Initiation of Post-Primary Tuberculosis of the Lungs: Exploring the Secret Role of Bone Marrow Derived Stem Cells – DocWire News
By daniellenierenberg
This article was originally published here
Front Immunol. 2021 Jan 21;11:594572. doi: 10.3389/fimmu.2020.594572. eCollection 2020.
ABSTRACT
Mycobacterium tuberculosis (Mtb), the causative organism of pulmonary tuberculosis (PTB) now infects more than half of the world population. The efficient transmission strategy of the pathogen includes first remaining dormant inside the infected host, next undergoing reactivation to cause post-primary tuberculosis of the lungs (PPTBL) and then transmit via aerosol to the community. In this review, we are exploring recent findings on the role of bone marrow (BM) stem cell niche in Mtb dormancy and reactivation that may underlie the mechanisms of PPTBL development. We suggest that pathogens interaction with the stem cell niche may be relevant in potential inflammation induced PPTBL reactivation, which need significant research attention for the future development of novel preventive and therapeutic strategies for PPTBL, especially in a post COVID-19 pandemic world. Finally, we put forward potential animal models to study the stem cell basis of Mtb dormancy and reactivation.
PMID:33584661 | PMC:PMC7873989 | DOI:10.3389/fimmu.2020.594572
Cord Blood Banking Services Market projected to expand at a CAGR of 10.9% from 2019 to 2027 KSU | The Sentinel Newspaper – KSU | The Sentinel…
By daniellenierenberg
Transparency Market Research (TMR) has published a new report titled, Cord Blood Banking Services Market Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 20192027. According to the report, the globalcord blood banking services marketwas valued atUS$ 25.8 Mnin2018and is projected to expand at a CAGR of10.9%from2019to2027.
Overview
Request Brochure for Report https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=1741
High Incidence of genetic disorders and rise in hematopoietic stem cell transplantation rates to Drive Market
Request for Analysis of COVID19 Impact on Cord Blood Banking Services Market https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=1741
Private Cord Blood Bank Segment to Dominate Market
Buy Cord Blood Banking Services Market Report
https://www.transparencymarketresearch.com/checkout.php?rep_id=1741<ype=S
North America to Dominate Global Market
Competitive Landscape
Contact
Transparency Market Research,
90 State Street, Suite 700,
Albany, NY 12207
Tel: +1-518-618-1030
USA Canada Toll Free: 866-552-3453
Website: https://www.transparencymarketresearch.com/
Go here to read the rest:
Cord Blood Banking Services Market projected to expand at a CAGR of 10.9% from 2019 to 2027 KSU | The Sentinel Newspaper - KSU | The Sentinel...
Jasper Therapeutics Announces Launch of New Clinical Trial with National Heart, Lung, and Blood Institute to Evaluate JSP191 in Sickle Cell Disease -…
By daniellenierenberg
REDWOOD CITY, Calif.--(BUSINESS WIRE)--Jasper Therapeutics, Inc., a biotechnology company focused on hematopoietic cell transplant therapies, today announced the launch of a Phase 1/2 clinical trial to evaluate JSP191, Jaspers first-in-class anti-CD117 monoclonal antibody, as a targeted, non-toxic conditioning regimen prior to allogeneic transplant for sickle cell disease (SCD). Jasper Therapeutics and the National Heart, Lung, and Blood Institute (NHLBI) have entered into a clinical trial agreement in which NHLBI will serve as the Investigational New Drug (IND) sponsor for this study.
SCD is a lifelong inherited blood disorder that affects hemoglobin, a protein in red blood cells that delivers oxygen to tissues and organs throughout the body. Approximately 300,000 infants are born with SCD annually worldwide, and the number of cases is expected to significantly increase. Currently, hematopoietic stem cell transplantation (HSCT) is the only cure available for SCD.
"This clinical trial agreement with the NHLBI expands the development of JSP191 for transplant conditioning and could bring curative transplants to more patients in need," said Kevin N. Heller, M.D., Executive Vice President, Research and Development, of Jasper Therapeutics. "We look forward to collaborating with the NHLBI and learning more about the potential for JSP191 in patients living with sickle cell disease."
About JSP191
JSP191 (formerly AMG 191) is a first-in-class humanized monoclonal antibody in clinical development as a conditioning agent that clears hematopoietic stem cells from the bone marrow. JSP191 binds to human CD117, a receptor for stem cell factor (SCF) that is expressed on the surface of hematopoietic stem and progenitor cells. The interaction of SCF and CD117 is required for stem cells to survive. JSP191 blocks SCF from binding to CD117 and disrupts critical survival signals in stem cells leading to cell death. This creates space in the bone marrow for engraftment of donor or gene-corrected transplanted stem cells.
Preclinical studies have shown that JSP191, as a single agent, safely depletes normal and diseased hematopoietic stem cells, including in animal models of severe combined immunodeficiency (SCID), myelodysplastic syndromes (MDS), and sickle cell disease (SCD). Treatment with JSP191 creates the space needed for transplanted normal donor or gene-corrected hematopoietic stem cells to successfully engraft in the host bone marrow. To date, JSP191 has been evaluated in more than 90 healthy volunteers and patients.
JSP191 is currently being evaluated in two separate Jasper Therapeutics-sponsored clinical studies in hematopoietic cell transplant. The first clinical study is evaluating JSP191 as a sole conditioning agent in a Phase 1/2 dose-escalation and expansion trial to achieve donor stem cell engraftment in patients undergoing hematopoietic cell transplant for SCID. Blood stem cell transplantation offers the only potentially curative therapy for SCID. JSP191 is also being evaluated in combination with another conditioning regimen in a Phase 1 study in patients with MDS or acute myeloid leukemia (AML) who are receiving hematopoietic cell transplant. For more information about the design of these clinical trials, visit http://www.clinicaltrials.gov (NCT02963064 and NCT04429191).
Additional studies are planned to advance JSP191 as a conditioning agent for patients with other rare and ultra-rare monogenic disorders and autoimmune diseases.
About Jasper Therapeutics
Jasper Therapeutics is a biotechnology company focused on the development of novel curative therapies based on the biology of the hematopoietic stem cell. The companys lead compound, JSP191, is in clinical development as a conditioning antibody that clears hematopoietic stem cells from bone marrow in patients undergoing a hematopoietic cell transplant. This first-in-class conditioning antibody is designed to enable safer and more effective curative hematopoietic cell transplants and gene therapies. For more information, please visit us at jaspertherapeutics.com.
After 13 years of trials and tribulations RTP firm G1 wins first FDA approval for cancer drug – WRAL Tech Wire
By daniellenierenberg
RESEARCH TRIANGLE PARK After 13 years as a clinical-stage oncology company,G1 Therapeuticsof Research Triangle Park transformed into a commercial-stage company overnight upon the approval of its first drug by the U.S. Food and Drug Administration.
The FDA on Feb. 12 approved G1s trilaciclib, to be marketed as Cosela, for protecting bone marrow from chemotherapy damage in adult patients with extensive-stage small cell lung cancer (ES-SCLC).
Cosela will help change the chemotherapy experience for people who are battling ES-SCLC, said Jack Bailey, the companys chief executive officer. G1 is proud to deliver Cosela to patients and their families as the first and only therapy to help protect against chemotherapy-induced myelosuppression.
Myelosuppression, or damage to the bone marrow, is the most serious and life-threatening side effect of chemotherapy. Chemotherapy-induced myelosuppression reduces the bodys essential supply of white blood cells, red blood cells and platelets, and can lead to increased risks of infection, severe anemia and bleeding.
RTP drug firm G1 secures FDA approval for treatment to prevent chemo damage to bone marrow
These complications impact patients quality of life and may also result in chemotherapy dose reductions and delays, said Jeffrey Crawford,M.D., Geller Professorfor Research in Cancer in theDepartment of MedicineandDuke Cancer Institute. In clinical trials, the addition of trilaciclib to extensive-stage small cell lung cancer chemotherapy treatment regimens reduced myelosuppression and improved clinical outcomes.The good news is that these benefits of trilaciclib will now be available for our patients in clinical practice.
Cosela is expected to be commercially available through G1s specialty distributor partner network in early March, the company said.
G1 is committed to helping patients with in theU.S.gain access to treatment with Cosela through access and affordability programs. Patients and healthcare can call the companys support center at 833-418-6663 for information.
Cosela is intended to be given as a 30-minute infusion four hours prior to chemotherapy treatments containing platinum/etoposide or topotecan. About 90 percent of all patients with ES-SCLC receive at least one of these chemotherapy regimens during their treatment, according to G1.
The approval of Cosela is based on data from three randomized, placebo-controlled trials. Data showed that patients receiving Cosela before the start of chemotherapy had less neutropenia, an abnormally low number of neutrophils, white blood cells that fight bacterial and fungal infection.
Data also showed a positive impact on red blood cell transfusions and other myeloprotective measures.
Chemotherapy is the most effective and widely used approach to treating people diagnosed with extensive-stage small cell lung cancer, Bailey said. However, standard-of-care chemotherapy regimens are highly myelosuppressive and can lead to costly hospitalizations and rescue interventions.
To date, oncologists have relied on rescue therapy, a mix of growth factor agents, antibiotics and red blood cell transfusions, to restore bone marrow after it has been damaged by chemotherapy.
By contrast, trilaciclib provides the first proactive approach to myelosuppression through a unique mechanism of action that helps protect the bone marrow from damage by chemotherapy, Crawford said.
Cosela helps protect bone marrow cells from chemotherapy damage by inhibiting cyclin- dependent kinase 4 and 6, two enzymes involved in cancer cell growth. Inhibiting these enzymes temporarily stops hematopoietic stem cells and progenitor cells in the bone marrow from dividing, making them resistant to damage from chemotherapy drugs that target dividing cells.
Bonnie J. Addario, lung cancer survivor, co-founder and board chair of theGo2 Foundation for Lung Cancer, said many people with extensive-stage small cell lung cancerrely on chemotherapy to extend their lives and alleviate their symptoms.
Unfortunately, the vast majority will experience chemotherapy-induced side effects, resulting in dose delays and reductions, and increased utilization of healthcare services, she said.
G1 shares our organizations goal to improve the quality of life of those diagnosed with lung cancer and to transform survivorship among people living with this insidious disease. We are thrilled to see new advancements that can help improve the lives of those living with small cell lung cancer.
About 30,000 small cell lung cancer patients are treated inthe United Statesannually. SCLC, one of the two main types of lung cancer, accounts for about 10 to 15 percent of all lung cancers but is the more aggressive disease, tending to grow and spread faster than the other type, non-small cell lung cancer.
InJune 2020, G1 announced a three-yearco-promotion agreementwithBoehringer Ingelheimfor Cosela in small cell lung cancer in theU.S.andPuerto Rico. G1 will lead marketing, market access and medical engagement initiatives for Cosela whileBoehringer Ingelheimsoncology commercial team will lead sales force engagement initiatives.
G1 will book revenue and retain development and commercialization rights to Cosela and payBoehringer Ingelheima promotional fee based on net sales.
The three-year agreement does not extend to additional indications that G1 is evaluating for trilaciclib: breast, colorectal, bladder and non-small cell lung cancers.
G1 is a 2008 spin-out of the University of North Carolina at Chapel Hill.
The company raised $108 million in an initial public offering of stock in 2017 after receiving more than $95 million in three rounds of venture capital funding. The North Carolina Biotechnology Center provided two early-stage loans totaling $500,000.
G1s stock is traded on the Nasdaq Global Select Market under the ticker symbol GTHX.
(C) N.C. Biotech Center
Here is the original post:
After 13 years of trials and tribulations RTP firm G1 wins first FDA approval for cancer drug - WRAL Tech Wire
Novartis, Gates Foundation pursue a simpler gene therapy for sickle cell – STAT
By daniellenierenberg
Novartis and the Bill and Melinda Gates Foundation are joining forces to discover and develop a gene therapy to cure sickle cell disease with a one-step, one-time treatment that is affordable and simple enough to treat patients anywhere in the world, especially in sub-Saharan Africa where resources may be scarce but disease prevalence is high.
The three-year collaboration, announced Wednesday, has initial funding of $7.28 million.
Current gene therapy approaches being developed for sickle cell disease are complex, enormously expensive, and bespoke, crafting treatments for individual patients one at a time. The collaboration aims to instead create an off-the-shelf treatment that bypasses many of the steps of current approaches, in which cells are removed and processed outside the body before being returned to patients.
advertisement
Sickle cells cause is understood. The people it affects are known. But its cure has been elusive, Jay Bradner, president of the Novartis Institutes for BioMedical Research, told STAT.
We understand perfectly the disease pathway and the patient, but we dont know what it would take to have a single-administration, in vivo gene therapy for sickle cell disease that you could deploy in a low-resource setting with the requisite safety and data to support its use, he said. Im a hematologist and can assure you that in my experience in the clinic, it was extremely frustrating to understand a disease so perfectly but have so little to offer.
advertisement
Sickle cell disease is a life-threatening inherited blood disorder that affects millions around the world, with about 80% of affected people in sub-Saharan Africa and more than 100,000 in the U.S. The mutation that causes the disease emerged in Africa, where it protects against malaria. While most patients with sickle cell share African ancestry, those with ancestry from South America, Central America, and India, as well as Italy and Turkey, can also have the hereditary disease.
The genetic mutation does its damage by changing the structure of hemoglobin, hampering the ability of red blood cells to carry oxygen and damaging blood vessels when the misshapen cells get stuck and block blood flow. Patients frequently suffer painful crises that can be fatal if not promptly treated with fluids, medication, and oxygen. Longer term, organs starved of oxygen eventually give out. In the U.S., that pain and suffering is amplified when systemic and individual instances of racism deny Black people the care they need.
Delivering gene therapy for other diseases has been costly and difficult even in the best financed, most sophisticated medical settings. Challenges include removing patients cells so they can be altered in a lab, manufacturing the new cells in high volume, reinfusing them, and managing sometimes severe responses to the corrected cells. Patients also are given chemotherapy to clear space in their bone marrow for the new cells.
Ideally, many of those steps could be skipped if there were an off-the-shelf gene therapy. That means, among other challenges, inventing a way to eliminate the step where each patients cells are manipulated outside the body and given back the in vivo part of the plan to correct the genetic mutation.
Thats not the only obstacle. For a sickle cell therapy to be successful, Bradner said, it must be delivered only to its targets, which are blood stem cells. The genetic material carrying corrected DNA must be safely transferred so it does not become randomly inserted into the genome and create the risk of cancer, a possibility that halted a Bluebird Bio clinical trial on Tuesday. The payload itself mustnt cause such problems as the cytokine storm of immune overreaction. And the intended response has to be both durable and corrective.
In a way, the gene delivery is the easy part because we know that expressing a normal hemoglobin, correcting the mutated hemoglobin, or reengineering the switches that once turned off normal fetal hemoglobin to turn it back on, all can work, Bradner said. The payload is less a concern to me than the safe, specific, and durable delivery of that payload.
For each of these four challenges delivery, gene transfer, tolerability, durability there could be a bespoke technical solution, Bradner said. The goal is to create an ensemble form of gene therapy.
Novartis has an existing sickle-cell project using CRISPR with the genome-editing company Intellia, now in early human trials, whose lessons may inform this new project. CRISPR may not be the method used; all choices are still on the table, Bradner said.
Vertex Pharmaceuticals has seen encouraging early signs with its candidate therapy developed with CRISPR Therapeutics. Other companies, including Beam Therapeutics, have also embarked on gene therapy development.
The Novartis-Gates collaboration is different in its ambition to create a cure that does not rely on an expensive, complicated framework. Novartis has worked with the Gates Foundation on making malaria treatment accessible in Africa. And in October 2019, the Gates Foundation and the National Institutes of Health said together they would invest at least $200 million over the next four years to develop gene-based cures for sickle cell disease and HIV that would be affordable and available in the resource-poor countries hit hardest by the two diseases, particularly in Africa.
Gene therapies might help end the threat of diseases like sickle cell, but only if we can make them far more affordable and practical for low-resource settings, Trevor Mundel, president of global health at the Gates Foundation, said in a statement about the Novartis collaboration. Its about treating the needs of people in lower-income countries as a driver of scientific and medical progress, not an afterthought.
Asked which is the harder problem to solve: one-time, in vivo gene therapy, or making it accessible around the world, David Williams, chief of hematology/oncology at Boston Childrens Hospital, said: Both are going to be difficult to solve. The first will likely occur before the therapy is practically accessible to the large number of patients suffering the disease around the world.
Williams is also working with the Gates Foundation, as well as the Koch Institute for Integrative Cancer Research at MIT, Dana-Farber Cancer Institute, and Massachusetts General Hospital, on another approach in which a single injection of a reagent changes the DNA of blood stem cells. But there are obstacles to overcome there, too, that may be solved by advances in both the technology to modify genes and the biological understanding of blood cells.
Bradner expects further funding to come to reach patients around the world, once the science progresses more.
There is no plug-and-play solution for this project in the way that mRNA vaccines were perfectly set up for SARS-CoV-2. We have no such technology to immediately redeploy here, he said. Were going to have to reimagine what it means to be a gene therapy for this project.
Excerpt from:
Novartis, Gates Foundation pursue a simpler gene therapy for sickle cell - STAT
Research Associate in Stem Cells and Regenerative Medicine job with KINGS COLLEGE LONDON | 246711 – Times Higher Education (THE)
By daniellenierenberg
Job descriptionThe Centre for Stem Cells & Regenerative Medicine is located in Guys Hospital.It is internationally recognized for research on adult and pluripotent stem cells and is a focus for cutting-edge stem cell research currently taking place across the College and its partner NHS trusts, as part of Kings Health Partners. Through the Centre, Kings aims to drive collaboration between scientists and clinicians to translate the potential of stem cells into clinical reality for patients.Applications are invited for a postdoctoral researcher funded as part of the PIs Wellcome Clinical Fellowship, and will work with a dynamic group of scientists focussed on reproductive biology, early embryonic development and the causes of infertility. The post holder will contribute to the regenerative medicine theme and will be involved in the generation and processing of single cell experiments using a variety of techniques.This is an exciting opportunity following our recent work (Sangrithi et al. 2017, Dev Cell & Lau et al. 2020, Dev Cell). The project aims to discover the function of genes on the X-chromosome in male germline stem cells (spermatogonia) and their role in idiopathic and sex chromosome aneuploidy associated infertility. We aim to understand physiological gene regulatory networks functional in spermatogonial stem cells using a combination of single-cell methods, to explain how perturbation in X-gene dosage in SSCs may cause infertility. The postholder will also identify and validate candidate disease bio-markers.This post will be offered on an a fixed-term contract until 05/04/2026This is a full-time post - 100% full time equivalent
Key responsibilities Carry out world class research. Are adept at working in a wet lab setting with experience in designing and executing experiments. Familiarity in single cell work nucleic acid manipulation is desirable Communicate results effectively in writing and orally Contribute to publications arising from the research projects Keep clear and up-to-date records of work Attend and present at seminars, journal clubs and conferences Contribute to collaborative atmosphere of the department Share skills by training others Comply with all relevant safety legislation to ensure a safe working environment Take part in public engagement activities To support grant writing, for maintaining the continual research in this domain, e.g. Fellowships Post holder will be expected to plan and prioritise their own workload, with competing and shifting priorities under pressure of deadlinesThe above list of responsibilities may not be exhaustive, and the post holder will be required to undertake such tasks and responsibilities as may reasonably be expected within the scope and grading of the post.
Skills, knowledge, and experience
Essential criteria PhD awarded in the biological sciences Excellent general knowledge of molecular biology Knowledge of cell biology Knowledge of flow cytometry Relevant postdoctoral experience Experience in a molecular biology research lab Excellent record keeping / attention to detail Organized and systematic approach to research Pro-active, enthusiastic, positive attitude Self-motivated, with the ability to work under pressure & to meet deadlines Keen interest in infertility and regenerative medicine Ability to think strategically
Desirable criteria Understanding of the biology of germ cells and embryo development Previous experience in working with the laboratory mouse ES cell culture experience General knowledge of computational tools for single cell RNAseq Ability to make collaborative and independent decisions*Please note that this is a PhD level role but candidates who have submitted their thesis and are awaiting award of their PhDs will be considered. In these circumstances the appointment will be made at Grade 5, spine point 30 with the title of Research Assistant. Upon confirmation of the award of the PhD, the job title will become Research Associate and the salary will increase to Grade 6.Further informationABOUT THE SCHOOLThe School of Basic & Medical Biosciences is led by Professor Mathias Gautel and comprises five departments with a wide range of expertise and interests. Using a bench to bedside approach, the School aims to answer fundamental questions about biology in health and disease and apply this to the development of new and innovative clinical practise, alongside providing a rigorous academic programme for students.DepartmentsThe Centre for Human & Applied Physiological Sciences (CHAPS) uses an integrative and translational research approach focusing on fundamental questions about human physiological function in health and disease to explore 3 research themes: skeletal muscle & aging, sensory-motor control & pain and aerospace & extreme environment adaptation.The Centre for Stem Cells & Regenerative Medicine focuses on cutting-edge stem cell research, how stem cells interact with their local environment and how these interactions are important for developing effective cell therapies in the clinic.The Department of Medical & Molecular Genetics uses cutting-edge technologies and analysis techniques to explore the mechanistic basis of disease, improve diagnostics and understand the epigenetic mechanisms of gene regulation and RNA processing, working from whole population level to complex and rare disease genomesThe Randall Centre of Cell & Molecular Biophysics takes a multi-disciplinary approach at the interface of Biological and Physical Sciences to explore the underlying mechanisms behind common diseases.St Johns Institute of Dermatology seeks to improve the diagnosis and management of severe skin diseases, through a better understanding of the basic pathogenetic mechanisms that cause and sustain these conditions focussing on cutaneous oncology, genetic skin disorders, inflammatory & autoimmune skin disorders, and photomedicine.About the Department of Centre for Stem Cells & Regenerative MedicineThe Centre for Stem Cells & Regenerative Medicine is led by Professor Fiona Watt, whos laboratory comprises approximately 30 research staff and visiting scientists and is internationally recognised for research on adult and pluripotent stem cells. Along with Professor Watts group there are nine other research groups operating at the Centre, bringing the total number of staff to approximately 80 people.Research at the Centre is focused on how stem cells interact with their local environment, or niche. We believe that an understanding of these interactions is important for developing effective cell therapies in the clinic. Located on the Guys Hospital campus, the Centre acts as a focus for cutting-edge stem cell research taking place across the College and its partner NHS Trusts, as part of Kings Health Partners. To facilitate collaborations within Kings and with external partners, we have opened a Stem Cell Hotel where researchers can access specialist equipment and technical support to study stem cell behaviour at single cell resolution. We also host an international seminar series and run the Stem Cells @ Lunch seminar series to share ideas and unpublished data. Our researchers are committed to public engagement and take part in diverse outreach events.Detailed information about the Centre for Stem Cells & Regenerative medicine can be found in the link below:http://www.kcl.ac.uk/lsm/research/divisions/gmm/departments/stemcells/index.aspx
Read more here:
Research Associate in Stem Cells and Regenerative Medicine job with KINGS COLLEGE LONDON | 246711 - Times Higher Education (THE)
Gergis Explains the Differences Between Acute and Chronic GVHD – Targeted Oncology
By daniellenierenberg
Usama Gergis, MD, MBA Professor of Oncology Director, Bone Marrow Transplant and Immune Cellular Therapy Sidney Kimmel Cancer Center Thomas Jefferson University Hospital Philadelphia, PA, reviewed that difference in acute and chronic graft-versus-host disease (GVHD) and the treatment available for each.
Targeted OncologyTM: How would you treat a patient with GvHD in the second line?
GERGIS: If you [have a patient with] second-line acute GVHD, your answer should be ruxolitinib [Jakafi] because its the only drug that has been tried in phase 3 trials. If you get a [case of] chronic GVHD, your answer should be ibrutinib [Imbruvica].
What is the efficacy of peripheral blood stem cells (PBSC) versus bone marrow from unrelated donors in patients with acute and chronic GvHD?
[Results from] a phase 3 study of bone marrow versus stem cells for unrelated donors [showed] the acute GVHD population [cumulative incidence] was the same between both.1 For the chronic population, the bone marrow did better [PBSC 53% vs bone marrow 41%; P = .01]. This was published almost 8 years ago, [and it] was reported almost 10 years ago, but we still use stem cells.
This has not changed practices, and the reasons are, number 1, there was more primary graft failure on the bone marrow than the PBSC, and number 2, its pretty involved to do bone marrow harvest, although I have done it for 15 years, at least a few every month.
The benefit of bone marrow versus PBSCand this benefit was only studied in unrelated donors, not in matched related donorswas seen across all organs affected with chronic GVHD except lungs, [gut, and serosa].2 So, there was no real benefit in the lungs.
Can you explain the difference between acute and chronic GvHD?
Chronic GVHD is more complicated and involved than acute GVHD. In acute, you have the skin, gastrointestinal organs, and the liver [that may be affected]. Thats it. In chronic, all the patients other organs can be affected. The patients weight can be affected. [Chronic GVHD is] more debilitating over a long time and [can] go unrecognized for a while. [If a patient is] experiencing acute GVHD, you see them twice a week, whereas if the patient has chronic GVHD, you probably see them once a month. So you can see a very stark change in your patients within that month if they lose 10% of their body weight and they already lost a lot of weight in the period right after [transplantation], so that can be obvious to you.
[In my institution], we have the GVHD clinic where we [grade the patient based on] studying the degree of fibrosis, how many organs are affected, the patients range of motion, and the degrees in range of motion. We do frequent pulmonary function tests and various [other] testing. By looking at all the affected organs, you reach a grade, and that can be mild, moderate, or severe [chronic GVHD].
How do you treat moderate-to-severe chronic GVHD at initial presentation and in the second line?
First-line treatment for chronic GVHD are steroids. For second line, there are many agents [to consider]. Ive tried most of them. I like photopheresis because its not pharmacological, but its pretty involved. Your patient will need a permanent catheter, and they will need to come to the transplant center twice a week, and you see a response after a long time. It takes an average of 50 photopheresis sessions for a response. But the beauty of photopheresis [is that] you could try it with other agents, so its not mutually exclusive. You could use it with ruxolitinib, ibrutinib, or any other agents.
The answer will be ibrutinib [for chronic GVHD], and thats based on the [results of a] phase 2 clinical trial that treated 42 patients with steroid-refractory chronic GVHD, and the efficacy was 69% [best overall response rate], and 31% complete response rate.3
What do you think of these poll results?
Everybody agrees on giving ibrutinib. When I gave this talk a couple months ago, lenalidomide [Revlimid] was not included in the poll. I added it because [recently], a nice study in Blood came out from the National Institutes of Health where they tried lenalidomide at a small dose, 2 mg, in steroid-refractory chronic GVHD. Its a large trial; I think its about 100 patients. Theyve seen responses that are comparable with ibrutinib....I treated a patient for multiple myeloma; he received a transplant for multiple myeloma, and now, 6 months later, he has chronic GVHD and some clonal plasma cells. So for him, I was comforted to know the results of the lenalidomide trial.
How does ruxolitinib play a role in this setting?
Ruxolitinib was reported in the REACH3 trial [NCT03112603] with very good responses in chronic GVHD.4 I think it probably will get approved for that indication. Looking at this study about 2 years ago, nothing was studied well in this indication, and ibrutinib was approved.
REACH3 was a large trial, almost 300 patients, and everybody was randomized to ruxolitinib 10 mg twice a day versus best available treatment. They looked at everybody about 6 months later for response.
What should physicians keep in mind when treating?
Chronic GvHD is pretty involved. Your patients will need a multidisciplinary approach. You need to pay attention to their bones. In the first 100 days post transplant, the average bone aging is 17 years.
So although were trying to treat acute GVHD, viruses, and prevent relapses, [by putting] your patients on some steroids, you are aging your patients bones by 17 years only in the first 100 days. No matter what you do, give your patients vitamin D, calcium, and Fosamax [alendronate sodium].
See the original post:
Gergis Explains the Differences Between Acute and Chronic GVHD - Targeted Oncology
[Full text] A Comprehensive Review on Factors Influences Biogenesis, Functions, Th | IJN – Dove Medical Press
By daniellenierenberg
Introduction
Extracellular vesicles (EVs) including exosomes, microvesicles, and apoptotic bodies are produced and released by almost all types of cell. EVs vary in size, properties, and secretion pathway depending on the originating cell.1,2 Exosomes are small EVs (sEVs) which are formed by a process of inward budding in early endosomes to form multivesicular bodies (MVBs) with an average size of 100 nm, and released into the extracellular microenvironment to transfer their components.3,4 Microvesicles are composed of lipid components of the plasma membrane and their sizes range from 1001000 nm, whereas apoptotic bodies result from programmed cell death.5 Initially, EVs were considered to maintain cellular waste through release of unwanted proteins and biomolecules; later, these organelles were considered important for intercellular communications through various cargo molecules such as lipids, proteins, DNA, RNA, and microRNAs (miRNAs).6 Previously, it was suggested that EVs play a critical role in normal cells to maintain homeostasis and prevent cancer initiation. Inhibition of EVs secretion causes accumulation of nuclear DNA in the cytoplasm, leading to apoptosis.1 The induction of apoptosis is the principal event of the reactive oxygen species (ROS) dependent DNA damage response.7,8
Several studies reported that exosomes are synthesized by means of two major pathways, the endosomal sorting complexes required for transport (ESCRT)-dependent and ESCRT-independent, and the processes are highly regulated by multiple signal transduction cascades.18 Exosomes released from the cell through normal exocytosis mechanisms are characterized by vesicular docking and fusion with the aid of SNARE complexes. Exosomes are considered to be organelle responsible for garbage disposal agents. However, at a later stage, these secretory bodies play a critical role in maintaining the physiological and pathological conditions of the surrounding cells by transferring information from donor cells to recipient cells. Exosome development begins with endocytosis to form early endosomes, later forming multivesicular endosomes (MVEs), and finally generating late endosomes by inward budding. MVEs merge with the cell membrane and release intraluminal endosomal vesicles that become exosomes into the extracellular space.9,10 Exosome biogenesis is dependent on various critical factors including the site of biogenesis, protein sorting, physicochemical aspects, and transacting mediators.11
Exosomes contain various types of cargo molecules including lipids, proteins, DNAs, mRNAs, and miRNAs. Most of the cargo is involved in the biogenesis and transportation ability of exosomes.12,13 Exosomes are released by fusion of MVBs with the cell membrane via activation of Rab-GTPases and SNAREs. Exosomes are abundant and can be isolated from a wide variety of body fluids and also cell culture medium.14 Exosomes contain tetraspanins that are responsible for cell penetration, invasion, and fusion events. Exosomes are released onto the external surface by the MVB formation proteins Alix and TSG101. Exosome-bound proteins, annexins and Rab protein, govern membrane transport and fusion whereas Alix, flotillin, and TSG101 are involved in exosome biogenesis.15,16 Exosomes contain various types of proteins such as integral exosomal membrane proteins, lipid-anchored outer and inner membrane proteins, peripheral surface and inner membrane proteins, exosomal enzymes, and soluble proteins that play critical roles in exosome functions.11
The functions of exosomes depend on the origin of the cell/tissue, and are involved in the immune response, antigen presentation programmed cell death, angiogenesis, inflammation, coagulation, and morphogen transporters in the creation of polarity during development and differentiation.1720 Ferguson and Nguyen reported that the unique functions of exosomes depend on the availability of unique and specific proteins and also the type of cell.21 All of these categories influence cellular aspects of proteins such as the cell junction, chaperones, the cytoskeleton, membrane trafficking, structure, and transmembrane receptor/regulatory adaptor proteins. The role of exosomes has been explored in different pathophysiological conditions including metabolic diseases. Exosomes are extremely useful in cancer biology for the early detection of cancer, which could increase prognosis and survival. For example, the presence of CD24, EDIL3, and fibronectin proteins on circulating exosomes has been proposed as a marker of early-stage breast cancer.22 Cancer-derived exosomes promoted tumor growth by directly activating the signaling pathways such as P13K/AKT or MAPK/ERK.23 Tumor-derived exosomes are significantly involved in the immune system, particularly stimulating the immune response against cancer and delivering tumor antigens to dendric cells to produce exosomes, which in turn stimulates the T-cell-mediated antitumor immune response.24 Exosomal surface proteins are involved in immunotherapies through the regulation of the tumor immune microenvironment by aberrant cancer signaling.25 A study demonstrated that exosomes have the potential to affect health and pathology of cells through contents of the vesicle.26 Exosomes derived from mesenchymal stem cells exhibit protective effects in stroke models following neural injury resulting from middle cerebral artery occlusion.27 The structural region of the exosome facilitate the release of misfolded and prion proteins, and are also involved in the propagation of neurodegenerative diseases such as Huntington disease, Alzheimers disease (AD), and Parkinsons disease (PD).28,29
Exosomes serve as novel intercellular communicators due to their cell-specific cargo of proteins, lipids, and nucleic acids. In addition, exosomes released from parental cells may interact with target cells, and it can influence cell behavior and phenotype features30 and also it mediate the horizontal transfer of genetic material via interaction of surface adhesion proteins.31 Exosomes are potentially serving as biomarkers due to the wide-spread and cell-specific availability of exosomes in almost all body fluids.13 Therefore, exosomes are exhibited as delivery vehicles for the efficient delivery of biological therapeutics across different biological barriers to target cells.3234
In this review, first, we comprehensively describe the factors involved in exosome biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. In addition, we discuss the role of exosomes as diagnostic markers, and the therapeutic and clinical implications. Finally, we discuss the challenges and outstanding developments in exosome research.
The extracellular vesicles play critical role in inter cellular communication by serving as vehicles for transfer of biomolecules. These vesicles are generally classified into microvesicles, ectosomes, shedding vesicles, or microparticles. MVs bud directly from the plasma membrane, whereas exosomes are represented by small vesicles of different sizes that are formed as the ILV by budding into early endosomes and MVBs and are released by fusion of MVBs with the plasma membrane (Figure 1). Invagination of late endosomal membranes results in the formation of intraluminal vesicles (ILVs) within large MVBs.35 Biogenesis of exosomes occurs in three ways including vesicle budding into discrete endosomes that mature into multivesicular bodies, which release exosomes upon plasma membrane fusion; direct vesicle budding from the plasma membrane; and delayed release by budding at intracellular plasma membrane-connected compartments (IPMCs) followed by deconstruction of IPMC neck(s).11 The mechanisms of biogenesis of exosomes are governed by various types of proteins including the ESCRT proteins Hrs, CHMP4, TSG101, STAM1, VPS4, and other proteins such as the Syndecan-syntenin-ALIX complex, nSMase2, PLD2, and CD9.14,3639 After formation, the MVB can either fuse with the lysosome to degrade its content or fuse with the plasma membrane to release the ILVs as exosomes. The release of exosomes to the extracellular milieu is driven by proteins of the Rab-GTPase family including RAB2B, 5A, 7, 9A, 11, 27, and 35. SNARE family proteins VAMP7 and YKT6 have also been implicated in the release.14,38,4042 Biogenesis of exosomes is influenced by several external factors including cell type, cell confluency, serum conditions, and the presence and absence of cytokines and growth factors. In addition, biogenesis is also regulated by the sites of exosomes, protein sorting, physico-chemical aspects, and trans-acting mediators (Figure 2). For example, THP-1 cells were cultured in RPMI-1640 cell culture medium supplemented with 10% FCS secreted low level of exosomes compared to cells grown on cell culture medium supplemented with 1% FCS (Figure 3). The exogenous factor like serum starvation influences biogenesis and secretion of exosomes.
Figure 1 Biogenesis and cargoes of exosomes.
Figure 2 Effect of various factors on biogenesis of exosomes.
Figure 3 Serum deprivation causes an increase of the number of cellular exosomes in THP-1 cells. Panel (A); 10% FCS. Panel (B); 1% FCS. Panel (C) Quantification of exosomes using DLS and NTA.
Exosome release depends on expression of Rab27 or Ral. For example, exosomes released from the MVB significantly decrease in cells depleted of Rab2741 or Ral.43 The most efficient EV-producing cell types have yet to be determined44 and few reports suggest that immature dendritic cells produce limited amounts of EVs45,46 whereas mesenchymal stem cells secrete vast amounts, relevant for the production of EV therapeutics on a clinical scale.47,48 A few proteins play a critical role in the biogenesis of EVs, such as Rab27a and Rab27b.49 Over expression of Rab27a and Rab27b produce significant amounts of EVs in cancer cells. For example, overexpression of Rab27a and Rab27b in breast cancer cells,50 hepatocellular carcinoma cells,51 glioma cells,52 and pancreas cancer cells53 produces significant levels of EVs. Although all types of cells secrete and release EVs, cancer cells seem to produce higher levels than normal cells.54 Furthermore, the presence of invadopodia that are docking sites for Rab27a-positive MVBs induces secretion of EVs, and also enhances secretion of EVs in cancer cells.55 Thus, inhibition of invadopodia formation greatly reduces exosome secretion into conditioned media. This evidence demonstrates that cancer cells potentially release more EVs than non-cancer cells.
The rate of origin of exosomes from the plasma membrane of stem cells is vigorous, at rates equal to the production of exosomes,56 which is consistent with a report suggesting that stem cells bud ~50100 nm-diameter vesicles directly from the plasma membrane.57 Plasma membrane-derived exosomes contain selectively enriched protein and lipid markers in leukocytes.58 Plasma membrane exosomal budding is also observed for glioblastoma exosomes.59 Conventional transmission electron microscopy revealed that certain cell types contain deep invaginations of the plasma membrane that are indistinguishable from MVBs.6062 Certain cell types secrete exosomes containing cargo proteins, which primarily bud from the plasma membrane, and exosome composition is determined predominantly by intracellular protein trafficking pathways, rather than by the distinct mechanisms of exosome biogenesis.63 Biogenesis of exosomes is regulated by syndecan heparan sulphate proteoglycans and their cytoplasmic adaptor syntenin. Syntenin interacts directly with ALIX through LYPX (n) L motifs.64 Glycosylation is an essential factor in the biogenesis of exosomes and N-linked glycosylation directs glycoprotein sorting into EMVs.65 Collectively, these reports suggest that exosomes are made at both plasma and endosome membranes rather than endosome alone. Oligomerization is a critical factor for exosomal protein sorting and it was found to be sufficient to target plasma membrane proteins to exosomes. High-order oligomeric proteins target them to exosomes.66 Further, plasma membrane anchors support exosomal protein budding. For example, budding of CD63 and CD9 from the plasma membrane is much more efficient than endosome-targeted budding of CD63 and CD9.63 Protein clustering is another factor that induces membrane scission.67
Physico-chemical properties determine budding efficiency and are crucial factors of exosome biogenesis, a fundamental process involving the budding of vesicles that are 30200 nm in size. In particular, lipids are critical players in exosome biogenesis, especially those able to form cone and inverse cone shapes. Generally, exosome membranes contain phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositols (PIs), phosphatidic acid (PA), cholesterol, ceramides, sphingomyelin, glycosphingolipids, and a number of lower abundance lipids.68,69 Exosomes have a rich content of PE and PS, which increase budding efficiency and promote exosome genesis and release. PA promotes exosome biogenesis and PLD2 is involved in the budding of certain exosomal cargoes.70 Besides these factors, ceramide is an important lipid molecule regulating exosome biogenesis and facilitating membrane curvature, which is essential for vesicular budding. Inhibition of an enzyme that generates ceramide impairs exosome biogenesis.71
The next critical factor is trans-acting mediators that are involved in the biogenesis of exosomes through regulating plasma membrane homeostasis, intracellular protein trafficking pathways, MVB maturation and trafficking, IPMC biogenesis, vesicle budding, and scission.11 For example, Rab proteins regulate exosome biogenesis via endosomes and the plasma membrane by determining organelle membrane identity, recruiting mechanistic effectors, and mediating organelle dynamics.72 The functions of Rab proteins in the control and biogenesis of exosomes depends on cell type. MVB biogenesis is regulated by Rab27a, Rab27b, their effectors Slp4, Slac2b, and Munc13-4, and also Rab 35 and Rab 11.73 Loss of Rab27 function leads to a ~5075% drop in exosome production, and is also involved in assembling the plasma membrane microdomains involved in plasma membrane vesicle budding, by regulating plasma membrane PIP2 dynamics.74 Overall, Rab27 proteins control exosome biogenesis at both endosomes and plasma membranes. In addition, Rab35 also contributes to exosome biogenesis by regulating PIP2 levels of plasma membrane, and its loss leads to a reduction of exosome release by ~50%.75 Gurunathan et al76 reported that yeast produces two classes of secretory vesicles, low density and high density, and dynamin and clathrin are required for the biogenesis of these two different types of vesicle.
The Ral family is involved in the biogenesis of exosomes, and inhibition of Ral causes an accumulation of MVBs near the plasma membrane and a ~50% decrease in the vesicular secretion of exosomes and exosomal marker proteins.43 Ral GTPases function through various effectors proteins, including Arf6 and the phospholipase PLD2, which are involved in exosomal release of SDCs.37 The ESCRT complex machinery (0 through III) are involved in MVB biogenesis on a major level including membrane deformation, sealing, and repair during a wide array of processes. The major contributions of the ESCRT complex to the biogenesis of vesicles are the recognition and sequestration of ubiquitinated proteins to specific domains of the endosomal membrane via ubiquitin binding subunits of ESCRT-0. After interaction with the ESCRT-I and -II complexes, the total complex will then combine with ESCRT-III, a protein complex that is involved in promoting the budding process. Finally, following cleaving of the buds to form ILVs, the ESCRT-III complex separates from the MVB membrane using energy supplied by the sorting protein Vps4.77 In addition, other proteins such as Alix, which is associated with several ESCRT (TSG101 and CHMP4) proteins, are involved in endosomal membrane budding and abscission, as well as exosomal cargo selection via interaction with syndecan.39 Another important factor, autophagy, is critically involved in exosome secretion. Autophagy related (Atg) proteins coordinate initiation, nucleation, and elongation during autophagosome biogenesis in the presence of ESCRT-III components including CHMP2A and VPS4. For instance, the absence of Atg5 in cancer cells causes a reduction in exosome production.78 Conversely, CRISPR/Cas9-mediated knockout of Atg5 in neuronal cells increases the release of exosomes and exosome-associated prions from neuronal cells.79
Exosomes play a critical role in the physiologic regulation of mammary gland development and are important mediators of breast tumorigenesis.80 Biogenesis of exosomes occurs in all cell types; however, production depends on cell type. For example, breast cancer cells (BCC) produce increased numbers of exosomes compared to normal mammary epithelial cells. Studies revealed that patients with BC have increased numbers of MVs in their blood.81 Kavanagh et al reported that several fold changes were observed from exosomes isolated from triple negative breast cancer (TNBC) chemoresistant therapeutic induced senescent (TIS) cells compared with control EVs.82 TIS cells release significantly more EVs compared with control cells, containing chemotherapy and key proteins involved in cell proliferation, ATP depletion, and apoptosis, and exhibit the senescence-associated secretory phenotype (SASP). Cannabidiol (CBD), inhibits exosome and microvesicle (EMV) release in three different types of cancer cells including prostate cancer (PC3), hepatocellular carcinoma (HEPG2), and breast adenocarcinoma (MDA-MB-231). All three different cell lines show variability in the release of exosomes in a dose-dependent manner. These variabilities are all due to mitochondrial function, including modulation of STAT3 and prohibitin expression. This study suggests that the anticancer agent CBD plays critical role in EMV biogenesis.83 Sulfisoxazole (SFX) inhibits sEV secretion from breast cancer cells through interference with endothelin receptor A (ETA) through the reduced expression of proteins involved in the biogenesis and secretion of sEV, and triggers co-localization of multivesicular endosomes with lysosomes for degradation.84 Secreted EVs from human colorectal cancer cells contain 957 vesicular proteins. The direct protein interactions between cellular proteins play a critical role in protein sorting during EV formation. SRC signaling plays a major role in EV biogenesis, and inhibition of SRC kinase decreases the intracellular biogenesis and cell surface release of EVs.85 Proteomic analysis revealed that the exosomes released from imatinib-sensitive GIST882 cell line exhibit 764 proteins. The authors found that significant amount of proteins belong to protein release function and involved in the classical pathway and overlap to a high degree with proteins of exosomal origin.86 Exosomes secreted by antigen-presenting cells contain high levels of MHC class II proteins and costimulatory proteins, whereas exosomes released from other cell types lack these proteins.1,87
The biogenesis of exosomes depends on a percentage of confluency of approximately 6090%, which influences the yield and functions of EVs.44 Gal et al88 observed a 10-fold decreased level of cholesterol metabolism in confluent cell cultures compared to cells in the preconfluent state. The high level of cholesterol content in confluent cells leads to a decreased level of EVs in prostate cancer.68 The major reason behind for the reduced level of vesicle production is contact inhibition, which triggers confluent cells to enter quiescence and/or alters their characteristics compared to actively dividing cells.89,90 Exogenous stimulation could influence the condition of the cells including the phenotype and efficacy of secretion. Previously, several studies demonstrated that various external factors increase biogenesis of EVs such as Ca2+ ionophores,91 hypoxia,9294 and detachment of cells,95 whereas lipopolysaccharide reduces biogenesis and release of EVs.96 Furthermore, serum, which supports adherence of the cells, plays a critical role in the biogenesis of EVs.97 For example, FCS has noticeable effects on cultured cells; however, the effects depend on cell type and differentiation status.97,98 To avoid the immense amounts of vesicles present in FCS, the use of conditioned media has been suggested. Culture viability and health status of cells are important aspects for producing an adequate amount of vesicles with proper cargo molecules such as protein and RNA.99,100 Exogenous stress, such as starvation, can induce phenotypic alterations and changes in proliferation. These changes cause alterations in the cells metabolism and eventually lead to low yields.101,102
Cellular stresses, such as hypoxia, inflammation, and hyperglycemia, influence the RNA and protein content in exosomes. To examine these factors, the effects of cellular stresses on endothelial cells were studied.99 Endothelial cells were exposed to different types of cellular stress such as hypoxia, tumor necrosis factor- (TNF-)-induced activation, and high glucose and mannose concentrations. The mRNA and protein content of exosomes produced by these cells were compared using microarray analysis and a quantitative proteomics approach. The results indicated that endothelial cell-derived exosomes contain 1354 proteins and 1992 mRNAs. Several proteins and mRNAs showed altered levels after exposure of their producing cells to cellular stress. Interestingly, cells exposed to high sugar concentrations had altered exosome protein composition only to a minor extent, and exosome RNA composition was not affected. Low-intensity ultrasound-induced (LIUS) anti-inflammatory effects have been achieved by upregulation of extracellular vesicle/exosome biogenesis. These exosomes carry anti-inflammatory cytokines and anti-inflammatory microRNAs, which inhibit inflammation of target cells via multiple shared and specific pathways. A study suggested that exosome-mediated anti-inflammatory effects of LIUS are feasible and that these techniques are potential novel therapeutics for cancers, inflammatory disorders, tissue regeneration, and tissue repair.103 Another factor, called manumycin-A (MA), a natural microbial metabolite, was analyzed in exosome biogenesis and secretion in castration-resistant prostate cancer (CRPC) C4-2B, cells. The effect of MA on cell growth was observed, and the results revealed that there was no effect on cell growth. However, MA attenuated the ESCRT-0 proteins Hrs, ALIX, and Rab27a, and exosome biogenesis and secretion by CRPC cells. The inhibitory effect of MA on exosome biogenesis and secretion was primarily mediated via targeted inhibition of Ras/Raf/ERK1/2 signaling. These findings suggest that MA is a potential drug candidate for the suppression of exosome biogenesis and secretion by CRPC cells.104
Methods of isolation of exosomes play critical roles in functions and delivery. Although several methods such as ultracentrifugation, density gradient centrifugation, chromatography, filtration, polymer-based precipitation, and immunoaffinity have been adopted to isolate pure exosomes without contamination, there is still a lack of consistency and agreement.105 Isolation of exosomes along with non-exosomal materials and damaged exosomal membranes creates artifacts and alters the protein and RNA profiles. Since exosomes are obtained from a variety of sources, the composition of proteins/lipids influences the sedimentation properties and isolation. Thus, precise and consistent techniques are warranted for the isolation, purification, and application of exosomes.
Although several functions of exosomes have been explored, the precise function of exosomes remains a mystery. Historically, exosomes have been known to function as cellular garbage bags, recyclers of cell surface proteins, cellular signalers, intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases.106 (Figure 4) ECVs are secreted cell-derived membrane particles involved in intercellular signaling and cell-cell communications, and contain immense bioactive information. Most cell types produce exosomes and release these into the extracellular environment, circulating through different bodily fluids such as urine, blood, and saliva and transferring their cargo to recipient cells. These vesicles play a significant role in various pathological conditions, such as different types of cancer, neurodegenerative diseases, infectious diseases, pregnancy complications, obesity, and autoimmune diseases, as reviewed elsewhere.107 Exosomes play a significant role in intercellular communication between cells by interacting with target cells via endocytosis.108 More specifically, exosomes are involved in cancer development, survival and metastasis of tumors, drug resistance, remodeling of the extracellular matrix, angiogenesis, thrombosis, and proliferation of tumor cells.94,109111 Exosomes contribute significantly to tumor vascularization and hypoxia-mediated inter-tumor communication during cancer progression, and premetastatic niches, which are significant players in cancer.16,94,109,112 Exosomes derived from hepatic epithelial cells increase the expression of enhancer zeste homolog 2 (EZH2) and cyclin-D1, and subsequently promotes G1/S transition.113
Figure 4 Multifunctional aspects biological functions of exosomes.
Conventionally, cells communicate with adjacent cells through direct cell-cell contact through gap junctions and cell surface protein/protein interactions, whereas cells communicating with distant cells do so through secreted soluble factors, such as hormones and cytokines, to facilitate signal propagation.114 Cells also communicate through electrical and chemical signals.115 Several studies have suggested that exosomes play vital roles in intercellular communication by serving as vehicles for transferring various cellular constituents, such as proteins, lipids, and nucleic acids, between cells.6,116118 Exosomes function as exosomal shuttle RNAs in which some exosomal RNAs from donor cells functions in recipient cells,6 a form of genetic exchange. Recently, researchers found that cells communicating with other cells through exosomes carrying cell-specific cargoes of proteins, lipids, and nucleic acids may employ novel intercellular communication mechanisms.30 Exosomes exert influences through various mechanistic approaches, such as direct stimulation of target cells via surface-bound ligands; transfer of activated receptors to recipient cells; and epigenetic reprogramming of recipient cells.119,120 Exosomes play critical roles in immunoregulation, including antigen presentation, immune activation, immune suppression, and immune tolerance via exosome-mediated intercellular communication. Mesenchymal stem cell (MSC)-derived exosomes play significant roles in wound healing processes.121 Exosomes from platelet-rich plasma (PRP) inhibit the release of TNF-. PRP-Exos significantly decreases the apoptotic rate of osteoarthritis (OA) chondrocytes compared with activated PRP (PRP-As).122 Extracellular vesicle (ECV)-modified polyethylenimine (PEI) complexes enhance short interfering RNA (siRNA) delivery by forming non-covalent complexes with small RNA molecules, including siRNAs and anti-miRs, in both conditions, in vitro and in vivo.123 Non-GSC glioma cells were treated with GSC-released exosomes. The results showed that GSC-released exosomes increase proliferation, neurosphere formation, invasive capacities, and tumorigenicity of non-GSC glioma cells through the Notch1 signaling pathway and stemness-related protein expressions.124
Exosomal miR-1910-3p promotes proliferation and migration of breast cancer cells in vitro and in vivo through downregulation of myotubularin-related protein 3 and activation of the nuclear factor-B (NF-B) and wnt/-catenin signaling pathway, and promotes breast cancer progression.125 Human hepatic progenitor cell (CdH)-derived exosomes (EXOhCdHs) play a crucial role in maintaining cell viability and inhibit oxidative stress-induced cell death. Experimental evidence suggests that inhibition of exosome secretion treatment with GW4869 results in the acceleration of reactive oxygen species (ROS) production, thereby causing a decrease in cell viability.126 Tumor-derived EXs (TDEs) are vehicles that enable communication between cells by transferring bioactive molecules, also delivering oncogenic molecules and containing different molecular cargoes compared to EXs delivered from normal cells. They can therefore be used as non-invasive biomarkers for the early diagnosis and prognosis of most cancers, including breast and ovarian cancers.127 Exosomes released by ER-stressed HepG2 cells significantly enhance the expression levels of several cytokines, including IL-6, monocyte chemotactic protein-1, IL-10, and tumor necrosis factor- in macrophages. ER stress-associated exosomes mediate macrophage cytokine secretion in the liver cancer microenvironment, and also indicate the potential of treating liver cancer via an ER stress-exosomal-STAT3 pathway.128 Mesenchymal stem cell-derived exosomal miR-223 protects neuronal cells from apoptosis, enhances cell migration and increases miR-223 by targeting PTEN, thus activating the PI3K/Akt pathway. In addition, exosomes isolated from the serum of AD patients promote cell apoptosis through the PTEN-PI3K/Akt pathway and these studies indicate a potential therapeutic approach for AD.129 A mouse model of diabetes demonstrated that mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy through increased nerve conduction velocity. In addition, MSC-derived exosomes substantially suppress proinflammatory cytokines.130
Exosomes derived from activated astrocytes promote microglial M2 phenotype transformation following traumatic brain injury (TBI). miR-873a-5p significantly inhibits LPS-induced microglial M1 phenotype transformation.131 Several studies reported that exosomes are involved in cancer progression and metastasis; however, this depends on the type of cells the exosomes were derived from. For example, human umbilical vein endothelial cells (HUVEC) were treated with exosomes derived from HeLa cells (ExoHeLa), and the expression of tight junctions (TJ) proteins, such as zonula occludens-1 (ZO-1) and Claudin-5, was significantly reduced compared with exosomes from human cervical epithelial cells. Thus, permeability of the endothelial monolayer was increased after the treatment with ExoHeLa. Mice studies have shown that injection of ExoHeLa into mice increased vascular permeability and tumor metastasis. The results from this study demonstrated that HeLa cell-derived exosomes promote metastasis by triggering ER stress in endothelial cells and break down endothelial integrity. Such effects of exosomes are microRNA-independent.132 Exosomes mediate the gene expression of target cells and regulate pathological and physiological processes including promoting angiogenesis, inhibiting ventricular remodeling and improving cardiac function, as well as inhibiting local inflammation and regulating the immune response. Accumulating evidence shows that exosomes possess therapeutic potential through their anti-apoptotic and anti-fibrotic roles.
The functions of exosomes in immune responses are well established and do not cause any severe immune responses. A mouse study demonstrated that administration of a low dose of mouse or human cell-derived exosomes for extended periods of time caused no severe immune reactions.133 The function of exosomes in immune regulation is regulated by the transfer and presentation of antigenic peptides. Exosomes contain antigen-presenting cells (APCs) carrying peptide MHC-II and costimulatory signals and directly present the peptide antigen to specific T cells to induce their activation.134 For example, intradermal injection of APC-derived exosomes with MHC-II loaded with tumor peptide delayed tumor progression and growth.135 Exosome-derived immunogenic peptides activate immature mouse dendritic cells and indirectly activate APCs, and induce specific CD4+ T cell proliferation.136 Exosomes containing IFNa and IFNg, tumor necrosis factor a (TNFa), and IL from macrophages promoted dendritic cell maturation, CD4+ and CD8+ T cell activation, and the regulation of macrophage IL expression.137 The cargo of exosomes, such as DNA and miRNA, regulate the innate and adaptive immune responses. Exosomes are able to regulate the immune response by controlling gene expression and signaling pathways in recipient cells through transfer of miRNAs, and eventually control dendritic cell maturation.138 Exosomes containing miR-212-3p derived from tumors down-regulate the MHC-II transcription factor RFXAP (regulatory factor X associated protein) in dendritic cells, possibly promoting immune evasion by cancer cells.139 Exosomes containing miR-222-3p down regulate expression of SOCS3 (suppressor of cytokine signaling 3) in monocytes, which is involved in STAT3-mediated M2 polarization of macrophages.140 In mice, exosomes stimulate adaptive immune responses, including the activation of dendritic cells, with the uptake of breast cancer cell-derived exosomal genomic DNA and activation of cGAS-STING signaling and antitumor responses.141 The priming of dendritic cells is associated with the uptake of exosomal genomic and mitochondrial DNA (mtDNA) from T cells, inducing type I IFN production by cGAS-STING signaling.142 Inhibition of EGFR leads to increased levels of DNA in the exosomes and induces cGAS-STING signaling in dendritic cells, contributing to the overall suppression of tumor growth.143 Conversely, uptake of tumor-derived exosomal DNA by circulating neutrophils was shown to enhance the production of tissue factor and IL-8, which play a role in promoting tumor inflammation and paraneoplastic events.144 Melanoma-derived exosomes containing PD-L1 (programmed cell death ligand 1) suppress CD8+ T cell antitumor function and cancer cell-derived exosomes block dendritic cell maturation and migration in a PD-L1-dependent manner. Engineered cancer cell-derived exosomes promote dendritic cell maturation, resulting in increased proliferation of T cells and antitumor activity.145147
Inflammation is an important process for maintaining homeostasis in cellular systems. Systemic inflammation is an essential component in the pathogenesis of several diseases.148,149 Exosomes seem to play a crucial role in inflammation processes through cargo molecules, such as miRNA and proteins, which act on nearby as well as distant target tissues. Exosomes play a vital role in intercellular communication between cells via endocytosis and are associated with modulation of inflammation, coagulation, angiogenesis, and apoptosis.20,150153 Exosomes derived from dendritic cells, B lymphocytes, and tumor cells release exosomes that can regulate immunological memory through the surface expression of antigen-presenting MHC I and MHC II molecules, and subsequently elicit T cell activation and maturation.134,137,154156 Exosomes play a crucial role in carrying and presenting functional MHC-peptide complexes to modulate antigen-specific CD8+ and CD4+ responses.157,158 Exosomes containing miR-Let-7d influence the growth of T helper 1 (Th1) cells and inhibit IFN- secretion.159 Exosomes derived from choroid plexus epithelial cells containing miR-146a and miR-155 upregulate the expression of inflammatory cytokines in astrocytes and microglia.160 Exosomes containing miR-181c suppress the expression of Toll-like receptor 4 (TLR-4) and subsequently lower TNF- and IL-1 levels in burn-induced inflammation.161 Exosomal miR-155 from bone marrow cells (BMCs) increases the level of TNF- and subsequently enhances innate immune responses in chronic inflammation.162 Exosomes containing miR-150-5p and miR-142-3p derived from dendritic cells (DCs) increase expression of interleukin 10 (IL-10) and a decrease in IL-6 expression.163 Exosomal miR-138 can protect against inflammation by decreasing the expression level of NF-B, a transcription factor that regulates inflammatory cytokines such as TNF- and IL-18.164 HIF-1-inducing exosomal microRNA-23a expression from tubular epithelial cells mediates the cross talk between tubular epithelial cells and macrophages, promoting macrophage activation and triggering tubulointerstitial inflammation.165 A rat model study demonstrated that bone marrow mesenchymal stem cell (BMSC)-derived exosomes reduced inflammatory responses by modulating microglial polarization and maintaining the balance between M2-related and M1-related cytokines.165 Melatonin-stimulated mesenchymal stem cell (MSC)-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway, and significantly suppressed the pro-inflammatory factors IL-1 and TNF- and reduced the relative gene expression of IL-1, TNF-, and iNOS. Increasing levels of anti-inflammatory factor IL-10 are associated with increasing relative expression of Arg-1.166
Immunomodulators are essential factors for the prevention and treatment of disorders occurring due to an over high-spirited immune response, such as the SARS-CoV-2-triggered cytokine storm leading to lung pathology and mortality seen during the ongoing viral pandemic.167 MSC-secreted extracellular vesicles exhibit immunosuppressive capacity, which facilitates the regulation of the migration, proliferation, activation, and polarization of various immune cells, promoting a tolerogenic immune response while inhibiting inflammatory responses.168 Collagen scaffold umbilical cord-derived mesenchymal stem cell (UC-MSC)-derived exosomes induce collagen remodeling, endometrium regeneration, increasing the expression of the estrogen receptor /progesterone receptor, and restoring fertility. Furthermore, exosomes modulate CD163+ M2 macrophage polarization, reduce inflammation, increase anti-inflammatory responses, facilitate endometrium regeneration, and restore fertility through the immunomodulatory functions of miRNAs.169 Exosomes released into the airways during influenza virus infection trigger pulmonary inflammation and carry viral antigens and it facilitate the induction of a cellular immune response.170 Shenoy et al171 reported that exosomes derived from chronic inflammatory microenvironments contribute to the immune suppression of T cells. These exosomes arrest the activation of T cells stimulated via the T cell checkpoint (TCR). Exosomes secreted by normal retinal pigment epithelial cells (RPE) by rotenone-stimulated ARPE-19 cells induce apoptosis, oxidative injury, and inflammation in ARPE-19 cells. Exosomes secreted under oxidative stress induce retinal function damage in rats and upregulate expression of Apaf1. Overexpression of Apaf1 in exosomes secreted under oxidative stress (OS) can cause the inhibition of cell proliferation, increase in apoptosis, and elicitation of inflammatory responses in ARPE-19 cells. Exosomes derived from ARPE-19 cells under OS regulate Apaf1 expression to increase apoptosis and to induce oxidative injury and inflammatory response through a caspase-9 apoptotic pathway.172 Collectively, these findings highlight the critical role of exosomes in inflammation and suggest the possibility of utilizing exosomes as an inducer to attenuate inflammation and restore impaired immune responses in various diseases including cancer.
The endomembrane system of eukaryotic cells is a complex series of interconnected membranous organelles that play vital roles in protecting cells from adverse conditions, such as stress, and maintaining cell homeostasis during health and disease.173 To preserve cellular homeostasis, higher eukaryotic cells are equipped with various potent self-defense mechanisms, such as cellular senescence, which blocks the abnormal proliferation of cells at risk of neoplastic transformation and is considered to be an important tumor-suppressive mechanism.174,175 Exosomes contribute to reduce intracellular stress and preservation of cellular homeostasis through clearance of damaged or toxic material, including proteins, lipids, and even nucleic acids. Therefore, exosomes serve as quality controller in cells.176 The vesicular transport system plays pivotal roles in the maintenance of cell homeostasis in eukaryote cells, which involves the cytoplasmic trafficking of biomolecules inside and outside of cells. Several types of membrane-bound organelles, such as the Golgi apparatus, endoplasmic reticulum (ER), endosomes and lysosomes, in association with cytoskeleton elements, are involved in the intracellular vesicular system. Molecules are transported through exocytosis and endocytosis to maintain homeostasis through the intracellular vesicular system and regulate cells responses to the internal and external environment. To maintain homeostasis and protect cells from various stress conditions, autophagy is an intracellular vesicular-related process that plays an important role through the endocytosis/lysosomal/exocytosis pathways through degradation and expulsion of damaged molecules out of the cytoplasm.177179 Autophagy, as an intracellular waste elimination system, is a synchronized process that actively participates in cellular homeostasis through clearance and recycling of damaged proteins and organelles from the cytoplasm to autophagosomes, and then to lysosomes.38,180182 Cells maintain homeostasis by autophagosomes, which are vesicles derived from autophagic and endosomal compartments. These processes are involved in adaption to nutrient deprivation, cell death, growth, and tumor progression or suppression. Autophagy flux contributes to maintaining homeostasis in the tumor microenvironment of endothelial cells. To support this concept, a study provided evidence suggesting that depletion of Atg5 in ECs could intensify the abnormal function of tumor vessels.183 Exosome secretion plays a crucial role in maintaining cellular homeostasis in exosome-secreting cells. As a consequence of blocking exosome secretion, nuclear DNA accumulates in the cytoplasm, thereby causing the activation of cytoplasmic DNA sensing machinery. Blocking exosome secretion aggravates the innate immune response, leading to ROS-dependent DNA damage responses and thus inducing senescence-like cell-cycle arrest or apoptosis in normal human cells. Thus, cells remove harmful cytoplasmic DNA, protecting them from adverse effects.182 Salomon and Rice reported that the involvement of exosomes in placental homeostasis and pregnancy disorders. EVs of placental origin are found in a variety of body fluids including urine and blood. Moreover, the number of exosomes throughout gestation is higher in complications of pregnancy, such as preeclampsia and gestational diabetes mellitus, compared to normal pregnancies.184
The endolysosomal system is critically involved in maintaining homeostasis through the highly regulated processes of internalization, sorting, recycling, degradation, and secretion. For example, endocytosis allows the internalization of various receptor proteins into cells, and vesicles formed from the plasma membrane fuse and deliver their membrane and protein content to early endosomes. Similarly, significant amounts of internalized content are recycled back to the plasma membrane via recycling endosomes,76 while the remaining material is sequestered in ILVs in late endosomes, also known as multivesicular bodies.185,186 Tetraspanin proteins, such as CD63 and CD81, are regulators of ILV formation. Once ILVs are formed, MVBs can degrade their cargo by fusing with lysosomes or, alternatively, MVBs can secrete their ILVs by fusing with the plasma membrane and release their content into extracellular milieu.187190 Exosomes play an important role in regulating intracellular RNA homeostasis by promoting the release of misfolded or degraded RNA products, and toxic RNA products. Y RNAs are involved in the degradation of structured and misfolded RNAs. Further studies have demonstrated that proteins involved in RNA processing are abundant in exosomes, and the half-lives of secreted RNAs are almost twice as short as those of intracellular mRNAs. These studies suggest that cells maintain intracellular RNA homeostasis through the release of distinct RNA species in extracellular vesicles.191193 Exosomes reduce cholesterol accumulation in Niemann-Pick type C disease, a lysosomal storage disease in which cells accumulate unesterified cholesterol and sphingolipids within the endosomal and lysosomal compartment.194
Autophagy is the intracellular vesicular-related process that regulates the cell environment against pathological and stress conditions. In order to maintain homeostasis and protect the cells against stress conditions, internal vesicles or secreted vesicles serve as a canal to degrade and expel damaged molecules out of the cytoplasm.38,181,182 Autophagy protects the cell from various stress conditions and maintains cellular homeostasis, regulating cell survival and differentiation through clearance and recycling of damaged proteins and organelles from the cytoplasm to autophagosomes, and then to lysosomes.180 Several studies have demonstrated that proteins are involved in controlling tumor cell function and fate, and mediate crosstalk between exosome biogenesis and autophagy. Coordination between exosome-autophagy networks serves as a tool to conserve cellular homeostasis via the lysosomal degradative pathway and/or secretion of cargo into the extracellular milieu.176,195 Autophagy is a multi-step process that occurs by initiation, membrane nucleation, maturation and finally the fusion of autophagosomes with lysosomes. The autophagy process is not only linked with endocytosis but is also linked with the biogenesis of exosomes. For example, subsets of the autophagy machinery involved in the biogenesis of exosomes and the autophagic process itself appear dispensable.78,196 Crosstalk between exosomal and autophagic pathways has been reported in a growing number of diseases. Proteomic studies were performed to analyze the involvement of key proteins in the interconnection between exosome and autophagy pathways. They found that almost all proteins were identified; however, their involvement differed between them. Among 100 proteins, four proteins were highly ranked including HSPA8 (3/100), HSP90AA1 (8/100), VCP (24/100), and Rab7A (81/100). These data suggest an interconnection between the exosome and autophagy.197,198 Endosomal autophagy plays a significant role in the interconnection between exosomes and autophagy. Stress is a major factor for autophagy. In particular, the starvation of cells is a key inducer of autophagy, and induces enlargement of MVB structures and a co-localization of Rab11 and LC3 in these structures, an indication that autophagy-related processes are associated with the MVB.199 The sorting of autophagy-related cargo into MVBs is dependent on Hsc70 (HSPA8), VPS4, and TSG101, and independent on LAMP-2A, thereby excluding a role for, the lysosome.200 Several proteins are involved in the regulation and biogenesis of secretory autophagy compartments such as GRASPs, LC3, Rab8a, ESCRTs, and SNAREs, along with several Atg proteins.181,201,202 Autophagosomes could fuse with MVBs to form amphisomes and release vesicles to the external environment.203
Autophagy and exosome biogenesis and function are interconnected by microRNA. Over-expression of miR-221/222 inhibits the level of PTEN and activates Akt signaling, and subsequently reduces the expression of hallmarks that positively relate to autophagy including LC3, ATG5 and Beclin1, and increases the expression of SQSTM1/p62.204 MiR-221/222 from human aortic smooth muscle cell (HAoSMC)-derived exosomes inhibit autophagy in HUVECs by modulating the PTEN/Akt signaling pathway. miRNA-223 attenuates hypoxia-induced apoptosis and excessive autophagy in neonatal rat cardiomyocytes and H9C2 cells via the Akt/mTOR pathway, by targeting poly(ADP-ribose) polymerase 1 (PARP-1) through increased autophagy via the AMPK/mTOR and Akt/mTOR pathways205 ATG5 mediates the dissociation of vacuolar proton pumps (V1Vo-ATPase) from MVBs, which prevents acidification of the MVB lumen and allows MVB-PM fusion and exosome release. Accordingly, knockout of ATG5 or ATG16L1 significantly reduces exosome release and attenuates the exosomal enrichment of lipidated LC3B. These findings demonstrate that autophagic mechanisms possibly regulate the fate of MVBs and subsequent exosome biogenesis.78 Bone marrow MSC (BMMSC)-derived exosomes contain a high level of miR-29c, which regulates autophagy under hypoxia/reoxygenation (H/R) conditions.206 Human umbilical cord MSC-derived exosomes (HucMDEs) promote hepatic glycolysis, glycogen storage, and lipolysis, and reduce gluconeogenesis. Additionally, autophagy potentially contributes to the effects of HucMDE treatment and increases formation of autophagosomes and the autophagy marker proteins BECN1, MAP, and 1LC3B. These findings suggest that HucMDEs improve hepatic glucose and lipid metabolism in T2DM rats by activating autophagy via the AMPK pathway.207 Liver fibrosis is a serious disorder caused by prolonged parenchymal cell death, leading to the activation of fibrogenic cells, extracellular matrix accumulation, and eventually liver fibrosis. Exosomes derived from adipose-derived mesenchymal stem cells (ADSCs) have been used to deliver circular RNAs mmu_circ_0000623 to treat liver fibrosis. The findings from this study suggest that Exos from ADSCs containing mmu_circ_0000623 significantly suppress CCl4-induced liver fibrosis by promoting autophagy activation. Autophagy inhibitor treatment significantly reverses the treatment effects of Exos.208 Inhibition of autophagy by PDGF and its downstream molecule SHP2 (Src homology 2-containing protein tyrosine phosphatase 2) increased hepatic stellate cell (HSC)-derived EV release. Disruption of mTOR signaling abolishes PDGF-dependent EV release. Activation of mTOR signaling induces the release of MVB-derived exosomes by inhibiting autophagy, as well as microvesicles, through activation of ROCK1 signaling. Furthermore, deletion of SHP2 attenuates CCl4 or BDL-induced liver fibrosis.209 The therapeutic effects of exosomes containing high concentrations of mmu_circ_0000250 were analyzed in diabetic mice. The findings indicated that a high concentration of mmu_circ_0000250 had a better therapeutic effect on wound healing when compared with wild-type exosomes from ADSCs. The results also showed that exosome treatment with mmu_circ_0000250 increased angiopoiesis in wounded skin and suppressed apoptosis by inducing miR-128-3p/SIRT1-mediated autophagy.210 A study showed that mice treated with differentiated cardiomyocyte (iCM) exosomes exhibited significant cardiac improvement post-myocardial infarction, with significantly reduced apoptosis and fibrosis. Apoptosis was associated with reduced levels of hypoxia and inhibition of exosome biogenesis. iCM-exosome-treated groups showed upregulation of autophagosome production and autophagy flux. Hence, these findings indicate that iCM-Ex can improve post-myocardial infarction cardiac function by regulating autophagy in hypoxic cardiomyocytes.211 Exosomes of hepatocytes play a crucial role in inhibiting hepatocyte apoptosis and promoting hepatocyte regeneration. Mesenchymal stem cell-derived hepatocyte-like cell exosomes (MSC-Heps-Exo) were injected into a mouse hepatic Ischemia/reperfusion (I/R) I/R model through the tail. The results demonstrated that MSC-Heps-Exo effectively relieve hepatic I/R damage, reduce hepatocyte apoptosis, and decrease liver enzyme levels. A possible mechanism of reduced hepatic ischemia/reperfusion injury is the enhancement of autophagy.212
Exosomes play a critical role in viral infections, particularly of retroviruses and retroviruses, and use preexisting pathways for intracellular protein trafficking and formation of infectious particles. Exosomes and viruses share several features including biogenesis, uptake by cells, and the intracellular transfer of RNAs, mRNAs, and cellular proteins. Some features are different, including self-replication after infection of new cells, regulation of viral expression, and complex viral entry mechanisms.213,214 Exosomes secreted from virus-infected cells carry mostly cargo molecules such as viral proteins, genomic RNA, mRNA, miRNA, and genetic regulatory elements.215218 These cargo molecules are involved in the alteration of recipient cell behavior, regulating cellular responses, and enabling infection by various types of viruses such as human T-cell lymphotropic virus (HTLV), hepatitis C virus (HCV), dengue virus, and human immunodeficiency virus (HIV).215 Exosomes communicate with host cells through contact between exosomes and their recipient cells, via different kinds of mechanisms. Initially, the transmembrane proteins of exosomes build a network directly with the signaling receptors of target cells and then join with the plasma membrane of recipient cells to transport their content to the cytosol. Finally, the exosomes are incorporated into the recipient cells.219221 A report suggested that disruption of exosomal lipid rafts leads to the inhibition of internalization of exosomes.95 Exosomes derived from HIV-infected patients contain the trans-activating response element, which is responsible for HIV-1 replication in recipient cells through downregulation of apoptosis.222 While exosomes serving as carrier molecules, exosomes contain miRNAs that induce viral replication and immune responses either by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. For example, exosomes enhance HIV-1 entry into human monocytic and T cell lines through the exosomal tetraspanin proteins CD9 and CD81.223 Influenza virus infection causes accumulation of various types of microRNAs in bronchoalveolar lavage fluid, which are responsible for the potentiation of the innate immune response in mouse type II pneumocytes. Serum of influenza virus-infected mice show significant levels of miR-483-3p, which increases the expression of proinflammatory cytokine genes and inflammatory pathogenesis of H5N1 influenza virus infection in vascular endothelial cells.224 Exosomes are involved in the transmission of inflammatory, apoptotic, and regenerative signals through RNAs. Chen et al investigated the potential functions of exosomal RNAs by RNA sequencing analysis in exosomes derived from clinical specimens of healthy control (HC) individuals and patients with chronic hepatitis B (CHB) and acute-on-chronic liver failure caused by HBV (HBV-ACLF). The results revealed that the samples contained unique and distinct types of RNAs in exosomes.225 Zika virus (ZIKV) infection causes severe neurological malfunctions including microcephaly in neonates and other complications associated with Guillain-Barr syndrome in adults. Interestingly, ZIKV uses exosomes as mediators of viral transmission between neurons and increases production of exosomes from neuronal cells. Exosomes derived from ZIKV-infected cells contained both ZIKV viral RNA and protein(s) which are highly infectious to nave cells. ZIKV uses neutral Sphingomyelinase (nSMase)-2/SMPD3 to regulate production and release of exosomes.226
During infections, viruses replicate in host cells through vesicular trafficking through a sequence of complexes known as ESCRT, and assimilate viral constituents into exosomes. Exosomes encapsulate viral antigens to maximize infectivity by hiding viral genomes, entrapping the immune system, and maximizing viral infection in uncontaminated cells. Exosomes can be used as a source of viral antigens that can be targeted for therapeutic use. A Variety of infectious diseases caused by viruses such as HCV, ZIKV, West Nile virus (WNV), and DENV enter into the host cells using clathrin-mediated or receptor-mediated endocytosis. For example, HCV infects host cells by specific targeting of cells through cellular contact, and hepatocyte-derived exosomes that contain HCV RNA can stimulate innate immune cells.217,227230 Exosomes show structural and molecular similarity to HIV-1 and HIV-2, which are enclosed by a lipid bilayer, and in the vital features of size and density, RNA species, and macro biomolecules including carbohydrates, lipids, and proteins. HIV-infected cells release enriched viral RNAs containing exosomes derived from HIV-infected cells and are enhanced with viral RNAs and Nef protein.6,38,231236 Izquierdo-Useros et al reported that both exosomes and HIV-1 express sialyllactose-containing gangliosides and interact with each other via sialic-acid-binding immunoglobulin-like lectins (Siglecs)-1. Siglecs-1 stimulates mature dendritic cell (mDC) capture and storage of both exosomes and HIV-1 in mDCs.237 Exosomes released from HIV-infected T cells contain transactivation response (TAR) element RNA, which stimulate proliferation, migration, and invasion of oral/oropharyngeal and lung cancer cells.238 Nuclear VP40 from Ebola virus VP40 upregulates cyclin D1 levels, resulting in dysregulated cell cycle and EV biogenesis. Synthesized extracellular vesicles contain cytokines and EBOV proteins from infected cells, which are responsible for the destruction of immune cells during EBOV pathogenesis.239 HIV enters into the host cells through human T-cell immunoglobin mucin (TIM) proteins. TIMs are a group of proteins (TIM-1, TIM-3, and TIM-4) that promote phagocytosis of apoptotic cells.240 TIM-4 is involved in HIV-1 exosome-dependent cellular entry mechanisms. Substantiating this hypothesis, neural stem cell (NSC)-derived exosomes containing TIM-4 protein increase HIV-1 exosome-dependent cellular entry into host cells, and antibody against TIM4 inhibits exosome-mediated entry of HIV in various types of cell.241
Exosomes show immense promise in biomedical applications due to their potential in drug delivery, the carriage of biomolecular markers of many diseases, and cellular protection. In addition, they can be used in non-invasive diagnostics or minimum invasive diagnostics.150 Detection of biomarkers is vital for early diagnosis of cancer and also critical for treatment. Several studies have documented the importance of exosomes in a variety of diseases, although further examination of the biology and functions of exosomes is warranted due to the continuing emergence of new diseases in the present world. The complex cargo of exosomes facilitates the exploration of a variety of diagnostic windows into disease detection, monitoring, and treatment. Exosomes are found in all biological fluids and are secreted by all cells, rendering them attractive for use through minimally invasive liquid biopsies, and they have the potential for use in longitudinal sampling to follow disease progression.242 Exosomes are produced and secreted by almost all body fluids, including blood, urine, saliva, breast milk, cerebrospinal fluid, semen, amniotic fluid, and ascites. These exosomes contain micro RNAs, proteins, and lipids serving as diagnostic markers.120 Exosomes are used in diagnostic applications in various kinds of diseases, such as cardiovascular diseases (CVDs),243 diseases of the central nervous system (CNS),244 cancer,245 and other prominent diseases including in the liver,246 kidney,247 and lung.248 Exosomes are potentially used to detect cancer-associated mutations in serum and also for the transfer of genomic DNA from donor cells to recipient cells.249 Exosomes carrying specific miRNAs or groups of miRNAs can be used as diagnostic markers to detect cancer. For example, exosomes containing oncogenic Kras, which have tumor-suppressor miRNAs-100, seem to have high diagnostic value, which could facilitate the differentiation of the expression pattern between cancer cells and normal cells.250,251 Similarly, miR-21 is considered to be diagnostic marker for various types of cancer including glioblastomas and pancreatic, colorectal, colon, liver, breast, ovarian, and esophageal cancers.252 Tumor suppressor miRNAs, such as miR-146a and miR-34a, function as diagnostic tools to detect liver, breast, colon, pancreatic, and hematologic malignancies.251 Exosomes containing GPC1 (glypican 1) are used as diagnostic markers to detect pancreatic, breast, and colon cancer.253,254
Exosomes play critical roles in various types of disease, and particularly in cancer progression and resistance to therapy. The unique biogenesis of exosomes and their biological features have generated excitement for their potential use as biomarkers for cancer.255 Generally, exosomes are produced and secreted by most cells and contain all the biological components of a cell. Hence, exosomes are found in all biological fluids and provide excellent opportunities for use as biomarkers.242 Surface proteins of exosomes are involved in the regulation of the tumor immune microenvironment and the monitoring of immunotherapies. Hence, exosome proteins play a critical role in cancer signaling.256 Exosomes from patients with metastatic pancreatic cancer show a higher mutant Kras allele frequency than exosomes from patients with local disease. In addition, the exosomes also accumulate a significantly higher level of cancer cell-specific DNA such as cytoplasmic DNA.8,257 Exosomes protect DNA and RNA from enzymatic degradation by encapsulation and stability in exosomes. The enhanced stability and retention of exosomes in liquid biopsies increases the availability and performance of exosomes as cancer biomarkers.258 Cancer cells contain cargo molecules, such as nucleic acid, proteins, metabolites, and lipids that are relatively different from normal cells, which is a contributing factor for their candidacy as cancer biomarkers. Exosomes isolated and purified from patient plasma samples enriched for miR-10b-5p, miR-101-3p, and miR-143-5p have been identified as potential diagnostic markers for gastric cancer with lymph node metastasis, gastric cancer with ovarian metastasis, and gastric cancer with liver metastasis, respectively.259 Kato et al analyzed the expression of CD44 protein and mRNA from cell lysates and exosomes from prostate cancer cells.260 Exosomes from serum containing CD44v8-10 mRNA was used as a diagnostic marker for docetaxel resistance in prostate cancer patients. The study was performed to evaluate plasma exosomal mRNA-125a-5p and miR-141-5p miRNAs as biomarkers for the diagnosis of prostate cancer from 19 healthy individuals and 31 prostate cancer patients. In comparing the miR-125a-5p/miR-141-5p level ratio, prostate cancer patients had significantly higher levels of miR-125a-5p/miR-141-5p. The findings from this study demonstrated that plasma exosomal expression of miR-141-3p and miR-125a-5p are markers of specific tumor traits associated with prostate cancer.261 Serum samples from 81 patients with gastric cancer showed that exosomes contained significant levels of long non-coding RNA (lncRNA) H19, which could be a diagnostic marker for gastric cancer.262 Plasma exosomes are suitable candidates as biomarkers for various diseases. For instance, plasma exosome lncRNA expression profiles were examined in esophageal squamous cell carcinoma (ESCC) patients. The findings suggest that five different types of lncRNAs were at significantly higher levels in exosomes from ESCC patients than in non-cancer controls. These lncRNAs may serve as highly effective, noninvasive biomarkers for ESCC diagnosis.263 Differential expression of lncRNAs, such as LINC00462, HOTAIR, and MALAT1, are significantly upregulated in hepatocellular carcinoma (HCC) tissues. The exosomes of the control group had a larger number of lncRNAs with a high amount of alternative splicing compared to hepatic disease patients.264 To demonstrate exosomes as a non-invasive cancer diagnostic tool, RNA-sequencing analysis was performed between three pairs of non-small-cell lung cancer (NSCLC) patients and controls from Chinese populations. The results show that circ_0047921, circ_0056285, and circ_0007761 were significantly expressed and that these exosomal circRNAs are promising biomarkers for NSCLC diagnosis.265 Exosomes were isolated from the serum of 34 patients with acute myocardial infarction (AMI), 31 patients with unstable angina (UA), and 22 healthy controls. The isolated exosomes exhibited higher levels of miR-126 and miR-21 in the patients with UA and AMI than in the healthy controls.266 Xu et al designed a study to examine tumor-derived exosomes as diagnostic biomarkers. In this study exosome miRNA microarray analysis was performed in the peripheral blood from four lung adenocarcinoma patients, including two with metastasis and two without metastasis. The results found that miR-4436a and miR-4687-5p were upregulated in the metastasis and non-metastasis group, while miR-22-3p, miR-3666, miR-4448, miR-4449, miR-6751-5p, and miR-92a-3p were downregulated. Exosomes containing miR-4448 have served as a diagnostic marker of patients with adenocarcinoma metastasis. Increased understanding of exosome biogenesis, structure, and function would enhance the performance of biomarkers in various kinds of disease diagnosis, prognosis, and surveillance.267
Exosomes have unique features such as ease of handling, molecular composition, and critical immunogenicity, and it is particularly easy to use them to transfer genes and proteins into cells. These unique characteristic features can inhibit angiogenesis and cancer metastasis, which are the two main targets of cancer therapy.268,269 Exosomes have potential therapeutic applications in a variety of diseases due to their potential capacity as vehicles for the delivery of therapeutic agents (Figure 5). Exosomes from colon cancer cells contain the highly immunogenic antigens MelanA/Mart-1 and gp100, serving as an indicator of tumor origin in particular organelles. Animal studies have demonstrated that tumor-derived antigen-containing exosomes induce potent antitumor T-cell responses and tumor regression.270 Exosomes containing tumor antigens are able to stimulate CD4+and CD8+T cells, and antigen-presenting exosomes inhibit tumor growth.135,271,272 MSC-derived exosomes exhibit the immunomodulatory and cytoprotective activities of their parent cells.273,274 Similarly, exosomes derived from bone marrow show protective roles in myocardial ischemia/reperfusion injury,109 hypoxia-induced pulmonary hypertension,275 and brain injury,276,277 and inhibit breast cancer growth via vascular endothelial growth factor down-regulation and miR-16 transfer in mice.278 Mesenchymal cell- and epithelial cell-derived exosomes exhibit tolerance and without any undesired side effects in patients and also act as therapeutic agents themselves.48,279 Exosomes engineered with ligands containing RGD peptide are used to induce signaling in specific cell types, and doxorubicin-loaded exosomes derived from dendritic cells show therapeutic responses in mammary tumor-bearing mice.46 Exosomal microRNAs are able to control other cells, and the delivery of miRNA or siRNA payload promotes anticancer activity in mammary carcinoma and glioma.280,281 Rabies virus glycoprotein (RVG)-modified dendritic cell-derived exosomes suppress the expression of BACE1 in the brain, which indicates the therapeutic potential of exosomes to target AD.282 Furthermore, these exosomes stimulated neurite outgrowth in cultured astrocytes by transferring miR-133b between cells.27 Immunotherapy is able to induce tumor-targeting immunity or an antitumor host immune response. For example, tumor-associated antigen-loaded mature autologous dendritic cells increase survival of metastatic castration-resistant patients.283 Exosome therapy induces upregulation of CD122 molecules in CD4+ T cells, whereas the lymphocyte pool is stable. Multiple vaccinations with exosomes increase circulating CD3-/CD56+ natural killer (NK) cells.284 An in vitro study demonstrated that adipose stem cell-derived exosomes up-regulate the peroxisome proliferator-activated receptor gamma coactivator 1, phosphorylate the cyclic AMP response element binding protein, and ameliorate abnormal apoptotic protein levels.285 Exosomes are used as potential carriers to carry anti-inflammatory drugs. Curcumin-encapsulated exosomes show significant anti-inflammatory activity, and exosomes are also used to deliver anti-inflammatory drugs to the brain through a noninvasive intranasal route.286,287 Turturici et al reported that specific progenitor cell-derived EVs contain biological cargo that promotes angiogenesis and tissue repair, and modulates immune functions.288
Figure 5 Therapeutic potential and versatile clinical implications of exosomes.
Generally, exosomes serve as vehicles for the delivery of drugs and are also actively involved as therapeutic agents. Conversely, injected exosomes enter into other cells and deliver functional cargo molecules very efficiently and rapidly, with minimal immune clearance and are well tolerated.16,21,245,289,290 Intravenous administration of human MSC-derived exosomes supports neuroprotection in a swine model of traumatic brain injury.291 In vitro and in vivo models demonstrate that exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal Cells (hiPSC-MSCs) protect the liver against hepatic ischemia/reperfusion injury through increasing the level of proliferation of primary hepatocytes, activity of sphingosine kinase, and synthesis of sphingosine-1-phosphate (S1P).292 Exosomes derived from macrophages show potential for use in neurological diseases because of their easy entry into the brain by crossing the blood-brain barrier (BBB). Catalase-loaded exosomes displayed a neuroprotective effect in a mouse model of PD and exosomes loaded with dopamine entered into the brain better in comparison to free dopamine.33,293 Treatment of tumor-bearing mice with autologous exosomes loaded with gemcitabine significantly suppressed tumor growth and increase longevity, and caused only minimal damage to normal tissues. The study demonstrated that autologous exosomes are safe and effective vehicles for targeted delivery of GEM against pancreatic cancer.294
Generally, lipid-based nanoparticles such as liposomes or micelles, or synthetic delivery systems have been adopted to transport active molecules. However, the merits of synthetic systems are limited due to various factors including inefficiency, cytotoxicity and/or immunogenicity. Therefore, the development of natural carrier systems is indispensable. One of the most prominent examples of such natural carriers are exosomes, which are used to transport drug and active biomolecules. Exosomes are more compatible with other cells because they carry various targeting molecules from their cells of origin. Exosomes are nano-sized membrane vesicles derived from almost all cell types, which carry a variety of cargo molecules from their parent cells to other cells. Due to their natural biogenesis and unique qualities, including high biocompatibility, enhanced stability, and limited immunogenicity, they have advantages as drug delivery systems (DDSs) compared to traditional synthetic delivery vehicles. For instance, extracellular vesicles, including exosomes, carry and protect a wide array of nucleic acids and can potentially deliver these into recipient cells.6 EVs possess inherent targeting properties due to their lipid composition and protein content enabling them to cross biological barriers, and these salient features exploit endogenous intracellular trafficking mechanisms and trigger a response upon uptake by recipient cells.45,295297 The lipid composition and protein content of exocytic vesicles have specific tropism to specific organs.296 The integrin of exosomes determines the ability to alter the pharmacokinetics of EVs and increase their accumulation in various type of organs including brain, lungs, or liver.117 For example, EVs containing Tspan8 in complex with integrin alpha4 were shown to be preferentially taken up by pancreatic cells.298 Similarly, the lipid composition of EVs influences the cellular uptake of EVs by macrophages.299 EVs derived from dendritic cell achieved targeted knockdown by fusion between expression of Lamp2b and neuron-specific RVG peptide by using siRNA in neuronal cell.45 EVs loaded with Cre recombinase protein were able to deliver functional CreFRB to recipient cells through active and passive mechanisms in the presence of endosomal escape, enhancing the compounds chloroquine and UNC10217832A.300 EVs from cardiosphere-derived cells achieved targeted delivery by fusion of the N-terminus of Lamp2b to a cardiomyocyte-specific peptide (CMP).301 RVG-exosomes were used to deliver anti-alpha-synuclein shRNA minicircle (shRNA-MC) therapy to the alpha-synuclein preformed-fibril-induced mouse model of parkinsonism. This therapy decreased alpha-synuclein aggregation, reduced the loss of dopaminergic neurons, and improved clinical symptoms. RVG exosome-mediated therapy prolonged the effectiveness and was specifically delivered into the brain.302 Zhang et al evaluated the effects of umbilical cord-derived macrophage exosomes loaded with cisplatin on the growth and drug resistance of ovarian cancer cells. High loading efficiency of cisplatin was achieved by membrane disruption of exosomes by sonication.303 Incorporation of cisplatin into umbilical cord blood-derived M1 macrophage exosomes increased cytotoxicity 3.3-fold in drug-resistant A2780/DDP cells and 1.4-fold in drug-sensitive A2780 cells, compared to chemotherapy alone. Loading of cisplatin into M2 exosomes increased cytotoxicity by nearly 1.7-fold in drug-resistant A2780/DDP cells and 1.4-fold in drug-sensitive A2780 cells. The findings suggest that cisplatin-loaded M1 exosomes are potentially powerful tools for the delivery of chemotherapeutics to treat cancers regardless of drug resistance. Shandilya et al developed a chemical-free and non-mechanical method for the encapsulation and intercellular delivery of siRNA using milk-derived exosomes through conjugation between bovine lactoferrin with poly-L-lysine, wherein lactoferrin as a ligand was captured by the GAPDH present in exosomes, loading siRNA in an effortless manner.304 Targeted drug delivery was achieved with low immunogenicity and toxicity using exosomes derived from immature dendritic cells (imDCs) from BALB/c mice by expressing the fusion protein RGD. Recombinant methioninase (rMETase) was loaded into tumor-targeting iRGD-Exos. The findings suggest that the iRGD-Exos-rMETase group exhibited significant antitumor activity compared to the rMETase group.305 Several diseases show high inflammatory responses; therefore, amelioration of inflammatory responses is a critical factor. The inflammatory responses in various disease models can be attenuated through introduction of super-repressor IB (srIB), which is the dominant active form of IB, and can inhibit translocation of nuclear factor B into the nucleus. Intraperitoneal injection of purified srIB-loaded exosomes (Exo-srIBs) showed diminished mortality and systemic inflammation in septic mouse models.306 Systemic administration of macrophage-derived exosomes modified with azide and conjugated with dibenzocyclooctyne-modified antibodies of CD47 and SIRP (aCD47 and aSIRP) through pH-sensitive linkers can actively and specifically target tumors through distinguishing between aCD47 and CD47 on the tumor cell surface.307 SPION-decorated exosomes prepared using fusion proteins of cell-penetrating peptides (CPP) and TNF- (CTNF-)-anchored exosomes coupled with superparamagnetic iron oxide nanoparticles (CTNF--exosome-SPIONs) significantly enhanced tumor cell growth inhibition via induction of the TNFR I-mediated apoptotic pathway. Furthermore, in vivo studies in murine melanoma subcutaneous cancer models showed that TNF--loaded exosome-based vehicle delivery enhanced cancer targeting under an external magnetic field and suppressed tumor growth with mitigating toxicity.308 Yu et al309 developed a formulation of erastin-loaded exosomes labeled with folate (FA) to form FA-vectorized exosomes loaded with erastin (erastin@FA-exo) to target triple-negative breast cancer (TNBC) cells with overexpression of FA receptors. Erastin@FA-exo increased the uptake efficiency of erastin and also significantly inhibited the proliferation and migration of MDA-MB-231 cells compared with erastin@exo and free erastin. Interestingly, erastin@FA-exo promoted ferroptosis with intracellular depletion of glutathione and ROS generation. Plasma exosomes (Exo) loaded with quercetin (Exo-Que) improved the drug bioavailability, enhanced the brain targeting of Que and potently ameliorated cognitive dysfunction in okadaic acid (OA)-induced AD mice compared to free quercetin by inhibiting phosphorylated tau-mediated neurofibrillary tangles.310 Spinal cord injury (SCI) causes paralysis of the limbs. To determine the role of resveratrol in SCI, exosomes derived from resveratrol-treated primary microglia were used as carriers which are able to enhance the solubility of resveratrol and enhance penetration of the drug through the BBB, thereby increasing its concentration in the CNS. The findings demonstrated that Exo + Res are highly effective at crossing the BBB with good stability, suggesting they have potential for enhancing targeted drug delivery and recovering neuronal function in SCI therapy, and is likely associated with the induction of autophagy and inhibition of apoptosis via the PI3K signaling pathway.311 Delivery of miR-204-5p by exosomes inhibits cancer cell proliferation and tumor growth, and induces apoptosis and chemoresistance by specifically suppressing the target genes of miR-204-5p in human cancer cells.312 Engineered exosomes with RVG peptide on the surface for neuron targeting and NGF-loaded exosomes (NGF@ExoRVG) were efficiently delivered into ischemic cortex, with a burst release of encapsulated NGF protein and de novo NGF protein translated from the delivered mRNA. The delivered NGF protein showed high stability and a long retention time, and also reduced inflammation by reshaping microglia polarization, promoted cell survival, and increased the population of double cortin-positive cells, a neuroblast marker.313 Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of AD by activation of microglia cells and increased dendritic spine density.314 Exosome-encapsulated paclitaxel showed efficacy in the treatment of multi-drug resistant cancer cells and it overcomes MDR in cancer cells.315,316 Saari et al found that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect.316 Exosome loaded doxorubicin (exoDOX) avoids undesired and unnecessary heart toxicity by partially limiting the crossing of DOX through the myocardial endothelial cells.317 Studies from in vitro and in vivo demonstrate that exosome loaded doxorubicin showed that exosomes did not decrease the efficacy of DOX and there is no cardiotoxicity in DOX-treated mice.318
The intrinsic properties of exosomes have been exploited to control various types of diseases, including neurodegenerative conditions and cancer, through promoting or restraining the delivery of proteins, metabolites, and nucleic acids into recipient cells effectively, eventually altering their biological response. Furthermore, exosomes can be engineered to deliver diverse therapeutic payloads to the target site, including siRNAs, antisense oligonucleotides, chemotherapeutic agents, and immune modulators. The natural lipid and protein composition of exosomes increases bioavailability and minimizes undesirable side effects to the recipients. Due to the availability of exosomes in biological fluid, they can be easily used as potential biomarkers for diagnosis of diseases. Exosomes are naturally decorated with numerous ligands on the surface that can be beneficial for preferential tumor targeting.282 Due to their unique properties, including superior targeting capabilities and safety profile, exosomes are the subject of clinical trials as cancer therapeutic agents.284 Exosomes derived from DCs loaded with tumor antigens have been used to vaccinate cancer patients with the goal of enhancing anti-tumor immune responses.284,319,320
Due to the potential level of various types of cargoes and salient features, exosomes are involved in intercellular messaging and disease diagnosis. As a result of dedicated studies, exosomes have been identified as natural drug delivery vehicles. However, we still face challenges regarding the purity of exosomes due to the lack of standardized techniques for their isolation and purification, inefficient separation methods, difficulties in characterization, and lack of specific biomarkers.321 The first challenge is the use of conventional methods, which are laborious for isolation and purification, time consuming, and vulnerable to contamination by other impurities, which will affect drug delivery processes. The second challenge is the various cellular origins of exosomes, which could affect specific applications. For example, in the application of exosomes in cancer therapy, we should avoid the use of exosomes derived from cancer cells, due to their oncogenic properties. Finally, exosomes have variable properties due to extraction from different types of cell and different cell culture techniques. Therefore, there is a necessity to address and overcome the challenges. There is also a need for an exosome consortium to develop common protocols for the development of rapid and precise methods of exosome isolation, and to assist the selection of sources that are dependent upon the specific therapeutic application. The most important challenge of exosome biology is the clinical translation of exosome-based research using different cell sources. Further characterization studies based on therapeutic applications are needed. Finally, important steps need to be taken to purify exosomes in a feasible, rapid, cost-effective, and scalable manner, which are free from downstream processing and have minimal processing times, that are specifically targeted to therapeutic applications and clinical settings.
The achievement of exosome therapy is based on success rate of clinical trials. Exosomes with size ranges from 60 to 200nm have been used as an active pharmaceutical ingredient or drug carrier in disease treatment. Exosomes derived from human and plant-derived exosomes are registered in clinical trials, but more complete reports are available for humanderived exosomes.322 There are two major exosomes from DCs and MSCs are frequently used in clinical trials, which potentially induce inflammation response and inflammation treatment. The more crucial aspect of exosomes in clinical trials needs to comply with good manufacturing practice (GMP) including upstream, downstream and quality control. Recently, France and USA conducted clinical trials using EVs containing MHCpeptide complexes derived from dendritic could alter tumor growth in immune competent mice and a Phase I anti-non-small cell lung cancer319,320 and several other clinical trial studies are shown in Table 1. Recent clinical case shows promising results with MSC-EVs derived from unrelated bone marrow donors for the treatment of a steroid-refractory graft-vs-host disease patient.279 Similarly, exosomes were used for the treatment of various types of diseases such as melanoma, non-small-cell-lung cancer, colon cancer and chronic kidney disease.284,319,320,323,324
Table 1 Summary of the Exosome Used in Clinical Trials (Source: clinicaltrials.com)
Exosomes are nano-sized membrane vesicles released by the fusion of an organelle of the endocytic pathway, a multivesicular body, with the plasma membrane. Since the last decade, exosomes have played a critical role in nanomedicine and studies related to exosome biology have increased immensely. Exosomes are secreted by almost all cell types and they are found in almost all types of body fluids. They function as mediators of cell-cell communications and play a significant role in both physiological and pathological processes. Exosomes carry a wide range of cargoes including proteins, lipids, RNAs, and DNA, which mediate signaling to recipient cells or tissues, making them a promising diagnostic biomarker and therapeutic tool for the treatment of cancers and other pathologies. In this review, we summarized what is known to date about the factors involved in exosome biogenesis and the role of exosomes in intercellular signaling and cell-cell communications, immune responses, cellular homeostasis, autophagy, and infectious diseases. Further, we reviewed the role of exosomes as diagnostic markers, and their therapeutic and clinical implications. Furthermore, we highlighted the challenges and outstanding developments in exosome research. The clinical application of exosomes is inevitable and they represent multicomponent biomarkers for several diseases including cancer and neurological diseases, etc. Recently, the mortality rate due to various types of cancers has increased. Therefore, therapies are essential to reduce mortality rates. At this juncture, we need sensitive, rapid, cost-effective, and large-scale production of exosomes to use as cancer biomarkers in diagnosis, prognosis, and surveillance. Furthermore, novel technologies are required for further tailoring exosomes as drug delivery vesicles with high drug pay loads, high specificity and low immunogenicity, and free of toxicity undesired side-effects. In addition, standardized and uniform protocols are necessary to isolate and purify exosomes for clinical applications, and more precise isolation and characterization procedures are required to increase understanding of the heterogeneity of exosomes, their cargo, and functions. There is an urgent need for information regarding the composition and mechanisms of action of the various substances in exosomes and to determine how to obtain highly purified exosomes at the right dosage for their clinical use. Currently, exosomes represent a promising tool in the field of nanomedicine and may provide solutions to a variety of todays medical mysteries.
The future direction of exosome research must focus on addressing the differential responses of communication between normal cells and cancer cells, how normal cells rapidly become cancerous, and how exosomes plays critical role in cancer progression via cell-cell communications. In vivo studies need to urgently address the critical factors such as biogenesis, trafficking, and cellular entry of exosomes originating from unmanipulated exosomes that control regulatory pathological functions. Further studies are required to decipher the mechanism of the cell-specific secretion and transport of exosomes, and the biological controls exerted by target cells. Exosomes represent a clinically significant nanoplatform. To substantiate this idea, numerous systematic in vivo studies are necessary to demonstrate the potency and toxicology of exosomes, which could help bring this novel idea a step closer to clinical reality. The most vital part of the system is to optimize the conditions for the engineering of exosomes that are non-toxic, for use in clinical trials. Furthermore, the translation of exosomes into clinical therapies requires their categorization as active drug components or drug delivery vehicles. Finally, future research should focus on the nanoengineering of exosomes that are tailored specifically for drug delivery and clinical efficacy.
Although we are the authors of this review, we would never have been able to complete it without the great many people who have contributed to the field of exosomes biogenesis, functions, therapeutic and clinical implications of exosomes aspects. We owe our gratitude to all those researchers who have made this review possible. We have cited as many references as permitted and apologize to the authors of those publications that we have not cited due to the limitation of references. We apologize to other authors who have worked on these aspects but whom we have unintentionally overlooked.
This study was supported by the KU-Research Professor Program of Konkuk University.
This work was supported by a grant from the Science Research Center (2015R1A5A1009701) of the National Research Foundation of Korea.
The authors report no conflicts of interest related to this work..
1. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373383. doi:10.1083/jcb.201211138
2. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci. 2000;113(Pt 19):33653374.
3. Yez-M M, Siljander PR, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. doi:10.3402/jev.v4.27066
4. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364372. doi:10.1016/j.tcb.2015.01.004
5. Yamamoto T, Kosaka N, Ochiya T. Latest advances in extracellular vesicles: from bench to bedside. Sci Technol Adv Mater. 2019;20(1):746757. doi:10.1080/14686996.2019.1629835
6. Valadi H, Ekstrm K, Bossios A, Sjstrand M, Lee JJ, Ltvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654659. doi:10.1038/ncb1596
7. Kosaka N, Ochiya T. Unraveling the mystery of cancer by secretory microRNA: horizontal microRNA transfer between living cells. Front Genet. 2011;2:97. doi:10.3389/fgene.2011.00097
8. Takahashi A, Okada R, Nagao K, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun. 2017;8:15287. doi:10.1038/ncomms15287
9. Gruenberg J, van der Goot FG. Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol. 2006;7(7):495504. doi:10.1038/nrm1959
10. Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):1724. doi:10.1016/j.gpb.2015.02.001
11. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487514. doi:10.1146/annurev-biochem-013118-111902
12. Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol. 2018;6:18. doi:10.3389/fcell.2018.00018
13. Zhang Q, Higginbotham JN, Jeppesen DK, et al. Transfer of functional cargo in exomeres. Cell Rep. 2019;27(3):940954.e946. doi:10.1016/j.celrep.2019.01.009
14. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193208. doi:10.1007/s00018-017-2595-9
15. Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One. 2010;5(1):e8577. doi:10.1371/journal.pone.0008577
16. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126(4):12081215. doi:10.1172/jci81135
17. Thry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569579. doi:10.1038/nri855
18. Thry C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581593. doi:10.1038/nri2567
19. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113(5):752760. doi:10.1002/ijc.20657
20. Lakkaraju A, Rodriguez-Boulan E. Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol. 2008;18(5):199209. doi:10.1016/j.tcb.2008.03.002
21. Ferguson SW, Nguyen J. Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J Control Release. 2016;228:179190. doi:10.1016/j.jconrel.2016.02.037
22. Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancers (Basel). 2017;9(12):8. doi:10.3390/cancers9010008
23. Meehan K, Vella LJ. The contribution of tumour-derived exosomes to the hallmarks of cancer. Crit Rev Clin Lab Sci. 2016;53(2):121131. doi:10.3109/10408363.2015.1092496
24. Quah BJ, ONeill HC. Maturation of function in dendritic cells for tolerance and immunity. J Cell Mol Med. 2005;9(3):643654. doi:10.1111/j.1582-4934.2005.tb00494.x
25. Bell BM, Kirk ID, Hiltbrunner S, Gabrielsson S, Bultema JJ. Designer exosomes as next-generation cancer immunotherapy. Nanomedicine. 2016;12(1):163169. doi:10.1016/j.nano.2015.09.011
26. Pegtel DM, Peferoen L, Amor S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci. 2014;369(1652):20130516. doi:10.1098/rstb.2013.0516
27. Xin H, Li Y, Buller B, et al. Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells. 2012;30(7):15561564. doi:10.1002/stem.1129
28. Rajendran L, Honsho M, Zahn TR, et al. Alzheimers disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A. 2006;103(30):1117211177. doi:10.1073/pnas.0603838103
29. Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem. 2015;290(6):34553467. doi:10.1074/jbc.M114.605253
30. Simons M, Raposo G. Exosomesvesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575581. doi:10.1016/j.ceb.2009.03.007
31. Natasha G, Gundogan B, Tan A, et al. Exosomes as immunotheranostic nanoparticles. Clin Ther. 2014;36(6):820829. doi:10.1016/j.clinthera.2014.04.019
32. Pascucci L, Cocc V, Bonomi A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release. 2014;192:262270. doi:10.1016/j.jconrel.2014.07.042
33. Haney MJ, Klyachko NL, Zhao Y, et al. Exosomes as drug delivery vehicles for Parkinsons disease therapy. J Control Release. 2015;207:1830. doi:10.1016/j.jconrel.2015.03.033
34. Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol. 2014;49(1):590600. doi:10.1007/s12035-013-8544-1
35. Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 2015;40:4151. doi:10.1016/j.semcdb.2015.02.010
36. Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126(Pt 24):55535565. doi:10.1242/jcs.128868
37. Ghossoub R, Lembo F, Rubio A, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun. 2014;5:3477. doi:10.1038/ncomms4477
38. Kowal J, Tkach M, Thry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol. 2014;29:116125. doi:10.1016/j.ceb.2014.05.004
39. Villarroya-Beltri C, Baixauli F, Gutirrez-Vzquez C, Snchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014;28:313. doi:10.1016/j.semcancer.2014.04.009
40. Fader CM, Snchez DG, Mestre MB, Colombo MI. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta. 2009;1793(12):19011916. doi:10.1016/j.bbamcr.2009.09.011
41. Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):1930; sup pp 1113. doi:10.1038/ncb2000
42. Gross JC, Chaudhary V, Bartscherer K, Boutros M. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14(10):10361045. doi:10.1038/ncb2574
43. Hyenne V, Apaydin A, Rodriguez D, et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol. 2015;211(1):2737. doi:10.1083/jcb.201504136
44. Gudbergsson JM, Johnsen KB, Skov MN, Duroux M. Systematic review of factors influencing extracellular vesicle yield from cell cultures. Cytotechnology. 2016;68(4):579592. doi:10.1007/s10616-015-9913-6
45. Alvarez-Erviti L, Seow Y, Schapira AH, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis. 2011;42(3):360367. doi:10.1016/j.nbd.2011.01.029
46. Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):23832390. doi:10.1016/j.biomaterials.2013.11.083
47. Chen TS, Arslan F, Yin Y, et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med. 2011;9:47. doi:10.1186/1479-5876-9-47
48. Yeo RW, Lai RC, Zhang B, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013;65(3):336341. doi:10.1016/j.addr.2012.07.001
49. Zheng Y, Campbell EC, Lucocq J, Riches A, Powis SJ. Monitoring the Rab27 associated exosome pathway using nanoparticle tracking analysis. Exp Cell Res. 2013;319(12):17061713. doi:10.1016/j.yexcr.2012.10.006
50. Wang JS, Wang FB, Zhang QG, Shen ZZ, Shao ZM. Enhanced expression of Rab27A gene by breast cancer cells promoting invasiveness and the metastasis potential by secretion of insulin-like growth factor-II. Mol Cancer Res. 2008;6(3):372382. doi:10.1158/1541-7786.Mcr-07-0162
Continue reading here:
[Full text] A Comprehensive Review on Factors Influences Biogenesis, Functions, Th | IJN - Dove Medical Press
bluebird bio Announces Temporary Suspension on Phase 1/2 and Phase 3 Studies of LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) – BioSpace
By daniellenierenberg
Feb. 16, 2021 12:00 UTC
CAMBRIDGE, Mass.--(BUSINESS WIRE)-- bluebird bio, Inc. (Nasdaq: BLUE) announced today that the company has placed its Phase 1/2 (HGB-206) and Phase 3 (HGB-210) studies of LentiGlobin gene therapy for sickle cell disease (SCD) (bb1111) on a temporary suspension due to a reported Suspected Unexpected Serious Adverse Reaction (SUSAR) of acute myeloid leukemia (AML).
In line with the clinical study protocols for HGB-206 and HGB-210, bluebird bio placed the studies on temporary suspension following a report received last week that a patient who was treated more than five years ago in Group A of HGB-206 was diagnosed with AML. The company is investigating the cause of this patients AML in order to determine if there is any relationship to the use of BB305 lentiviral vector in the manufacture of LentiGlobin gene therapy for SCD. In addition, a second SUSAR of myelodysplastic syndrome (MDS) in a patient from Group C of HGB-206 was reported last week to the company and is currently being investigated.
No cases of hematologic malignancy have been reported in any patient who has received treatment with betibeglogene autotemcel for transfusion-dependent -thalassemia (licensed as ZYNTEGLOTM in the European Union and the United Kingdom), however because it is also manufactured using the same BB305 lentiviral vector used in LentiGlobin gene therapy for SCD, the company has decided to temporarily suspend marketing of ZYNTEGLO while the AML case is assessed.
The safety of every patient who has participated in our studies or is treated with our gene therapies is the utmost priority for us, said Nick Leschly, chief bluebird. We are committed to fully assessing these cases in partnership with the healthcare providers supporting our clinical studies and appropriate regulatory agencies. Our thoughts are with these patients and their families during this time.
The independent safety review board monitoring the companys studies as well as the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) have been advised of these cases and bluebird bio will continue to work with regulatory agencies to complete its investigation.
Investor Conference Call Information
bluebird bio will hold a conference call to discuss this update on Tuesday, February 16 at 8:00 a.m. ET. Investors may listen to the call by dialing (844) 825-4408 from locations in the United States or +1 (315) 625-3227 from outside the United States. Please refer to conference ID number 880-6406.
To access the live webcast of bluebird bios presentation, please visit the Events & Presentations page within the Investors & Media section of the bluebird bio website at http://investor.bluebirdbio.com. A replay of the webcast will be available on the bluebird bio website for 90 days following the event.
About HGB-206 and HGB-210
HGB-206 is an ongoing, Phase 1/2 open-label study designed to evaluate the efficacy and safety of LentiGlobin gene therapy for sickle cell disease (SCD) that includes three treatment cohorts: Groups A, B and C. A refined manufacturing process designed to increase vector copy number (VCN) and further protocol refinements made to improve engraftment potential of gene-modified stem cells were used for Group C. Group C patients also received LentiGlobin for SCD made from HSCs collected from peripheral blood after mobilization with plerixafor, rather than via bone marrow harvest, which was used in Groups A and B of HGB-206.
HGB-210 is an ongoing Phase 3 single-arm open-label study designed to evaluate the efficacy and safety of LentiGlobin gene therapy for SCD in patients between two years and 50 years of age with sickle cell disease.
About LentiGlobin for SCD (bb1111)
LentiGlobin gene therapy for sickle cell disease (bb1111) is an investigational treatment being studied as a potential treatment for SCD. bluebird bios clinical development program for LentiGlobin for SCD includes the completed Phase 1/2 HGB-205 study, the ongoing Phase 1/2 HGB-206 study, and the ongoing Phase 3 HGB-210 study.
The U.S. Food and Drug Administration granted orphan drug designation, fast track designation, regenerative medicine advanced therapy (RMAT) designation and rare pediatric disease designation for LentiGlobin for SCD.
LentiGlobin for SCD received orphan medicinal product designation from the European Commission for the treatment of SCD, and Priority Medicines (PRIME) eligibility by the European Medicines Agency (EMA) in September 2020.
bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-307) for people who have participated in bluebird bio-sponsored clinical studies of LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT04628585 for LTF-307.
LentiGlobin for SCD is investigational and has not been approved in any geography.
About ZYNTEGLO (betibeglogene autotemcel)
Betibeglogene autotemcel (beti-cel) is a one-time gene therapy that adds functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once a patient has the A-T87Q-globin gene, they have the potential to produce HbAT87Q, which is gene therapy-derived adult Hb, at levels that may eliminate or significantly reduce the need for transfusions. In studies of beti-cel, transfusion independence (TI) is defined as no longer needing red blood cell transfusions for at least 12 months while maintaining a weighted average Hb of at least 9 g/dL.
The European Commission granted conditional marketing authorization (CMA) for beti-cel, marketed as ZYNTEGLO gene therapy, for patients 12 years and older with transfusion-dependent -thalassemia (TDT) who do not have a 0/0 genotype, for whom hematopoietic stem cell (HSC) transplantation is appropriate, but a human leukocyte antigen (HLA)-matched related HSC donor is not available.
Non-serious adverse events (AEs) observed during clinical studies that were attributed to beti-cel included abdominal pain, thrombocytopenia, leukopenia, neutropenia, hot flush, dyspnea, pain in extremity, tachycardia and non-cardiac chest pain. One serious adverse event (SAE) of thrombocytopenia was considered possibly related to beti-cel.
Additional AEs observed in clinical studies were consistent with the known side effects of HSC collection and bone marrow ablation with busulfan, including SAEs of veno-occlusive disease.
For details, please see the Summary of Product Characteristics (SmPC).
On April 28, 2020, the European Medicines Agency (EMA) renewed the CMA for beti-cel. The CMA for beti-cel is valid in the 27 member states of the EU as well as the UK, Iceland, Liechtenstein and Norway.
The U.S. Food and Drug Administration granted beti-cel Orphan Drug status and Breakthrough Therapy designation for the treatment of TDT. Beti-cel is not approved in the U.S. Beti-cel continues to be evaluated in the ongoing Phase 3 Northstar-2 (HGB-207) and Northstar-3 (HGB-212) studies.
bluebird bio is conducting a long-term safety and efficacy follow-up study, LTF-303 for people who have participated in bluebird bio-sponsored clinical studies of ZYNTEGLO.
About bluebird bio, Inc.
bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene and cell therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.
bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders: cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma, using gene and cell therapy technologies including gene addition, and (megaTAL-enabled) gene editing.
bluebird bio has additional nests in Seattle, Wash.; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.
Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.
ZYNTEGLO, betibeglogene autotemcel, beti-cel, and bluebird bio are trademarks of bluebird bio, Inc.
Forward-Looking Statements
This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995, including statements regarding the Companys timing and expectations regarding its investigation of the relationship of the AML and MDS events to the use of lentiviral vector BB305 in LentiGlobin gene therapy for SCD, and any myeloablation regimen used in connection with treatment. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements, many of which are beyond the Companys control. These risks and uncertainties include, but are not limited to: the risk that the Company may not be able to definitively determine whether the lentiviral vector BB305 used in LentiGlobin gene therapy for SCD and in betibeglogene autotemcel is related to the patients AML in a timely manner, or at all; the risk that the lentiviral vector BB305 has caused insertional oncogenic events, including AML; the risk that insertional oncogenic events associated with lentiviral vector or additional MDS events associated with myeloablation will be discovered or reported over time; the risk that regulatory authorities may impose a clinical hold, in addition to our temporary clinical hold on the HGB-206 and HGB-210 studies, or on additional programs; the risk that we may not be able to address regulatory authorities concerns quickly or at all; the risk that we may not resume patient treatment with ZYNTEGLO in the commercial context in a timely manner or at all; the risk that our lentiviral vector platform across our severe genetic disease programs may be implicated, affecting the development and potential approval of elivaldogene autotemcel; the risk that we may not be able to execute on our business plans, including our commercialization plans, meeting our expected or planned regulatory milestones, submissions, and timelines, research and clinical development plans, and in bringing our product candidates to market; and the risk that with the impact on the execution and timing of our business plans, we may not successfully execute our previously announced plans to spin off our oncology programs into an independent publicly-traded entity. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.
View source version on businesswire.com: https://www.businesswire.com/news/home/20210216005442/en/
Here is the original post:
bluebird bio Announces Temporary Suspension on Phase 1/2 and Phase 3 Studies of LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) - BioSpace
Beti-Cel Gene Therapy Frees Patients With Beta-Thalassemia From Red Blood Cell Transfusions – OncLive
By daniellenierenberg
Betibeglogene autotemcel (beti-cel), a one-time gene therapy, enabled durable transfusion independence in most patients with transfusion-dependent -thalassemia (TDT) who were treated across 4 clinical studies.
Of 60 patients enrolled overall, 17 of 22 (77%) treated in the 2 phase 1/2 studies were able to stop packed red blood cell transfusions. In the 2 phase 3 studies, which used a refined manufacturing process resulting in improved beti-cel characteristics, 89% (n = 31/35) of patients with at least 6 months of follow-up achieved transfusion independence for more than 6 months,1 reported Suradej Hongeng, MD, during the virtual 2021 Transplantation & Cellular Therapy Meetings.
The median follow-up after beti-cel infusion in the 4 studies has been 24.8 months (range, 1.1-71.8).
With up to 6 years of follow-up, 1-time beti-cel gene therapy enabled durable transfusion independence in the majority of patients, said Hongeng, from Ramathibodi Hospital of Mahidol University, in Bangkok, Thailand.
Patients who achieved transfusion independence experienced a 38% median reduction in liver iron concentration (LIC) from baseline to month 48. The median reduction in LIC was 59% in patients with a baseline LIC more than 15 mg/g dw. A total of 21 of 37 (57%) patients who achieved transfusion independence have stopped iron chelation for 6 months or longer, with a median duration of 18.5 months from stopping iron chelation to last follow-up.
Erythropoiesis as determined by soluble transferrin receptor level was also improved in transfusion-independent patients. Bone marrow biopsies showed improvement in the myeloid:erythroid ratio.
Beti-cel adds functional copies of a modified form of the -globin (A-T87Q-globin) gene into a patients own hematopoietic stem cells (HSCs) through transduction of autologous CD34+ cells using a BB305 lentiviral vector. Following single-agent busulfan myeloablative conditioning, beti-cel is infused, after which the transduced HSCs engraft and reconstitute red blood cells containing functional adult hemoglobin derived from the gene therapy.
Of the 60 patients treated, 43 were genotype non-/ and 17 were / . The median age at consent was 20 years in the phase 1/2 trials and 15 years in the phase 3 trials. Median LIC at baseline was 7.1 and 5.5 mg Fe/g dw, respectively, and median cardiac T2 was 34 and 37 msec, respectively. The vector copy number was 0.8 in the phase 1/2 trial and 3.0 in the phase 3 study. Additionally, 32t and 78t CD34+ cells were transduced, respectively.
The phase 1/2 studies showed promising results but lower achievement of transfusion independence in patients with the / genotype, leading to a refinement in the manufacturing process, which resulted in a higher number of transduced cells and a higher number of vector copy number, said Hongeng.
The median time to neutrophil engraftment was 22.5 days and the median time to platelet engraftment was 44 days. Lymphocyte subsets were generally within the normal range after beti-cel infusion, which is different from allogeneic stem cell [transplantation], which is probably around 6 months to a year to get complete recovery of immune reconstitution, he said. The median duration of hospitalization was 42 days.
All patients were alive at the last follow-up (March 3, 2020). Eleven of 60 (18%) of patients experienced at least 1 adverse event (AE) considered related or possibly related to beti-cel, the most common being abdominal pain (8%) and thrombocytopenia (5%). Serious AEs were those expected after myeloablative conditioning: veno-occlusive liver disease (8%), neutropenia (5%), pyrexia (5%), thrombocytopenia (5%), and appendicitis, febrile neutropenia, major depression, and stomatitis (3% each).
Of the 7 patients experiencing veno-occlusive liver disease, 3 were of grade 4 and 2 were of grade 3. Two other patients had grade 2 veno-occlusive disease. There were no cases of insertional oncogenesis.
Persistent vector-positive hematopoietic cells and durable HbaT87Q levels supported stable total hemoglobin over time. In phase 3 trials, the median peripheral blood vector copy number was 1.2 c/dg at month 12 and 2.0 c/dg at month 24, and the median total hemoglobin was 11.5 g/dL at month 12 and 12.9 g/dL at month 24.
The weighted average of hemoglobin during transfusion independence in the phase 1/2 trials was 10.4 g/dL, and patients were transfusion-independent for a median of 51.2 months. In the phase 3 studies, the weighted average of hemoglobin during transfusion independence was 11.9 g/dL, and patients were transfusion-independent for a medium 17.7 months.
Hongeng S, Thompson AA, Kwiatkowski JL, et al. Efficacy and safety of betibeglogene autotemcel (beti-cel; LentiGlobin for -thalassemia) gene therapy in 60 patients with transfusion-dependent -thalassemia (TDT) followed for up to 6 years post-infusion. Presented at: 2021 Transplantation & Cellular Therapy Meetings; February 8-12, 2021; virtual. Abstract 1.
Read the rest here:
Beti-Cel Gene Therapy Frees Patients With Beta-Thalassemia From Red Blood Cell Transfusions - OncLive
Smart Stem Cells Made From Fat Have the Power to Heal – Freethink
By daniellenierenberg
New smart stem cells show a promising power to heal.
Researchers have reprogrammed human fat cells into adaptive smart stem cells that can lie dormant in the body until they are needed to heal various tissues. They demonstrated the cells' effectiveness at healing damaged tissue in a mouse study.
To create the smart stem cells, the team from UNSW Sydney exposed human fat cells to a compound mixture. After about three and a half weeks, the cells lost their original identity and began acting like stem cells, or iMS (induced multipotent stem cells).
"The stem cells acted like chameleons. They followed local cues to blend into the tissue that required healing."
"The stem cells we've developed can adapt to their surroundings and repair a range of damaged tissues," said UNSW hematologist John Pimanda, and co-author of the study, which they published in Science Advances.
"To my knowledge, no one has made an adaptive human multipotent stem cell before. This is uncharted territory."
Next, they injected the experimental iMS cells into healthy mice to see how the cells would respond. The cells remained dormant for some time, but they activated when the mouse was injured. Because of the cells' regenerative ability to act as "smart stem cells," they transformed themselves into whatever tissue was needed to heal the injured mouse --- like bone tissue, heart, or skin.
"The stem cells acted like chameleons," said Avani Yeola, lead author on the study at UNSW Medicine & Health. "They followed local cues to blend into the tissue that required healing."
All cells in a human body contain the same DNA. To differentiate between tissues, like a skin cell versus a bone cell, the cells only use a small portion of their total DNA. The rest of the DNA is shut down naturally by local modifications.
"The idea behind our approach was to reverse these modifications," said Pimanda. "We wanted the cells to have the option of using that part of the DNA if there was a signal from outside the cell."
Tissue-specific stem cells, like those that are restricted to becoming parts of the liver or lung, are limiting. But smart stem cells that can respond to their environment and become any tissue, like multipotent stem cells, will have many uses.
In the future, doctors could take a patient's fat cells, incubate them with the compound, and inject them into the patient to heal heart damage or trauma injuries.
But applications like this could be a long way off. The team needs to do much more research to prove this is safe in humans for different kinds of trauma before it becomes a real therapy.
We'd love to hear from you! If you have a comment about this article or if you have a tip for a future Freethink story, please email us at [emailprotected]
Excerpt from:
Smart Stem Cells Made From Fat Have the Power to Heal - Freethink
Be The Match encourages people of color to join bone marrow registry – KING5.com
By daniellenierenberg
Black patients in need of bone marrow or blood stem cell treatments have a decreased chance of matching with a donor. The Seattle branch hopes to change that.
Seattles Be The Match Collection Center opened up less than a year ago and is celebrating its 100th blood cell donation with an important message: More bone marrow donors of color are needed.
The nonprofit donation center is a part of the National Marrow Donor Program and increases the capacity to collect blood cells in the Pacific Northwest. Seattles Clinical Manager Hannah Erskine said this month is an important time to focus on the donation gap.
In the midst of Black History Month, its important to note that we frankly dont have enough Black and African American donors on the registry, said Erskin.
Only 4% of approximately 22 million donors on the registry are African American, lowering the chances that a Black patient can find a bone marrow donor who is a genetic match.
According to Be The Match data, the likelihood of finding a matched adult donor is only around 23% for an African American or Black patient, versus a 77% match rate for a white patient.
These matched bone marrow or blood stem cell transplants can help cure blood cancers like leukemia and lymphoma, as well as other blood conditions, such as sickle cell disease. Be The Match has coordinated more than 100,000 transplants.
Erskine said registering is a simple mouth swab that will be mailed to potential donors. They will be contacted if they are a match with a patient.
Being a matching blood stem cell donor can potentially save a life. The first step in changing the trend is to join the registry at http://www.bethematch.org.
View post:
Be The Match encourages people of color to join bone marrow registry - KING5.com
Types of leukemia: Prevalence, treatment options, and prognosis – Medical News Today
By daniellenierenberg
Leukemia is a type of cancer that affects the blood and bone marrow, where blood cells are formed. All types of leukemia cause rapid, uncontrolled growth of abnormal bone marrow and blood cells.
The main differences between the types include how fast the disease progresses and the types of cells it affects.
There are four main types of leukemia, which we describe in detail below:
Lymphocytic leukemia affects the lymphocytes, a type of white blood cell. Myeloid leukemia can affect the white blood cells, red blood cells, and platelets.
According to the National Cancer Institute, roughly 1.5% of people in the United States will receive a leukemia diagnosis at some point.
In this article, explore the four main types, their symptoms, the treatment options available, and the outlook.
The full name of this type of cancer is acute lymphocytic leukemia, and acute means that it grows quickly. Lymphocytic means that it forms in underdeveloped white blood cells called lymphocytes.
The disease starts in the bone marrow, which produces stem cells that develop into red and white blood cells and platelets.
In a healthy person, the bone marrow does not release these cells until they are fully developed. In someone with ALL, the bone marrow releases large quantities of underdeveloped white blood cells.
There are several subtypes of ALL, and the subtype may influence the best course of treatment and the prognosis.
One subtype is B-cell ALL. This begins in the B lymphocytes, and it is the most common form of ALL in children.
Another subtype is T-cell ALL. It can cause the thymus, a small organ at the front of the windpipe, to become enlarged, which can lead to breathing difficulties.
Overall, because ALL progresses quickly, swift medical intervention is key.
As research from 2020 acknowledges, healthcare providers still do not know what causes ALL. It may occur due to genetic factors or exposure to:
Although genetic factors may play a role, ALL is not a familial disease.
Learn more about ALL here.
ALL is the most common form of leukemia in children.
The risk of developing it is highest in children under 5 years old. The prevalence slowly rises again in adults over 50.
ALL symptoms can be nonspecific difficult to distinguish from those of other illnesses.
They may include:
In a person with AML, the bone marrow makes abnormal versions of platelets, red blood cells, and white blood cells called myeloblasts.
The full name of this disease is acute myeloid leukemia, and acute refers to the fact that it is fast-growing.
It forms in one of the following types of bone marrow cell:
Doctors classify AML by subtype, depending on:
AML can be difficult to treat and requires prompt medical attention.
Learn more about AML here.
The most common risk factor is myelodysplastic syndrome, a form of blood cancer that keeps the body from producing enough healthy blood cells.
Other factors that increase the risk of developing AML include:
Most people who develop AML are over 45. It is one of the most common types of leukemia in adults, though it is still rare, compared with other cancers.
It is also the second most common form of leukemia in children.
Symptoms of AML can vary and may include:
CLL is the most common form of leukemia among adults in the U.S. and other Western countries.
There are two types. One progresses slowly, and it causes the body to have high levels of characteristic lymphocytes, but only slightly low levels of healthy red blood cells, platelets, and neutrophils.
The other type progresses more quickly and causes a significant reduction in levels of all healthy blood cells.
In someone with CLL, the lymphocytes often look fully formed but are less able to fight infection than healthy white blood cells. The lymphocytes tend to build up very slowly, so a person might have CLL for a long time before experiencing symptoms.
Learn more about CLL here.
Genetic factors are the most likely cause. Others might include:
CLL is rare in children. It typically develops in adults aged 70 or over. However, it can affect people as young as 30.
CLL typically causes no early symptoms. When symptoms are present, they may include:
Also, 5090% of people with CLL have swollen lymph nodes.
CML is a slow-growing type of leukemia that develops in the bone marrow.
The full name of CML is chronic myeloid leukemia. As the American Cancer Society explain, a genetic change takes place in the early forms of the myeloid cells, and this eventually results in CML cells.
These leukemia cells then grow, divide, and enter the blood.
CML occurs due to a rearrangement of genetic material between the chromosomes 9 and 22.
This rearrangement fuses a part of the ABL1 gene from chromosome 9 with the BCR gene from chromosome 22, called the Philadelphia chromosome. The result of this fusion is called BCR-ABL1.
BCR-ABL1 produces a protein that promotes cell division and stops apoptosis, the process of cell death, which typically removes unneeded or damaged cells.
The cells keep dividing and do not self-destruct, resulting in an overproduction of abnormal cells and a lack of healthy blood cells.
This occurs during the persons lifetime and is not inherited.
CML typically affects adults. People aged 65 and older make up almost half of those who receive a CML diagnosis.
The symptoms of CML are unclear, but they may include:
The symptoms may vary, depending on the type of leukemia. Overall, a person should get in touch with a doctor if they experience:
Learn more about the symptoms of leukemia here.
Treatment for ALL typically involves three basic phases: induction, consolidation, and maintenance. We describe these in detail below.
Treatment for AML involves the first two phases. The induction phase may include treatment with the chemotherapy drugs cytarabine (Cytosar-U) and daunorubicin (Cerubidine) or idarubicin (Idamycin). The doctor may also recommend targeted drugs.
The goal of this phase is to kill the leukemia cells, causing the cancer to go into remission, using chemotherapy.
The doctor may recommend:
People having chemotherapy may need to see their doctors frequently and spend time in the hospital, due to the risk of serious infections and complications.
This phase of the treatment lasts for about 1 month.
Even if the treatment so far has led to remission, cancer cells may be hiding in the body, so more treatment is necessary.
The consolidation phase may involve taking high doses of chemotherapy. A doctor may also recommend targeted drugs or stem cell transplants.
This phase, consisting of ongoing chemotherapy treatments, usually lasts for 2 years.
Since CLL tends to progress slowly, and its treatment can have unpleasant side effects, some people with this condition go through a phase of watchful waiting before starting the treatment.
For a person with CML, the focus is often on providing the right treatment for the phase of the illness. To do this, a doctor considers how quickly the leukemia cells are building up and the extent of the symptoms. Stem cell transplants can be effective, but further treatment is necessary.
Overall, the initial treatment tends to include monoclonal antibodies, targeted drugs, and chemotherapy.
If the only concern is an enlarged spleen or swollen lymph nodes, the person may receive radiation or surgery.
If there are high numbers of CLL cells, the doctor may suggest leukapheresis, a treatment that lowers the persons blood count. This is only effective for a short time, but it allows the chemotherapy to start working.
For people with high-risk disease, doctors may recommend stem cell transplants.
A persons prognosis depends on the type of leukemia.
Learn more about survival rates for people with leukemia here.
About 8090% of adults with ALL experience complete remission for a while during treatment. And with treatment, most children recover from the disease.
Relapses are common in adults, so the overall cure rate is 40%. However, factors specific to each person play a role.
The older a person is when they receive an AML diagnosis, the more difficult it is to treat.
More than 25% of adults who achieve remission live for 3 years or more after treatment for AML.
A person may live for a long time with CLL.
Treatments can help keep the symptoms under control and prevent the disease from spreading. However, there is no cure.
Stem cell transplants can cure CML. However, this treatment is very invasive and is not suitable for most people with CML.
The United Kingdoms National Health Service estimate that 70% of males and 75% of females live for at least 5 years after receiving a CML diagnosis.
The earlier a person receives the diagnosis, the better their outlook.
Leukemia is a type of cancer that affects the blood and bone marrow. It can affect people of all ages.
There are four main types of leukemia. They differ based on how quickly they progress and the types of cells they affect.
Treatments for all types of leukemia continue to improve, helping people live longer and more fully with this condition.
Read more here:
Types of leukemia: Prevalence, treatment options, and prognosis - Medical News Today
Global Stem Cell Therapy Market Set to Reach USD 214.5 Million by 2024 – The Courier
By daniellenierenberg
The global stem cell therapy market is expected to witness a CAGR of 10.6% during the forecast period 2019-2024, and is also anticipated to reach USD 214.5 million by 2024. Growing awareness related to the therapeutic potency of stem cells, development of infrastructure related to stem cell banking and processing, development of advanced genome-based cell analysis techniques, and increasing private-public investment for the development of stem cell therapies are driving the growth of the stem cell therapy market.
Get a free copy of sample report: https://www.vynzresearch.com/healthcare/stem-cell-therapy-market/request-sample
Supportive regulations to drive the growth of the stem cell therapy market
Supporting regulations across developing countries, increasing prevalence of chronic diseases, technological advancement in healthcare, cellular therapies are the major advancements in transforming healthcare and identification of new stem cell lines are also fueling the growth of the stem cell therapy market.
Diseases such as osteoarthritis, multiple sclerosis, heart failure, hearing loss and cerebral palsy are some of the diseases that could be treated using stem cell therapies. For instance, according to the WHO by 2050, it is estimated 900 million people will have disabling hearing loss. Moreover, 60 percent of childhood hearing loss is due to preventable causes.
Allogenic stem cell therapy market to hold the larger share in the market
There are two types of stem cell therapy, allogeneic and autologous. Of both, allogenic segment account for the larger share and is also predicted to grow at the faster rate in the coming years in the market due to its extensive therapeutic applications, increasing commercialization of allogeneic products, easy production scale-up process, and growing number of clinical trials related to allogeneic therapies.
The stem cell therapy market has been segmented by therapeutic application into gastrointestinal diseases, musculoskeletal disorders, surgeries, cardiovascular diseases, and wound and injuries. Musculoskeletal disorders category contributed the largest revenue in the market due to increasing prevalence of musculoskeletal disorders and bone & joint diseases, increasing availability of stem cell-based products for the treatment of musculoskeletal disorders, and growing patient preference for effective & early treatment strategies.
Do you have any specific research requirement? Ask for customization: https://www.vynzresearch.com/healthcare/stem-cell-therapy-market/customize-report
The global stem cell therapy market has also been segmented by cell source into adipose tissue-derived mesenchymal stem cell, cord blood cells and bone marrow-derived mesenchymal stem cells. Of all the categories, the bone marrow-derived mesenchymal stem cells are increasingly being used for therapeutic applications.
North America offers huge opportunities for stem cell therapy industry players
The North American stem cell therapy market will remain the largest during the forecast period. The region is further predicted to observe the fastest growth during the forecast period in the global market owing to technological upgradation and large capital invested in the research and development activities. Moreover, increasing number of clinical trials to evaluate therapeutic potential of products, increasing prevalence of chronic diseases, the growing patient base for target diseases, growing public awareness related to the therapeutic potency of therapy, and increasing public-private funding & research grants for developing safe and effective stem cell therapy products are also supporting the growth of the North American stem cell therapy market.
Investing in research and development is the key strategy adopted by the market players
Major players in the industry are investing in the development of innovative and new products, which is strengthening their position in the stem cell therapy market. In February 2018, MEDIPOST announced that FDA has approved its stem cell-based Alzheimers disease drug, NEUROSTEM for clinical trials. Similarly, in March 2017, Osiris Therapeutics launched Prestige Lyotechnology, a method for storage of living cells and tissues.
Some of the key players operating in the stem cell therapy industry are Osiris Therapeutics, Inc., RTI Surgical, Inc., MEDIPOST Co., Ltd., Nuvasive, Inc., Pharmicell Co., Ltd., Holostem Terapie Avanzate Srl, JCR Pharmaceuticals Co., Ltd., Anterogen Co., Ltd., and Allosource.
More from VynZ Research
Global Stem Cell Banking Market Analysis and Forecast to 2024
The global stem cell banking market is growing at a CAGR of 9.1% during the forecast period reaching USD 10.5 billion by 2024, due to the development of novel technologies of storage, preservation and processing. Stem cell banking is the method of accumulating cord blood, extorting and cryogenically freezing its stem cells for forthcoming use. Cord blood stem cells are used for treating blood diseases such as sickle cell disease, leukemia, and thalassemia. The global stem cell banking market is growing at a significant rate due to the development of novel technologies of storage, preservation and processing. The market has witnessed a high demand for placenta stem cells over the last few years, due to the increasing public awareness regarding the therapeutic prospective of stem cells.
Explore more at: https://www.vynzresearch.com/healthcare/stem-cell-banking-market/request-sample
Global Protein Expression Market Analysis and Forecast to 2024
The global protein expression market was evaluated at USD 1,873.1 million in 2018. The protocol for expression of proteins makes use of expression vectors, competent cells, reagents, instrument, and services. The reagents are the estimated to hold the largest share due to large volume used in the bio-experiments. The significant growth in the protein expression industry is primarily due to the increasing funds from government and non-government organization for protein research, the soaring prevalence of chronic diseases, rising life science industry.
Explore more at: https://www.vynzresearch.com/healthcare/protein-expression-market/request-sample
U.S. Protein Expression Market Analysis and Forecast to 2024
The U.S. protein expression market is expected to grow at a CAGR of 11.6% during the forecast period with its market size predicted to reach USD 1.2 billion by 2024. The U.S. protein expression market is primarily driven by the factors such as the increasing prevalence of chronic diseases, increasing investment for recombinant protein expression, advancement in technology for expression systems, increasing geriatric population, and robust growth of the life sciences industry in the country. Prokaryotic expression systems and mammalian cell expression systems are the major contributors to the protein expression industry in the region.
Explore more at: https://www.vynzresearch.com/healthcare/us-protein-expression-market/request-sample
Contact Us:
VynZ Research
Call: +91-996-028-8381
Toll Free (U.S. and Canada): +1-888-253-3960
Email: enquiry@vynzresearch.com
Connect with Us: LinkedIn | Facebook | Twitter
More:
Global Stem Cell Therapy Market Set to Reach USD 214.5 Million by 2024 - The Courier
Bone marrow transplant shows signs of curing brave little boy with one in a million condition – Shields Gazette
By daniellenierenberg
One-year-old Max Gardner was diagnosed with aplastic anaemia, in October 2020, a serious condition in which the bone marrow and stem cells do not produce enough blood cells.
After Max developed significant bruises and a rash over his body, parents, Connor Gardner and Rachel Nicholson, from Hebburn, were referred to South Tyneside District Hospital, where their brave little boy underwent tests.
Doctors initially believed that Max had an immune disorder but after he was admitted to the Royal Victoria Infirmary (RVI) further tests helped to diagnose him with aplastic anaemia.
The family was told that the condition could be fatal if not treated properly.
Doctors said Max needed to have a bone marrow transplant, which has the potential to cure him.
Dad Connor, 29, and mum Rachel, 27, were both tested to see if they would be a bone marrow match and the pair were overjoyed when Rachel was found to be a 9/10 match.
Max started chemotherapy on January 7 at the RVI and mum Rachel donated stem cells on January 13 at Newcastles Freeman Hospital.
The following day, January 14, Max underwent the transplant at the RVI.
The family is now waiting for the results of a Chimerism Test which will tell them for definite whether the stem cells have worked but signs are already looking positive.
Delighted dad, Connor, said: "His neutrophils [a type of white blood cell that protect us from infections] have been more than 0.50 for three days in a row, which means that he is essentially engrafted, which means that his body is accepting the transplant.
"So it is working, but we still have to wait for the test results."
Doctors say there is no doubt that it has worked with the way the numbers have gone up but they have to officially do it like that to make sure, Connor continued.
"But there is no reason why it shouldnt have [doctors] say.
"He has done really well to get to this stage, he has absolutely sailed through it, everyone is surprised with how well he has done.
This the best outcome we could have hoped for.
But it hasnt been plain sailing for the family, who have also had to face additional challenges during the treatment.
Parents Connor and Rachael initially were not allowed to visit Max at the same time due to Covid rules, however the hospital has now eased the restriction in their case.
The family also became sick with Norovirus in the run-up to the transplant, causing concern over whether it would have to be pushed back.
Thankfully, the transplant went ahead as planned and the family made a good recovery, although Max still needs help with his eating.
Max will now have to remain in hospital for a while longer as he recovers from the transplant.
Connor added: We can feel that we are nearly at the end of it.
"His neutrophils are the highest they have ever been since he became poorly so we feel like we are coming to the end.
The family are sharing Maxs journey to health on Instagram under the name @maxinamillionaajourney and hope his story will encourage people to sign up to the Anthony Nolan register to become a potential donor and help others like Max.
You can subscribe to this website and enjoy unlimited access to local news, information and puzzles online.
With a digital subscription, you can read more than 5 articles, see fewer ads, enjoy faster load times, and get access to exclusive newsletters and content.
Simply click Subscribe in the menu.
See more here:
Bone marrow transplant shows signs of curing brave little boy with one in a million condition - Shields Gazette
Arlo’s Army needs stem cell donor as mum begs for help to save three-year-old’s life – Glasgow Live
By daniellenierenberg
Gorgeous little Arlo McArthur looks the picture of health and happiness.
Loved and adored by his family this little lively three-year-old from Milngavie is spoiled rotten by his three big sisters and his ultimate day out is playing golf with his daddy.
But behind the cheeky grin lies a devastating truth - he's a "ticking-timebomb" and needs a stem cell transplant to save his life.
So today, we've joined with Arlo's mum Nicole, dad Ian and his three doting sisters Carys, Brooke and Holly in asking Glasgow Live readers to step up and help this brave little boy.
They need young men, between 16 and 30 to volunteer to be tested to see if they are a match for the toddler. There's not much to it, a simple swab test carried out at home is enough for the experts to determine if you're a match.
The more people who register to be tested the better chance there is of finding the ideal candidate willing to donate the bone marrow little Arlo desperately needs.
For this family your help could mean the difference between life and death.
They've lived with the knowledge since he was 10 weeks old that a rare genetic condition could rob their precious little boy of his future.
Diagnosed with Wiskott-Aldrich Syndrome, it means Arlo's immune system doesn't function properly and it's difficult for his bone marrow to produce platelets, making him prone to bleeding.
Its estimated there are between 1 and 10 cases per million males worldwide. Arlo was only the third case at Queen Elizabeth University Hospital.
Doctors say they cant take the risk with an older donor as he was lucky to survive a previous transplant which failed when he was a baby.
His back-up is his dad Ian, 31, but he's only a half-match.
Sadly little Arlo's story isn't unique, across the country 2,300 people a year need a stem cell transplant and charity Anthony Nolan coordinates the search and raises money to support their vital work.
Nicole, 37, dreams of seeing her little boy attend his first day at school next August and believes someone out there can help that dream come true.
She pleaded: "Were asking as many people as possible to register and help give Arlo the life he deserves.
"We want to love and enjoy having our little boy around for a long time. He should be able to live out his life of dreams.
"Put yourself in the shoes of a parent whose child is ill, or someone else who is about to lose a loved one. Youve just been told in a room that they wont make it without stem cells. How does it feel?
"Its not just our Arlo, there are plenty of Arlos out there who need your help."
"People don't realise how easy it is to do. It's not this big operation, just a few injections and a day at an out-patient clinic to save someone's life. I wish it was opt-out, like organ donation.
"We dont have much time but I know in my heart the right match is out there."
To find out how you can can join the register and help the fight to save little Arlo and others just like visit Anthony Nolan's website here.
Go here to see the original:
Arlo's Army needs stem cell donor as mum begs for help to save three-year-old's life - Glasgow Live
Ensuring gut integrity may improve results in blood cancer: Study – Hindustan Times
By daniellenierenberg
wA new study led by cancer researchers of Medical University of South Carolina (MUSC) found that a solitary strain of Bacteroides fragilis altogether diminished graft-versus-host disease (GVHD) by ensuring gut integrity.
The findings reported in JCI Insight shows that even though bone marrow transplant can be a lifesaving procedure for patients with blood cancers; however, GVHD is a potentially fatal side effect of transplantation, and it has limited treatment options. This proof-of-concept study demonstrates that better treatment options may be on the horizon for patients with GVHD.
Xue-Zhong Yu, M.D., associate director of Basic Science at Hollings Cancer Center, and lead author Hanief Sofi, Ph.D., realized that protecting the health of the gastrointestinal tract is a good target for reducing severe GVHD.
"If we can figure out how to keep a patient's intestinal tissue healthy before and after bone marrow transplant, then the patient's outcome will be much better. We know that restoring the microbiota diversity in the gut is an effective solution, but that comes with many challenges," said Yu.
Patients with blood cancers, such as leukemia, must undergo radiation and chemotherapy before they can get their new cancer-free immune system through bone marrow transplantation. The balance between the immune system and intestinal microbiota, communities of microorganisms that live in the gut, is especially important for proper intestinal health. Unfortunately, the radiation and chemotherapy radically throw off this balance, and the diversity of the microbiota is reduced 100- or even 1,000-fold. This leads to a condition called "leaky gut."
Clinical studies have shown that patients who recover microbiota diversity faster have better outcomes and less severe GVHD. Reduced microbiota diversity is associated with more severe GVHD.
Other studies have shown that fecal microbial transplantation (FMT) can be effective at reducing GVHD, but the challenge is how to get the right donor. Patients are heavily immune-deficient after bone marrow transplantation, and there is a great risk of bad infection if FMT is used in humans.
The Yu laboratory used two different strains of mice to establish a GVHD model that closely resembles the biology that occurs in humans after bone marrow transplantation. The mice developed acute GVHD. FMT significantly reduced acute GVHD in this model and reduced donor T cell proliferation in the organs, which is what triggers GVHD.
The researchers then used genetic sequencing to see which bacteria strains were most different between the fecal material of GVHD mice that received FMT and those that did not receive FMT.
Mice that had the best outcome, the lowest GVHD, had the highest levels of a bacteria called B. fragilis. Mice given this single bacterial strain had significantly reduced acute and chronic (long-term) GVHD compared to mice that did not get B. fragilis. In fact, B. fragilis alone was as good or even better than FMT.
Administration of B. fragilis increased overall gut microbial diversity, including increasing the amount of other beneficial bacteria strains. Surprisingly, GVHD was reduced in this model not only by live bacteria but also by bacteria that had been killed by short exposure to high heat.
The observation that B. fragilis was the main effective bacteria in the FMT process was not entirely new: B. fragilis also reduces autoimmunity in type 1 diabetes and colitis.
The current study by Yu and colleagues has two important findings. First, a molecule called polysaccharide A on the surface of B. fragilis appears to be critical for the GVHD-reducing functions of this bacteria. When the bacteria were modified to lack polysaccharide A, GVHD was not reduced compared to mice that did not receive any B. fragilis.
Secondly, the administration of B. fragilis did not reduce the graft-versus-leukemia or cancer-killing effect of the bone marrow transplantation, even though it did reduce donor T cell expansion in the gut. This is critical, since GVHD treatment options that reduce the graft-versus-leukemia effect would not be clinically significant.
"If this can be translated into the clinic, it would be a safer, easier and more effective treatment option," said Yu.
Further study in humans is needed to get this potential treatment into the clinic. Hematopoietic stem cells, given via bone marrow transplant, are classic immunotherapies for liquid tumors, but strategies to make the transplantation safer and more beneficial are sorely needed. Hollings Cancer Center researchers continue to search for the most effective therapies to improve patient outcomes and quality of life, he said.
Follow more stories on Facebook and Twitter
See the original post here:
Ensuring gut integrity may improve results in blood cancer: Study - Hindustan Times
Keep it Flowing: Combating COVID-19 Blood Shortages in Cancer Treatment – Curetoday.com
By daniellenierenberg
When Marie Fuesel was treated for leukemia eight years ago, she needed donated blood products more than 100 times.
Theyd give me my chemotherapy, Id stay in the hospital for a week, then Id go home, get really sick and have to come back in for blood and platelets, says Fuesel, 53, a retired insurance agent who lives in suburban Chicago. I spent over 100 days in the hospital over eight months. The disease and treatments (affect the bone marrow and production of red and white blood cells and platelets), so many transfusions were required to achieve remission.
After eight months of chemotherapy, followed by a year on the targeted drug Sprycel (dasatinib) as part of a clinical trial, Fuesel went into remission. She no longer needs transfusions, but she still appreciates the need for blood donors. I wouldnt be alive if the blood wasnt available when it was needed, she says.
Back then, blood shortages werent common, but they are now. The stay-at-home orders at the beginning of the COVID-19 pandemic forced the cancellation of numerous blood drives, and safety concerns arising from its spread have prompted some frequent donors to stay away from donation centers.
Thats been a source of worry for oncologists. Patients with cancer use nearly one-quarter of the nations blood supply, according to the American Red Cross, and donated blood is a vital resource in the treatment of hematologic cancers. Patients who receive stem cell transplants often need transfusions of oxygen-carrying red blood cells, infection-fighting white blood cells and platelets to control bleeding. Blood transfusions are common in the supportive care of patients undergoing chemotherapy that suppresses production of all the blood cells that results in anemia, because they relieve symptoms that ensue, such as fatigue and shortness of breath.
Between March and June 2020, 37,000 blood drives were canceled, according to the American Red Cross. The impact of the blood shortage varied across the nation but has hit some cities particularly hard. The New York Blood Center, for example, which supplies New York City
hospitals, reported in December 2020 that it had just three days of supply on hand, down from the five- to seven-day supply it normally has.
Ongoing shortages are forcing cancer centers to change some of their procedures for using donated blood. We all recognize that we are in the midst of a public health crisis and that we all have to do our part, says Dr. Mikkael Sekeres, chief of hematology at the University of Miami Miller School of Medicine and a physician liaison in hematology at Sylvester Comprehensive Cancer Center.
In response to COVID-related blood shortages, several cancer centers adjusted their policies for transfusing blood. Moffitt Cancer Center in Tampa, Florida, for example, developed a blood shortage action plan, according to Dr. Kaaron Benson, director of the blood bank at Moffitt. It basically meant dropping some of the thresholds we would normally use for transfusion, Benson says.
Moffitt has not needed to implement the plan yet, but if it does, Benson says, the change would most likely have the biggest effect on patients with leukemia and lymphoma who are given platelets as a preventive strategy. Provided theyre not bleeding or engaging in activities that increase the risk of bleeding, studies have shown you can allow the platelet threshold to drop from our standard of 10,000 per microliter to 5,000, she says.
The technique was first suggested in a 1991 journal article and has since been widely accepted as an appropriate change to make during blood shortages, Benson says.
In recent years, many oncologists have set lower thresholds for red blood cell transfusions another change that has eased the strain on blood supply. They used to routinely order transfusions for patients with hemoglobin levels below 10 grams per deciliter. That number dropped to between 7 and 8 grams per deciliter after a series of studies showed that infusing red blood cells at the higher threshold did not improve treatment outcomes.
During the pandemic, Moffitt and other cancer centers are also delaying some stem cell transplants and elective surgeries, so that blood used during those procedures can be kept on hand for patients who urgently need it, such as trauma patients or those needing emergent surgery. But those decisions are made on a case-by-case basis, so patients should maintain a frequent dialogue with their oncologists to determine the best plan for managing their symptoms during the pandemic.
Patients with multiple myeloma, for example, can benefit from stem cell transplants, but its usually not urgent, says Dr. Stephanie Lee, a hematologist and professor at the Fred Hutchinson Cancer Research Center in Seattle. We have very good treatments for multiple myeloma, so we can continue to give patients chemotherapy for weeks or months, Lee says.
However, she explains, patients with leukemia who need stem cell transplants may be advised to undergo the procedure as quickly as possible, even during the pandemic, because delaying it could cause the cancer to grow and become resistant to treatment.
And some patients with cancer who are simultaneously fighting other diseases should receive all the blood and platelet transfusions they need to manage their cancer, as well as to address any risks posed by chronic conditions. If you have heart disease, and your hemoglobin drops even further, youre more likely to get angina or suffer a heart attack, Sekeres says. So, for those people with serious comorbidities, we are more aggressive in transfusing blood products.
Growing the Donor Pool
Stephenie Perry, who works as the business operations coordinator for the American Red Cross of Northwest Georgia, knows firsthand the value of donated blood. Perry is a survivor of Hodgkin lymphoma who needed several transfusions during her treatment, which consisted of a round of chemotherapy and two stem cell transplants.
Perry, 31, has been in remission since February 2018, but sometimes her red blood cell count still runs low and she needs another blood transfusion. I feel sluggish, and when I stand up, I get really dizzy, says Perry, who lives in Rome, Georgia. When I get a transfusion, its like someone has just given me a shot of energy.
How can patients adapt when blood shortages mandate less frequent transfusions? Lifestyle changes can make a big difference, Sekeres says. If a patient is becoming progressively anemic, and its someone who usually goes for a 2-mile walk every day, maybe theyll reduce it to 1 mile or cut (exercise) altogether, he says.
Some patients may be eligible for iron infusions, which can relieve symptoms of fatigue and lengthen the period between infusions, says Abbey Fueger, clinical trial nurse navigator for the Leukemia & Lymphoma Society.
In addition, there are other small changes that can lessen the risk of anemia and improve symptoms. Some physicians are trying to limit blood draws for patients and recommending nutritional supplements that might help them feel better and lengthen the time between infusions, she says.
Meanwhile, an effort is underway to expand the pool of potential blood donors. In April, the Food and Drug Administration (FDA) addressed blood shortages brought on by COVID-19 by easing up on some of its restrictions on who can donate. For example, people who are at risk of contracting HIV, and those who have a recent tattoo or piercing or possible exposure to an infected individual no longer have to wait one year to give blood. The new waiting period is three months.
The FDA also dropped the waiting period for donors who have traveled to malaria-endemic countries from one year to three months. And it no longer recommends that blood centers turn away donors who lived in certain European countries during the era when Creutzfeldt-Jakob disease, a rare and fatal degenerative brain disorder, was thought to be spreading.
The hospital community is rallying around the cause, holding blood drives of their own and encouraging family members of patients to donate blood.
During the first few months of the pandemic, Fuesel helped put together five small blood drives in her town of Orland Park, Illinois. They were so successful the American Red Cross and a local news broadcaster asked her to help run the seventh annual Great Chicago Blood Drive. So, she did, and on Jan. 13, that event collected 330 units of blood at the Orland Park location and more than 2,000 units at other drives around the city.
For donors who might be nervous about giving blood during a pandemic, Fuesel has a message: Its safe and important. All the beds are spaced apart, and there are different stations when you walk in for getting your temperature checked and using hand sanitizer, Fuesel says. I know these are hard times, but it doesnt cost anything to give your blood. Its a way to help.
Read more:
Keep it Flowing: Combating COVID-19 Blood Shortages in Cancer Treatment - Curetoday.com
Family’s resilience heartwarming – The Friday Flyer
By daniellenierenberg
BY Ariana Shah
Despite Canyon Lakes Bernadette Mycroft and her little family not able to catch a break, the five of them wrap their arms around each other and refuse to give in to adversity. Adversity that just keeps piling on.
Bernadette, a popular kindergarten teacher at Tuscany Hills Elementary, is a single mom doing her best to effectively raise her four children, Bryan, Scarlette, James and Julliette. Bryan was diagnosed last year with Myelodysplastic Syndrome, a rare blood cancer. Hes been in and out of ICU for months and has been extremely close to death on multiple occasions.
The goal for months has been for Bryan, a high school senior, to be strong enough to undergo a life-saving stem-cell transplant surgery. That day finally arrived, against all odds, last week. He is currently undergoing chemotherapy in the bone marrow transplant unit at Radys Children Hospital in San Diego.
Bryan has spent most of the last couple of months in Rady Childrens Hospital in San Diego to treat a rare form of blood cancer. After much adversity, a major stem cell transplant of his sisters marrow occurred last week. A Go Fund Me campaign has been set up to help the family.
The battle to get to the transplant is a story of resilience, faith and a family determined to stick together despite blow after blow being dealt them.
Bryan has been battling. Bryan has been fighting for his life for many months in and out of ICU. The treatment Bryan underwent late last year resulted in him losing over 40 pounds. Then, in early December, Bryan and his entire family tested positive for COVID-19.
Bryans immune system was severely compromised, Bernadette said. But he was able to battle through it, despite having no white blood cells. Im so grateful for Dr. John Bradley, who administered Bryan with a COVID-19 antibody infusion that saved him. Bryan is so incredibly strong.
Bryan then had two more emergency surgeries.
The abscess that the chemo caused needed to be drained, Bernadette said. He cant heal from any more invasive surgeries due to his lack of white blood cells. What a nightmare. He just couldnt catch a break. Hes just so incredibly strong.
Everybody in the family recovered from COVID-19 and a weakened Bryan was able to come back home and stay with his family for a couple of weeks at Christmas. New Years Eve, though, found Bryan back in the hospital for more emergency surgery.
Bryans sister, Scarlette, was identified as a match and courageously agreed to give her brother this life-saving bone marrow transplant. On Feb. 1, Scarlette underwent a major operation to donate 8 million stem cells to be transplanted to her brother.
They have both been very courageous, brave and kind, Bernadette said. I could not be more proud of them. Little brother James and sister Juliette, too.
The stem cells were successfully transplanted into Bryan, and Scarlette was able to return home after a three-day stay in the hospital.
Its taken a toll on me to continuously drive back and forth from San Diego to Canyon Lake, Bernadette said. But, of course, Im doing it.
Bryan is currently on medication that prevents graft-versus-host disease. This procedure and aftercare will require him to be hospitalized for approximately four to six more weeks. Bernadette, meanwhile, has been on unpaid leave from Tuscany Hills Elementary for months.
Friends and the Canyon Lake Junior Womens Club are doing their best to take the family under their wing.
To say the Mycroft family is in crisis is an understatement, friend Tiffani Paul said as she set up a Go Fund Me account to help the family. Overcome with stress, worry, medical debt, loss of income and extraordinary expenses, the unbelievably proud and strong Ms. Mycroft has reluctantly allowed us to post this Go Fund Me on her familys behalf.
Those who wish to help the Mycroft family can donate to their Go Fund Me at https://www.gofundme.com/f/help-bernadette-mycroft-help-her-son-fight-cancer.
If there are any other approaches to help the Mycroft family, call or text Sonja of the Canyon Lake Junior Womens Club at 909-230-2702.
See the original post here:
Family's resilience heartwarming - The Friday Flyer
Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease – Science
By daniellenierenberg
Machine learning for medicine
Small-molecule screens aimed at identifying therapeutic candidates traditionally search for molecules that affect one to several outputs at most, limiting discovery of true disease-modifying drugs. Theodoris et al. developed a machine-learning approach to identify small molecules that broadly correct gene networks dysregulated in a human induced pluripotent stem cell disease model of a common form of heart disease involving the aortic valve. Gene network correction by the most efficacious therapeutic candidate generalized to primary aortic valve cells derived from more than 20 patients with sporadic aortic valve disease and prevented aortic valve disease in vivo in a mouse model.
Science, this issue p. eabd0724
Determining the gene-regulatory networks that drive human disease allows the design of therapies that target the core disease mechanism rather than merely managing symptoms. However, small molecules used as therapeutic agents are traditionally screened for their effects on only one to several outputs at most, from which their predicted efficacy on the disease as a whole is extrapolated. In silico correlation of disease network dysregulation with pathways affected by molecules in surrogate cell types is limited by the relevance of the cell types used and by not directly testing compounds in patient cells.
In principle, mapping the architecture of the dysregulated network in disease-relevant cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) and subsequent screening for small molecules that broadly correct the abnormal gene network could overcome this obstacle. Specifically, targeting normalization of the core regulatory elements that drive the disease process, rather than correction of peripheral downstream effectors that may not be disease modifying, would have the greatest likelihood of therapeutic success. We previously demonstrated that haploinsufficiency of NOTCH1 can cause calcific aortic valve disease (CAVD), the third most common form of heart disease, and that the underlying mechanism involves derepression of osteoblast-like gene networks in cardiac valve cells. There is no medical therapy for CAVD, and in the United States alone, >100,000 surgical valve replacements are performed annually to relieve obstruction of blood flow from the heart. Many of these occur in the setting of a congenital aortic valve anomaly present in 1 to 2% of the population in which the aortic valve has two leaflets (bicuspid) rather than the normal three leaflets (tricuspid). Bicuspid valves in humans can also be caused by NOTCH1 mutations and predispose to early and more aggressive calcification in adulthood. Given that valve calcification progresses with age, a medical therapy that could slow or even arrest progression would have tremendous impact.
We developed a machine-learning approach to identify small molecules that sufficiently corrected gene network dysregulation in NOTCH1-haploinsufficient human iPSC-derived endothelial cells (ECs) such that they classified similar to NOTCH1+/+ ECs derived from gene-corrected isogenic iPSCs. We screened 1595 small molecules for their effect on a signature of 119 genes representative of key regulatory nodes and peripheral genes from varied regions of the inferred NOTCH1-dependent network, assayed by targeted RNA sequencing (RNA-seq). Overall, eight molecules were validated to sufficiently correct the network signature such that NOTCH1+/ ECs classified as NOTCH1+/+ by the trained machine-learning algorithm. Of these, XCT790, an inverse agonist of estrogen-related receptor (ERR), had the strongest restorative effect on the key regulatory nodes SOX7 and TCF4 and on the network as a whole, as shown by full transcriptome RNA-seq.
Gene network correction by XCT790 generalized to human primary aortic valve ECs derived from explanted valves from >20 patients with nonfamilial CAVD. XCT790 was effective in broadly restoring dysregulated genes toward the normal state in both calcified tricuspid and bicuspid valves, including the key regulatory nodes SOX7 and TCF4.
Furthermore, XCT790 was sufficient to prevent as well as treat already established aortic valve disease in vivo in a mouse model of Notch1 haploinsufficiency on a telomere-shortened background. XCT790 significantly reduced aortic valve thickness, the extent of calcification, and echocardiographic signs of valve stenosis in vivo. XCT790 also reduced the percentage of aortic valve cells expressing the osteoblast transcriptional regulator RUNX2, indicating a reduction in the osteogenic cell fate switch underlying CAVD. Whole-transcriptome RNA-seq in treated aortic valves showed that XCT790 broadly corrected the genes dysregulated in Notch1-haploinsufficient mice with shortened telomeres, and that treatment of diseased aortic valves promoted clustering of the transcriptome with that of healthy aortic valves.
Network-based screening that leverages iPSC and machine-learning technologies is an effective strategy to discover molecules with broadly restorative effects on gene networks dysregulated in human disease that can be validated in vivo. XCT790 represents an entry point for developing a much-needed medical therapy for calcification of the aortic valve, which may also affect the highly related and associated calcification of blood vessels. Given the efficacy of XCT790 in limiting valve thickening, the potential for XCT790 to alter the progression of childhood, and perhaps even fetal, valve stenosis also warrants further study. Application of this strategy to other human models of disease may increase the likelihood of identifying disease-modifying candidate therapies that are successful in vivo.
A gene networkbased screening approach leveraging human disease-specific iPSCs and machine learning identified a therapeutic candidate, XCT790, which corrected the network dysregulation in genetically defined iPSC-derived endothelial cells and primary aortic valve endothelial cells from >20 patients with sporadic aortic valve disease. XCT790 was also effective in preventing and treating a mouse model of aortic valve disease.
Mapping the gene-regulatory networks dysregulated in human disease would allow the design of network-correcting therapies that treat the core disease mechanism. However, small molecules are traditionally screened for their effects on one to several outputs at most, biasing discovery and limiting the likelihood of true disease-modifying drug candidates. Here, we developed a machine-learning approach to identify small molecules that broadly correct gene networks dysregulated in a human induced pluripotent stem cell (iPSC) disease model of a common form of heart disease involving the aortic valve (AV). Gene network correction by the most efficacious therapeutic candidate, XCT790, generalized to patient-derived primary AV cells and was sufficient to prevent and treat AV disease in vivo in a mouse model. This strategy, made feasible by human iPSC technology, network analysis, and machine learning, may represent an effective path for drug discovery.
See original here:
Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease - Science