Page 52«..1020..51525354..6070..»

Bone marrow transplant shows signs of curing brave little boy with one in a million condition – Shields Gazette

By daniellenierenberg

One-year-old Max Gardner was diagnosed with aplastic anaemia, in October 2020, a serious condition in which the bone marrow and stem cells do not produce enough blood cells.

After Max developed significant bruises and a rash over his body, parents, Connor Gardner and Rachel Nicholson, from Hebburn, were referred to South Tyneside District Hospital, where their brave little boy underwent tests.

Doctors initially believed that Max had an immune disorder but after he was admitted to the Royal Victoria Infirmary (RVI) further tests helped to diagnose him with aplastic anaemia.

The family was told that the condition could be fatal if not treated properly.

Doctors said Max needed to have a bone marrow transplant, which has the potential to cure him.

Dad Connor, 29, and mum Rachel, 27, were both tested to see if they would be a bone marrow match and the pair were overjoyed when Rachel was found to be a 9/10 match.

Max started chemotherapy on January 7 at the RVI and mum Rachel donated stem cells on January 13 at Newcastles Freeman Hospital.

The following day, January 14, Max underwent the transplant at the RVI.

The family is now waiting for the results of a Chimerism Test which will tell them for definite whether the stem cells have worked but signs are already looking positive.

Delighted dad, Connor, said: "His neutrophils [a type of white blood cell that protect us from infections] have been more than 0.50 for three days in a row, which means that he is essentially engrafted, which means that his body is accepting the transplant.

"So it is working, but we still have to wait for the test results."

Doctors say there is no doubt that it has worked with the way the numbers have gone up but they have to officially do it like that to make sure, Connor continued.

"But there is no reason why it shouldnt have [doctors] say.

"He has done really well to get to this stage, he has absolutely sailed through it, everyone is surprised with how well he has done.

This the best outcome we could have hoped for.

But it hasnt been plain sailing for the family, who have also had to face additional challenges during the treatment.

Parents Connor and Rachael initially were not allowed to visit Max at the same time due to Covid rules, however the hospital has now eased the restriction in their case.

The family also became sick with Norovirus in the run-up to the transplant, causing concern over whether it would have to be pushed back.

Thankfully, the transplant went ahead as planned and the family made a good recovery, although Max still needs help with his eating.

Max will now have to remain in hospital for a while longer as he recovers from the transplant.

Connor added: We can feel that we are nearly at the end of it.

"His neutrophils are the highest they have ever been since he became poorly so we feel like we are coming to the end.

The family are sharing Maxs journey to health on Instagram under the name @maxinamillionaajourney and hope his story will encourage people to sign up to the Anthony Nolan register to become a potential donor and help others like Max.

You can subscribe to this website and enjoy unlimited access to local news, information and puzzles online.

With a digital subscription, you can read more than 5 articles, see fewer ads, enjoy faster load times, and get access to exclusive newsletters and content.

Simply click Subscribe in the menu.

See more here:
Bone marrow transplant shows signs of curing brave little boy with one in a million condition - Shields Gazette

To Read More: Bone marrow transplant shows signs of curing brave little boy with one in a million condition – Shields Gazette
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow transplant shows signs of curing brave little boy with one in a million condition – Shields Gazette | dataFebruary 14th, 2021
Read All

Arlo’s Army needs stem cell donor as mum begs for help to save three-year-old’s life – Glasgow Live

By daniellenierenberg

Gorgeous little Arlo McArthur looks the picture of health and happiness.

Loved and adored by his family this little lively three-year-old from Milngavie is spoiled rotten by his three big sisters and his ultimate day out is playing golf with his daddy.

But behind the cheeky grin lies a devastating truth - he's a "ticking-timebomb" and needs a stem cell transplant to save his life.

So today, we've joined with Arlo's mum Nicole, dad Ian and his three doting sisters Carys, Brooke and Holly in asking Glasgow Live readers to step up and help this brave little boy.

They need young men, between 16 and 30 to volunteer to be tested to see if they are a match for the toddler. There's not much to it, a simple swab test carried out at home is enough for the experts to determine if you're a match.

The more people who register to be tested the better chance there is of finding the ideal candidate willing to donate the bone marrow little Arlo desperately needs.

For this family your help could mean the difference between life and death.

They've lived with the knowledge since he was 10 weeks old that a rare genetic condition could rob their precious little boy of his future.

Diagnosed with Wiskott-Aldrich Syndrome, it means Arlo's immune system doesn't function properly and it's difficult for his bone marrow to produce platelets, making him prone to bleeding.

Its estimated there are between 1 and 10 cases per million males worldwide. Arlo was only the third case at Queen Elizabeth University Hospital.

Doctors say they cant take the risk with an older donor as he was lucky to survive a previous transplant which failed when he was a baby.

His back-up is his dad Ian, 31, but he's only a half-match.

Sadly little Arlo's story isn't unique, across the country 2,300 people a year need a stem cell transplant and charity Anthony Nolan coordinates the search and raises money to support their vital work.

Nicole, 37, dreams of seeing her little boy attend his first day at school next August and believes someone out there can help that dream come true.

She pleaded: "Were asking as many people as possible to register and help give Arlo the life he deserves.

"We want to love and enjoy having our little boy around for a long time. He should be able to live out his life of dreams.

"Put yourself in the shoes of a parent whose child is ill, or someone else who is about to lose a loved one. Youve just been told in a room that they wont make it without stem cells. How does it feel?

"Its not just our Arlo, there are plenty of Arlos out there who need your help."

"People don't realise how easy it is to do. It's not this big operation, just a few injections and a day at an out-patient clinic to save someone's life. I wish it was opt-out, like organ donation.

"We dont have much time but I know in my heart the right match is out there."

To find out how you can can join the register and help the fight to save little Arlo and others just like visit Anthony Nolan's website here.

Go here to see the original:
Arlo's Army needs stem cell donor as mum begs for help to save three-year-old's life - Glasgow Live

To Read More: Arlo’s Army needs stem cell donor as mum begs for help to save three-year-old’s life – Glasgow Live
categoriaBone Marrow Stem Cells commentoComments Off on Arlo’s Army needs stem cell donor as mum begs for help to save three-year-old’s life – Glasgow Live | dataFebruary 14th, 2021
Read All

Ensuring gut integrity may improve results in blood cancer: Study – Hindustan Times

By daniellenierenberg

wA new study led by cancer researchers of Medical University of South Carolina (MUSC) found that a solitary strain of Bacteroides fragilis altogether diminished graft-versus-host disease (GVHD) by ensuring gut integrity.

The findings reported in JCI Insight shows that even though bone marrow transplant can be a lifesaving procedure for patients with blood cancers; however, GVHD is a potentially fatal side effect of transplantation, and it has limited treatment options. This proof-of-concept study demonstrates that better treatment options may be on the horizon for patients with GVHD.

Xue-Zhong Yu, M.D., associate director of Basic Science at Hollings Cancer Center, and lead author Hanief Sofi, Ph.D., realized that protecting the health of the gastrointestinal tract is a good target for reducing severe GVHD.

"If we can figure out how to keep a patient's intestinal tissue healthy before and after bone marrow transplant, then the patient's outcome will be much better. We know that restoring the microbiota diversity in the gut is an effective solution, but that comes with many challenges," said Yu.

Patients with blood cancers, such as leukemia, must undergo radiation and chemotherapy before they can get their new cancer-free immune system through bone marrow transplantation. The balance between the immune system and intestinal microbiota, communities of microorganisms that live in the gut, is especially important for proper intestinal health. Unfortunately, the radiation and chemotherapy radically throw off this balance, and the diversity of the microbiota is reduced 100- or even 1,000-fold. This leads to a condition called "leaky gut."

Clinical studies have shown that patients who recover microbiota diversity faster have better outcomes and less severe GVHD. Reduced microbiota diversity is associated with more severe GVHD.

Other studies have shown that fecal microbial transplantation (FMT) can be effective at reducing GVHD, but the challenge is how to get the right donor. Patients are heavily immune-deficient after bone marrow transplantation, and there is a great risk of bad infection if FMT is used in humans.

The Yu laboratory used two different strains of mice to establish a GVHD model that closely resembles the biology that occurs in humans after bone marrow transplantation. The mice developed acute GVHD. FMT significantly reduced acute GVHD in this model and reduced donor T cell proliferation in the organs, which is what triggers GVHD.

The researchers then used genetic sequencing to see which bacteria strains were most different between the fecal material of GVHD mice that received FMT and those that did not receive FMT.

Mice that had the best outcome, the lowest GVHD, had the highest levels of a bacteria called B. fragilis. Mice given this single bacterial strain had significantly reduced acute and chronic (long-term) GVHD compared to mice that did not get B. fragilis. In fact, B. fragilis alone was as good or even better than FMT.

Administration of B. fragilis increased overall gut microbial diversity, including increasing the amount of other beneficial bacteria strains. Surprisingly, GVHD was reduced in this model not only by live bacteria but also by bacteria that had been killed by short exposure to high heat.

The observation that B. fragilis was the main effective bacteria in the FMT process was not entirely new: B. fragilis also reduces autoimmunity in type 1 diabetes and colitis.

The current study by Yu and colleagues has two important findings. First, a molecule called polysaccharide A on the surface of B. fragilis appears to be critical for the GVHD-reducing functions of this bacteria. When the bacteria were modified to lack polysaccharide A, GVHD was not reduced compared to mice that did not receive any B. fragilis.

Secondly, the administration of B. fragilis did not reduce the graft-versus-leukemia or cancer-killing effect of the bone marrow transplantation, even though it did reduce donor T cell expansion in the gut. This is critical, since GVHD treatment options that reduce the graft-versus-leukemia effect would not be clinically significant.

"If this can be translated into the clinic, it would be a safer, easier and more effective treatment option," said Yu.

Further study in humans is needed to get this potential treatment into the clinic. Hematopoietic stem cells, given via bone marrow transplant, are classic immunotherapies for liquid tumors, but strategies to make the transplantation safer and more beneficial are sorely needed. Hollings Cancer Center researchers continue to search for the most effective therapies to improve patient outcomes and quality of life, he said.

Follow more stories on Facebook and Twitter

See the original post here:
Ensuring gut integrity may improve results in blood cancer: Study - Hindustan Times

To Read More: Ensuring gut integrity may improve results in blood cancer: Study – Hindustan Times
categoriaBone Marrow Stem Cells commentoComments Off on Ensuring gut integrity may improve results in blood cancer: Study – Hindustan Times | dataFebruary 14th, 2021
Read All

Keep it Flowing: Combating COVID-19 Blood Shortages in Cancer Treatment – Curetoday.com

By daniellenierenberg

When Marie Fuesel was treated for leukemia eight years ago, she needed donated blood products more than 100 times.

Theyd give me my chemotherapy, Id stay in the hospital for a week, then Id go home, get really sick and have to come back in for blood and platelets, says Fuesel, 53, a retired insurance agent who lives in suburban Chicago. I spent over 100 days in the hospital over eight months. The disease and treatments (affect the bone marrow and production of red and white blood cells and platelets), so many transfusions were required to achieve remission.

After eight months of chemotherapy, followed by a year on the targeted drug Sprycel (dasatinib) as part of a clinical trial, Fuesel went into remission. She no longer needs transfusions, but she still appreciates the need for blood donors. I wouldnt be alive if the blood wasnt available when it was needed, she says.

Back then, blood shortages werent common, but they are now. The stay-at-home orders at the beginning of the COVID-19 pandemic forced the cancellation of numerous blood drives, and safety concerns arising from its spread have prompted some frequent donors to stay away from donation centers.

Thats been a source of worry for oncologists. Patients with cancer use nearly one-quarter of the nations blood supply, according to the American Red Cross, and donated blood is a vital resource in the treatment of hematologic cancers. Patients who receive stem cell transplants often need transfusions of oxygen-carrying red blood cells, infection-fighting white blood cells and platelets to control bleeding. Blood transfusions are common in the supportive care of patients undergoing chemotherapy that suppresses production of all the blood cells that results in anemia, because they relieve symptoms that ensue, such as fatigue and shortness of breath.

Between March and June 2020, 37,000 blood drives were canceled, according to the American Red Cross. The impact of the blood shortage varied across the nation but has hit some cities particularly hard. The New York Blood Center, for example, which supplies New York City

hospitals, reported in December 2020 that it had just three days of supply on hand, down from the five- to seven-day supply it normally has.

Ongoing shortages are forcing cancer centers to change some of their procedures for using donated blood. We all recognize that we are in the midst of a public health crisis and that we all have to do our part, says Dr. Mikkael Sekeres, chief of hematology at the University of Miami Miller School of Medicine and a physician liaison in hematology at Sylvester Comprehensive Cancer Center.

In response to COVID-related blood shortages, several cancer centers adjusted their policies for transfusing blood. Moffitt Cancer Center in Tampa, Florida, for example, developed a blood shortage action plan, according to Dr. Kaaron Benson, director of the blood bank at Moffitt. It basically meant dropping some of the thresholds we would normally use for transfusion, Benson says.

Moffitt has not needed to implement the plan yet, but if it does, Benson says, the change would most likely have the biggest effect on patients with leukemia and lymphoma who are given platelets as a preventive strategy. Provided theyre not bleeding or engaging in activities that increase the risk of bleeding, studies have shown you can allow the platelet threshold to drop from our standard of 10,000 per microliter to 5,000, she says.

The technique was first suggested in a 1991 journal article and has since been widely accepted as an appropriate change to make during blood shortages, Benson says.

In recent years, many oncologists have set lower thresholds for red blood cell transfusions another change that has eased the strain on blood supply. They used to routinely order transfusions for patients with hemoglobin levels below 10 grams per deciliter. That number dropped to between 7 and 8 grams per deciliter after a series of studies showed that infusing red blood cells at the higher threshold did not improve treatment outcomes.

During the pandemic, Moffitt and other cancer centers are also delaying some stem cell transplants and elective surgeries, so that blood used during those procedures can be kept on hand for patients who urgently need it, such as trauma patients or those needing emergent surgery. But those decisions are made on a case-by-case basis, so patients should maintain a frequent dialogue with their oncologists to determine the best plan for managing their symptoms during the pandemic.

Patients with multiple myeloma, for example, can benefit from stem cell transplants, but its usually not urgent, says Dr. Stephanie Lee, a hematologist and professor at the Fred Hutchinson Cancer Research Center in Seattle. We have very good treatments for multiple myeloma, so we can continue to give patients chemotherapy for weeks or months, Lee says.

However, she explains, patients with leukemia who need stem cell transplants may be advised to undergo the procedure as quickly as possible, even during the pandemic, because delaying it could cause the cancer to grow and become resistant to treatment.

And some patients with cancer who are simultaneously fighting other diseases should receive all the blood and platelet transfusions they need to manage their cancer, as well as to address any risks posed by chronic conditions. If you have heart disease, and your hemoglobin drops even further, youre more likely to get angina or suffer a heart attack, Sekeres says. So, for those people with serious comorbidities, we are more aggressive in transfusing blood products.

Growing the Donor Pool

Stephenie Perry, who works as the business operations coordinator for the American Red Cross of Northwest Georgia, knows firsthand the value of donated blood. Perry is a survivor of Hodgkin lymphoma who needed several transfusions during her treatment, which consisted of a round of chemotherapy and two stem cell transplants.

Perry, 31, has been in remission since February 2018, but sometimes her red blood cell count still runs low and she needs another blood transfusion. I feel sluggish, and when I stand up, I get really dizzy, says Perry, who lives in Rome, Georgia. When I get a transfusion, its like someone has just given me a shot of energy.

How can patients adapt when blood shortages mandate less frequent transfusions? Lifestyle changes can make a big difference, Sekeres says. If a patient is becoming progressively anemic, and its someone who usually goes for a 2-mile walk every day, maybe theyll reduce it to 1 mile or cut (exercise) altogether, he says.

Some patients may be eligible for iron infusions, which can relieve symptoms of fatigue and lengthen the period between infusions, says Abbey Fueger, clinical trial nurse navigator for the Leukemia & Lymphoma Society.

In addition, there are other small changes that can lessen the risk of anemia and improve symptoms. Some physicians are trying to limit blood draws for patients and recommending nutritional supplements that might help them feel better and lengthen the time between infusions, she says.

Meanwhile, an effort is underway to expand the pool of potential blood donors. In April, the Food and Drug Administration (FDA) addressed blood shortages brought on by COVID-19 by easing up on some of its restrictions on who can donate. For example, people who are at risk of contracting HIV, and those who have a recent tattoo or piercing or possible exposure to an infected individual no longer have to wait one year to give blood. The new waiting period is three months.

The FDA also dropped the waiting period for donors who have traveled to malaria-endemic countries from one year to three months. And it no longer recommends that blood centers turn away donors who lived in certain European countries during the era when Creutzfeldt-Jakob disease, a rare and fatal degenerative brain disorder, was thought to be spreading.

The hospital community is rallying around the cause, holding blood drives of their own and encouraging family members of patients to donate blood.

During the first few months of the pandemic, Fuesel helped put together five small blood drives in her town of Orland Park, Illinois. They were so successful the American Red Cross and a local news broadcaster asked her to help run the seventh annual Great Chicago Blood Drive. So, she did, and on Jan. 13, that event collected 330 units of blood at the Orland Park location and more than 2,000 units at other drives around the city.

For donors who might be nervous about giving blood during a pandemic, Fuesel has a message: Its safe and important. All the beds are spaced apart, and there are different stations when you walk in for getting your temperature checked and using hand sanitizer, Fuesel says. I know these are hard times, but it doesnt cost anything to give your blood. Its a way to help.

Read more:
Keep it Flowing: Combating COVID-19 Blood Shortages in Cancer Treatment - Curetoday.com

To Read More: Keep it Flowing: Combating COVID-19 Blood Shortages in Cancer Treatment – Curetoday.com
categoriaBone Marrow Stem Cells commentoComments Off on Keep it Flowing: Combating COVID-19 Blood Shortages in Cancer Treatment – Curetoday.com | dataFebruary 14th, 2021
Read All

Family’s resilience heartwarming – The Friday Flyer

By daniellenierenberg

BY Ariana Shah

Despite Canyon Lakes Bernadette Mycroft and her little family not able to catch a break, the five of them wrap their arms around each other and refuse to give in to adversity. Adversity that just keeps piling on.

Bernadette, a popular kindergarten teacher at Tuscany Hills Elementary, is a single mom doing her best to effectively raise her four children, Bryan, Scarlette, James and Julliette. Bryan was diagnosed last year with Myelodysplastic Syndrome, a rare blood cancer. Hes been in and out of ICU for months and has been extremely close to death on multiple occasions.

The goal for months has been for Bryan, a high school senior, to be strong enough to undergo a life-saving stem-cell transplant surgery. That day finally arrived, against all odds, last week. He is currently undergoing chemotherapy in the bone marrow transplant unit at Radys Children Hospital in San Diego.

Bryan has spent most of the last couple of months in Rady Childrens Hospital in San Diego to treat a rare form of blood cancer. After much adversity, a major stem cell transplant of his sisters marrow occurred last week. A Go Fund Me campaign has been set up to help the family.

The battle to get to the transplant is a story of resilience, faith and a family determined to stick together despite blow after blow being dealt them.

Bryan has been battling. Bryan has been fighting for his life for many months in and out of ICU. The treatment Bryan underwent late last year resulted in him losing over 40 pounds. Then, in early December, Bryan and his entire family tested positive for COVID-19.

Bryans immune system was severely compromised, Bernadette said. But he was able to battle through it, despite having no white blood cells. Im so grateful for Dr. John Bradley, who administered Bryan with a COVID-19 antibody infusion that saved him. Bryan is so incredibly strong.

Bryan then had two more emergency surgeries.

The abscess that the chemo caused needed to be drained, Bernadette said. He cant heal from any more invasive surgeries due to his lack of white blood cells. What a nightmare. He just couldnt catch a break. Hes just so incredibly strong.

Everybody in the family recovered from COVID-19 and a weakened Bryan was able to come back home and stay with his family for a couple of weeks at Christmas. New Years Eve, though, found Bryan back in the hospital for more emergency surgery.

Bryans sister, Scarlette, was identified as a match and courageously agreed to give her brother this life-saving bone marrow transplant. On Feb. 1, Scarlette underwent a major operation to donate 8 million stem cells to be transplanted to her brother.

They have both been very courageous, brave and kind, Bernadette said. I could not be more proud of them. Little brother James and sister Juliette, too.

The stem cells were successfully transplanted into Bryan, and Scarlette was able to return home after a three-day stay in the hospital.

Its taken a toll on me to continuously drive back and forth from San Diego to Canyon Lake, Bernadette said. But, of course, Im doing it.

Bryan is currently on medication that prevents graft-versus-host disease. This procedure and aftercare will require him to be hospitalized for approximately four to six more weeks. Bernadette, meanwhile, has been on unpaid leave from Tuscany Hills Elementary for months.

Friends and the Canyon Lake Junior Womens Club are doing their best to take the family under their wing.

To say the Mycroft family is in crisis is an understatement, friend Tiffani Paul said as she set up a Go Fund Me account to help the family. Overcome with stress, worry, medical debt, loss of income and extraordinary expenses, the unbelievably proud and strong Ms. Mycroft has reluctantly allowed us to post this Go Fund Me on her familys behalf.

Those who wish to help the Mycroft family can donate to their Go Fund Me at https://www.gofundme.com/f/help-bernadette-mycroft-help-her-son-fight-cancer.

If there are any other approaches to help the Mycroft family, call or text Sonja of the Canyon Lake Junior Womens Club at 909-230-2702.

See the original post here:
Family's resilience heartwarming - The Friday Flyer

To Read More: Family’s resilience heartwarming – The Friday Flyer
categoriaBone Marrow Stem Cells commentoComments Off on Family’s resilience heartwarming – The Friday Flyer | dataFebruary 14th, 2021
Read All

Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease – Science

By daniellenierenberg

Machine learning for medicine

Small-molecule screens aimed at identifying therapeutic candidates traditionally search for molecules that affect one to several outputs at most, limiting discovery of true disease-modifying drugs. Theodoris et al. developed a machine-learning approach to identify small molecules that broadly correct gene networks dysregulated in a human induced pluripotent stem cell disease model of a common form of heart disease involving the aortic valve. Gene network correction by the most efficacious therapeutic candidate generalized to primary aortic valve cells derived from more than 20 patients with sporadic aortic valve disease and prevented aortic valve disease in vivo in a mouse model.

Science, this issue p. eabd0724

Determining the gene-regulatory networks that drive human disease allows the design of therapies that target the core disease mechanism rather than merely managing symptoms. However, small molecules used as therapeutic agents are traditionally screened for their effects on only one to several outputs at most, from which their predicted efficacy on the disease as a whole is extrapolated. In silico correlation of disease network dysregulation with pathways affected by molecules in surrogate cell types is limited by the relevance of the cell types used and by not directly testing compounds in patient cells.

In principle, mapping the architecture of the dysregulated network in disease-relevant cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) and subsequent screening for small molecules that broadly correct the abnormal gene network could overcome this obstacle. Specifically, targeting normalization of the core regulatory elements that drive the disease process, rather than correction of peripheral downstream effectors that may not be disease modifying, would have the greatest likelihood of therapeutic success. We previously demonstrated that haploinsufficiency of NOTCH1 can cause calcific aortic valve disease (CAVD), the third most common form of heart disease, and that the underlying mechanism involves derepression of osteoblast-like gene networks in cardiac valve cells. There is no medical therapy for CAVD, and in the United States alone, >100,000 surgical valve replacements are performed annually to relieve obstruction of blood flow from the heart. Many of these occur in the setting of a congenital aortic valve anomaly present in 1 to 2% of the population in which the aortic valve has two leaflets (bicuspid) rather than the normal three leaflets (tricuspid). Bicuspid valves in humans can also be caused by NOTCH1 mutations and predispose to early and more aggressive calcification in adulthood. Given that valve calcification progresses with age, a medical therapy that could slow or even arrest progression would have tremendous impact.

We developed a machine-learning approach to identify small molecules that sufficiently corrected gene network dysregulation in NOTCH1-haploinsufficient human iPSC-derived endothelial cells (ECs) such that they classified similar to NOTCH1+/+ ECs derived from gene-corrected isogenic iPSCs. We screened 1595 small molecules for their effect on a signature of 119 genes representative of key regulatory nodes and peripheral genes from varied regions of the inferred NOTCH1-dependent network, assayed by targeted RNA sequencing (RNA-seq). Overall, eight molecules were validated to sufficiently correct the network signature such that NOTCH1+/ ECs classified as NOTCH1+/+ by the trained machine-learning algorithm. Of these, XCT790, an inverse agonist of estrogen-related receptor (ERR), had the strongest restorative effect on the key regulatory nodes SOX7 and TCF4 and on the network as a whole, as shown by full transcriptome RNA-seq.

Gene network correction by XCT790 generalized to human primary aortic valve ECs derived from explanted valves from >20 patients with nonfamilial CAVD. XCT790 was effective in broadly restoring dysregulated genes toward the normal state in both calcified tricuspid and bicuspid valves, including the key regulatory nodes SOX7 and TCF4.

Furthermore, XCT790 was sufficient to prevent as well as treat already established aortic valve disease in vivo in a mouse model of Notch1 haploinsufficiency on a telomere-shortened background. XCT790 significantly reduced aortic valve thickness, the extent of calcification, and echocardiographic signs of valve stenosis in vivo. XCT790 also reduced the percentage of aortic valve cells expressing the osteoblast transcriptional regulator RUNX2, indicating a reduction in the osteogenic cell fate switch underlying CAVD. Whole-transcriptome RNA-seq in treated aortic valves showed that XCT790 broadly corrected the genes dysregulated in Notch1-haploinsufficient mice with shortened telomeres, and that treatment of diseased aortic valves promoted clustering of the transcriptome with that of healthy aortic valves.

Network-based screening that leverages iPSC and machine-learning technologies is an effective strategy to discover molecules with broadly restorative effects on gene networks dysregulated in human disease that can be validated in vivo. XCT790 represents an entry point for developing a much-needed medical therapy for calcification of the aortic valve, which may also affect the highly related and associated calcification of blood vessels. Given the efficacy of XCT790 in limiting valve thickening, the potential for XCT790 to alter the progression of childhood, and perhaps even fetal, valve stenosis also warrants further study. Application of this strategy to other human models of disease may increase the likelihood of identifying disease-modifying candidate therapies that are successful in vivo.

A gene networkbased screening approach leveraging human disease-specific iPSCs and machine learning identified a therapeutic candidate, XCT790, which corrected the network dysregulation in genetically defined iPSC-derived endothelial cells and primary aortic valve endothelial cells from >20 patients with sporadic aortic valve disease. XCT790 was also effective in preventing and treating a mouse model of aortic valve disease.

Mapping the gene-regulatory networks dysregulated in human disease would allow the design of network-correcting therapies that treat the core disease mechanism. However, small molecules are traditionally screened for their effects on one to several outputs at most, biasing discovery and limiting the likelihood of true disease-modifying drug candidates. Here, we developed a machine-learning approach to identify small molecules that broadly correct gene networks dysregulated in a human induced pluripotent stem cell (iPSC) disease model of a common form of heart disease involving the aortic valve (AV). Gene network correction by the most efficacious therapeutic candidate, XCT790, generalized to patient-derived primary AV cells and was sufficient to prevent and treat AV disease in vivo in a mouse model. This strategy, made feasible by human iPSC technology, network analysis, and machine learning, may represent an effective path for drug discovery.

See original here:
Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease - Science

To Read More: Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease – Science
categoriaCardiac Stem Cells commentoComments Off on Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease – Science | dataFebruary 14th, 2021
Read All

Energy drinks may damage the heart, researchers warnshould the FDA get involved? – Cardiovascular Business

By daniellenierenberg

Drinking certain energy drinks may cause significant damage to the heart, according to new findings published in Food and Chemical Toxicology.

Because the consumption of these beverages is not regulated and they are widely accessible over the counter to all age groups, the potential for adverse health effects of these products is a subject of concern and needed research, lead researcher Ivan Rusyn, MD, PhD, a professor at Texas A&M University in College Station, said in a prepared statement.

Rusyn et al. assessed a total of 17 popular energy drinks, studying their chemical profiles and looking for any associations with potential cardiac complications. Energy drinks sold by Adrenaline, Shoc, Bang Star, C4, CELSIUS, HEAT, EBOOST, Game Fuel, GURU, Kill Cliff, Kickstart, Monster Energy, Red Bull, Reign, Rockstar, RUNA, UPTIME, Venom Energy and Xyience Energy were all part of the teams analysis.

Overall, the authors found that stem cell-derived cardiomyocyteshuman heart cells grown in a laboratoryshowed signs of an increased beat rate after being exposed to some energy drinks. Also, theophylline, adenine and azelate were all ingredients the team associated with potentially contributing to QT prolongation in cardiomyocytes.

See the article here:
Energy drinks may damage the heart, researchers warnshould the FDA get involved? - Cardiovascular Business

To Read More: Energy drinks may damage the heart, researchers warnshould the FDA get involved? – Cardiovascular Business
categoriaCardiac Stem Cells commentoComments Off on Energy drinks may damage the heart, researchers warnshould the FDA get involved? – Cardiovascular Business | dataFebruary 14th, 2021
Read All

Apamistamab Conditioning Treatment Induces High Rates of HCT Success in AML – OncLive

By daniellenierenberg

Apamistamab (Iomab-B) conditioning treatment with targeted radioimmunotherapy to the bone marrow resulted in high rates of successful allogeneic hematopoietic stem cell transplants in patients with active, relapsed, or refractory acute myeloid leukemia (AML), according to interim results from the phase 3 SIERRA trial, which were presented virtually at the 2021 Transplant and Cellular Therapies Meetings.1

In these patients with relapsed or refractory AML, we observed high rates of allogeneic stem cell transplant with curative intent [in] 88% of patients on the Iomab-B arm, 18% of patients who were randomized to the conventional care arm achieved complete remission and received standard of care allo-transplant, and an overall rate of 79% of allo-transplant in all enrolled patients, Boglarka Gyurkocza, MD, said in a virtual presentation.

Investigators sought to prove with this study that targeted radiation to the marrow with apamistamab, a radioactive iodine (131I)labeled anti-CD45 antibody, could enable the successful engraftment of patients despite active disease in the marrow. Safety and robust efficacy had previously been demonstrated with the agent in 271 patients treated in 9 different phase 1 and 2 clinical trials.

The SIERRA trial is looking to enroll 150 patients, and the trial is already over 75% enrolled. Recently, an independent data monitoring committee recommended that the trial continue to the planned full enrollment based on a positive pre-planned ad-hoc analysis.2

In the study, patients with active, relapsed, refractory AML are randomized 1:1 to receive either apamistamab conditioning therapy and allogeneic HCT or conventional care. In the control arm, patients who do not achieve a complete remission (CR) by day 42 are allowed to cross over to receive Iomab-B, and those who do have a CR undergo HCT or receive standard-of-care therapy of the physicians choice.

Durable CR (dCR) rate is the primary end point of the study, characterized as complete response at 6 months after initial CR, and the secondary end point is overall survival (OS) rate at 1 year.

Patients are eligible for enrollment if they have marrow blast count 5% or the presence of peripheral blasts, age 55 years, a Karnofsky score 70, and related/unrelated donor matching at human leukocyte antigen (HLA)-A, HLA-B, HLA-C, and DRB-1. Active, relapsed, or refractory AML was defined for the sake of the trial as primary induction failure after 2 cycles of therapy including chemotherapy or 2 cycles of venetoclax (Venclexta) with a hypomethylating agent or low-dose cytarabine, first early relapse after first CR of less than 6 months, relapse refractory to salvage chemotherapy regimen, or second or subsequent relapse. Secondary or treatment-related AML was also allowed.

In the SIERRA trial, patient-specific dosimetry was used to generate an individualized therapeutic dose to target marrow and spare non-hematopoietic organs. Patients in the investigational arm received a dosimetric dose of apamistamab ( 20 mCi) approximately 19 days prior to HCT followed by a therapeutic dose of apamistamab, which is individually calculated for each patient based on an upper limit of 24 Gy to the liver. After, patients remain on radiation isolation for several days before receiving fludarabine conditioning therapy (30 mg/m2/day for 3 days) and finally low-dose total body irradiation (200 cGy) prior to HCT.

Among the first 75% of enrolled patients (n = 113), patients in the apamistamab arm (n = 56) had a median age of 63 years (range, 55-77), 35% had intermediate risk and 61% had adverse risk, the median

percent of marrow blasts at baseline was 29% (range, 4%-95%), and had received a median of 3 prior treatment regimens (range, 1-7). At randomization, 56% were in primary induction failure, 16% were in first early relapse, 15% had relapsed or refractory disease, and 13% were in their second or later relapse.

In the conventional care arm, the median age was 65 years (range, 55-77), 32% had intermediate risk and 63% had adverse risk, median marrow blasts was 20% (range, 5%-97%), and had received a median of 3 prior regimens (range, 1-6). At randomization, 49% were in primary induction failure, 21% were in first early relapse, 21% had relapsed or refractory disease, and 8.8% were in their second or later relapse. Patients who crossed over to receive apamistamab (n = 30) had similar baseline characteristics.

Forty-nine patients in the apamistamab-randomized arm were able to go on and undergo allogeneic HCT compared with 10 patients in the conventional care arm. In the investigational arm, a median of 646 mCi (range, 3541027) of apamistamab was infused at a dose of 14.7 Gy (range, 4.6-32) to the marrow. The median infused CD34-positive cell count was 5.6 x 106/Kg (range, 1.8-208). Forty-five patients received peripheral blood stem cells (PBSCs), 3 received marrow grafts, 17 had related donors, and 31 had unrelated.

Individualized therapy of Iomab-B provided myeloablative doses of radiation to the marrow, Gyurkocza, a medical oncologist at Memorial Sloan Kettering Cancer Center, commented.

These patients had a median of 30 days (range, 23-60) to HCT after randomization and 14 days (range, 9-22) to neutrophil engraftment, with no graft failure reported. Patients also had 18 days (range, 4-39) until platelet engraftment.

We also observed 100% neutrophil and platelet engraftment in patients who received Iomab-B conditioning, despite a heavy leukemia burden, Gyurkocza said.

In patients in the conventional arm who went on to HCT, conditioning regimens for HCT consisted of fludarabine/melphalan in 2, fludarabine/melphalan/total body irradiation in 1, busulfan/fludarabine in 1, cyclophosphamide/fludarabine/total body irradiation in 2, and 4 had no data on conditioning regimens available. Eight of these patients had PBSCs, 2 had marrow, 3 had related donors, 6 had unrelated, and 1 was unreported.

Median days to HCT was 67 (range, 52-104) with 17 days (range, 13-83) to neutrophil engraftment and 22 days (range, 8-35) to platelet engraftment. There was 1 graft failure.

Among the patients who crossed over to receive apamistamab before HCT, the median infused dose was 592 mCi (range, 313-1013) with 15.5 Gy (range, 6.3-42) to the marrow. The median infused CD34-positive cell count was 5.1 x 106/Kg (range, 1.8-16.1). Twenty-eight patients had PBSCs, 2 had marrow, 10 had related donors, and 20 had unrelated.

Patients had a median of 62 days (range, 36-100) to HCT, 14 days (range, 10-37) to neutrophil engraftment, and 19 days (range, 1-38) to platelet engraftment. No graft failure was reported in this group.

View original post here:
Apamistamab Conditioning Treatment Induces High Rates of HCT Success in AML - OncLive

To Read More: Apamistamab Conditioning Treatment Induces High Rates of HCT Success in AML – OncLive
categoriaBone Marrow Stem Cells commentoComments Off on Apamistamab Conditioning Treatment Induces High Rates of HCT Success in AML – OncLive | dataFebruary 11th, 2021
Read All

Jasper Therapeutics Announces Positive Data from Phase 1 Clinical Trial of JSP191 as Targeted Stem Cell Conditioning Agent in Patients with…

By daniellenierenberg

REDWOOD CITY, Calif.--(BUSINESS WIRE)--Jasper Therapeutics, Inc., a biotechnology company focused on hematopoietic cell transplant therapies, today announced positive preliminary findings from its ongoing multicenter Phase 1 clinical trial of JSP191, a first-in-class anti-CD117 (stem cell factor receptor) monoclonal antibody, as a conditioning agent in older patients with myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) undergoing hematopoietic (blood) cell transplantation.

Data from the first six patients who received a single dose of JSP191 prior to transplantation showed successful engraftment in all six patients. Complete donor myeloid chimerism (equal or greater than 95%) was observed in five of six evaluable patients at 28 days, and all three evaluable patients had total donor chimerism equal or greater than 95% observed at day 90. In addition, at 28 days, three of five evaluable patients showed complete eradication of measurable residual disease (MRD) as measured by next-generation sequencing. Two of the five evaluable patients showed substantial reductions in MRD. No treatment-related serious adverse events were reported.

The findings were presented by lead investigator Lori Muffly, M.D., M.S., Assistant Professor of Medicine (Blood and Bone Marrow Transplantation) at Stanford Medicine, as a late-breaking abstract at the 2021 Transplantation & Cellular Therapy (TCT) Meetings of the American Society for Transplantation and Cellular Therapy (ASTCT) and the Center for International Blood & Marrow Transplant Research (CIBMTR).

These early clinical results are the first to demonstrate that JSP191 administered in combination with a standard non-myeloablative regimen of low-dose radiation and fludarabine is well tolerated and can clear measurable residual disease in older adults with MDS or AML undergoing hematopoietic cell transplantation a patient population with historically few options, said Kevin N. Heller, M.D., Executive Vice President, Research and Development, of Jasper Therapeutics. These patients could be cured by hematopoietic cell transplantation, but the standard-of-care myeloablative conditioning regimens used today are highly toxic and associated with high rates of morbidity and mortality particularly in older adults. Traditional lower intensity transplant conditioning regimens are better tolerated in older adults, but are associated with higher rates of relapse in MDS/AML patients with measurable residual disease. JSP191, a well-tolerated biologic conditioning agent that targets and depletes both normal hematopoietic stem cells and those that initiate MDS and AML, has the potential to be a curative option for these patients.

The open-label, multicenter Phase 1 study (JSP-CP-003) is evaluating the safety, tolerability and efficacy of adding JSP191 to the standard conditioning regimen of low-dose radiation and fludarabine among patients age 65 to 74 years with MDS or AML undergoing hematopoietic cell transplantation. Patients were ineligible for full myeloablative conditioning. The primary outcome measure of the study is the safety and tolerability of JSP191 as a conditioning regimen up to one year following a donor cell transplant.

We designed JSP191 to be given as outpatient conditioning and to have both the efficacy and safety profile required for use in newborn patients and older patients for successful outcomes, said Wendy Pang, M.D., Ph.D. Executive Director, Research and Translational Medicine, of Jasper Therapeutics. We are enthusiastic about the reduction of measurable residual disease seen in these patients, especially given that it is associated with improved relapse-free survival. We are excited to continue our research in MDS/AML, with plans for an expanded study. We are evaluating JSP191, the only antibody of its kind, in two ongoing clinical studies and are encouraged by the positive clinical data seen to date.

About MDS and AML

Myelodysplastic syndromes (MDS) are a group of disorders in which immature blood-forming cells in the bone marrow become abnormal and do not make new blood cells or make defective blood cells, leading to low numbers of normal blood cells, especially red blood cells.1 In about one in three patients, MDS can progress to acute myeloid leukemia (AML), a rapidly progressing cancer of the bone marrow cells.1 Both are diseases of the elderly with high mortality. Each year, about 5,000 patients with MDS and 8,000 people with AML in the G7 countries receive hematopoietic cell transplants. These transplants are curative but are underused due to the toxicity of the current high-intensity conditioning regimen, which includes the chemotherapy agents busulfan and fludarabine.

About JSP191

JSP191 (formerly AMG 191) is a first-in-class humanized monoclonal antibody in clinical development as a conditioning agent that clears hematopoietic stem cells from bone marrow. JSP191 binds to human CD117, a receptor for stem cell factor (SCF) that is expressed on the surface of hematopoietic stem and progenitor cells. The interaction of SCF and CD117 is required for stem cells to survive. JSP191 blocks SCF from binding to CD117 and disrupts critical survival signals, causing the stem cells to undergo cell death and creating an empty space in the bone marrow for donor or gene-corrected transplanted stem cells to engraft.

Preclinical studies have shown that JSP191 as a single agent safely depletes normal and diseased hematopoietic stem cells, including in animal models of SCID, myelodysplastic syndromes (MDS) and sickle cell disease (SCD). Treatment with JSP191 creates the space needed for transplanted normal donor or gene-corrected hematopoietic stem cells to successfully engraft in the host bone marrow. To date, JSP191 has been evaluated in more than 90 healthy volunteers and patients.

JSP191 is currently being evaluated in two separate clinical studies in hematopoietic cell transplantation. A Phase 1/2 dose-escalation and expansion trial is evaluating JSP191 as a sole conditioning agent to achieve donor stem cell engraftment in patients undergoing hematopoietic cell transplantation for severe combined immunodeficiency (SCID), which is potentially curable only by this type of treatment. Data presented at the 62nd American Society of Hematology (ASH) Annual Meeting showed that a single dose of JSP191 administered prior to stem cell transplantation in a 6-month-old infant was effective in establishing sustained donor chimerism followed by development of B, T and NK immune cells. No treatment-related adverse events were reported. A Phase 1 clinical study is evaluating JSP191 in combination with another low-intensity conditioning regimen in patients with MDS or AML undergoing hematopoietic cell transplantation. For more information about the design of these two ongoing clinical trials, visit http://www.clinicaltrials.gov (NCT02963064 and NCT04429191).

Additional studies are planned to advance JSP191 as a conditioning agent for patients with other rare and ultra-rare monogenic disorders and autoimmune diseases.

About Jasper Therapeutics

Jasper Therapeutics is a biotechnology company focused on the development of novel curative therapies based on the biology of the hematopoietic stem cell. The companys lead compound, JSP191, is in clinical development as a conditioning antibody that clears hematopoietic stem cells from bone marrow in patients undergoing a hematopoietic cell transplant. This first-in-class conditioning antibody is designed to enable safer and more effective curative hematopoietic cell transplants and gene therapies. For more information, please visit us at jaspertherapeutics.com.

1 https://www.cancer.org/cancer/myelodysplastic-syndrome/about/what-is-mds.html

Go here to read the rest:
Jasper Therapeutics Announces Positive Data from Phase 1 Clinical Trial of JSP191 as Targeted Stem Cell Conditioning Agent in Patients with...

To Read More: Jasper Therapeutics Announces Positive Data from Phase 1 Clinical Trial of JSP191 as Targeted Stem Cell Conditioning Agent in Patients with…
categoriaBone Marrow Stem Cells commentoComments Off on Jasper Therapeutics Announces Positive Data from Phase 1 Clinical Trial of JSP191 as Targeted Stem Cell Conditioning Agent in Patients with… | dataFebruary 11th, 2021
Read All

Gamida Cell Presents Efficacy and Safety Results of Phase 3 Study of Omidubicel in Patients with Hematologic Malignancies at the 2021 TCT Meetings of…

By daniellenierenberg

BOSTON--(BUSINESS WIRE)--Gamida Cell Ltd. (Nasdaq: GMDA), an advanced cell therapy company committed to cures for blood cancers and serious hematologic diseases, today announced the results of a Phase 3 clinical study of omidubicel presented in an oral session at the Transplantation & Cellular Therapy Meetings of the American Society of Transplantation and Cellular Therapy (ASTCT) and Center for International Blood & Marrow Transplant Research (CIBMTR), or the TCT Meetings. Omidubicel is an advanced cell therapy under development as a potential life-saving allogeneic hematopoietic stem cell transplant solution for patients with hematologic malignancies.

This clinical data set was from the international, multi-center, randomized Phase 3 study of omidubicel that was designed to evaluate the safety and efficacy of omidubicel in patients with high-risk hematologic malignancies undergoing a bone marrow transplant compared to a comparator group of patients who received a standard umbilical cord blood transplant. This is the first presentation of these data in a peer-reviewed conference. The full presentation is available on the Gamida Cell website.

The results of this global Phase 3 study of omidubicel in patients with hematologic malignancies show that omidubicel resulted in faster hematopoietic recovery, fewer bacterial and viral infections and fewer days in hospital, all of which are meaningful results and represent potentially important advancements in care when considering the patient experience following transplant, said Mitchell Horwitz, M.D., principal investigator and professor of medicine at the Duke Cancer Institute. The comparator, a transplant with umbilical cord blood, has been historically shown to result in low incidence of graft versus host disease (GvHD) in relation to other graft sources, and in this study, omidubicel demonstrated a GvHD profile similar to the comparator. Moreover, previous studies have shown that engraftment with omidubicel is durable, with some patients in the Phase 1/2 study receiving their transplant more than 10 years ago. The data presented at this meeting indicate that omidubicel has the potential to be considered a new standard of care for patients who are in need of stem cell transplantation but do not have access to a matched donor.

Details of Phase 3 Efficacy and Safety Results Shared at the TCT Meetings

Patient demographics including racial and ethnic diversity and baseline characteristics were well-balanced across the two study groups. The studys intent-to-treat analysis included 125 patients aged 1365 years with a median age of 41. Diseases included acute lymphoblastic leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome or lymphoma. Patients were enrolled at more than 30 clinical centers in the United States, Europe, Asia, and Latin America.

Gamida Cell previously reported in May 2020 that the study achieved its primary endpoint, showing that omidubicel demonstrated a statistically significant reduction in time to neutrophil engraftment, a measure of how quickly the stem cells a patient receives in a transplant are established and begin to make healthy new cells, and a key milestone in a patients recovery from a bone marrow transplant. The median time to neutrophil engraftment was 12 days for patients randomized to omidubicel compared to 22 days for the comparator group (p<0.001).

All three secondary endpoints demonstrated a statistically significant improvement among patients who were randomized to omidubicel in relation to patients randomized to the comparator group (intent-to-treat). Platelet engraftment was significantly accelerated with omidubicel, with 55 percent of patients randomized to omidubicel achieving platelet engraftment at day 42, compared to 35 percent for the comparator (p = 0.028). The rate of infection was significantly reduced for patients randomized to omidubicel, with the cumulative incidence of first grade 2 or grade 3 bacterial or invasive fungal infection for patients randomized to omidubicel of 37 percent, compared to 57 percent for the comparator (p = 0.027). Hospitalization in the first 100 days after transplant was also reduced in patients randomized to omidubicel, with a median number of days alive and out of hospital for patients randomized to omidubicel of 60.5 days, compared to 48.0 days for the comparator (p = 0.005). The details of these data were first reported in December 2020.

Previously unpublished data from the study relating to exploratory endpoints also support the clinical benefit demonstrated by the studys primary and secondary endpoints. There was no statistically significant difference between the two patient groups related to grade 3/4 acute GvHD (14 percent for omidubicel, 21 percent for the comparator) or all grades chronic GvHD at one year (35 percent for omidubicel, 29 percent for the comparator). Non-relapse mortality was shown to be 11 percent for patients randomized to omidubicel and 24 percent for patients randomized to the comparator (p=0.09).

These clinical data results will form the basis of a Biologics License Application (BLA) that Gamida Cell expects to submit to the U.S. Food and Drug Administration (FDA) in the second half of 2021.

We believe that omidubicel has the potential to transform the field of hematopoietic bone marrow transplant by expanding access to this potentially curative cell therapy treatment for thousands of patients who are in need of a transplant but lack access to a matched related donor, said Julian Adams, Ph.D., chief executive officer of Gamida Cell. Sharing the results of the Phase 3 study of omidubicel with the transplant community is a major moment for Gamida Cell, and we are forever grateful to the patients who participated in this study, their caregivers, and the work of the investigators and their teams.

About Omidubicel

Omidubicel is an advanced cell therapy under development as a potential life-saving allogeneic hematopoietic stem cell (bone marrow) transplant solution for patients with hematologic malignancies (blood cancers). In both Phase 1/2 and Phase 3 clinical studies (NCT01816230, NCT02730299), omidubicel demonstrated rapid and durable time to engraftment and was generally well tolerated.1,2 Omidubicel is also being evaluated in a Phase 1/2 clinical study in patients with severe aplastic anemia (NCT03173937). The aplastic anemia investigational new drug application is currently filed with the FDA under the brand name CordIn, which is the same investigational development candidate as omidubicel. For more information on clinical trials of omidubicel, please visit http://www.clinicaltrials.gov.

Omidubicel is an investigational therapy, and its safety and efficacy have not been established by the FDA or any other health authority.

About Gamida Cell

Gamida Cell is an advanced cell therapy company committed to cures for patients with blood cancers and serious blood diseases. We harness our cell expansion platform to create therapies with the potential to redefine standards of care in areas of serious medical need. For additional information, please visit http://www.gamida-cell.com or follow Gamida Cell on LinkedIn or Twitter at @GamidaCellTx.

Cautionary Note Regarding Forward Looking Statements

This press release contains forward-looking statements as that term is defined in the Private Securities Litigation Reform Act of 1995, including with respect to timing of anticipated regulatory submissions, which statements are subject to a number of risks, uncertainties and assumptions, including, but not limited to the progress and expansion of Gamida Cells manufacturing capabilities and other commercialization efforts and clinical, scientific, regulatory and technical developments. In light of these risks and uncertainties, and other risks and uncertainties that are described in the Risk Factors section and other sections of Gamida Cells Annual Report on Form 20-F, filed with the Securities and Exchange Commission (SEC) on February 26, 2020, its Report on Form 6-K filed with the SEC on August 12, 2020, and other filings that Gamida Cell makes with the SEC from time to time (which are available at http://www.sec.gov), the events and circumstances discussed in such forward-looking statements may not occur, and Gamida Cells actual results could differ materially and adversely from those anticipated or implied thereby. Any forward-looking statements speak only as of the date of this press release and are based on information available to Gamida Cell as of the date of this release.

1 Horwitz M.E., Wease S., Blackwell B., Valcarcel D. et al. Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide. J Clin Oncol. 2019 Feb 10;37(5):367-374.

2 Gamida Cell press release, Gamida Cell Announces Positive Topline Data from Phase 3 Clinical Study of Omidubicel in Patients with High-Risk Hematologic Malignancies, issued May 12, 2020. Last accessed August 31, 2020.

View original post here:
Gamida Cell Presents Efficacy and Safety Results of Phase 3 Study of Omidubicel in Patients with Hematologic Malignancies at the 2021 TCT Meetings of...

To Read More: Gamida Cell Presents Efficacy and Safety Results of Phase 3 Study of Omidubicel in Patients with Hematologic Malignancies at the 2021 TCT Meetings of…
categoriaBone Marrow Stem Cells commentoComments Off on Gamida Cell Presents Efficacy and Safety Results of Phase 3 Study of Omidubicel in Patients with Hematologic Malignancies at the 2021 TCT Meetings of… | dataFebruary 11th, 2021
Read All

World Symposium Orchard leads the crop of Hurler syndrome hopefuls – Vantage

By daniellenierenberg

Gene therapy companies have been under pressure lately, but Orchard Therapeutics got a lift yesterday from promising early data with its mucopolysaccharidosis type I candidateOTL-203.

The company is seeking to supersede the current standard of care, enzyme-replacement therapy or bone marrow transplant. But other gene therapy contenders are not too far behind, notablyRegenxbio, which in December started a proof-of-concept study of its rival project, RGX-111.

Good IDUA

Both projects seek to deliver the -l-iduronidase (IDUA) gene, which is mutated in MPS-I, leading to a deficiency of the IDUA enzyme. This enzyme usually breaks down glycosaminoglycans (GAGs), so in MPS-I patients these build up, causing tissue and organ damage. Symptoms of MSP-I, also known as Hurler syndrome, include cognitive impairment and skeletal deformity; if left untreated, patients rarely survive beyond the age of 10.

And both OTL-203 and RGX-111 are designed as one-time therapies, whereas the current enzyme replacement, Biomarin/Sanofis Aldurazyme, is given intravenously once a week.

However, the gene therapy candidates go about restoring IDUA enzyme activity in different ways. OTL-203 uses hematopoietic stem cells taken from the patient, then genetically modified using a lentiviral vector to express the IDUA gene, before being reinfused.

RGX-111, meanwhile, uses an adeno-associated viral vector to deliver the gene directly to the brain, getting around a central problem with Aldurazyme, which cannot cross the blood-brain barrier.

Getting into the brain should not be a problem for OTL-203 either, Orchards head of medical affairs, Leslie Meltzer, told Evaluate Vantage. She explained that hematopoietic stem cells naturally cross the blood-brain barrier and, once in the CNS, differentiate into a microglial-like cell.

This claim appears to be supported by the latest data, which admittedly come in just a handful of subjects. The eight-patient phase I/II trial, presented at the World Symposium yesterday, found increases in the IDUA enzyme in patients blood and cerebrospinal fluid. There was also a decrease in GAGs in the CSF and urine.

Encouragingly, this activity appears to have translated into a clinical benefit: all eight patients showed stable cognitive scores and stable motor function versus baseline, as well as growth in the normal range for patients age.

Its a progressive disease, so youd expect these things to worsen over time, but the fact they continued to be stable is very promising, Ms Meltzer said.She admitted that the data were early, with only around a year of follow-up on most of the clinical endpoints.

Orchard plans to start a registrational study by the end of this year.Ms Meltzer would not give any details ondesign, saying this would be finalised after feedback from regulators.

Regenxbios proof-of-concept study of RGX-111 is due to complete in November, putting the project about a year behind OTL-203.

One candidate that will go no further is Sangamos SB-318. The company reported disappointing data with the in vivo zinc finger nuclease genome-editing project two years ago, and has since said it would focus on second-generation zinc finger projects.

Still, even two gene therapies might be too many for an ultra-rare disease like MPS-I, which affects just one in 100,000 people. Asked whether this market could support more than one gene therapy, Ms Meltzer said newborn screening recently implemented in countries including the UScould lead to a revision of that estimate.

But, as in other rare disorders that have attracted several gene therapy players, a battle over a limited patient pool could be shaping up.

Read the original post:
World Symposium Orchard leads the crop of Hurler syndrome hopefuls - Vantage

To Read More: World Symposium Orchard leads the crop of Hurler syndrome hopefuls – Vantage
categoriaBone Marrow Stem Cells commentoComments Off on World Symposium Orchard leads the crop of Hurler syndrome hopefuls – Vantage | dataFebruary 11th, 2021
Read All

Growth Factors of Hematopoietic Stem Cell Transplantation (HSCT) Market with Emerging Trends and Revenue Estimation By 2026 – AlgosOnline

By daniellenierenberg

Global Hematopoietic Stem Cell Transplantation (HSCT) Report offers market size, share, overview, segmentation by types, application, countries, key manufactures, cost analysis, industrial chain, sourcing strategy, downstream buyers, marketing strategy analysis, distributors/traders, factors affecting market, forecast and other important information for key insight.

The research report on Hematopoietic Stem Cell Transplantation (HSCT) market is an in-depth analysis of pivotal drivers, challenges, and growth prospects prevailing in the business space and their impact on the expansion graph over the ensuing years.

Request a sample Report of Hematopoietic Stem Cell Transplantation (HSCT) Market at:https://www.marketstudyreport.com/request-a-sample/3147041?utm_source=algosonline.com&utm_medium=Ram

According to the report, Hematopoietic Stem Cell Transplantation (HSCT) market is anticipated to record a y-o-y growth rate of XX% over the analysis duration (2020-2026) and is poised to amass substantial revenues by the end of study term.

Various disruptions are being observed on account of lockdowns imposed to control COVID-19 spread, leading to uncertainties. While all industry verticals are facing revenues troubles presently, some sectors will continue to fight these challenges even as economy emerges from pandemic blowback.

As a result, all the businesses are revising their budgets to formulate new profit trajectory for the forthcoming years. Our thorough analysis of this industry space will enable you to come up with contingency plans and prepare you to manage market qualms.

The research document scrutinizes different segmentations to offer comprehensive insights about the growth opportunities in the market.

Major points summarized in Hematopoietic Stem Cell Transplantation (HSCT) market report:

Elucidating Hematopoietic Stem Cell Transplantation (HSCT) market segmentations:

Regional terrain:

Ask for Discount on Hematopoietic Stem Cell Transplantation (HSCT) Market Report at:https://www.marketstudyreport.com/check-for-discount/3147041?utm_source=algosonline.com&utm_medium=Ram

Product scope:

Application landscape:

Competitive hierarchy:

Important Highlights of the Report:

Industry Size & Forecast: Estimations on the global Hematopoietic Stem Cell Transplantation (HSCT) industry size on the basis of value and volume are provided in this part of the report

Segmental Analysis: The report has examined the high-growth segments including product type, application, and end-users

Future Prospects: Future opportunities are estimated to emerge in the industry

Geography-Wise Analysis: The authors of the report have studied the regions having growth potential to help companies plan their future investments

Study on Competitive Landscape: The industry experts have offered thorough information about the strategic tactics adopted by the industry participants.

Key questions answered in the report:

For More Details On this Report: https://www.marketstudyreport.com/reports/global-hematopoietic-stem-cell-transplantation-hsct-market-2021-by-company-regions-type-and-application-forecast-to-2026

Related Reports:

2. Global Nasal Drops Market 2021 by Manufacturers, Regions, Type and Application, Forecast to 2026Read More: https://www.marketstudyreport.com/reports/global-nasal-drops-market-2021-by-manufacturers-regions-type-and-application-forecast-to-2026

Read More Reports On: https://www.marketwatch.com/press-release/giant-magnetoresistive-gmr-sensors-market-size-growth-factors-demand-and-trends-forecast-to-2026-2021-02-09

Contact Us:Corporate Sales,Market Study Report LLCPhone: 1-302-273-0910Toll Free: 1-866-764-2150 Email: [emailprotected]

Original post:
Growth Factors of Hematopoietic Stem Cell Transplantation (HSCT) Market with Emerging Trends and Revenue Estimation By 2026 - AlgosOnline

To Read More: Growth Factors of Hematopoietic Stem Cell Transplantation (HSCT) Market with Emerging Trends and Revenue Estimation By 2026 – AlgosOnline
categoriaBone Marrow Stem Cells commentoComments Off on Growth Factors of Hematopoietic Stem Cell Transplantation (HSCT) Market with Emerging Trends and Revenue Estimation By 2026 – AlgosOnline | dataFebruary 11th, 2021
Read All

Manageable Safety Profile Observed in Phase 1 Studies Examining UCART19 for Pediatric and Adult Patients with B-Cell ALL – Cancer Network

By daniellenierenberg

UCART19 produced a manageable safety profile in 2 separate phase 1 studies examining heavily pretreated pediatric and adult patients with relapsed or refractory B-cell acute lymphoblastic leukemia (ALL), according to data published in The Lancet.

For the first time, these studies support the feasibility of UCART19 and other genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor (CAR) T-cells to treat this group of patients with aggressive forms of ALL.

Phase 1 trials in paediatric and adult patients with late-stage relapsed or refractory B-cell acute lymphoblastic leukaemia have shown the feasibility, safety, and activity of UCART19, an off-the-shelf CAR T-cell product, wrote the investigative team. The results of these trials represent a substantial step forward in the development of CAR T cells and could herald a new, effective, and easily accessible cell therapy for patients with B-cell acute lymphoblastic leukaemia.

The results determined that the most common adverse event between both phase 1 studies was cytokine release syndrome (CRS), observed in 19 patients (91%). Three patients (14%) experienced grade 3/4 CRS.

More, 8 patients (38%) experienced grades 1/2 neurotoxicity, 2 (10%) experienced grade 1 acute skin graft-versus-host disease, and 6 (32%) had grade 4 prolonged cytopenia.

The research team recorded 2 treatment-related deaths between the 2 studies. The first was caused by neutropenic sepsis in a patient with concurrent CRS and the other was from pulmonary hemorrhage in a patient with persistent cytopenia.

Overall, 14 of 21 patients (67%) experienced a complete response or complete response with incomplete hematological recovery at 28 days following infusion. Median duration of response was recorded at 4.1 months, with 10 of 14 adult patients (71%) progressing to subsequent allogeneic stem cell transplant. The progression-free survival rate at 6 months was 27%, with an overall survival rate of 55%.

The adverse effects observed with UCART19 to date seem similar to those reported for autologous anti-CD19 CAR T cells, wrote the investigators. Cytokine release syndrome was encountered in the majority of patients in whom UCART19 expansion was detected and appeared no more severe than with approved autologous products.

The 2 ongoing, multicenter, clinical trials (NCT02808442 and NCT02746952) enrolled 7 pediatric and 14 adult patients from June 3, 2016, through October 23, 2018, to examine the safety profile and antileukemic activity of UCART19.

The dose-escalation studies began with patients undergoing lymphodepletion with fludarabine and cyclophosphamide, with or without alemtuzumab (Lemtrada), followed by different doses of UCART19 for adults and children. The primary end point of the data was adverse events.

The small sample size for the investigation is the leading limitation for the research, but the research team also mentioned the differing trial designs, lymphodepletion regimens, and UCART19 cell doses to be among limitations of both trials.

The results [of these studies] are an encouraging step forward for the field of allogeneic CAR T cells, and UCART19 offers the opportunity to treat patients with rapidly progressive disease and where autologous CAR T-cell therapy is unavailable, wrote the investigators.

Reference:

Benjamin R, Graham C, Yallop D, et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet. 2020;396(10266):1885-1894. doi: 10.1016/S0140-6736(20)32334-5

Visit link:
Manageable Safety Profile Observed in Phase 1 Studies Examining UCART19 for Pediatric and Adult Patients with B-Cell ALL - Cancer Network

To Read More: Manageable Safety Profile Observed in Phase 1 Studies Examining UCART19 for Pediatric and Adult Patients with B-Cell ALL – Cancer Network
categoriaSkin Stem Cells commentoComments Off on Manageable Safety Profile Observed in Phase 1 Studies Examining UCART19 for Pediatric and Adult Patients with B-Cell ALL – Cancer Network | dataFebruary 11th, 2021
Read All

Platelet Rich Plasma Therapy: The answer to a rejuvenated body, skin, hair and sex life! – Longevity LIVE – Longevity LIVE

By daniellenierenberg

You might associate platelet rich plasma therapy (PRP) with the renowned vampire facial and youd be right. However, theres so much more to this ground-breaking treatment than what youve seen in mainstream media. Founder of Anti-Aging Art Medical Aesthetics, Dr Reza Mia, shares more on this cutting-edge procedure.

PRP, or platelet rich plasma therapy, as its technically known, is a non-invasive treatment performed to accelerate healing, minimise the signs of ageing, accentuate parts of the body and to relieve pain. Incredibly versatile, this therapy is used among athletes to accelerate the healing of injuries, it is used to treat arthritis and tendonitis and is also popularly used as an anti-ageing facial treatment. PRP is considered a long-lasting solution to the bodys natural healing process, with results ranging from instant, to appearing after a couple of weeks, and lasting up to several years.

The science behind it

Plasma is the liquid part of the blood, consisting mainly of water and protein. It allows red and white blood cells, as well as platelets (a type of blood cell responsible for making blood clot, as well as for facilitating healing) to move through the bloodstream. Platelets are rich in connective tissue growth and healing factors; they initiate repair in the body and attract stem cells to injuries. This amazing healing ability is what makes them so effective in platelet rich plasma therapy.

To collect plasma, we draw blood from the body and then inserts it into a machine called a centrifuge, which spins the blood at high speeds, separating platelet-rich plasma from the rest of the blood. The red blood cells are discarded, and one is left with a concentration of platelets above normal values. This concentration can then be injected into various areas of the body to treat injuries or concerns.

Sports-related injuries

PRP has become a popular therapy among athletes. It is used to treat injured tendons, ligament sprains and tears, damaged ligaments and joints. Not only does it stimulate the healing of cartilage but it also helps reduce pain. Soft tissue injuries are most responsive to PRP treatment. Depending on the type of injury and the severity of it, some athletes who would have been side-lined for months have seen major results after around 6 weeks.

The vampire facial or facelift gained worldwide fame when reality star Kim Kardashian famously posted about it on Instagram a few years ago. Today, it is a common anti-ageing treatment. PRP is injected into the face to reduce wrinkles and rejuvenate the skin. The treatment provides a gradual increase in volume by helping to stimulate the bodys natural collagen production. Other benefits of the treatment include skin tightening, lifting and smoothing, and a more even skin tone.

Also known as a vampire breast lift, PRP for breast enhancement is a non-surgical form of breast augmentation. Unlike a traditional breast lift or augmentation which requires incisions, this treatment is performed by utilising PRP injections to create a fuller and firmer bust. A vampire breast lift wont increase your cup size or change the shape of your breast. However, it will create a fuller and firmer appearance and minimise the appearance of wrinkles and stretch marks. The results have been likened to those achieved by wearing a great quality push-up bra.

PRP therapy can be used to improve sexual function in both men and women. Platelet rich plasma sexual rejuvenation, involves injecting your own activated blood into the vagina or penis. The v-shot can enhance clitoral orgasms; increase arousal and lubrication and vaginal tightness. The benefits of the p-shot are longer, firmer and more sustainable erections and proven penis enlargement. The question on everyones lips is, of course, whether or not the latter procedure is painful. No. It is completely painless!

Did you know that PRP therapy is also successful when used to enhance hair growth? The treatment has shown to effectively treat androgenic alopecia (also known as male pattern baldness). PRP injections trigger and maintain natural hair growth by stimulating blood flow to the hair follicles. This treatment may be combined with otherhair loss procedures or medications.

Undergoing PRP therapy is simple and painless. The entire procedure, from drawing the blood to solution preparation, takes around half an hour and is performed in your aesthetic practitioners office. The time spent on the treatment performed with the PRP afterwards, is dependent on the individual treatment. Generally speaking, PRP injections are not painful,. We make use of various pain management techniques to ensure the comfort of our patients during their procedures. Depending on your treatment, you may experience some swelling and bruising for a few days, but this clears up quickly.

While the vampire facial put PRP on the general publics map, theres so much more that can be achieved by making use of this incredible treatment. Whether youre looking to treat an injury, minimise your wrinkles, rejuvenate your sex life or increase your hair growth, Plasma rich platelet therapy is a safe and effective treatment option to consider.

Visit http://www.drreza.co.za or or follow Dr Mia on Instagram @drreza.sa and @antiagingart

Visit link:
Platelet Rich Plasma Therapy: The answer to a rejuvenated body, skin, hair and sex life! - Longevity LIVE - Longevity LIVE

To Read More: Platelet Rich Plasma Therapy: The answer to a rejuvenated body, skin, hair and sex life! – Longevity LIVE – Longevity LIVE
categoriaSkin Stem Cells commentoComments Off on Platelet Rich Plasma Therapy: The answer to a rejuvenated body, skin, hair and sex life! – Longevity LIVE – Longevity LIVE | dataFebruary 11th, 2021
Read All

Outlook on the Cell Therapy Global Market to 2027 – Opportunity Analysis and Industry Forecasts – Yahoo Finance

By daniellenierenberg

Dublin, Feb. 09, 2021 (GLOBE NEWSWIRE) -- The "Cell Therapy Market by Cell Type, Therapy Type, Therapeutic Area, and End User: Global Opportunity Analysis and Industry Forecast, 2020-2027" report has been added to ResearchAndMarkets.com's offering.

The global cell therapy market accounted for $7,754. 89 million in 2019, and is expected to reach $48,115. 40 million by 2027, registering a CAGR of 25. 6% from 2020 to 2027.

Cell therapy involves administration of somatic cell preparations for treatment of diseases or traumatic damages. Cell therapy aims to introduce new, healthy cells into a patient's body to replace diseased or missing ones.

This is attributed to the fact that specialized cells, such as brain cells, are difficult to obtain from human body. In addition, specialized cells typically have a limited ability to multiply, making it difficult to produce sufficient number of cells required for certain cell therapies. Some of these issues can be overcome through the use of stem cells. In addition, cells such as blood and bone marrow cells, mature, immature & solid tissue cells, adult stem cells, and embryonic stem cells are widely used in cell therapy procedures.

Moreover, transplanted cells including induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), neural stem cells (NSCs), and mesenchymal stem cells (MSCs) are divided broadly into two main groups including autologous cells and non-autologous cells. Development of precision medicine and advancements in Advanced Therapies Medicinal Products (ATMPS) in context to their efficiency and manufacturing are expected to be the major drivers for the market. Furthermore, automation in adult stem cells and cord blood processing and storage are the key technological advancements that fuel growth of the market for cell therapy.

In addition, growth in aging patient population, The rise in cell therapy transplantations globally, and surge in disease awareness drive growth of the global cell therapy market. Furthermore, The rise in adoption of human cells over animal cells for cell therapeutics research, technological advancements in field of cell therapy, and increase in incidences of diseases such as cancer, cardiac abnormalities, and organ failure are the key factors that drive growth of the global market.

Moreover, implementation of stringent government regulations regarding the use of cell therapy is anticipated to restrict growth of the market. On the contrary, surge in number of regulations to promote stem cell therapy and increase in funds for research in developing countries are expected to offer lucrative opportunities to the market in the future.

The global cell therapy market is categorized on the basis of therapy type, therapeutic area, cell type, end user, and region. On the basis of therapy type, the market is segregated into autologous and allogenic. By therapeutics, it is classified into malignancies, musculoskeletal disorders, autoimmune disorders, dermatology, and others.

The global cell therapy market is categorized on the basis of therapy type, therapeutic, cell type, end user and region. On the basis of therapy type, the market is segregated into autologous and allogenic. By therapeutic area, it is classified into malignancies, musculoskeletal disorders, autoimmune disorders, dermatology, and others. On the basis of cell type, it is segregated into stem cell therapy and non-stem cell type. On the basis of end user, it is segregated into hospital & clinics and academic & research institutes. On the basis of region, the market is studied across North America, Europe, Asia-Pacific, and LAMEA.

Key Benefits

Story continues

The study provides an in-depth analysis of the global cell therapy market along with the current trends and future estimations to elucidate the imminent investment pockets.

Comprehensive analysis of factors that drive and restrict the market growth is provided in the report.

Comprehensive quantitative analysis of the industry from 2019 to 2027 is provided to enable the stakeholders to capitalize on the prevailing market opportunities.

Extensive analysis of the key segments of the industry helps in understanding the forms and types of cell therapy used across the globe.

Key market players and their strategies have been analyzed to understand the competitive outlook of the market.

Key Topics Covered:

Chapter 1: Introduction1.1. Report Description1.2. Key Benefits for Stakeholders1.3. Key Market Segments1.4. Research Methodology1.4.1. Secondary Research1.4.2. Primary Research1.4.3. Analyst Tools & Models

Chapter 2: Executive Summary2.1. Key Findings of the Study2.2. Cxo Perspective

Chapter 3: Market Overview3.1. Market Definition and Scope3.2. Key Findings3.2.1. Top Player Positioning3.2.2. Top Investment Pockets3.2.3. Top Winning Strategies3.3. Porter'S Five Forces Analysis3.4. Impact Analysis3.4.1. Drivers3.4.1.1. Technological Advancements in the Field of Cell Therapy3.4.1.2. The Rise in Number of Cell Therapy Clinical Studies3.4.1.3. The Rise in Adoption of Regenerative Medicine3.4.2. Restraint3.4.2.1. Developing Stage and Pricing3.4.3. Opportunity3.4.3.1. High Growth Potential in Emerging Markets3.5. Impact of Covid-19 on Cell Therapy Market

Chapter 4: Cell Therapy Market, by Cell Type4.1. Overview4.1.1. Market Size and Forecast4.2. Stem Cell4.2.1. Key Market Trends and Opportunities4.2.2. Market Size and Forecast, by Region4.2.3. Market Size and Forecast, by Type4.2.3.1. Bone Marrow, Market Size and Forecast4.2.3.2. Blood, Market Size and Forecast4.2.3.3. Umbilical Cord-Derived, Market Size and Forecast4.2.3.4. Adipose-Derived Stem Cell, Market Size and Forecast4.2.3.5. Others (Placenta, and Nonspecific Cells), Market Size and Forecast4.3. Non-Stem Cell4.3.1. Key Market Trends and Opportunities4.3.2. Market Size and Forecast, by Region

Chapter 5: Cell Therapy Market, by Therapy Type5.1. Overview5.1.1. Market Size and Forecast5.2. Autologous5.2.1. Key Market Trends and Opportunities5.2.2. Market Size and Forecast, by Region5.2.3. Market Analysis, by Country5.3. Allogeneic5.3.1. Key Market Trends and Opportunities5.3.2. Market Size and Forecast, by Region5.3.3. Market Analysis, by Country

Chapter 6: Cell Therapy Market, by Therapeutic Area6.1. Overview6.1.1. Market Size and Forecast6.2. Malignancies6.2.1. Market Size and Forecast, by Region6.2.2. Market Analysis, by Country6.3. Musculoskeletal Disorders6.3.1. Market Size and Forecast, by Region6.3.2. Market Analysis, by Country6.4. Autoimmune Disorders6.4.1. Market Size and Forecast, by Region6.4.2. Market Analysis, by Country6.5. Dermatology6.5.1. Market Size and Forecast, by Region6.5.2. Market Analysis, by Country6.6. Others6.6.1. Market Size and Forecast, by Region6.6.2. Market Analysis, by Country

Chapter 7: Cell Therapy Market, by End-user7.1. Overview7.1.1. Market Size and Forecast7.2. Hospitals & Clinics7.2.1. Key Market Trends and Opportunities7.2.2. Market Size and Forecast, by Region7.2.3. Market Analysis, by Country7.3. Academic & Research Institutes7.3.1. Key Market Trends and Opportunities7.3.2. Market Size and Forecast, by Region7.3.3. Market Analysis, by Country

Chapter 8: Cell Therapy Market, by Region8.1. Overview8.2. North America8.3. Europe8.4. Asia-Pacific8.5. LAMEA

Chapter 9: Company Profiles9.1. Allosource9.1.1. Company Overview9.1.2. Company Snapshot9.1.3. Operating Business Segments9.1.4. Product Portfolio9.1.5. Key Strategic Moves and Developments9.2. Cells for Cells9.2.1. Company Overview9.2.2. Company Snapshot9.2.3. Operating Business Segments9.2.4. Product Portfolio9.3. Holostem Terapie Avanzate Srl9.3.1. Company Overview9.3.2. Company Snapshot9.3.3. Operating Business Segments9.3.4. Product Portfolio9.4. Jcr Pharmaceuticals Co. Ltd.9.4.1. Company Overview9.4.2. Company Snapshot9.4.3. Operating Business Segments9.4.4. Product Portfolio9.4.5. Business Performance9.4.6. Key Strategic Moves and Developments9.5. Kolon Tissuegene, Inc.9.5.1. Company Overview9.5.2. Company Snapshot9.5.3. Operating Business Segments9.5.4. Product Portfolio9.5.5. Key Strategic Moves and Developments9.6. Medipost Co. Ltd.9.6.1. Company Overview9.6.2. Company Snapshot9.6.3. Operating Business Segments9.6.4. Product Portfolio9.6.5. Business Performance9.7. Mesoblast Ltd9.7.1. Company Overview9.7.2. Company Snapshot9.7.3. Operating Business Segments9.7.4. Product Portfolio9.7.5. Business Performance9.8. Nuvasive, Inc.9.8.1. Company Overview9.8.2. Company Snapshot9.8.3. Operating Business Segments9.8.4. Product Portfolio9.8.5. Business Performance9.9. Osiris Therapeutics, Inc.9.9.1. Company Overview9.9.2. Company Snapshot9.9.3. Operating Business Segments9.9.4. Product Portfolio9.10. Stemedica Cell Technologies, Inc.9.10.1. Company Overview9.10.2. Company Snapshot9.10.3. Operating Business Segments9.10.4. Product Portfolio

For more information about this report visit https://www.researchandmarkets.com/r/bja7iz

Go here to see the original:
Outlook on the Cell Therapy Global Market to 2027 - Opportunity Analysis and Industry Forecasts - Yahoo Finance

To Read More: Outlook on the Cell Therapy Global Market to 2027 – Opportunity Analysis and Industry Forecasts – Yahoo Finance
categoriaCardiac Stem Cells commentoComments Off on Outlook on the Cell Therapy Global Market to 2027 – Opportunity Analysis and Industry Forecasts – Yahoo Finance | dataFebruary 11th, 2021
Read All

Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -…

By daniellenierenberg

According to the new market research report Autologous Stem Cell Based Therapies Market Strategic recommendations, Trends, Segmentation, Use Case Analysis, Competitive Intelligence, Global and Regional Forecast (to 2026), published by In4Research, acknowledges you about the market developments, technological advancements, supply & demand scenario, pricing factors, and emerging trends that are going to influence the growth of the Autologous Stem Cell Based Therapies market. This research report also provides details on the revenue drivers, product innovations, government regulations & policies that act as a game-changer in the market growth.

The report provides insights on the following pointers:

Request for a sample copy of the report to get premium insights of Autologous Stem Cell Based Therapies market at https://www.in4research.com/sample-request/46884

The report also contains brief information on the key players in the Autologous Stem Cell Based Therapies industry operating on the Market. The report provides in-depth information on the industry overview, the share of revenues, developments, mergers and acquisitions, and key strategies. The report also includes a full analysis of product innovation and consumer behavior. The Autologous Stem Cell Based Therapies market has been segmented by commodity type, end-users, technology, industry verticals, and regions. The in-depth research will allow readers to better understand well-established and emerging players in shaping their business strategies to achieve long-term and short-term goals. The report outlines a wide range of areas and locations where key participants could identify opportunities for the future.

The Major Players Covered in Autologous Stem Cell Based Therapies Market Report are:

Application Analysis: Global Autologous Stem Cell Based Therapies market also specifically underpins end-use application scope and their improvements based on technological developments and consumer preferences.

Product Type Analysis: Global Autologous Stem Cell Based Therapies market also specifically underpins type scope and their improvements based on technological developments and consumer preferences.

For more Customization, Connect with us at https://www.in4research.com/customization/46884

The report is a versatile reference guide to understand developments across multiple regions such as depicted as under:

In this study, the years considered to estimate the market size of Autologous Stem Cell Based Therapies Market:

In the report, the market outlook section mainly encompasses fundamental dynamics of the market which include drivers, restraints, opportunities, and challenges faced by the industry. Drivers and restraints are intrinsic factors whereas opportunities and challenges are extrinsic factors of the Autologous Stem Cell Based Therapies Market.

In4Research narrows down the available data using primary sources to validate the data and use it in compiling a full-fledged market research study. The report contains a quantitative and qualitative estimation of market elements that interest the client. The Global Autologous Stem Cell Based Therapies Market is mainly bifurcated into sub-segments which can provide classified data regarding the latest trends in the market.

Ask Your Queries to our Analyst regarding Autologous Stem Cell Based Therapies Report at https://www.in4research.com/speak-to-analyst/46884

Chapters Covered in Autologous Stem Cell Based Therapies Market Report are As Follow:

Buy Full Research Report at https://www.in4research.com/buy-now/46884

FOR ALL YOUR RESEARCH NEEDS, REACH OUT TO US AT:

Contact Name: Rohan

Email: [emailprotected]

Phone: +1 (407) 768-2028

See the original post:
Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -...

To Read More: Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -…
categoriaCardiac Stem Cells commentoComments Off on Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -… | dataFebruary 11th, 2021
Read All

PM Modi Waives off Rs 6 Crore Tax on Imported Medicine for 6-month-old Baby Girl from Mumbai – News18

By daniellenierenberg

For baby Teera Kamat, who has been on the earth for a mere six months, every day has been a struggle for existence and a grim reminder to her parents about the fragile little being that needed a miracle to be saved. Mumbai-born Teera is suffering from Spinal Muscular Atrophy, a very rare medical condition that often does not let children live beyond 5 months of age and her condition requires a lot of money for the treatment.

On Wednesday, Prime Minister Narendra Modi, in a humanitarian move, decided to waive off Rs 6 crore as a GST amount against Rs 16 crore of imported medicines that are required to treat Teera. Baby Teera's parents Priyanka and Mihir Kamat have raised Rs 16 crore through crowdfunding for their daughter who needs a surgery to be cured. It also includes the cost of the medicine Zolgensma which has to be imported from the US. The tax exemption for baby's treatment amounts to at least Rs 6.5 crore and it includes 23 percent import duty and 12 percent Goods Services Tax.

The infant's parents had earlier appealed to PM Modi in October last year about Teeras medical condition and in January this year. The Leader of Opposition Devendra Fadnavis also wrote to the Prime Minister and Finance Minister Nirmala Sitaraman reiterating the request to exempt taxes on the medicine import.

It is a type of genetic disorder and a motor neuron disease that results in a person not having any control over movement of their muscles due because of the lack of nerve cells, in their spinal cord and/or brain stem.

Spinal muscular atrophy (SMA) results in muscle wasting and weakness. For someone suffering from SMA, it is very difficult to stand, walk and control their movements. Some intense forms of the SMA can also result in inability to breathe and swallow.

SMA can either occur at birth or even appear at stages of life and they can affect one's life expectancy depending upon the seriousness and the type of the SMA.

So far, there has been no cure of SMA, but certain medicines do help, such as nusinersen (Spinraza) and onasemnogene abeparvovec-xioi (Zolgensma), that help slow the disease's progress.

The types of SMA depend on when they start showing up in a patient and how the symptoms vary in them. There are basically four kinds of SMA, as National Institute of Neurological Disorders and Stroke list, which affects symptoms and life expectancy.

The first type of SMA, or Werdnig-Hoffmann disease appears before the infant is even 6 months of age. The child might be born with difficulty in breathing and the serious condition can turn fatal if there's no treatment.

Those with SMA type II will start showing symptoms of the disease usually when they are between 6 and 18 months of age. These children can sit but will not be able to walk or stand without helped and without treatment, they might just lose their power to sit as well.

Children with SMA type III or Kugelberg-Welander disease start showing symptoms after they are 18 months of age and can walk on their own. They however, experience difficultly in walking or running and other such physical exercises related to legs.

Those with SMA type IV usually develop the symptoms after they are over 21 years of age ad have minor muscle weakness and other issues. It doesn't affect one's life expectancy.

The USA Food and Drug Administration has approved the Zolgensma gene therapy for children who show the signs of the disease and are less than 2 years. Last year in August, the FDA also gave its nod to the orally-administered drug risdiplam (Evrysdi) for patients who are older than two months of age and are diagnosed with SMA.

Physical therapy, occupational therapy, and rehabilitation are some measures that can be taken to help improve posture, stop joint immobility and help in case of muscle weakness and atrophy.

You can find the link to the crowdfunding page for baby Teera here.

Excerpt from:
PM Modi Waives off Rs 6 Crore Tax on Imported Medicine for 6-month-old Baby Girl from Mumbai - News18

To Read More: PM Modi Waives off Rs 6 Crore Tax on Imported Medicine for 6-month-old Baby Girl from Mumbai – News18
categoriaSpinal Cord Stem Cells commentoComments Off on PM Modi Waives off Rs 6 Crore Tax on Imported Medicine for 6-month-old Baby Girl from Mumbai – News18 | dataFebruary 11th, 2021
Read All

Engineered stem cells that evade immune detection could …

By daniellenierenberg

Sana Biotechnology was founded in 2018 with a mission of solving some of the most difficult challenges in gene and cell therapy. Toward that end, the company is engineering hypoimmune stem cells that can evade detection and destruction by the immune system.

Now, some of Sanas founders, who are scientists at the University of California, San Francisco (UCSF), are describing how these engineered stem cells are able to shut down the immune systems natural killer (NK) cells. They believe their findings could enhance the development of implantable cell therapies, as well as cancer immunotherapies, they reported in the Journal of Experimental Medicine.

The ability to evade NK cells could enhance a range of experimental treatments, including implants of insulin-producing cells for patients with diabetes and cardiac cells to repair heart damage. These cells are typically rejected by the immune systema problem hypoimmune stem cells were designed to circumvent.

How would you like to win free bench space at Lab Central for one scientist for an entire year? Enter the Agilent LabCentral Golden Ticket Winner Program

One innovative drug discovery or biotechnology company will be awarded a Golden Ticketone year of free individual bench space at LabCentrals shared facility, including all resident benefits! We will be accepting applications from now until February 17, 2021. Enter today!

The UCSF team used gene modification technology to design the cells so they avoid the immune responses that are either built into the bodys defense system or learned. The researchers achieved that feat by engineering the cells to express the protein CD47, which shuts down innate immune cells by activating signal regulatory protein alpha, or SIRP-alpha.

The researchers were surprised to discover that the hypoimmune stem cells were able to escape NK cells, even though NK cells were not previously known to express SIRP-alpha. Rather than studying lab-grown cell lines, they took cells directly from patients. Thats where they found SIRP-alpha.

Whats more, the UCSF team discovered that NK cells begin to express SIRP-alpha after they are activated by cytokines that are typically abundant in inflammatory states.

RELATED: Fierce Biotech's 2020 Fierce 15 | Sana Biotechnology

To further prove out the utility of engineered stem cells, the UCSF researchers implanted cells with rhesus macaque CD47 into monkeys. They documented the activation of SIRP-alpha in NK cells. Those NK cells did not kill the transplanted cells.

A similar technique could be used, but in reverse, to implant pig cardiac cells into people, the UCSF team argued. If human CD47 were engineered into pig heart cells, they could be implanted into people without risking rejection by NK cells, they suggested.

Sana made waves in 2018 when it raised a whopping $700 million in a single venture round from the likes of Arch Venture Partners, Flagship Pioneering and Bezos Expeditions. We believe that one of, if not the most, important thing happening in medicine over the next several decades is the ability to modulate genes, use cells as medicines, and engineer cells, said Steve Harr, president and CEO of Sana, at the time.

Sana did not provide materials or funding for the new study, but it is now developing the hypoimmune stem cell technology for clinical testing.

The UCSF team believes their findings could also boost cancer immunotherapy. The engineered cells could help combat checkpoints that allow tumors to evade immune detection, they said.

"Many tumors have low levels of self-identifying MHC-I protein and some compensate by overexpressing CD47 to keep immune cells at bay," said Lewis Lanier, Ph.D., director of the Parker Institute for Cancer Immunotherapy at the UCSF Helen Diller Family Comprehensive Cancer Center, in a statement. "This might be the sweet spot for antibody therapies that target CD47."

Link:
Engineered stem cells that evade immune detection could ...

To Read More: Engineered stem cells that evade immune detection could …
categoriaCardiac Stem Cells commentoComments Off on Engineered stem cells that evade immune detection could … | dataFebruary 10th, 2021
Read All

I Survived Cancer, and Then I Needed to Remember How to Live – The Atlantic

By daniellenierenberg

Ibram X. Kendi: What I learned from cancer

This is where I find myself, at the threshold between an old familiar state and an unknown future. Cancer no longer lives in my blood, but it lives on in other ways, dominating my identity, my relationships, my work, and my thoughts. Im done with chemo but I still have my port, which my doctors are waiting to remove until Im further out of the woods. Im left with the question of how to repatriate myself to the kingdom of the well, and whether I ever fully can. No treatment protocols or discharge instructions can guide this part of my trajectory. The way forward is going to have to be my own.

My first foray into this new selfhood is learning how to drive. As I get more comfortable behind the wheel, a hazy idea begins to crystallize into a grand plan. I need to leave the familiar, to trust that I can navigate the world alone. I need to become my own caregiver. It took me a while to say I was a cancer patient. Its time for me to figure out who I am now. By the time I finally pass my drivers test, the next step is obvious: Im going to embark on a solo cross-country road trip.

Over the next few weeks, I pack all of my belongings into boxes, put the boxes into storage, and sublet my apartment. I cant afford to buy my own car but my friend Gideon generously offers the use of his old Subaru. Between the extra income from renting out my apartment and the $4,000 in my savings account, I should be able to make do. I plan to camp and crash on couches as often as possible, staying in only the occasional motel room. I scour Craigslist for secondhand camping gear and buy a portable propane gas stove, a subzero sleeping bag, a foam bedroll, and a tent. I pack all this, along with a crate of books, a first-aid kit, a camera, and a sack of kibble for my scruffy terrier mutt, Oscar, into the car. Before leaving, I go in for a last checkup with my oncologist.

My road trip will take me 15,000 miles across 33 states. It will last 100 days, the maximum amount of time my medical team has agreed to until my next follow-up appointment. As I turn the keys in the ignition and drive away from New York City, I realize that this is a rite of passage that I hope will bridge the distance between no longer and not yet.

Either my GPS is a liar or I am an erratic driver, but I always seem to take nearly twice as long as it predicts to get to where Im going. Take a right turn inrecalculating its robotic voice says condescendingly when I miss yet another exit. My next destination, Columbus, Ohio, will entail my longest drive yet. The GPS predicts that, if I follow its barrage of orders exactly as told, I will arrive in nine hours and 21 minutes. Unlikely.

Since hitting the road, Im on no ones clock but my own.

Two weeks earlier, when I first left home, I was so tense that I regularly had to remind myself to breathe. Each minute behind the wheel presented new and overwhelming scenarios: Do I have the right of way? What does a blinking red light mean? Was that an Egyptian hieroglyph on the traffic sign? Lane changes and merging onto the freeway had proved especially stressfulan existential guessing game of will I live or will I not. But with each day, I am feeling more confident, and it has been at least 72 hours since another driver has honked at me in anger or bewilderment.

Originally posted here:
I Survived Cancer, and Then I Needed to Remember How to Live - The Atlantic

To Read More: I Survived Cancer, and Then I Needed to Remember How to Live – The Atlantic
categoriaBone Marrow Stem Cells commentoComments Off on I Survived Cancer, and Then I Needed to Remember How to Live – The Atlantic | dataFebruary 10th, 2021
Read All

Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice – Science

By daniellenierenberg

Endogenous activin A in ectopic bone formation

Heterotopic ossification (HO) is the formation of ectopic bone in soft tissues at sites of injury-induced inflammation. Similar to the development of normal endochondral bone, HO is initiated by a local mass of chondrocytes that progress through chondrogenesis, osteogenesis, and mineralization to form bone tissue. Using mouse models of both subcutaneous and intramuscular HO formation and single-cell RNA sequencing, Mundy et al. found that inflammatory cells and skeletal progenitor cells initially recruited to sites of HO formation expressed Inhba, which encodes the TGF- superfamily member activin A. Treating mice with an activin Aneutralizing antibody reduced the number of chondrogenic cells at HO sites and inhibited HO formation. These results demonstrate that this ligand plays an important role in the physiological progression in these mouse models of HO and suggest that interfering with activin A signaling may be effective in patients.

Heterotopic ossification (HO) is a common, potentially debilitating pathology that is instigated by inflammation caused by tissue damage or other insults, which is followed by chondrogenesis, osteogenesis, and extraskeletal bone accumulation. Current remedies are not very effective and have side effects, including the risk of triggering additional HO. The TGF- family member activin A is produced by activated macrophages and other inflammatory cells and stimulates the intracellular effectors SMAD2 and SMAD3 (SMAD2/3). Because HO starts with inflammation and because SMAD2/3 activation is chondrogenic, we tested whether activin A stimulated HO development. Using mouse models of acquired intramuscular and subdermal HO, we found that blockage of endogenous activin A by a systemically administered neutralizing antibody reduced HO development and bone accumulation. Single-cell RNA-seq analysis and developmental trajectories showed that the antibody treatment reduced the recruitment of Sox9+ skeletal progenitors, many of which also expressed the gene encoding activin A (Inhba), to HO sites. Gain-of-function assays showed that activin A enhanced the chondrogenic differentiation of progenitor cells through SMAD2/3 signaling, and inclusion of activin A in HO-inducing implants enhanced HO development in vivo. Together, our data reveal that activin A is a critical upstream signaling stimulator of acquired HO in mice and could represent an effective therapeutic target against forms of this pathology in patients.

Read more:
Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice - Science

To Read More: Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice – Science
categoriaSpinal Cord Stem Cells commentoComments Off on Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice – Science | dataFebruary 10th, 2021
Read All

Page 52«..1020..51525354..6070..»


Copyright :: 2024