Page 48«..1020..47484950..6070..»

How Covid-19 has disrupted efforts to care for blood cancer patients – The Independent

By daniellenierenberg

On the day of his Year 10 school prom, as other students excitedly prepared for the big occasion, then 15-year-old Rian Harvey was sat in a ward of Royal Marsden Hospital, awaiting the stem cell transplant that would save his life after a leukaemia relapse.

Despite the hot weather on that day back in July 2015, his hospital room windows had to remain sealed shut, as even the smallest bug bite could have killed him due to his compromised immune system.

Six years on, he finds himself grateful that he relapsed when he did, with five years to build his immunity before the Covid-19 pandemic hit.

Blood cancer patients are one of the most vulnerable groups of people at risk of Covid-19, according to research, being 57 per cent more likely to suffer severe disease compared to other cancer patients.

Recalling his own experience, Rian, now 22, says: Its scary, you look at everything that person has gone through, they had blood cancer and then had a stem cell transplant, they have gone through all the stress of only to be taken by a pandemic that came out of nowhere.

I know the vulnerability that you are in for stem cell transplants, Ive been there myself. Your immune system cant take anything.

Despite the high risk these patients face, charities such as Anthony Nolan, which assist blood cancer patients with finding a stem cell match, were left out of the allocated government budget that was announced in March.

The cancellation of face-to-face fundraising and events, despite the increase in demand for services, have led their gross income to be down by an estimated 5.5m for 2021.

Henny Braund, chief executive of the charity, said people with blood cancer and blood disorders were heavily impacted by the pandemic and everyone who needs treatment and support must be able to access it without delay.

This budget does not address the pressure currently facing cancer services across the UK, he adds.

Stem cell transplants are carried out to treat conditions such as blood cancer. The process involves removing the healthy stem cells of one person and transferring them to another, provided they have a similar or identical special genetic marker called the HLA.

While this match is sometimes present between family members, it is not always the case, leaving patients in the UK reliant on the British Bone Marrow Registry to find a suitable match. The odds of a match are one in 1000.

One of Anthony Nolans primary roles is to encourage more people to put themselves on the registry so patients have an increased chance to find a match. This can be done via a simple cheek swap, which provides sufficient HLA data for the initial matching process.

Will Briant, 24, from London, donated stem cells in 2015 after signing up to be on the registry at university. I think it ultimately is a huge part of who I am now, he says. Its something that I look to in my darker moments and find great inner strength from.

The identities of donors and recipients remain anonymous to one another, but they are allowed to exchange letters after the transplant.

I was incredibly emotional when I got the letter, he adds. He made it clear that not only was I giving him the chance of time for himself, but it was also for all of his family and friends, he told me he had a very big family. Looking back now, at a time where we cant all be with our families, it just highlights just how important and valuable that must have been for him.

Apart from encouraging people to sign up to the registry, the money Anthony Nolan raises go towards funding research, offering support and information to patients and families as well as providing post-transplant-care. They have helped 18,000 people find a match.

Unfortunately, they are part of the 35 per cent of charities who used the furlough scheme offered by the government to curb the loss of income. To ensure their survival, 24 per cent of surveyed charities said they were letting furloughed employees return as volunteers.

Terence Lovell, chief engagement and marketing officer at Anthony Nolan, says: We still desperately need funds to continue our life-saving work through providing stem cells transplants and co-ordinating efforts across the NHS to ensure patients receive the care and support they need.

Despite the circumstances, Rian has decided to make the most of his time in lockdown. He regularly shares his experience fighting cancer on his social media platforms and is currently in the process of writing a book and producing a podcast to further share his message.

The cancer mill is still very much open for business and I am trying to push people, that have not necessarily been through what Ive been through, to be more positive and see the world the way that I do, he says, I wake up in the morning, open my front door, take a deep breath of fresh air and I think this is amazing because five years ago I couldnt even open a window in the hospital.

See original here:
How Covid-19 has disrupted efforts to care for blood cancer patients - The Independent

To Read More: How Covid-19 has disrupted efforts to care for blood cancer patients – The Independent
categoriaBone Marrow Stem Cells commentoComments Off on How Covid-19 has disrupted efforts to care for blood cancer patients – The Independent | dataMay 15th, 2021
Read All

Keeping the physical appointment was critical, the show of support appreciated by Renville County Commissioner – West Central Tribune

By daniellenierenberg

When he called the Olivia Hospital and Clinic to postpone his physical, he was urged to keep it. Physicals are important, he was reminded.

Keeping that date proved to be a lifesaving decision.

The physical went well, and shortly after he told his daughter that he was as fit as a horse.

But Dr. Jon Kemp, his primary physician who had urged him to keep the date for the physical, noticed a slight abnormality in a standard blood test. He recommended further testing.

On Dec. 20 Kramer was diagnosed with multiple myeloma.

Thanks to the early diagnosis, Kramer, age 62, has the means of keeping this disease at bay. Its a cancer of the plasma cells in bone marrow, and is the second most common blood cancer.

He is about to undergo a stem cell transplant this week as part of his treatment.

He learned that hes not alone on the journey ahead.

At Tuesdays meeting of the Renville County Board of Commissioners, fellow board members came wearing T-shirts proclaiming: In this county, nobody fights alone.

Organizers of the surprise sold 76 of the T-shirts to show support for Kramer and raise funds for the Renville County Walk in the Park campaign. More than 40 T-shirt wearing supporters joined the meeting via Zoom. Staff in the health department sang a song to express their support, and staff members told him they would keep him in their thoughts and prayers.

Thank you, said Kramer. He told the West Central Tribune that he was totally surprised by the display of support.

He has lots of support from family and friends, and its all-important. Kramer farms in eastern Renville County. He has lined up plenty of helping hands while he undergoes the stem cell transplant, which will sideline him for at least six weeks.

He said doctors are confident the stem cell transplant can knock the cancer into remission. They will be harvesting bone marrow cells and freezing a portion of them to make it possible to perform at least two more transplants in future years as well.

The decision to keep the date of that routine physical made all the difference. Absolutely, said Kramer.

Health providers told him that in too many cases, multiple myeloma is not diagnosed until a patient comes in with a broken leg or other bone, and wondering why. The cancer carves holes and weakens bones as it progresses unbeknownst to the person.

Thanks to the early diagnosis, Kramer said they found only pinholes in his bones, having caught the disease in the first of its three stages. He began chemotherapy in early January, and it has proven effective, he added.

Read this article:
Keeping the physical appointment was critical, the show of support appreciated by Renville County Commissioner - West Central Tribune

To Read More: Keeping the physical appointment was critical, the show of support appreciated by Renville County Commissioner – West Central Tribune
categoriaBone Marrow Stem Cells commentoComments Off on Keeping the physical appointment was critical, the show of support appreciated by Renville County Commissioner – West Central Tribune | dataMay 15th, 2021
Read All

Crawley doctor urges residents to save the life of a stranger – Crawley Observer

By daniellenierenberg

Dr Pria Suchak, 31, initially registered with blood cancer charity DKMS last July, when she was inspired by a message on social media.

Every 20 minutes someone in the UK is diagnosed with a blood cancer those that affect the body's bone marrow, blood or lymphatic system - such as leukaemia, myeloma or lymphoma.

Yet, only two per cent of the UK population are registered as potential blood stem cell donors.

Pria said: My friends nephew had leukaemia, so she was using her Facebook page to encourage strangers to sign up him.

"Her nephew is of mixed heritage - half Chinese and half Caucasian. So she was trying to encourage more people for minority ethnic communities to sign up.

"I wanted to help give someone a second chance of life, so I signed up with DKMS, and my husband registered at the same time.

Patients from black, Asian or other minority backgrounds have a 20 per cent chance of finding the best possible blood stem cell match from an unrelated donor, compared to 69 per cent for northern European backgrounds.

Pria ordered a home swab kit in July 2020 and was contacted by DKMS just five months later, informing her that she was a potential match for a stranger in need of a lifesaving blood stem cell transplant.

The mum-of-two said: I received a call from a lady at DKMS. She said I was extremely close to being a match, but there were also eight other people who were identified as possible matches too.

"A few weeks later, I received another call from DKMS saying that I was the best match out of the nine potential donors.

"I didnt expect that. As it was nine of us in total, you never expect you'll be chosen.

Following further tests and a medical examination, a date was set for Pria to donate her blood stem cells by peripheral blood stem cell collection (PBSC).

In the run-up to the procedure, donors are given a drug with the growth factor G-CSF to increase the number of stem cells in the blood.

Pria said: At the time I had so many things going on. We had just gotten past Christmas, both of my children had birthdays in January, and I was about to sit a final GP exam.

"DKMS were excellent and did their best to schedule my G-CSF injections the day after I sat the exam. Of course, they checked that this wouldnt impact the patient.

My actual donation was really nice, especially as there were other donors in the room at the same time donating for other patients.

"We all got on really well and chatted loads. The clinicians told us that we were the chattiest group they had ever had. Ive remained terrific friends with one of my fellow donors.

Because of the minimum two-year anonymity period in the UK, donors can only contact the patient anonymously, by letter or email.

Pria said: I dont know anything about my patient other than she is a woman. She really is a stranger, but I hope my blood stem cells help her to live a long life.

I strongly encourage people in Crawley to register with DKMS. By donating their blood stem cells, not only will you potentially help a stranger in desperate need, but you'll also help their family and friends by giving them more time together.

Crawley has a population of around 114,000 with 14 neighbourhoods, the largest inland town in West Sussex. Yet, just 865 residents have registered with DKMS.

On May 28, DKMS celebrates their day of awareness - World Blood Cancer Day. This May, the charity aims to register 2,000 new registrations (roughly one for every donor in the UK waiting) by the end of May 28.

If you are called upon to donate your blood stem cells it is because you are likely the patients best match.

There are two donation methods. Around 90 per cent of all donations are made through a method called peripheral blood stem cell (PBSC) collection.

This method is very similar to giving blood. It involves being connected to an apheresis machine. Apheresis means 'to separate'.

This machine separates blood being taken from one of the donor's arms, and separates the blood stem cells from it. The donor's blood is then returned to them through their other arm. This is an outpatient procedure that is usually completed in four-to-six hours.

In just ten per cent of cases, donations are made through bone marrow collection. Bone marrow is taken from the pelvic bone under general anaesthetic, and this lasts around an hour.

DKMS need blood stem cell donors from all backgrounds. If you are aged between 17-55 and in good general health, you can support Gareth and the other 2,000 people in need of a lifesaving blood stem cell transplant by registering online at http://www.dkms.org.uk/register-now for your home swab kit.

By registering, you'll join a group of over 840,000 other DKMS lifesavers-in-waiting, ready to make a difference by giving someone a much-needed second chance of life.

Continue reading here:
Crawley doctor urges residents to save the life of a stranger - Crawley Observer

To Read More: Crawley doctor urges residents to save the life of a stranger – Crawley Observer
categoriaBone Marrow Stem Cells commentoComments Off on Crawley doctor urges residents to save the life of a stranger – Crawley Observer | dataMay 15th, 2021
Read All

Outlook for multiple myeloma: Figures and factors that affect it – Medical News Today

By daniellenierenberg

Multiple myeloma is a type of cancer that originates from white blood cells called plasma cells. Many factors affect the outlook for a person with this disease, including their age, overall health, and kidney function, as well as the stage of cancer at diagnosis.

Multiple myeloma is a cancer of the plasma cells, which are a type of white blood cell. Over time, myeloma cells multiply and accumulate in the bone marrow and solid parts of the bones.

Multiple myeloma can lead to organ damage that affects the kidneys, the bones, and the overall immune system.

In this article, we look at the outlook for people with different stages of multiple myeloma. We also look at the symptoms and treatment of multiple myeloma and what can affect a persons outlook.

The American Cancer Society (ACS) estimates that doctors will diagnose 34,920 new cases of multiple myeloma in 2021 and that there may be 12,410 deaths from the disease.

When a person receives a multiple myeloma diagnosis, the doctor will use the Revised International Staging System (RISS) to determine the stage of the cancer. This staging system is based on:

A person will receive a diagnosis of either stage 1, 2, or 3 multiple myeloma. There is also a stage 0, a slow-growing type of multiple myeloma that is called smoldering myeloma.

However, survival rates are based on summary staging, which the Surveillance, Epidemiology and End Results (SEER) program developed. This staging system groups cancers into:

As multiple myeloma does not spread to the lymph nodes, the regionalized stage is not relevant to this cancer.

The 5-year relative survival rate for multiple myeloma is as follows:

These statistics mean that a person with localized multiple myeloma is 75% as likely as someone without multiple myeloma to live for 5 years after receiving the diagnosis.

People who receive a smoldering myeloma diagnosis can live for years without any treatment. Additionally, beginning treatment early does not appear to affect the outlook.

The stage of multiple myeloma is among the factors that can affect a persons outlook.

Other factors include:

A small 2014 study involving 82 people with an average age of 61 years found that those with damaged kidneys had a median survival rate of 13 months, whereas those without kidney damage lived for an average of 41 months.

Additionally, changes in chromosomes and genetic abnormalities can affect a persons outlook. The specific chromosomal abnormalities that doctors consider high risk affect chromosomes 4, 14, 16, and 17.

The treatment for smoldering myeloma typically consists of watchful waiting, as this stage is slow growing.

Drug therapy for multiple myeloma consists of:

Other treatment options include:

Multiple myeloma can cause:

A doctor may recommend supportive therapies to help manage these side effects. These may include surgery to help support weakened bones and prevent fractures.

Learn more about the treatment options and how to manage the symptoms.

A person should contact a healthcare professional if they notice any symptoms of multiple myeloma.

After receiving a multiple myeloma diagnosis, a person may want to ask the following questions:

Multiple myeloma is a type of cancer that affects the blood. The outlook for people with multiple myeloma depends on the stage of the cancer at the time of diagnosis. It also depends on how well a persons kidneys are functioning and their age and overall health.

However, different treatment options are available. A person should talk with a healthcare professional about which treatment options would best suit them.

View original post here:
Outlook for multiple myeloma: Figures and factors that affect it - Medical News Today

To Read More: Outlook for multiple myeloma: Figures and factors that affect it – Medical News Today
categoriaBone Marrow Stem Cells commentoComments Off on Outlook for multiple myeloma: Figures and factors that affect it – Medical News Today | dataMay 15th, 2021
Read All

BMSCs differentiated into neurons, astrocytes and oligodendrocytes alleviated the inflammation and demyelination of EAE mice models – DocWire News

By daniellenierenberg

This article was originally published here

PLoS One. 2021 May 13;16(5):e0243014. doi: 10.1371/journal.pone.0243014. eCollection 2021.

ABSTRACT

Multiple sclerosis (MS) is a complex, progressive neuroinflammatory disease associated with autoimmunity. Currently, effective therapeutic strategy was poorly found in MS. Experimental autoimmune encephalomyelitis (EAE) is widely used to study the pathogenesis of MS. Cumulative research have shown that bone marrow mesenchymal stem Cells (BMSCs) transplantation could treat EAE animal models, but the mechanism was divergent. Here, we systematically evaluated whether BMSCs can differentiate into neurons, astrocytes and oligodendrocytes to alleviate the symptoms of EAE mice. We used Immunofluorescence staining to detect MAP-2, GFAP, and MBP to evaluate whether BMSCs can differentiate into neurons, astrocytes and oligodendrocytes. The effect of BMSCs transplantation on inflammatory infiltration and demyelination in EAE mice were detected by Hematoxylin-Eosin (H&E) and Luxol Fast Blue (LFB) staining, respectively. Inflammatory factors expression was detected by ELISA and RT-qPCR, respectively. Our results showed that BMSCs could be induced to differentiate into neuron cells, astrocytes and oligodendrocyte in vivo and in vitro, and BMSCs transplanted in EAE mice were easier to differentiate than normal mice. Moreover, transplanted BMSCs reduced neurological function scores and disease incidence of EAE mice. BMSCs transplantation alleviated the inflammation and demyelination of EAE mice. Finally, we found that BMSCs transplantation down-regulated the levels of pro-inflammatory factors TNF-, IL-1 and IFN-, and up-regulated the levels of anti-inflammatory factors IL-10 and TGF-. In conclusion, this study found that BMSCs could alleviate the inflammatory response and demyelination in EAE mice, which may be achieved by the differentiation of BMSCs into neurons, astrocytes and oligodendrocytes in EAE mice.

PMID:33983943 | DOI:10.1371/journal.pone.0243014

See original here:
BMSCs differentiated into neurons, astrocytes and oligodendrocytes alleviated the inflammation and demyelination of EAE mice models - DocWire News

To Read More: BMSCs differentiated into neurons, astrocytes and oligodendrocytes alleviated the inflammation and demyelination of EAE mice models – DocWire News
categoriaBone Marrow Stem Cells commentoComments Off on BMSCs differentiated into neurons, astrocytes and oligodendrocytes alleviated the inflammation and demyelination of EAE mice models – DocWire News | dataMay 15th, 2021
Read All

Genenta Phase I/II Glioblastoma Data at ASGCT Show Temferon Delivered Tumor-Focused Interferon ExpressionData presented at the 2021 American Society…

By daniellenierenberg

MILAN, Italy and NEW YORK, May 14, 2021 (GLOBE NEWSWIRE) -- Genenta Science, a clinical-stage biotechnology company pioneering the development of an investigational hematopoietic stem progenitor cell immuno-gene therapy for cancer (Temferon), will present new clinical data from a Phase I/IIa study of Temferon in patients affected by glioblastoma multiforme (GBM) in an oral presentation at the 2021 American Society for Gene and Cell Therapy (ASGCT) Annual Meeting, taking place virtually on May 11-14, 2021.

The data presented at ASGCT are from Genentas ongoing trial of Temferon in patients with GBM. The presentation focuses specifically on patients who have undergone a follow-up surgical procedure for their cancer. In addition to being a treatment option, follow-on surgery provides investigators with an opportunity to understand the impact of therapies at a cellular and molecular level.

The ASGCT presentation shows that genetic markers of Genentas Temferon were detectable in tumor specimens from all four patients with progressive disease who underwent follow-on surgery. Furthermore, the expression of interferon- (IFN) responsive gene signatures in those tumors was increased compared with pre-treatment levels, which suggests that interferon- (IFN-) had been released locally in the tumor by cells derived from Genentas investigational treatment.

Carlo Russo, Chief Medical Officer at Genenta Science, said: These preliminary results provide exciting indications that Temferon acts in the way we anticipated even in the relatively inaccessible setting of glioblastoma multiforme. The data are encouraging and in line with our pre-clinical results, with early evidence that Temferon delivers biological effects that may impact the progression of individual lesions.

One of the four patients had two lesions removed at the second surgery; one was a prior lesion that had not been removed during the first surgery and was stable; the other was a relapsing progressing lesion that had developed at the first surgery site. Compared with the progressing tumor, the stable lesion displayed a higher proportion of T cells and Tie2 Expressing Monocytes (TEMs) within the myeloid infiltrate and had a higher IFN-response signature.

The data presented at ASGCT also supported the initial safety and tolerability profile of Temferon. Concentrations of IFN- in the plasma and cerebrospinal fluid of patients remained low, while IFN- responses were identified in myeloid cells that infiltrate tumors. Temferon-derived differentiated cells also persisted in peripheral blood and bone marrow for up to 18 months at lower levels, indicating the potential durability of the intervention. No dose limiting toxicities have been identified.

Presentation Details:

Title: Changes in the Tumor Microenvironment in Patients with Glioblastoma Multiforme Treated with IFN-a Immune Cell & Gene Therapy (TEM-GBM_001 Study)

Time: Friday May 14, 2021 at 1.30 PM Eastern Time (7.30 PM CET)

Presenting: Carlo Russo, CMO

To access the abstract please visit https://annualmeeting.asgct.org/

About Genenta Science

Genenta (www.genenta.com) is a clinical-stage biotechnology company pioneering the development of a proprietary hematopoietic stem cell gene therapy for the treatment of a variety of cancers. Temferon is based on ex-vivo gene transfer into autologous hematopoietic stem/progenitor cells (HSPCs) to deliver immunomodulatory molecules directly via tumor-infiltrating monocytes/macrophages (Tie2 Expressing Monocytes - TEMs). Temferon, which is under investigation in a Phase I/IIa clinical trial in newly diagnosed glioblastoma multiforme patients, is not restricted to pre-selected tumor antigens nor type and has been designed to reach solid tumors, one of the main unresolved challenges in immuno-oncology. Genenta is based in Milan, Italy, and New York, USA.

About Glioblastoma MultiformeGlioblastoma multiforme (GBM) is a rapidly-growing cancer of the glial cells that support the nerve cells within the brain. The main treatment for GBM is surgery to reduce the bulk of the tumor, which can prolong the lives of patients and to improve quality of life. A second round of surgery is increasingly considered to have significant benefit in prolonging the lives of patients with GBM. Even with treatment, GBM virtually always recurs, typically resulting in death within the first 15 months from diagnosis.

Read more:
Genenta Phase I/II Glioblastoma Data at ASGCT Show Temferon Delivered Tumor-Focused Interferon ExpressionData presented at the 2021 American Society...

To Read More: Genenta Phase I/II Glioblastoma Data at ASGCT Show Temferon Delivered Tumor-Focused Interferon ExpressionData presented at the 2021 American Society…
categoriaBone Marrow Stem Cells commentoComments Off on Genenta Phase I/II Glioblastoma Data at ASGCT Show Temferon Delivered Tumor-Focused Interferon ExpressionData presented at the 2021 American Society… | dataMay 15th, 2021
Read All

How One Round of Gene Therapy Fixed 48 Kids’ Immune Systems – Singularity Hub

By daniellenierenberg

Gene therapy has shown promise in recent years for treating a range of diseases, including sickle-cell anemia, hemophilia, various forms of inherited blindness, mesothelioma, and Duchenne muscular dystrophy. A new success story may soon be added to this list, with the publication yesterday of the outcomes of a clinical trial that used gene therapy to cure a rare immune system disorder in infants.

The study, described in the New England Journal of Medicine, was carried out by researchers from UCLA and Great Ormond Street Hospital in London over the course of five years, beginning in 2012.

Adenosine deaminase (ADA) is an enzyme found in a type of white blood cell called lymphocytes, which are primarily active in the brain, GI tract, and thymus gland. Lymphocytes make antibodies and attack infected cells, so theyre pretty crucial to the immune system.

ADAs job is to convert a molecule thats harmful to lymphocytes into a non-harmful version of itself. If ADA cant work its magic, that molecule starts to build up in lymphocytes, becoming toxic and ultimately killing the cellsand leaving the immune system virtually defenseless, highly vulnerable to invaders like viruses and bacteria.

Mutations in the ADA gene mean the body doesnt make enough of the enzyme to successfully do its job. This deficiency of ADA leads to a condition called severe combined immunodeficiency (SCID). Those suffering from SCID can not only get sick very easily, but conditions that would be neutralized by a normal immune system quickly become deadly for them.

SCID was more commonly known as bubble boy disease after David Vetter, a boy born in Texas in 1971, spent 12 of his 13 years of life enclosed in a plastic bubble to protect him from germs.

About 20 different genetic mutations can cause SCID; ADA-SCID refers to immunodeficiency caused by lack of the ADA enzyme: severe combined immunodeficiency due to adenosine deaminase deficiencya bit of a mouthful. The worst part of ADA-SCID is that it occurs in babies; most are diagnosed with the condition before theyre even six months old, and without treatment they typically dont live past age two.

ADA is rare, estimated to occur in about 1 in 200,000 to 1,000,000 newborns worldwide; both the mothers and the fathers ADA gene must have mutations for the child to end up with this condition.

The first step in the gene therapy treatment was to collect hematopoietic stem cells, which are those that manufacture blood cells, from the patients. The researchers then inserted an intact copy of the ADA gene into the stem cells using an RNA virus called a lentivirus (the most well-known lentivirus is HIV).

The altered cells were re-injected into the patients, where they started producing ADA normally, yielding healthy immune cells.

Out of 50 total patients30 in the US and 20 in the UKwith ADA-SCID, 48 appear to have been rid of their condition thanks to the gene therapy, with no complications reported. The two patients who didnt have success with the therapy went back to traditional treatment methods, and didnt experience any adverse effects as a result of having tried the therapy.

If, or hopefully when, gene therapy becomes the go-to treatment for ADA-SCID, it will be a welcome reprieve from traditional options, which are neither pleasant nor cheap: patients need weekly injections of ADA until a bone marrow transplant can be done, and absent a donor, they must consistently receive injections, take antibiotics, and undergo antibody infusions for life.

If approved in the future, this treatment could be standard for ADA-SCID, and potentially many other genetic conditions, removing the need to find a matched donor for a bone marrow transplant and the toxic side effects often associated with that treatment, said Dr. Claire Booth, co-author of the study and a consultant in pediatric immunology and gene therapy at Londons Great Ormond Street Hospital.

Theres no mention of the cost of the therapy, nor whether this could be a prohibitive factor to making it a viable option. Nonetheless, the study is encouraging not just for its potential to revolutionize treatment of ADA-SCID, but as a harbinger for the promise of gene therapy for a multitude of genetic conditions.

People ask us, is it a cure? Who knows long term, but at least up to three years, these children are doing well, said Dr. Stephen Gottschalk, who was not involved in this study but performed a similar gene therapy on kids with SCID at St. Jude Childrens Research Hospital in Memphis. The immune function seems stable over time so I think it looks very, very encouraging.

Image Credit: liyuanalison from Pixabay

Follow this link:
How One Round of Gene Therapy Fixed 48 Kids' Immune Systems - Singularity Hub

To Read More: How One Round of Gene Therapy Fixed 48 Kids’ Immune Systems – Singularity Hub
categoriaBone Marrow Stem Cells commentoComments Off on How One Round of Gene Therapy Fixed 48 Kids’ Immune Systems – Singularity Hub | dataMay 15th, 2021
Read All

Thin skin vs. thick skin: What is the difference? – Medical News Today

By daniellenierenberg

Skin is the largest and heaviest organ of the body. It consists of three main layers; the epidermis, dermis, and hypodermis. Skin can either be thin or thick. The main difference is the thickness of the epidermis and dermis, which are the top two layers of skin.

Thin skin covers most of the body and can vary in thinness, with the thinnest skin covering the eyelids. Thick skin is present on the soles of the feet and palms of the hands.

In addition to differing thicknesses, the skin also differs in what is present in the layers. For example, thick skin has no hair follicles or sebaceous glands, whereas thin skin does.

In this article, we look at the differences in appearance, structure, and function of thin and thick skin.

Thin skin covers most of the body, except on the soles of the feet and palms of the hands, and contains fewer cellular layers than thick skin.

The epidermis of thin skin ranges from 0.070.15 millimeters (mm). Thin skin can vary in thickness in different parts of the body and is particularly thin across the eyelids. Thin skin is thickest on the upper back.

Thin skin also contains hair follicles, sweat glands, and sebaceous glands.

Thick skin is present on the soles of the feet and palms of the hands. This is because these areas receive more friction than other areas of the body, and thicker skin helps to protect from potential damage.

The epidermis of thick skin can be up to 1.5 mm. Thick skin does not contain any hair follicles or sebaceous glands. Thick skin also contains no arrector pili muscles, which cause goosebumps.

Thick skin is thicker due to it containing an extra layer in the epidermis, called the stratum lucidum. Thick skin actually has a thinner dermis layer than thin skin, but is still thicker due to the stratum lucidum layer present in the epidermis.

Thick and thin skin appear differently under a microscope. Thin skin contains four layers in the epidermis, while thick skin contains a fifth layer. These layers include:

The stratum basale, also known as the stratum germinativum, is the deepest layer of the epidermis. It is the layer just above the dermis.

This layer continuously produces new skin cells. It also contains melanocytes, which are cells that produce skin pigment and help protect the skin from sun damage.

The stratum spinosum consists of eight to ten layers of cells. People may refer to the stratum spinosum as the prickle cell layer because of the irregular structure of cells, which look like spines or prickles.

The stratum granulosum consists of three to five layers of cells. The stratum granulosum contains granules, which are rich in lipids.

Only thick skin contains the stratum lucidum layer. The stratum lucidum is a thin, transparent layer consisting of two to three layers of cells. It contains a protein called eleidin.

The stratum corneum is the upper layer of the epidermis. It consists of 2030 layers of cells. It contains keratin and horny scales, which make it tougher and able to thicken into calluses.

The stratum corneum contains dead keratinocytes, which produce defensins. Defensins are strings of amino acids that protect the body from infection.

Connecting the dermis and epidermis are structures called dermal papillae. Dermal papillae are more prominent in thick skin than thin skin.

Dermal papillae increase the surface area between the epidermis and dermis, allowing for more oxygen, food, and waste to pass between the layers.

The following table summarizes the key structural differences between thin and thick skin:

Skin in general has many different functions, such as protection, sensation, and thermoregulation. Both thin and thick skin have properties that allow the skin to function correctly.

For example, thin skin contains hair follicles, which are important in producing hair to help regulate temperature and protect from ultraviolet radiation. Hair follicles also provide epithelial stem cells, which help repair wounds.

In addition, thin skin contains sebaceous glands, which produce sebum. Sebum helps to lubricate the skin and protect against infections.

Thin skin also contains eccrine and apocrine sweat glands. Sweat glands help to regulate body temperature by releasing sweat to cool the body, and also help to repair skin damage.

Thick skin provides protection from damage in areas that experience more friction and abrasion, such as the palms of the hands and the soles of the feet. Thick skin also contains eccrine sweat glands to help regulate body temperature.

Skin is a large, complex organ with a wide range of vital roles. Thin skin and thick skin have different structures and functions in the body. The layers they contain provide their thickness and allow them to carry out their roles.

Thin skin is present on most of the body, and helps to protect against infections, regulate temperature, and allows hair to grow. Thick skin covers the palms of the hands and the soles of the feet and protects these areas from extra abrasion and friction.

Go here to read the rest:
Thin skin vs. thick skin: What is the difference? - Medical News Today

To Read More: Thin skin vs. thick skin: What is the difference? – Medical News Today
categoriaSkin Stem Cells commentoComments Off on Thin skin vs. thick skin: What is the difference? – Medical News Today | dataMay 15th, 2021
Read All

Global To Drive The Substantial Growth Of The Medical Skin Care Products Market KSU | The Sentinel Newspaper – KSU | The Sentinel Newspaper

By daniellenierenberg

The Medical Skin Care Products Market report by Persistence Market Research throws light on the fact that the healthcare industry is more towards value-based care and continuous improvements based on the feedback. The mainstreaming of this practice is increasing all through. As such, the healthcare providers could make way for customized, lasting, and effective solutions to render utmost care to patients.

Medical skin care products are used for beautifying or to address some other skin care problems. The cosmetic industry is booming and skin care forms a very huge part of this industry. The aesthetic appearance is so important that people spend a lot on skin care products and treatment. People being more technologically aware of the various new skin care products trending in the market. In addition to the aesthetic application, the medical skin care products are also used to address issues such as acne, pimples or scars.

The medical skin care products is primarily driven by the need of natural based active ingredients products which are now trending in the market. Consumers demand medical skin care products which favor health and environment. Moreover, the consumers are updated with the trends so that various companies end up providing such products to satisfy the customers. For instance, a single product face mask has thousands of different variants. This offers consumers different options to select the product depending on the skin type. Moreover, the market players catering to the medical skin care products are offering products with advanced technologies. For instance, Santinov launched the CICABEL mask using stem cell material based on advanced technologies. The stem cells used in the skin care product helps to to protect and activate the cells and promote the proliferation of skin epidermal cells and the anagenesis of skin fibrosis.

Get To Know Sample of Report@https://www.persistencemarketresearch.com/samples/18469

Medical Skin Care Products Market: Segmentation

On the basis of product type the medical skin care products market can be segmented as:

On the basis of application, the medical skin care products market can be segment as:

On the basis of distribution channel, the medical skin care products market can be segment as:

Request For Table of Content@ https://www.persistencemarketresearch.com/toc/18469

Medical skin care products are used to address basic skin problems ranging from acne to scars. There are various advancements in the ingredients used to offer skin care products to the consumers. For instance, the use of hyaluronic acid and retinoids is the latest development in the industry. The anti-aging creams are at the forefront as the help treating issues such as wrinkles, scars, acne, and sun damage. Another, product in demand is the probiotic skincare which include lactobacillus and bifidobacterium.

In terms of geography, medical skin care products market has been divided into five regions including North- America, Asia- Pacific, Middle-East & Africa, Latin America and Europe. North America dominated the global medical skin care products market as international players are acquiring domestic companies to make their hold strong in the U.S. LOral is accelerating its U.S. market by signing a definitive agreement with Valeant Pharmaceuticals International Inc. to acquire CeraVe, AcneFree and Ambi skin-care brands for US$ 1.3 billion. The acquisition is expected LOreal to get hold of the brands in the price-accessible segment. Asia Pacific is expected to be the fastest growing region owing to the increasing disposable income and rising awareness towards the skin care products.

Some of the medical skin care products market participants are Avon Products Inc., Beiersdorf AG, Colgate-Palmolive Company, Kao Corporation, LOral S.A., Procter & Gamble, Shiseido Company, The Estee Lauder Companies Inc., Unilever PLC, Revlon, Clinique Laboratories, llc., Murad, LLC., SkinCeuticals, RMS Beauty, J.R. Watkins and 100% PURE.

Access Full Report@https://www.persistencemarketresearch.com/checkout/18469

About Us:

Persistence Market Research is here to provide companies a one-stop solution with regards to bettering customer experience. It does engage in gathering appropriate feedback after getting through personalized customer interactions for adding value to customers experience by acting as the missing link between customer relationships and business outcomes. The best possible returns are assured therein.

Contact Us:

Persistence Market ResearchAddress 305 Broadway, 7th Floor, New York City, NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Salessales@persistencemarketresearch.comWebsite https://www.persistencemarketresearch.com

Read more from the original source:
Global To Drive The Substantial Growth Of The Medical Skin Care Products Market KSU | The Sentinel Newspaper - KSU | The Sentinel Newspaper

To Read More: Global To Drive The Substantial Growth Of The Medical Skin Care Products Market KSU | The Sentinel Newspaper – KSU | The Sentinel Newspaper
categoriaSkin Stem Cells commentoComments Off on Global To Drive The Substantial Growth Of The Medical Skin Care Products Market KSU | The Sentinel Newspaper – KSU | The Sentinel Newspaper | dataMay 15th, 2021
Read All

Icy Microneedle Patch Delivers Cell Therapy, Then Melts – Freethink

By daniellenierenberg

City University of Hong Kong (CityU) scientists have created a new microneedle patch to deliver cell therapies but rather than using traditional materials for their needles, they used ice.

The challenge: Cell therapies use living cells to treat medical conditions. Stem cell transplants are a form of cell therapy, as are some types of cancer immunotherapy.

These cells are typically transplanted into the patient via an implant, injection, or surgical graft. Not only can those delivery methods be painful and invasive, they also carry a risk of infection and must be administered by an experienced professional.

That limits the use of cell therapy to people who are willing to subject themselves to the transplantation process and who also have access to professionals capable of administering them.

Ice, ice baby: Microneedle patches are a growing trend in drug delivery. They're usually about the size of a postage stamp and are covered in tiny needles made of biodegradable substances packed with drugs.

Press the patch down on the skin like a band aid, and the needles break off from the back of the patch. They then dissolve into the skin, painlessly delivering the drug.

CityU created the microneedles for its patch out of ice, packed with living cells, coated in a protective medium.

Ice is easier to make and work with than the materials traditionally used for dissolving micropatches, but it melts just as readily. Even better, the icy microneedles can preserve the viability of living cells something other types of patches can't do.

The freezing cold water: Because the microneedles are made of ice, they would have to be transported and stored frozen, which could be a limiting factor in some places.

Additionally, the icy microneedle patch performed well when used to deliver a cell therapy to mice as a proof of concept, but it still needs to be proven safe and effective in humans.

What's next: If CityU's microneedle patch is cleared for use in people, it could have applications even beyond cell therapy.

"This device can also package, store, and deliver DNA, vaccines, and more."

"This device can also package, store, and deliver other types of bioactive therapeutic agents, such as proteins, peptides, mRNA, DNA, and vaccines," lead researcher Xu Chenjie said in a press release.

"I hope this device offers an easy-to-use and effective alternative method for the delivery of therapeutics in clinics."

We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [emailprotected].

Visit link:
Icy Microneedle Patch Delivers Cell Therapy, Then Melts - Freethink

To Read More: Icy Microneedle Patch Delivers Cell Therapy, Then Melts – Freethink
categoriaSkin Stem Cells commentoComments Off on Icy Microneedle Patch Delivers Cell Therapy, Then Melts – Freethink | dataMay 15th, 2021
Read All

The Limited-Edition J-Beauty + K-Beauty Allure Beauty Box – Allure

By daniellenierenberg

South Korea and Japan have given the beauty world many gifts cleansing balms, glass-skin serums, inventive masks for making skin gleam. And at this time of unprecedented violence against Asians in this country, the Allure family is more passionate than ever about championing Asian innovation and Asian voices. We will speak out against racism and intolerance and do more than ever to support Asian-owned beauty brands, starting with this special edition of the Allure Beauty Box. Inside are some of the most influential K-beauty and J-beauty products of all time ones that have revolutionized our editors routines and the entire beauty industry. Sulwhasoo First Care Activating Serum is an innovative prep step for glowing skin (one bottle is sold every 10 seconds worldwide) and AHC Essential Real Eye Cream for Face, a unique eye and face cream hybrid, is cherished in South Korea (where one is sold every three seconds.) We hope they become as beloved by you as they are by us! And if you would like to get involved in the movement to Stop Asian Hate, you can also join Allure editors in donating to the Asian American Legal Defense and Education Fund and to GoFundMe's AAPI Community Fund to Stop Asian Hate at gofundme.com/aapi.

- The editors of Allure

You can find all these products and more in this limited-edition box. For just $60 (or $40 exclusively for Allure Beauty Box members), you'll get ten of our favorite J-Beauty and K-Beauty products, worth over $200 in value. Quantities are limited, so order now to take advantage of this exclusive offer before they're sold out.

Check out what's in this limited-edition box.

Read this article:
The Limited-Edition J-Beauty + K-Beauty Allure Beauty Box - Allure

To Read More: The Limited-Edition J-Beauty + K-Beauty Allure Beauty Box – Allure
categoriaSkin Stem Cells commentoComments Off on The Limited-Edition J-Beauty + K-Beauty Allure Beauty Box – Allure | dataMay 15th, 2021
Read All

Munshi Explains Staging, Prognosis, and Treatment for a Patient With Acute Graft-vs-Host-Disease – Targeted Oncology

By daniellenierenberg

During a virtual Targeted Oncology Case-Based event, Pashna N. Munshi, MD, associate clinical director, Stem Cell Transplant and Cellular Immunotherapy Program, assistant professor of Medicine, Georgetown University School of Medicine at MedStar Georgetown University Hospital, discussed the case of a 48-year-old male patient with acute graft-versus-host-disease (GVHD).

Targeted OncologyTM: What factors contribute to the risk of acute GVHD in a patient like this one?

MUNSHI: A lot of donor-recipient factors and other conditions increase the risk of acute GVHD. [These include] gender matching, human leukocyte antigen disparity, degree of mismatch, and having an older donor. Theres also [blood group] incompatibility and definitely CMV mismatched status. Though now that the FDA has approved letermovir [Prevymis] for patients who are undergoing allogeneic transplant if they have a CMV-positive donor,1 were seeing very little CMV reactivation. That has been a bit of a game changer for the good.

Patients have an increased risk of GVHD if they receive a transplant from a peripheral blood stem cell source versus a bone marrow graft, because the peripheral blood has more T cells in its composition. The myeloablative regimens [are associated with greater risk of GVHD than] reduced-intensity regimens.2

Do you agree with these poll results? Would you start with systemic therapy for this patient?

It can get a little tricky whether you want to give patients systemic steroids or wait and see if something gentler might work. I tend to agree that, at this point, the patient needs to immediately start with systemic steroids, because there are 2 organ systems involved. Once the lower gastrointestinal [GI] tract gets involved, it surely portends a poor prognosis if the grade becomes worse. And they become refractory to steroids very quickly: 50% of these patients will eventually not respond to steroids.

How would you stage this patients GVHD?

There are many criteria for staging GVHD. The criteria that most clinical trials use are the Mount Sinai Acute GVHD International Consortium [MAGIC] criteria.3 They are adapted from the Glucksberg criteria, which are very similar.4

Three organ systems [are involved in] acute GVHD: the skin, the liver, and the GI tract. Skin involvement is graded on the basis of the body surface area involved. Liver involvement is graded on the basis of the total bilirubin level. Upper GI involvement is graded on the basis of anorexia, nausea, and vomiting, and it just comes in stage 0 or stage I, depending on if its persistent or not. To determine lower GI tract involvement, we measure stool volume, especially when patients are admitted to the hospital. But once they go home, we cant do that, so we ask them how many times a day they have diarrhea. Is it watery? Is it muddy? Whats the volume? Is it large or small?

The patient can characterize the stool and tell their doctor how many times per day: 4 times, 5 times, 6 times. This patient is having 4 episodes per day; that puts them in stage I lower GI GVHD. But with a 60% body rash, that puts them in stage III skin GVHD. So really getting up there with skin, but not so much yet for GI. Once each organ [involvement is] staged, theres an aggregate score based on the combination of these organs. Then we come up with the grade.

In this patient, with a stage III rash, stage I upper GI, and stage I lower GI GVHD, they have a total score of a grade 2 acute GVHD. This is still in the mild to moderate zone. Anything above grade 2 is considered very severe GVHD.

Would you recommend that this patient receive systemic steroids?

In the scheme of things, somebody who didnt have symptoms and now is having active symptoms, especially with lower GI tract involvement, definitely needs high-dose steroids to get in there and [stop] the inflammation.

On what would you base a prognosis for this patient?

We can risk stratify these patients on the basis of the stage of organ involvement.5 Broadly, they can be at a standard risk or at a high risk [of poor response to treatment, mortality, and transplant-related mortality]. The patient is at high risk once they have very active GI involvement [or] if they have 2 organs involved. This is one more reason to think about starting these patients early on steroids. Why is this important? Because once a patient has high-risk GVHD, the chance of response to steroids is even lower, and once they dont respond to steroids, there is a higher [risk of] transplant-related mortality. The probability of transplant-related mortality is 44% for patients with high-risk acute GVHD flares, [versus] 22% for patients with low-risk GVHD [P < .001]. These are a few things to think about. Act very swiftly if a patient has 2-organ involvement, especially the lower GI tract.

Can biomarkers guide treatment decisions in this case?

In the field of GVHD, biomarkers are a very exciting advancement. We want a prognostic model of which patients will get GVHD. Can biomarkers in the blood [help] prevent GVHD and improve transplant outcomes?

A large prospective trial was done through the Bone and Marrow Transplant Clinical Trials Network where a set of 6 biomarkers were tested at several time points after the transplant.6 They saw that they could predict when GVHD happened by using these biomarkers. They could see that as the levels of these biomarkers increased, the patients had higher scores of GVHD. Once treatment was started, if specific biomarkers went down it was predictive of response at day 28 [56% vs 17%; odds ratio, 6.32; P = .001] and also predictive of [decreased] transplant-related mortality by day [180 (49% vs 87%; P < .0001)]. If all these biomarkers went up aggressively, overall survival was lower [P < .0001].

The MAGIC Consortium also tried to test biomarkers.7 They looked at 2 biomarkers, REG3Athe regenerating islet-derived 3-alpha, which is specific for the GI tract and ST2. Looking at these 2 biomarkers, they came up with an algorithm of prediction. On the basis of how these biomarkers responded at the time of GVHD and to treatment, they could predict mortality by 6 months. In clinical practice, it is difficult to use this day in and day out. We still use our clinical skills to assess the degree of GVHD. But all patients eventually get treated the same waywith high-dose steroidsdespite biomarkers being elevated or not.

At this point, [biomarker data] may tell us an association rather than a causality. Were not openly using biomarkers to guide our practice, but I think were learning to use them a bit more and knowing that theres something out there that could be used as a predictive tool. It is an exciting development.

Are there alternatives to systemic steroids?

Steroids remain the mainstay. We need to see if we can move to other therapies that are coming down the pipeline.

Data from the REACH1 [NCT02953678] and REACH2 [NCT02913261] trials led to ruxolitinib [Jakafi] approval.8,9 If we can use ruxolitinib in an up-front setting, [maybe we] can use the newly approved rho-kinase or ROCK2 inhibitors as well.10 We want to think about steroid-sparing agents. Maybe biomarkers can guide us in the future for that. But right now, in terms of, Do I start my patient on treatment? or Will they respond to this treatment, I find that [biomarkers are] still not a very useful tool because at the end of the day, the patients all still need to be started on steroids.

The minute you see that your patient is not responding to steroids, very quickly start them on a JAK2 inhibitor.

How do you dose steroids?

This patient received 2 mg/kg of prednisone per day for 14 days. Two mg/kg is a very high dose. The standard is 1 to 2 mg/kg.11 There are data to show that 2 mg isnt any different from 1 mg.12 But a lot of times, if its a very active, severe flare, we will use 2 mg/kg. Im not sure if I would have done 2 mg/kg in this case, but its certainly not out of the realm of treating these patients.

The goals of primary therapy for acute GVHD are to stabilize the organ manifestations, or improve them, and limit long-term treatment toxicity. We want to improve functional capacity and prevent any reduction in quality of life. First-line therapy is always with corticosteroids. Now ruxolitinib is approved for second-line therapy.8 There have been data to show that it can improve overall survival.

How do you taper glucocorticosteroids after achieving initial response?

If the patient is taking 2 mg/kg of steroids, an average 70-kg person, thats over 100 mg of steroids. After 2 weeks, they probably are not getting up from a seated position anymore with all the muscle wasting that can happen.

[As soon as they start to show improvement, it would be safe to start to taper the dose.] Traditionally, [the patient receives the full dose for] at least a week or 10 days. Then it is traditional to decrease the dose 10% every 5 to 7 days, gently coming down, making sure that the patient is not having any flares.

Describe the multidisciplinary teambased approach that you use for acute GVHD.

The incidence of acute GVHD in the patient population is anywhere from 30% to 50%, despite the best [efforts at] prophylaxis. Most patients will get some form of acute GVHDit can go up to even 80%. This [necessitates] a multidisciplinary team approach. If the patient is having diarrhea, theyre having malnourishment. Theres nausea or anorexia, so theyre not eating on top of that. Then theres skin rash, so the risk of infections and cellulitis. Theyre in pain. A dermatologist probably should be involved at some point. A nutrition team is also needed. If theyre on high-dose steroids, physical therapy should be involved up front. So early involvement of a whole team is very important. Thats usually how I treat my patients and usually how centers of excellence continue to treat active patients with GVHD after transplantation.

How do you determine if a patients GVHD is steroid refractory?

The strict definition of steroid refractoriness or resistance is if theres progression of acute GVHD within 3 to 5 days of starting high-dose steroids, or theres failure to improve within 1 week of starting these steroids, or theres incomplete response after more than 28 days of any immunosuppressive treatment.13 So, by and large, in 3 days or a maximum of 7 days, [it will be clear] if the patients GVHD is going to be steroid refractory or not.

Steroid dependence is [defined as when] the patients GVHD initially responded to steroids, but the disease flares when the dose is tapered, so they cannot be taken off the steroids.

Steroid intolerance is when the patient develops [unacceptable toxicity from steroids such as] uncontrolled diabetes or myopathies. Then it becomes hard to keep them on steroids.

What are the treatment options for patients with steroid-refractory GVHD?

Ruxolitinib now has been FDA approved for steroid-refractory acute GVHD, and its a category 1 definition.8,11 Ibrutinib [Imbruvica] has also been approvedits only FDA-approved indication is for chronic GVHD.14 There are many other treatment options [in the National Comprehensive Cancer Network guidelines].11 Oncologists always end up using some combination or other depending on which of these different immune suppression medications they are comfortable using.

What new treatments are in the pipeline?

In terms of BTK inhibitors, I dont think theres anything other than ibrutinib at this time point. There are many JAK inhibitors being studied.15 Baricitinib is another JAK inhibitor thats actively being studied for chronic GVHD, as well as for pulmonary GVHD.16 Then there are other rho-kinase inhibitors, called ROCK2 inhibitors. This is really making waves. Were very excited about this drug because the response rates are very high, about 70%.10 Its a smaller study, but clearly it has antifibrotic pathways. So I think thats going to be used much more in the up-front setting.

Then theres also alpha-1 antitrypsin, which targets the liver and macrophages and has very promising results from trials done at Dana-Farber Cancer Institute and Michigan.17 So I think were going to see very different characteristics of how to approach GVHD.

What data support the use of ruxolitinib in this setting?

The REACH1 study led to the approval of ruxolitinib for steroid-refractory acute GVHD.9,18 In this phase 2 trial, patients with steroid-refractory acute GVHD got ruxolitinib (5 mg twice a day) with or without a calcineurin inhibitor. They were allowed to remain on steroids. The primary end point of this trial was overall response rate [ORR] at day 28. They also looked at response rates at day 56 and day 100, biomarkers, failure-free survival, and durability of these responses. The ORR at day 28 was very high: 54.9%.18 The best ORR, which was at any given time during the treatment, which was as high as 73.2%. The median time to response was 7 days. So this was very quick. The median duration of response was 345 days, with more than 6 months follow-up. Nonrelapse mortality at 6 months was 44.4%. There were deaths from infections, etc, but not related directly to ruxolitinib.

Subsequently there was a phase 3 trial, REACH2.19 They looked at higher doses of ruxolitinib in steroid-refractory acute GVHD. They started off with 10 mg [of ruxolitinib] twice a day. This study had a similar primary end point of ORR at day 28. This was compared with best available therapy. This was done in Europe, so [the comparison was to the] best available therapy used in Europe, like anti-thymocyte globulin, sirolimus [Rapamune], etanercept [Enbrel], photopheresis, or other therapies; all things that we would use in the United States as well. They looked at similar key secondary end points, [including] duration of response at day 56.

The ORR for ruxolitinib was 62% at day 28, compared with the best available therapy arm, which was 39% [odds ratio, 2.64; 95% CI, 1.65 to 4.22; P < .001].19 Durable overall response at day 56 [was higher in the ruxolitinib group than it was in the control group (40% vs 22%, odds ratio, 2.38; 95% CI, 1.43-3.94; P < .001)].19

The lower grade acute GVHD, which was grade 2, had the highest complete response rate with ruxolitinib: 50.9% compared with just 26.4% with best available therapy.19 This is quite remarkable to have a complete response in GVHD so quickly. When you get to higher grades of GVHD, the complete response rate for ruxolitinib is not as impressive; its less than 30%. But its still much higher than the [response rates of] other therapies we would have otherwise treated these patients with in steroid-refractory disease. The key point is to diagnose steroid refractoriness early. Then get ruxolitinib in there to break the cycle and break the progression of organ grade to something higher.

The loss of response wasnt statistically significant. The estimated cumulative incidents for the loss of response at 6 months was 10% in ruxolitinib compared with 39% in the control arm.19 So patients continued to maintain responses, which, again, is what we want to see. We dont want to see flares if they come off steroids.

[Of the 4 organ systems involved in GVHD], the skin responses were the best with ruxolitinib. Lower GI and liver GVHD did have good responses, but the responses were not as remarkable. Ruxolitinib is an ideal drug in this setting, on the basis of the organ responses.

A secondary end point was failure-free survival, basically indicating a time point from randomization to either nonrelapse-related death or any new GVHD. This was not statistically significant because it was not designed to compare ruxolitinib survival outcomes with control therapy. But there were 5.0 months median failure-free survival with ruxolitinib compared with 1.0 month with control [hazard ratio for relapse or progression of hematologic disease, nonrelapse-related death, or addition of new systemic therapy for acute GVHD, 0.46; 95% CI, 0.35-0.60]. That tells you that the responses were maintained, and the treatment was still working.

[Most of the adverse events associated with ruxolitinib] were expected; the bone marrow is recovering so its a bit fragile. [The most common was] thrombocytopenia. You can reduce the dose of ruxolitinib down to 5 mg adjusted accordingly or support patients with transfusions. CMV reactivation was also common. But again, with letermovir, that happens less and less.

References:1. Merck receives FDA approval of Prevymis (letermovir) for prevention of cytomegalovirus (CMV) infection and disease in adult allogeneic stem cell transplant patients. News release. Merck. November 9, 2017. Accessed April 7, 2021. https://bit.ly/3fS6S0Q

2. Scott BL. Long-term follow up of BMT CTN 0901, a randomized phase 3 trial comparing myeloablative (MAC) to reduced intensity conditioning (RIC) prior to hematopoietic cell transplantation (HCT) for acute myeloid leukemia (AML) or myelodysplasia (MDS) (MAvRIC Trial). Biol Blood Marrow Transplant. 2020;26(3):S11. doi:10.1016/j.bbmt.2019.12.07

3. Harris AC, Young R, Devine S, et al. International, multicenter standardization of acute graft-versus-host disease clinical data collection: a report from the Mount Sinai Acute GVHD International Consortium. Biol Blood Marrow Transplant. 2016;22(1):4-10. doi:10.1016/j.bbmt.2015.09.001

4. Martino R, Romero P, Subira M, et al. Comparison of the classic Glucksberg criteria and the IBMTR Severity Index for grading acute graft-versus-host disease following HLA-identical sibling stem cell transplantation. International Bone Marrow

See more here:
Munshi Explains Staging, Prognosis, and Treatment for a Patient With Acute Graft-vs-Host-Disease - Targeted Oncology

To Read More: Munshi Explains Staging, Prognosis, and Treatment for a Patient With Acute Graft-vs-Host-Disease – Targeted Oncology
categoriaSkin Stem Cells commentoComments Off on Munshi Explains Staging, Prognosis, and Treatment for a Patient With Acute Graft-vs-Host-Disease – Targeted Oncology | dataMay 15th, 2021
Read All

Rise of Animal Cloning in 2021: Benefits, Risks, and Why It Matters – Nature World News

By daniellenierenberg

Animal cloning has come a long way from Dolly the sheep, but all through that time the ethical and scientific repercussions only continue to pile up.

One thing is getting clearer though: The cloning process has improved by leaps and bounds (though not yet on the levels shown in science-fiction). This has resulted in headways in a number of cloning-related endeavors, from the revival of endangered (and even extinct) species to replicating dead pets.

Still, both critics and proponents are still a bit out of touch with regards to how current cloning tech is being used to address these issues.

There is some truth to the hype that bringing back the woolly mammoth via cloning could be in the not-so-distant future.

On the other hand, many critics question the wisdom of bringing back prehistoric animals to habitats that have long changed from their disappearance. Still, this ignores the possibility of restoring more recently extinct species and how cloning could counteract such drastic environmental changes from their loss.

Another popular argument against cloning is the idea that its novelty and high costs could be redirected to more natural methods of conservation. But while that may be true for a majority of endangered species, it may not be so for those that have been officially declared extinct in the wild.

Cloning could be an important tool in ensuring the genetic diversity that allows populations in captivity to grow (and make reintroduction more feasible).

The idea of cloning animals that retain a set of desirable traits has raised considerable alarm (especially among more conservative groups). However, there are benefits to the practice that cannot be ignored.

Replicating the sharp noses of bomb sniffer (or even disease sniffer) dogs could make a difference in times of need. Likewise, cloning cattle with more consistent yields of milk and meat could have applications for more efficient livestock farming.

Also read: Trained Bees Can Identify COVID-19 Infection Through Sense of Smell Within Seconds!

Now, despite the advances, today's cloning technology is still decades away from producing perfect, one-for-one genetic copies of an original animal. Differences (even large ones) can still be found. There is also the fact that environment, behavior and upbringing could still drastically alter the genetic makeup of a cloned animal (as the study of epigenetics will gradually reveal).

Throwing a bit of caution to the wind will also be important if the increase of cloned designer animals could lead to other adverse effects on the global environment (especially in the feeding of quality livestock). The same applies to the use of clones to restore and reintroduce critically endangered species.

Overall, the bounds of the technology's research has expanded considerably (and so has the conversation). But at the same time, it is important to have a strong sense of moderation regarding its application. It has the potential of causing problems and incurring needless costs, but these should not discourage future research on cloning's potential.

Also read: Snakes Can Store Sperm for up to 5 Years Before Getting Pregnant

2021 NatureWorldNews.com All rights reserved. Do not reproduce without permission.

Read this article:
Rise of Animal Cloning in 2021: Benefits, Risks, and Why It Matters - Nature World News

To Read More: Rise of Animal Cloning in 2021: Benefits, Risks, and Why It Matters – Nature World News
categoriaSpinal Cord Stem Cells commentoComments Off on Rise of Animal Cloning in 2021: Benefits, Risks, and Why It Matters – Nature World News | dataMay 15th, 2021
Read All

Factor Bioscience to Deliver Six Digital Presentations at the American Society of Gene & Cell Therapy (ASGCT) 24th Annual Meeting – PRNewswire

By daniellenierenberg

Factor reveals advances in mRNA, circleRNA, gene editing, cell reprogramming, and iPS cell-derived NK-cell technologies.

Digital presentations will be made available on the ASGCT website on May 11, 2021. For more information on the upcoming American Society of Genetic & Cell Therapy (ASGCT) Annual Meeting, visit https://annualmeeting.asgct.org/

About Factor BioscienceFounded in 2011, Factor Bioscience develops technologies for engineering cells to advance the study and treatment of disease. Factor collaborates with academic and industrial partners to develop therapeutic products based on its mRNA, gene editing, cell reprogramming, and nucleic-acid delivery technologies. Factor Bioscience is privately held and is headquartered in Cambridge, Massachusetts. For more information, visit http://www.factorbio.com.

Media Contact:

Allen Mireles[emailprotected]

Related Linkshttp://www.factorbio.comhttps://annualmeeting.asgct.org/

SOURCE Factor Bioscience Inc.

http://www.factorbio.com

Follow this link:
Factor Bioscience to Deliver Six Digital Presentations at the American Society of Gene & Cell Therapy (ASGCT) 24th Annual Meeting - PRNewswire

To Read More: Factor Bioscience to Deliver Six Digital Presentations at the American Society of Gene & Cell Therapy (ASGCT) 24th Annual Meeting – PRNewswire
categoriaIPS Cell Therapy commentoComments Off on Factor Bioscience to Deliver Six Digital Presentations at the American Society of Gene & Cell Therapy (ASGCT) 24th Annual Meeting – PRNewswire | dataMay 15th, 2021
Read All

Accelerated Biosciences’ Immune-Privileged Human Trophoblast Stem Cells (hTSCs) Offer Breakthrough Opportunities in Cancer-Targeting Therapeutics and…

By daniellenierenberg

CARLSBAD, Calif.--(BUSINESS WIRE)--Accelerated Biosciences, a regenerative medicine innovator, announced today new data that further demonstrates statistically significant cytolysis with induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells programmed from its ethically sourced human trophoblast stem cells (hTSCs). Pluristyx, a Seattle-based firm supporting drug development, regenerative medicine, and cell and gene therapies, further confirmed Accelerated Biosciences hTSC line offers before-unrealized opportunities in cell-specific therapeutics. Along with this recent data on successful iPSC differentiation, Accelerated Biosciences has already demonstrated efficient differentiation of its pluripotent stem cells with remarkable doubling times and growth characteristics to programmed NK, cartilage, bone, fat, neuron, pancreas, liver, and secretome cells.

This new data validates our findings, explains Yuta Lee, President and Founder of Accelerated Biosciences. We know the properties of our trophoblast stem cells have been long-sought by the medical science community because of the potential to speed and amplify the development of life-saving therapeutics; theyre immune privileged, chromosomally stable (not tumorigenic), pathogen free, pluripotent, easy to scale and manufacturer, and of special interest, they are ethically sourced from the chorionic villi (pre-placental tissue) of non-viable and often life-threatening tubal ectopic pregnancies. Mr. Lees father, Professor Jau-Nan Lee, MB, MD, PhD, an obstetrics and gynecologic physician and researcher in Taiwan, first isolated hTSC in 2003. Mr. Lee created Accelerated Biosciences to elevate the visibility of this pluripotent human trophoblast stem cell platform to those engaged in developing allogeneic cell therapeutics and has been instrumental in the filing and prosecution of intellectual property to protect the companys hTSC platform to date holding 34 patents.

Benjamin Fryer, PhD, Co-founder and CEO of Pluristyx, worked closely with Accelerated Biosciences to prepare much of its key hTSC data. Dr. Fryer, a trophoblast expert who was previously a research scientist at Janssen Research & Development of Johnson & Johnson, now serves on Accelerated Biosciences Scientific Advisory Board. Initially I was skeptical these cells were what they said they were. If we hadnt grown and characterized them in our lab, I might have remained skeptical. These are indeed trophoblast stem cells, explained Dr. Fryer. The potential of these cells is enormous. One of the industrys largest challenges is that its almost impossible to scale primary cells. These cells are scalable. With these cells you can make the amount required for millions of patients and theyre sourced compliant to regulatory requirements. Weve made IPS cells (induced pluripotent stem cells) and NK (natural killer) cells from them, which is the next wave of cells for cell therapies. For therapeutic developers, because these cells are not sourced from a person or viable embryo, these cells deliver the trifecta of legal, ethical, and IP advantages.

As the biotechnology industry works toward developing therapies that target only diseased cells without harming healthy cells and tissues, cell-based therapies draw increasing interest, explains industry expert, Martina Molsbergen, CEO of C14 Consulting, who has partnered with Accelerated Biosciences in a business development role. With all the promise that cell therapies hold, the biotechnology industry also remains concerned that the therapeutics are derived in a socially and ethically responsible manner. Accelerated Biosciences has discovered and is now offering what scientists see as the holy grail of stem cell sources.

Prominent biosciences experts have been drawn to Accelerated Biosciences cell breakthrough. Protein chemist and molecular biologist Igor Fisch, PhD, former President and CEO of Selexis, Geneva, Switzerland, recognizes the impact that Accelerated Biosciences hTSCs will have on human health: Not only are these cells politically correct, but they can also differentiate. Because they are sourced from pre-placenta material, theyre immune privileged, which means that are not seen as foreign by the human body. With these cells, we can create a cell bank a single source for a wide range of patients.

Peter Hudson, FTSE, BSc Hons, PhD, Chief Scientist and a senior advisor to Avipep P/L in Melbourne, Australia, and an adjunct professor at the University of Queensland, led a large oncology consortium to complete the first Phase 1 clinical trial of a novel engineered antibody targeting prostate and ovarian cancer. Hudsons interest in Accelerated Biosciences hTSCs has evolved into a role on its Scientific Advisory Board. Trophoblast stem cells are likely to be the next wave of cancer-targeting therapeutics, explains Dr. Hudson. The ability to ethically source trophoblast stem cells and program them to target only diseased, cancerous cells is very powerful technology.

Why are scientists so interested in stem cell-based therapies?

The human body constantly produces specialized cells from its own stem cells (undifferentiated cells) to renew and repair itself. Current therapies harness this power in autologous cell therapies in which the patients own cells are removed, differentiated into disease-fighting cells, and reinserted.

What makes the human trophoblast stem cell so important to medical science?

The human trophoblast stem cell (hTSC) comes from placental tissue and has special properties that make it extremely desirable to therapeutic developers. The hTSC is such an early stem cell that it has much more capacity for growth than a stem cell taken from an adult, for example. This means that one cell can become millions. The hTSC also carries with it the same immune-privilege that a growing embryo has inside its mother: its not seen as foreign although its genetically different than its mother. Unlike other foreign materials, the hTSC is not rejected by the human body, which means that it can be used with many different patients (allogeneic cell therapy). With these benefits, the scientific community holds a high regard for hTSCs, but it also faces socio-ethical concerns about how those stem cells are typically sourced.

Accelerated Biosciences sidesteps hTSC sourcing concerns in a profoundly elegant way. Dr. Jau-Nan Lee, an OB-GYN in Taiwan, found inspiration in what was considered medical waste. When surgical intervention was necessary to remove an ectopic pregnancy that would otherwise risk the womans life, the non-viable embryo and pre-placental tissue lodged in the fallopian tube was removed, sent to pathology, and discarded. Gaining permission from institutional colleagues and sampling the pre-placental tissue, Dr. Lee isolated hTSC that offered all the benefits of hTSC pluripotency, immune privilege, and scalability without pathogens and without ethical compromises.

About Accelerated Biosciences

Founded in 2013, Accelerated Biosciences is a private company focused on regenerative medicine and built around the hTSC discoveries of obstetrics and gynecology physician and researcher, Professor Jau-Nan Lee, MB, MD, PhD. Accelerated Biosciences holds a large and robust patent portfolio and an encumbrance-free intellectual property (IP) estate. Accelerated Biosciences mission is to leverage its renewable, immune-privileged human cell source to fuel breakthrough cell therapies that effectively target the most challenging diseases of the human body. For more information about Accelerated Biosciences, visit acceleratedbio.com or email mmolsbergen@c14consultinggroup.com.

Read more here:
Accelerated Biosciences' Immune-Privileged Human Trophoblast Stem Cells (hTSCs) Offer Breakthrough Opportunities in Cancer-Targeting Therapeutics and...

To Read More: Accelerated Biosciences’ Immune-Privileged Human Trophoblast Stem Cells (hTSCs) Offer Breakthrough Opportunities in Cancer-Targeting Therapeutics and…
categoriaIPS Cell Therapy commentoComments Off on Accelerated Biosciences’ Immune-Privileged Human Trophoblast Stem Cells (hTSCs) Offer Breakthrough Opportunities in Cancer-Targeting Therapeutics and… | dataMay 15th, 2021
Read All

St. Jude’s $11.5B, six-year plan aims to improve global outcomes for children with cancer and catastrophic diseases – The Cancer Letter

By daniellenierenberg

Small dreams have no power to move hearts, and in a new six-year strategic plan, St. Jude Childrens Research Hospital is thinking very big.

What would it take to drastically increase cure rates for childhood cancer worldwide?

St. Judes answer: $11.5 billion and an additional 1,400 jobs.

To get a rough sense of scale, work it out with a pencil:

Spread over six yearsat $1.916 billion each yearits just under a third of the NCIs annual spend, fourfold this years projected revenues of the American Cancer Society, and more than seventyfold the budget of the World Health Organizations International Agency for Research on Cancer.

Its a broad and ambitious plan that will allow the institution to grow at an almost 8% compound annual growth rate, James Downing, president and CEO of St. Jude, said to The Cancer Letter.

At a global level, we also want to see identifiable increases in cure rates. We are watching those very carefully. Our goal is to move toward cure rates of 60% for diseases like acute lymphoblastic leukemia, Hodgkins lymphoma and Wilms tumor, Downing said. As we look at a global population, survival rates hover around 20%, and wed like to see those go up year by year.

A lot of our efforts are based on implementation science, looking at what works and what doesnt work. Workforce, drug distribution and true advancements in cure rates are what were seeking over the next six years.

The plan, rolled out on April 27, calls for an acceleration of research and treatment globallynot just for pediatric cancer, but also other illnesses, including blood disorders, neurological diseases, and infectious diseases.

Not surprisingly, this amount represents the largest investment the Memphis, Tenn. hospital has made in its nearly 60-year history. The previous strategic plan, the largest expansion in the institutions history, resulted in $7 billion in investments (The Cancer Letter, May 19, 2017).

The multi-phase expansion plan is funded almost entirely by steadily increasing donor contributions generated by ALSAC, the fundraising and awareness organization for St. Jude.

It is an ambitious plan. But were going to have lots of new personnel, new investments, new technology and new partnerships. We have formal partnerships with many U.N. associate agencies and organizations around the world.

Within the past six years, St. Jude has advanced fundamental, clinical, and translational research, Downing said.

Two years ago, we began strategically looking at the most pressing issues in the field of pediatric cancer, Downing said. As we developed the strategic plan over those two years, there were many ideas we critically assessed, and we often said, Its not really best for St. Jude to pursue that.

In the end, we aligned on goals that collectively bring the prospect of remarkable benefits to the field of childhood cancer, and to children with cancer everywhere.

On campus, St. Jude accepted nearly 20% more new cancer patients; increased faculty by 30% and staff by 23%; and embarked on several large-scale construction projects.

The new strategic plan focuses on five areas: fundamental science, childhood cancer, pediatric catastrophic diseases, global impact, and workforce and workplace culture.

Were coming out of a six-year strategic plan in which we increased our number of cancer patients by 20%, with 30% new faculty, 23% more staff, many large-scale construction projects, said Charles Roberts, executive vice president of St. Jude and director of the hospitals Comprehensive Cancer Center. And were now going into a new strategic plan that is 60% larger than our prior plan.

Under the plan, St. Jude will hire nearly 70 new faculty members, plus supporting laboratory staff, to work in basic, translational, and clinical research across 22 departments.

These investigators will have the freedom to pursue the type of conceptually driven research that leads to tomorrows clinical advances.

As we launch a strategic plan, weve identified the most exciting opportunities and challenges at that point in time, Roberts said to The Cancer Letter. However, we fully realize that we dont know whats coming next. New discoveries will be made, and new opportunities will emerge. Via the blue-sky process, weve set aside substantial funds every year to invest in the pursuit of emerging opportunities suggested by faculty and staff.

Part of what brought me here from Boston was the last strategic plan, and its so exciting to be a part of this. But just looking at the numbers, 1,400 new positions, average salary of $90,000. Six hundred and forty of those positions are in research, 266 are in clinical, 100 are in global pediatric medicine, and 394 in support.

Those are the kinds of numbers that you need to make these things real, and I think its exciting for St. Jude and for the field of cancer research, as we bring in all of these new folks.

During the next six years, St. Jude will invest more than $250 million to expand technology and resources available to scientists and clinicians in their search to understand why pediatric catastrophic diseases arise, spread and resist treatments. These investments will include:

St. Jude will invest $3.7 billion during the next six years to expand cancer-focused research and related clinical care. These efforts will center on raising survival rates for the highest-risk cancers and for children with relapsed diseases, while simultaneously improving quality of life for pediatric cancer survivors. The investments will include:

In the U.S., more than 80% of children diagnosed with cancer will be cured. In contrast, 80% of children with cancer live in limited-resource countries, where a mere 20% survive their disease. To address this, St. Jude will more than triple its investment in its international efforts coordinated through St. Jude Global and the St. Jude Global Alliance during the next six years.

This represents an investment of more than $470 million. Global initiatives include:

Under the plan, St. Jude will expand research and treatment programs to advance cures for childhood catastrophic diseases. The $1.1 billion, six-year investment includes work in nonmalignant hematological diseases, such as sickle cell disease; a new laboratory-based research program in infectious diseases that affect children worldwide; and a new research and clinical program to better understand and treat pediatric neurological diseases.

The plan outlines several strategies to encourage teamwork, and internal and external collaboration. These will include:

It is estimated that 87% of funds to sustain and grow St. Jude over the next six years will come from public donations.

Patients at St. Jude do not receive a bill for treatment, travel, housing or fooda model established by ALSAC and St. Jude founder Danny Thomas, who believed in equal access to medical care and driving research advances.

There are an incredible number of donors across the United States who support St. Jude, Downing said. This carries a great responsibility for us to seek the maximum possible impact to improve outcomes for childhood cancer.

Downing and Roberts spoke with Matthew Ong, associate editor of The Cancer Letter.

Matthew Ong: Congratulations on the official launch of St. Judes second six-year strategic plan. Could you briefly walk us through whats in it?

James Downing: It is an exciting time for St. Jude Childrens Research Hospital. Were finishing our prior six-year strategic plan, which started in Fiscal Year 2016. That $7 billion investment in the organization spanned fundamental science, clinical and translational research, clinical operations, and our global efforts. During the course of the plan, we increased faculty by 30% and staff by 23% and accelerated progress against pediatric catastrophic diseases.

About two years ago, we started discussing the next strategic plan. We looked critically at what we had accomplished under the previous plan, the expertise we had assembled, and the major problems in the field of pediatric catastrophic diseases, including cancer, infectious diseases, nonmalignant hematologic diseases and pediatric neurologic diseases. During that period, we involved more than 200 individuals across the institution to develop the new strategic plan.

This plan, at its core, focuses on accelerating progress against pediatric catastrophic diseases on a global scale. It outlines a $11.5 billion investment during the next six years, which includes the addition of 1,400 jobs and $1.9 billion in new capital investments, construction and renovations. Its a broad and ambitious plan that will allow the institution to grow at an almost 8% compound annual growth rate.

The plan has 11 goals, divided among five major areas: fundamental science, pediatric cancer, other childhood catastrophic diseases, global impact, and a focus on people and place. In each of these areas, were recruiting new individuals, investing in new technology, and expanding collaborations across campus, across the United States, and globally.

Ill start with fundamental science. In our last strategic plan, we invested heavily in increasing basic science programs on campus by expanding faculty numbers, technology and institutional data infrastructurein the belief that expanding fundamental science leads to new knowledge that helps advance cures. This is investigator-initiated science, often not related to diseases, but rather to the fundamental questions of biology.

In this new plan, were again investing heavily in expanding fundamental science at St. Jude. Weve committed more than $1 billion to fundamental science. This includes increasing laboratory-based faculty by more than 33% during the next six years, and more than $250 million dedicated to investments in technology.

Our goal is to make sure every dollar is spent wisely and effectively in pursuit of our missionto advance cures and means of prevention for pediatric catastrophic diseases through research and treatment.

The $250 million will fund multiple shared resources, department-based technology centers and new centers of excellence. Some of the faculty are being recruited to the centers of excellence, including those in data-driven discovery, innate immunity and inflammation, leukemia and advanced microscopy. These individuals will also have homes in academic departments.

On the technology front, were investing in shared resources. Well bring online some new ones, as well as some (Center for Modeling Pediatric Diseases and the Center for High-Content Screening) created at the end of the last strategic plan. The newest is focused on spatial transcriptomics. It will allow scientists across campus to look at the expression of genes in tissue context and at the single-cell level.

A new effort in structural biology is to create a $20 million Cryo-Electron Tomography Center. This is the next level of cryo-electron microscopy, which allows the identification of the structure of molecules or molecular machines within the context of cells. Its a developing technology that will feed other investments weve made in structural biology, such as the installation of one of the largest magnets in the world in our NMR facility, our Cryo-Electron Microscopy Center and single-cell analysis capabilities. The plan brings those tools to bear on defining normal biology and disease states.

Another effort is a Center of Excellence in Advanced Microscopy. Over the last six years, weve become one of the leading centers in the application of advanced microscopy to fundamental biology. This has been led by investigators in our Developmental Neurobiology, Cell and Molecular Biology, and Immunology departments.

Were positioned to build the next generation of microscopes to explore biology in ways never dreamed. With new faculty recruitments and collaborations with commercial companies and other institutions, we seek to develop the next generation of microscopes, and apply that to normal biology and to pediatric catastrophic diseases.

Another area were investing in heavily is data science. Over the last six years, and even before that, we expanded data sciences across campus. This initially started with the Pediatric Cancer Genome Project in 2010. Since then, we recruited many data scientists, and coalesced them into our Computational Biology, Biostatistics, and Epidemiology and Cancer Control departments, and into shared resources that provide bioinformatics support.

But over the last several years, weve seen the explosion of data, from structural biology to microscopy.

As we look to the future and the capabilities weve amassed, were poised to significantly increase our investment in data science and become a leading institution in the application of data science to biologic discovery. This is a $40 million investment with 30 full-time employees.

We have a task force led by faculty members to develop the roadmap for how were going to move forward. As data is accumulated and we look across those disparate data types, we can gain knowledge through true data scienceexploring that data and advancing our understanding of biology.

The last area in fundamental research is our graduate school. During the last strategic plan, we developed the St. Jude Graduate School of Biomedical Sciences, which offers a PhD and two masters programs.

Were going to expand that over the coming six years by increasing the number of students in the Biomedical Sciences PhD, the Master of Science in Global Child Health and the Master of Science in Clinical Investigations programs. We will also create a new masters program in data science. That will bring a new population of students to campus, which will further enhance our scientific enterprise.

Pediatric cancer is our next area of focus. This has always been our institutions major focus. This area encompasses $3.7 billion of the operating dollars we will spend over the next six years. Although weve invested heavily in this effort in the past, were going to expand it significantly.

Were going to focus on pediatric cancers where the least progress has been madecancers that are incurable and relapsed diseaseand gain insights into how we can change the outlook for those cancers.

The first area of investment is new faculty10 laboratory-based individuals who will expand our research efforts in understanding the biology of cancer. Some of those faculty will go into the Center of Excellence in Leukemia, but others will focus on solid tumors, brain tumors, or on biologic aspects that cut across cancer types.

Our second area for expansion will focus on assessing new therapeutic approaches for the highest-risk cancers. We need to access and evaluate more new therapies in a rigorous manner to identify those which should be moved forward into frontline clinical trials. Pediatric cancer encompasses many different types of cancer.

To run clinical trials, you need a sufficient number of patients to be able to answer questions in a reasonable time frame. We need a way to identify the best new agents to move into clinical trials.

Our investment in preclinical testing will help us set up that infrastructure. Much of it was established in the last strategic plan, but it must be expanded so that we have the best pediatric cancer models and can assess single and combination therapies to see which are worth moving forward into clinical trials.

On the clinical trial front, we want to expand our infrastructure to run those clinical trialsnot only on our campus, but in collaborations across the United States and around the globe. To make progress in some of these high-risk pediatric cancers, we need many patients. For many of the high-risk cancers, there are not a sufficient number of patients in the United States to conduct the trials. We, therefore, need to set up global collaborative networks that can address these high-risk cancers.

So, were investing in our ability to access drugs through commercial sources, to rigorously assess these in preclinical models and to establish the global infrastructure to run these clinical trials with an associated translational science infrastructure second to none.

Our third emphasis under the cancer focus is cancer immunotherapy. We began our work in cancer immunotherapy decades ago. We developed the chimeric antigen receptor, or CAR, against CD-19. That is the basis for the FDA-approved therapy that is being used right now on a variety of different fronts. Over the last several years, weve also invested heavily in expanding our cancer immunotherapy efforts, primarily focused on CAR-modified T cells.

As part of this new strategic plan, we are creating a new program, the Translational Immunology and Immunotherapy Initiative. It will facilitate cross-departmental efforts focused on cancer immunotherapy and will explore the fundamental biology of chimeric antigen receptor approaches to cancer immunotherapy.

What makes an ideal antigen that can be attacked by a chimeric antigen receptor? How does one manipulate CAR T cells so that they undergo exhaustion and stop killing the tumor? How do we change that? And what are the features of the microenvironment that decrease the killing potency of CAR T cells? These will require significant investments, including additional faculty.

Another emphasis will be looking at long-term toxicities of the therapies we use to treat children with cancer. As we cure more and more pediatric cancers, we must continually look at the toxicities from therapy and figure out how to reduce those without sacrificing the ability to be cured. Part of that is precision medicine, and so we are continuing to invest in our genomic and pharmacogenomic efforts and our proton therapy center.

Part of reducing toxicities comes from learning from long-term survivors. So, we will continue to invest in St. Jude LIFE, our long-term, follow-up study. We will expand that to some of the newer pediatric cancer therapies, including immunotherapy and targeted agents. We will assess long-term complications from these therapeutic approaches and try to define which patients will be susceptible to these toxicities.

MO: I have to mention the obvious: $11.5 billion is quite the budget. Your new strategic plan is work that, one could argue, might be on par or exceeds the coordination and budget required to realize multiple projects, say, at the World Health Organization or even at some U.S. federal agencies. What did it take for you and your team at St. Jude to get to this point?

JD: There are an incredible number of donors across the United States who support St. Jude. Our goal is to make sure every dollar is spent wisely and effectively in pursuit of our missionto advance cures and means of prevention for pediatric catastrophic diseases through research and treatment. This carries a great responsibility for us to seek the maximum possible impact to improve outcomes for childhood cancer.

We have the ideal team at St. Jude to execute this. Our leadership meets multiple times each week. Two years ago, we began strategically looking at the most pressing issues in the field of pediatric cancer. We discussed which areas represented the greatest opportunities for St. Jude to contribute. We talked to many experts inside and outside of the institutionaround the globeand made hard decisions as we went forward.

Strategic planning is deeply engrained at St. Jude as a rigorous process that is part of our scientific culture. We knew it was going to take two years to develop this plan. We dont hire consultants; we do it all ourselves. Faculty across the institution participated in the development of priorities and goals for this strategic plan via structured meetings.

As we developed the strategic plan over those two years, there were many ideas we critically assessed, and we often said, Its not really best for St. Jude to pursue that. In the end, we aligned on goals that collectively bring the prospect of remarkable benefits to the field of childhood cancer, and to children with cancer everywhere.

Every child who comes on this campus is part of our mission. We provide them with the best care possible. We do that in the context of research studies, so that were learning from every single patient. That means were not only helping children today; were also advancing cures for children tomorrow.

Weve rolled out the new strategic plan across campus during the last month, and the excitement is palpable. Our commitment continues long after the strategic plans launch.

We have routine strategic planning retreats, where we assess the goals for the year, evaluate progress against the prior years goals, perform talent assessments and proactively seek out emerging opportunities. Every employee on campus will develop yearly goals that cascade down from the goals of this plan.

As we develop this roadmap, we know there are going to be new ideas. Charlie can tell you about a process incorporated into the strategic plan that allows us to not only move forward on this roadmap, but also add initiatives as new ideas emerge.

Charles Roberts: Its a process we began with the last strategic plan, called our blue-sky process. As we launch a strategic plan, weve identified the most exciting opportunities and challenges at that point in time.

However, we fully realize that we dont know whats coming next. New discoveries will be made, and new opportunities will emerge. Via the blue-sky process, weve set aside substantial funds every year to invest in the pursuit of emerging opportunities suggested by faculty and staff.

Ideas that have emerged from the blue-sky process have been phenomenal. Our engagement with World Health Organization (WHO)a collaboration to raise childhood cancer survival rates internationallyis one example.

The Center for Modeling Pediatric Diseases is another example. This center makes iPS cells that come from patients so that we can investigate mechanisms that underlie cancer predisposition.

In another blue-sky project, were looking at DNA methylation to characterize pediatric solid tumors with the goal of identifying new therapeutic opportunities. Some of our immunotherapy initiatives also came out of the blue-sky process. Were looking forward to growing our blue-sky endeavors as we go forward.

Were coming out of a six-year strategic plan in which we increased our number of cancer patients by 20%, with 30% new faculty, 23% more staff, many large-scale construction projects. And were now going into a new strategic plan that is 60% larger than our prior plan.

The other central part of our strategic planning process focuses on the importance of collaboration. We have systematically incorporated a focus upon collaboration into our entire strategic planning and execution process. Our strategic planning efforts began by bringing together the intellectual resources of faculty and staff at St. Jude. This yielded projects that have interactions between many investigators on campus.

We recognize, however, that were still a relatively small institution, and theres a lot of expertise outside. We asked: How can we engage top scientists to tackle problems related to cancer and other catastrophic illnesses of childhood?

In pursuit of this, during our last strategic plan, we created the St. Jude Research Collaboratives, in which we fund investigators from multiple institutions who collaborate with investigators at St. Jude.

Initially, we were planning to fund two or three Collaboratives. However, they were remarkably successful, and top scientists eagerly joined.

Consequently, weve grown the program to five St. Jude Research Collaboratives already. These teams are each funded at an average of $8 million over 5 years, so each investigator is getting R01-level funding, or a little bit better. This has been a phenomenal success.

In the new strategic plan, were going to grow the program to a steady state of 11 funded collaboratives, representing close to a $90 million investment. So far, three of the Collaboratives are directly focused on childhood cancer. A fourth is a basic science-focused project relevant to childhood cancer. Were excited about the growth of this collaboration-focused program.

Lastly, Id like to address global collaboration. If you look across the globe, in low- and middle-income countries, the cure rates for childhood cancer are less than 20%.

This is a problem we know we can solve. Weve proven in the United States we can drive the cure rate to 80%. How can we help the rest of the world?

Because of the resources brought to us by our donors, we are able to think about these things, and so were now collaborating around the globe to drive cure rates forward for childhood cancer worldwide.

JD: As an example of new ideas and how rapidly we can act on them, Id like to tell you about a new blue-sky proposal that came up at the end of the last strategic plan. This idea was precipitated at a faculty retreat. One of our senior investigators was presenting, and during a coffee break, someone said, Well, what if you did this? That emerged into a blue-sky proposal, Seeing the Invisible in Protein Kinases. This was work from Dr. Babis Kalodimos, our Structural Biology department chair. He had a Science paper that came out several months ago, where he used the high-field NMR spectroscopy to look at the structure of the ABL kinase. He was able to identify transient conformational states that help to explain how resistant mutants work.

This gave us new insights into transient states that exist in molecules that can only be seen under high-field NMR, not with other structural biology approaches.

Based on that, we started thinking, Well, what if you did this on all kinases? What if you just did it against tyrosine kinases, serine kinases, receptor tyrosine kinases? What new rules would emerge from this? What would it tell us about families of kinases? What would it tell us about mechanisms of inhibition to kinase inhibitors? What might it tell us about new approaches to developing drugs against protein tyrosine kinases?

And since kinases are a major focus for targeted therapy, there was great excitement about pursuing these studies. Dr. Kalodimos developed the proposal and brought it forward; however, it was clear that this effort would be beyond the scope of our blue-sky process.

Blue-sky initiatives are usually somewhere in the $12 million range, and this was north of $30 million. Yet, in the end after thorough internal and external reviews, the project will move forward as part of the new strategic plan..

This is an approach that will give us fundamental knowledge and can have a profound impact on our understanding of a major class of targets for next-generation therapy.

MO: If I recall accurately, St. Jude has a network of partnerships with a few dozen countries worldwide. Does this plan call for an expansion of efforts within each of those countries? And how many of them?

JD: When I took over in 2014, we had what we called the International Outreach Program, which was 24 programs in 17 countries. During the programs 25-year history, we had made great progress. We were making significant impact and changing the outlook for children with cancer in those 17 countries. But we were affecting only about 3% of children with cancer across the globe, and the International Outreach Program was not scalable.

So, at the beginning of the last strategic plan, we recruited Dr. Carlos Rodriguez-Galindo. He developed a vision that after assessing, we decided to move forward on. This new effort encompasses the Department of Pediatric Global Medicine, St. Jude Global and the St. Jude Global Alliance.

These are all integrated. We developed a model that we think is scalable around the world, and we think this model ultimately can affect children with cancer everywhere.

The idea is that first we must train a workforce to treat children with cancer around the globe. We cant train the workforce ourselves, but we can train the trainers, who will then train the workforce.

More:
St. Jude's $11.5B, six-year plan aims to improve global outcomes for children with cancer and catastrophic diseases - The Cancer Letter

To Read More: St. Jude’s $11.5B, six-year plan aims to improve global outcomes for children with cancer and catastrophic diseases – The Cancer Letter
categoriaIPS Cell Therapy commentoComments Off on St. Jude’s $11.5B, six-year plan aims to improve global outcomes for children with cancer and catastrophic diseases – The Cancer Letter | dataMay 15th, 2021
Read All

Stem Cell Therapy Market Report | Know the Cutting-Edge Innovations and Future Trends of Market – BioSpace

By daniellenierenberg

Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.

One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787

It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.

Global Stem Cell Therapy Market: Overview

Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.

Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.

Global Stem Cell Therapy Market: Key Trends

The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.

Buy this Premium Report @ https://www.tmrresearch.com/checkout?rep_id=1787&ltype=S

On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.

Global Stem Cell Therapy Market: Market Potential

A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.

In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.

Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.

Global Stem Cell Therapy Market: Regional Outlook

The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.

Get Table of Content of the Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1787

Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.

Global Stem Cell Therapy Market: Competitive Analysis

Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.

Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.

This study provides a particularized anatomy according to the L.E.A.P mechanism

The regional analysis offers market assays across:

The study, prepared through the L.E.A.P mechanism adds a dimension of infallibility and assures precise information on all the growth dynamics.

Related Market Reports:

https://www.tmrresearch.com/stem-cell-assay-market

https://www.tmrresearch.com/stem-cell-banking-market

https://www.tmrresearch.com/animal-stem-cell-therapy-market

READ EXCLUSIVE PRESS RELEASES AND ARTICLES: https://tmrresearchblog.com/

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

Rohit Bhisey

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

See original here:
Stem Cell Therapy Market Report | Know the Cutting-Edge Innovations and Future Trends of Market - BioSpace

To Read More: Stem Cell Therapy Market Report | Know the Cutting-Edge Innovations and Future Trends of Market – BioSpace
categoriaCardiac Stem Cells commentoComments Off on Stem Cell Therapy Market Report | Know the Cutting-Edge Innovations and Future Trends of Market – BioSpace | dataMay 15th, 2021
Read All

Heart attack recovery aided by injecting heart muscle cells that overexpress cyclin D2 – The Mix

By daniellenierenberg

Researchers used a pig model of heart attacks, which more closely resembles the human heart in size and physiology, and thus has high clinical relevance to human disease.

Researchers used a pig model of heart attacks, which more closely resembles the human heart in size and physiology, and thus has high clinical relevance to human disease.In a large-animal study, researchers have shown that heart attack recovery is aided by injection of heart muscle cells derived from human induced pluripotent stem cell line, or hiPSCs, that overexpress cyclin D2. This research, published in the journal Circulation, used a pig model of heart attacks, which more closely resembles the human heart in size and physiology, and thus has higher clinical relevance to human disease, compared to studies in mice.

An enduring challenge for bioengineering researchers is the failure of the heart to regenerate muscle tissue after a heart attack has killed part of its muscle wall. That dead tissue can strain the surrounding muscle, leading to a lethal heart enlargement.

Heart experts thus have sought to create new tissue applying a patch of heart muscle cells or injecting heart cells to replace damaged muscle. Similarly, they have tried to stimulate division of existing heart muscle cells near the damaged area. This current study, led by researchers at the University of Alabama at Birmingham, shows progress in both goals.

After the experimental heart attack, heart tissue around the infarction site was injected with about 30 million bioengineered human cardiomyocytes that were differentiated from hiPSCs. These cells also overexpress cyclin D2, part of a family of proteins involved in cell division.

Compared to control human cardiomyocytes, the cyclin D2-cardiomyocytes showed enhanced potency to repair the heart. They proliferated after injection, and by four weeks, the hearts had less pathogenic enlargement, reduced size of dead muscle tissue and improved heart function.

Intriguingly, the cyclin D2-cardiomyocytes stimulated not only their own proliferation, but also proliferation of existing heart muscle cells around the infarction site of the pig heart, as well as showing angiogenesis, the development of new blood vessels.

These results suggest that the cyclin D2-cardiomyocyte transplantation may be a potential therapeutic strategy for the repair of infarcted hearts, said study leader Jianyi Jay Zhang, M.D., Ph.D., the chair of Biomedical Engineering, a joint department of the UAB School of Medicine and the UAB School of Engineering.

This ability of the graft cyclin D2-cardiomyocytes to stimulate the proliferation of nearby existing heart cells suggested paracrine signaling, a type of cellular communication where a cell produces a signal that induces changes in nearby cells.

Exosomes small blebs or tiny vesicles that are released by human or animal cells and contain proteins and RNA from the cells that release them are one common form of paracrine signaling.

Zhang and colleagues found that exosomes that they purified from the cyclin D2-cardiomyocyte growth media indeed promoted proliferation of cultured cardiomyocytes. In addition, the treated cardiomyocytes were more resistant to programmed cell death, called apoptosis, induced by low oxygen levels. The exosomes also induced proliferation of various other cell types, including human umbilical vein endothelial cells, human vascular smooth muscle cells and 7-day-old rat cardiomyocytes that have almost undetectable proliferation.

Part of the cargo that exosomes carry are microRNAs, or miRNAs. These short pieces of RNA have the ability to interact with messenger RNA in target cells, and they are robust players of gene regulation in cells. Humans have more than 2,000 miRNAs with different RNA sequences, and these are thought to regulate a third of the genes in the genome.

So, the researchers documented which microRNAs were present in exosomes from the cyclin D2-overexpressing cardiomyocytes and in exosomes from non-overexpressing cardiomyocytes. As expected, they found differences.

Jianyi Jay Zhang, M.D., Ph.D.Together, the exosomes from both types of cells contained 1,072 different miRNAs, and 651 were common to the two exosome groups. However, 332 miRNAs were found only in the cyclin D2-overexpressing cardiomyocytes, and 89 miRNAs were specific for the non-overexpressing cardiomyocytes. In preliminary work of characterizing the effects of specific miRNAs, one particular miRNA from the cyclin D2-overexpressing exosomes was shown to stimulate proliferation when delivered into rat cardiomyocytes.

Thus, as the therapeutic potential of exosomes for improving cardiac function becomes more evident, combining an exosome-mediated delivery of proliferative miRNAs with transplantation of cyclin D2-overexpressing cardiomyocytes, or cell products, could become a new promising strategy for upregulating proliferation of the recipient cardiomyocytes and reducing cardiac fibrosis, Zhang said. Altogether, our data suggest that cardiac cell therapy, involving cardiomyocytes with enhanced proliferation capacity, may become an efficacious future strategy for myocardial repair and prevention of congestive heart failure in patients with acute myocardial infarctions.

UAB Department of Biomedical Engineering co-authors with Zhang, in the study Cyclin D2 overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction, are Meng Zhao, Yuji Nakada, Yuhua Wei, Weihua Bian, Anton V. Borovjagin, Yang Zhou and Gregory P. Walcott.

Additional co-authors are Yuxin Chu and Min Xie, Division of Cardiovascular Disease, UAB Department of Medicine; Wuqiang Zhu, Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale; Thanh Nguyen, UAB Informatics Institute; and Vahid Serpooshan, Emory University and Georgia Institute of Technology, Atlanta.

Support came from National Institutes of Health grants HL114120, HL131017, HL149137 and HL134764.

At UAB, Zhang holds the T. Michael and Gillian Goodrich Endowed Chair of Engineering Leadership.

Go here to see the original:
Heart attack recovery aided by injecting heart muscle cells that overexpress cyclin D2 - The Mix

To Read More: Heart attack recovery aided by injecting heart muscle cells that overexpress cyclin D2 – The Mix
categoriaCardiac Stem Cells commentoComments Off on Heart attack recovery aided by injecting heart muscle cells that overexpress cyclin D2 – The Mix | dataMay 15th, 2021
Read All

Allogeneic Mesenchymal Stem Cell Segment Is Expected To Lead In the Global Rheumatoid Arthritis Stem Cell Therapy Market over the Forecast Period,…

By daniellenierenberg

The report on the Rheumatoid Arthritis Stem Cell Therapy market provides a birds eye view of the current proceedings and the impact on the COVID-19 pandemic. Further, the report ponders over the various factors that are likely to impact the overall dynamics of the market once the COVID-19 pandemic subsides. The current trends, growth opportunities, restraining factors, and drivers are discussed in the report in detail.

To remain ahead of your competitors, request for a sample https://www.factmr.com/connectus/sample?flag=S&rep_id=1001

The growing prevalence and recurrence of rheumatoid arthritis is expected to be the major factor driving the growth of the rheumatoid arthritis stem cell therapy market over the forecast period. Although doctors do not know the exact cause of rheumatoid arthritis, but certain risk factors are observed to be associated with it.

These risk factors include age (most common between the age of 40 and 60), family history, gender, environment (a toxic chemical in the environment can up the odds), obesity and smoking. Changes in lifestyle and eating habits are contributing to the growing prevalence of rheumatoid arthritis.

Rheumatoid Arthritis Stem Cell Therapy Market: Segmentation

Tentatively, the global rheumatoid arthritis stem cell therapy market can be segmented on the basis of treatment type, application, end user and geography.

Based on treatment type, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Based on application, the global rheumatoid arthritis stem cell therapy market can be segmented into:

For critical insights on this market, request for methodology here https://www.factmr.com/connectus/sample?flag=RM&rep_id=1001

Based on distribution channel, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Based on geography, the global rheumatoid arthritis stem cell therapy market can be segmented into:

Rheumatoid Arthritis Stem Cell Therapy Market: Regional Outlook

Geographically, the global rheumatoid arthritis stem cell therapy market can be segmented into viz. North America, Latin America, Europe, Asia-Pacific excluding Japan (APEJ), Japan and the Middle East and Africa (MEA). North America is expected to be the dominant region in the global rheumatoid arthritis stem cell therapy market, owing to the presence of various key players.

Share Your Requirements & Get Customized Reports-https://www.factmr.com/connectus/sample?flag=RC&rep_id=1001

The rheumatoid arthritis stem cell therapy market in Asia Pacific excluding Japan is expected to grow at a significant CAGR due to the expansion of product offerings by key players. Europe is expected to have the second large share in the global rheumatoid arthritis stem cell therapy market throughout the forecast period.

What information can the readers gather form the market study?

Research Methodology

Fact.MR is committed to offer unbiased and independent market research solutions to its clients. Each market report of Fact.MR is compiled after months of exhaustive research. We bank on a mix of tried-and-tested and innovative research methodologies to offer the most comprehensive and accurate information. Our main sources of research include,

Benefits of Fact.MR Study

Fact.MR has gradually established itself as one of the leading market research companies across the globe. Our unique, methodical, and up-to-date approach towards creating high-quality market reports ensures the reports include relevant market insights. Further, our team of analysts leaves no stone unturned while curating market reports in accord with the requirement of our clients.

Read More Trending Reports of Fact.MR-https://www.biospace.com/article/advent-of-3d-4d-imaging-to-revolutionize-cardiac-imaging-catapulting-transesophageal-echocardiography-market-growth-prospects/

About Us:

Market research and consulting agency with a difference! Thats why 80% of Fortune 1,000 companies trust us for making their most critical decisions. While our experienced consultants employ the latest technologies to extract hard-to-find insights, we believe our USP is the trust clients have on our expertise. Spanning a wide range from automotive & industry 4.0 to healthcare & retail, our coverage is expansive, but we ensure even the most niche categories are analyzed. Our sales offices in United States and Dublin, Ireland. Headquarter based in Dubai, UAE. Reach out to us with your goals, and well be an able research partner.

Contact:US Sales Office:11140 Rockville PikeSuite 400Rockville, MD 20852United StatesTel: +1 (628) 251-1583

Corporate Headquarter:Unit No: AU-01-H Gold Tower (AU),Plot No: JLT-PH1-I3A,Jumeirah Lakes Towers,Dubai, United Arab EmiratesEmail: sales@factmr.comVisit Our Website: https://www.factmr.com

See the original post here:
Allogeneic Mesenchymal Stem Cell Segment Is Expected To Lead In the Global Rheumatoid Arthritis Stem Cell Therapy Market over the Forecast Period,...

To Read More: Allogeneic Mesenchymal Stem Cell Segment Is Expected To Lead In the Global Rheumatoid Arthritis Stem Cell Therapy Market over the Forecast Period,…
categoriaCardiac Stem Cells commentoComments Off on Allogeneic Mesenchymal Stem Cell Segment Is Expected To Lead In the Global Rheumatoid Arthritis Stem Cell Therapy Market over the Forecast Period,… | dataMay 15th, 2021
Read All

Pigs can breathe through their butts. Can humans? – Livescience.com

By daniellenierenberg

Mice, rats and pigs all share a secret superpower: They can all use their intestines to breathe, and scientists discovered this by pumping oxygen up the animals' butts.

Why run such experiments, you ask? The research team wanted to find a potential alternative to mechanical ventilation, a medical treatment where a machine pushes air into a patient's lungs through the windpipe. Ventilators deliver oxygen to the lungs and help remove carbon dioxide from the blood, but the machines aren't always available.

Early in the COVID-19 pandemic, for example, hospitals faced a severe shortage of ventilators, The New York Times reported. Although doctors can also use a technique called extracorporeal membrane oxygenation (ECMO), where blood is pumped out of the body and reoxygenated with a machine, the procedure carries inherent risks, such as bleeding and blood clots; and it's often less readily available than ventilators, according to Mayo Clinic.

Related: The 10 weirdest medical cases in the animal kingdom

In search of another solution, the study authors drew inspiration from aquatic animals like sea cucumbers and freshwater fish called loaches (Misgumus anguillicandatus), which use their intestines for respiration. It was unclear whether humans and other mammals have similar capabilities, although some scientists attempted to answer that question in the 1950s and 1960s.

"We initially looked at a mouse model system to see if we could deliver oxygen gas intra-anusly," said senior author Dr. Takanori Takebe, a professor at the Tokyo Medical and Dental University and a director at the Center for Stem Cell and Organoid Research and Medicine at Cincinnati Children's Hospital Medical Center.

"Every time we performed experiments, we were quite surprised," Takebe told Live Science.

Without intestinal ventilation, mice placed in a low-oxygen environment survived for only about 11 minutes; with ventilation into their anuses, 75% survived for 50 minutes, thanks to an infusion of oxygen that reached their hearts. The team then tried using oxygenated liquid, rather than gas, in mice, rats and pigs, and they found similarly promising results. The team noted that more work still needs to be done to see if the approach is safe and effective in humans, according to a paper on their findings published May 14 in the journal Med.

"The pandemic has highlighted the need to expand options for ventilation and oxygenation in critical illness, and this niche will persist even as the pandemic subsides," as there will be times when mechanical ventilation is unavailable or inadequate on its own, Dr. Caleb Kelly, a clinical fellow and physician-scientist at Yale School of Medicine, wrote in a commentary of the study. If, after further evaluation, intestinal ventilation eventually becomes common practice in intensive care units, this new study "will be marked by historians as a key scientific contribution," he wrote.

Before starting their experiments in rodents, the team got very familiar with loach guts. The fish take in oxygen mostly through their gills, but occasionally, when exposed to low-oxygen conditions, loaches instead use a portion of their intestines for gas exchange, Takebe said. In fact, in response to the lack of oxygen, the structure of gut tissues near the anus changes such that the density of nearby blood vessels increases and secretion of fluids related to digestion decreases.

These subtle changes allow loaches to "suck up the oxygen more efficiently," Takebe said. In addition, the outermost lining of the loach gut the epithelium is very thin, meaning oxygen can easily permeate the tissue to reach the blood vessels beneath, he added. To simulate this structure in their mouse models, the team thinned out the gut epithelium of the rodents using chemicals and various mechanical procedures.

They then placed the mice under extremely low-oxygen conditions and used a tube to pump oxygen gas up the animals' bums and into their large intestines.

Related: 8 bizarre animal surprises from 'True or Poo' Can you tell fact from myth?

Compared with mice whose gut epithelium had not been thinned, the mice with thin epitheliums survived significantly longer in the experiment with most surviving 50 minutes as compared with about 18 minutes. Again, mice not given any oxygen only survived for about 11 minutes. In addition to surviving longer, the group with thinned-out gut linings showed signs that they were no longer starved for oxygen; they stopped gasping for air or showing signs of cardiac arrest, and the oxygen pressure in their major blood vessels improved.

Although this initial experiment suggested that oxygen could pass through the intestine and into circulation, thinning out the gut epithelium would likely not be feasible in human patients, Takebe said.

Particularly in critically ill patients, "I think additional damage to the gut would be really dangerous, for the treatment perspective," Takebe said. But "over the course of the experiments, we realized that even the intact gut has some, not really efficient, but some capacity to exchange the gas," he noted, meaning there may be a way to introduce oxygen through the gut without first thinning out the tissues.

So in another experiment, rather than using oxygen gas, the team tried perfluorodecalin (PFD), a liquid fluorocarbon that can be infused with a large amount of oxygen. The liquid is already used in people, such as for use in the lungs of infants with severe respiratory distress, the authors noted in their report.

The liquid also acts as a surfactant a substance that reduces surface tension; since a surfactant lines the air sacs of the lungs and helps boost gas exchange in the organ, PFD may fulfill a similar purpose in the intestines, Takebe said.

Much like in the oxygen-gas experiments, the oxygenated PFD rescued mice from the effects of being placed in a low-oxygen chamber, enabling the rodents to meander about their cage more than mice not given the treatment. After just one injection of 0.03 ounces (1 milliliter) of the liquid, the rodents' improvements persisted for about 60 minutes.

"We are not quite sure why this improvement is persisting much longer than the original expectations," Takebe noted, as the authors expected the effects to wear off in just a couple minutes. "But the observation is really reproducible and very robust."

Related: Gasp! 11 surprising facts about the respiratory system

The team then moved on to a pig model of respiratory failure, where they placed pigs on ventilators and only provided a low level of oxygen and then injected PDF into the pigs' posteriors with a long tube. Compared with pigs not given the PFD treatment, pigs given PFD improved in terms of the oxygen saturation of their blood, and the color and warmth returned to their skin. A 13.5 oz (400 ml) infusion sustained these improvements for about 18 to 19 minutes, and the team found that they could give additional doses to the pigs without noticeable side effects.

The team also tested the safety of repeat dosing in rats and found that, while their oxygen levels rose, the animals showed no notable side effects, markers of organ damage or stray PFD lingering in their cells.

Following this success in animal models, Takebe said that his team hopes to start a clinical trial of the treatment in humans sometime next year. They would likely start by testing the safety of the approach in healthy volunteers and beginning to work out what dose levels would be reasonable, he said. However, to make the jump from animals to human patients, the team will need to address a number of critical questions.

For instance, the treatment could potentially stimulate the vagus nerve a long nerve that connects the gut and brain so trial organizers should likely be on the lookout for side effects like falling blood pressure or fainting, Takebe noted. Also, the lower gut contains relatively little oxygen compared with other organs in the body, he added. The community of bacteria and viruses that live in the gut are adapted to these low-oxygen conditions, and a sudden infusion of oxygen might disrupt those microbes, he said.

"The consequence of reversing this so-called 'physiologic hypoxia' is unknown," Kelly noted in his commentary, echoing Takebe's sentiments. In humans, it will be important to determine how many doses of oxygenated liquid could be safely administered into the gut without causing unintended changes to the intestinal environment, he wrote.

In addition, the animal models in the study don't fully reflect what critically ill patients experience during respiratory failure, a condition that often coincides with infection, inflammation and low blood flow, Kelly noted. So there may be additional factors to consider in critically ill patients that weren't relevant in rodents and pigs. And depending on a given patient's condition, they may need a higher or lower dose of PFD all of these fine details will need to be carefully assessed in future trials, Takebe said.

Originally published on Live Science.

Read this article:
Pigs can breathe through their butts. Can humans? - Livescience.com

To Read More: Pigs can breathe through their butts. Can humans? – Livescience.com
categoriaCardiac Stem Cells commentoComments Off on Pigs can breathe through their butts. Can humans? – Livescience.com | dataMay 15th, 2021
Read All

Page 48«..1020..47484950..6070..»


Copyright :: 2025