matters described under the "Risk Factors" in the Company's Annual Report on Form 10-K filed with the Securities and Exchange Commission on March 20, 2012 and in the Company's other periodic filings with the Securities and Exchange Commission, all of which are available on its website. The Company does not undertake to update its forward-looking statements. The Company's further development is highly dependent on future medical and research developments and market acceptance, which is outside its control.
Link:
NeoStem to Present at Noble Capital Markets' Life Sciences Exposition on September 24
UCLA researchers discover missing link between stem cells and immune system
By daniellenierenberg
Public release date: 2-Sep-2012 [ | E-mail | Share ]
Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences
UCLA researchers have discovered a type of cell that is the "missing link" between bone marrow stem cells and all the cells of the human immune system, a finding that will lead to a greater understanding of how a healthy immune system is produced and how disease can lead to poor immune function.
The studies were done using human bone marrow, which contains all the stem cells that produce blood during postnatal life.
"We felt it was especially important to do these studies using human bone marrow as most research into the development of the immune system has used mouse bone marrow," said study senior author Dr. Gay Crooks, co-director of the Eli and Edythe Broad Center of Regenerative Medicine and a co-director of the Cancer and Stem Cell Biology program at UCLA's Jonsson Comprehensive Cancer Center. "The few studies with human tissue have mostly used umbilical cord blood, which does not reflect the immune system of postnatal life."
The research team was "intrigued to find this particular bone marrow cell because it opens up a lot of new possibilities in terms of understanding how human immunity is produced from stem cells throughout life," said Crooks, a professor of pathology and pediatrics.
Understanding the process of normal blood formation in human adults is a crucial step in shedding light on what goes wrong during the process that results in leukemias, or cancers of the blood.
The study appears Sept. 2 in the early online edition of Nature Immunology.
Before this study, researchers had a fairly good idea of how to find and study the blood stem cells of the bone marrow. The stem cells live forever, reproduce themselves and give rise to all the cells of the blood. In the process, the stem cells divide and produce intermediate stages of development called progenitors, which make various blood lineages like red blood cells or platelets. Crooks was most interested in the creation of the progenitors that form the entire immune system, which consists of many different cells called lymphocytes, each with a specialized function to fight infection.
"Like the stem cells, the progenitor cells are also very rare, so before we can study them we needed to find the needle in the haystack." said Lisa Kohn, a member of the UCLA Medical Scientist Training Program and first author in the paper.
See the rest here:
UCLA researchers discover missing link between stem cells and immune system
Stem Cell Therapy for Cerebral Palsy in Panama – Video
By daniellenierenberg
17-08-2012 13:38 The biggest thing we've noticed is her ability to track people and her vision. Her cognitive skills have improved. Before her stem cell treatment 7 months ago, she was like a 50 watt light bulb and she is like a 200 watts in comparison. She reacts more, holds her head up more and her hands are nice and open now, not fisted like before. Hand to mouth motion is much easier for her to do. Her range of motion, in general, is much better. She can now raise her hands over her head and she was never able to do that before. Her therapists have seen dramatic changes. Our family has noticed changes. The neurologist has noticed changes. We are very thankful that we were able to get this treatment for her in Panama. We couldn't imagine her not being who she is now. She is 200 times better than what she was.
Read more:
Stem Cell Therapy for Cerebral Palsy in Panama - Video