Page 54«..1020..53545556..6070..»

Energy drinks may damage the heart, researchers warnshould the FDA get involved? – Cardiovascular Business

By daniellenierenberg

Drinking certain energy drinks may cause significant damage to the heart, according to new findings published in Food and Chemical Toxicology.

Because the consumption of these beverages is not regulated and they are widely accessible over the counter to all age groups, the potential for adverse health effects of these products is a subject of concern and needed research, lead researcher Ivan Rusyn, MD, PhD, a professor at Texas A&M University in College Station, said in a prepared statement.

Rusyn et al. assessed a total of 17 popular energy drinks, studying their chemical profiles and looking for any associations with potential cardiac complications. Energy drinks sold by Adrenaline, Shoc, Bang Star, C4, CELSIUS, HEAT, EBOOST, Game Fuel, GURU, Kill Cliff, Kickstart, Monster Energy, Red Bull, Reign, Rockstar, RUNA, UPTIME, Venom Energy and Xyience Energy were all part of the teams analysis.

Overall, the authors found that stem cell-derived cardiomyocyteshuman heart cells grown in a laboratoryshowed signs of an increased beat rate after being exposed to some energy drinks. Also, theophylline, adenine and azelate were all ingredients the team associated with potentially contributing to QT prolongation in cardiomyocytes.

See the article here:
Energy drinks may damage the heart, researchers warnshould the FDA get involved? - Cardiovascular Business

To Read More: Energy drinks may damage the heart, researchers warnshould the FDA get involved? – Cardiovascular Business
categoriaCardiac Stem Cells commentoComments Off on Energy drinks may damage the heart, researchers warnshould the FDA get involved? – Cardiovascular Business | dataFebruary 14th, 2021
Read All

Apamistamab Conditioning Treatment Induces High Rates of HCT Success in AML – OncLive

By daniellenierenberg

Apamistamab (Iomab-B) conditioning treatment with targeted radioimmunotherapy to the bone marrow resulted in high rates of successful allogeneic hematopoietic stem cell transplants in patients with active, relapsed, or refractory acute myeloid leukemia (AML), according to interim results from the phase 3 SIERRA trial, which were presented virtually at the 2021 Transplant and Cellular Therapies Meetings.1

In these patients with relapsed or refractory AML, we observed high rates of allogeneic stem cell transplant with curative intent [in] 88% of patients on the Iomab-B arm, 18% of patients who were randomized to the conventional care arm achieved complete remission and received standard of care allo-transplant, and an overall rate of 79% of allo-transplant in all enrolled patients, Boglarka Gyurkocza, MD, said in a virtual presentation.

Investigators sought to prove with this study that targeted radiation to the marrow with apamistamab, a radioactive iodine (131I)labeled anti-CD45 antibody, could enable the successful engraftment of patients despite active disease in the marrow. Safety and robust efficacy had previously been demonstrated with the agent in 271 patients treated in 9 different phase 1 and 2 clinical trials.

The SIERRA trial is looking to enroll 150 patients, and the trial is already over 75% enrolled. Recently, an independent data monitoring committee recommended that the trial continue to the planned full enrollment based on a positive pre-planned ad-hoc analysis.2

In the study, patients with active, relapsed, refractory AML are randomized 1:1 to receive either apamistamab conditioning therapy and allogeneic HCT or conventional care. In the control arm, patients who do not achieve a complete remission (CR) by day 42 are allowed to cross over to receive Iomab-B, and those who do have a CR undergo HCT or receive standard-of-care therapy of the physicians choice.

Durable CR (dCR) rate is the primary end point of the study, characterized as complete response at 6 months after initial CR, and the secondary end point is overall survival (OS) rate at 1 year.

Patients are eligible for enrollment if they have marrow blast count 5% or the presence of peripheral blasts, age 55 years, a Karnofsky score 70, and related/unrelated donor matching at human leukocyte antigen (HLA)-A, HLA-B, HLA-C, and DRB-1. Active, relapsed, or refractory AML was defined for the sake of the trial as primary induction failure after 2 cycles of therapy including chemotherapy or 2 cycles of venetoclax (Venclexta) with a hypomethylating agent or low-dose cytarabine, first early relapse after first CR of less than 6 months, relapse refractory to salvage chemotherapy regimen, or second or subsequent relapse. Secondary or treatment-related AML was also allowed.

In the SIERRA trial, patient-specific dosimetry was used to generate an individualized therapeutic dose to target marrow and spare non-hematopoietic organs. Patients in the investigational arm received a dosimetric dose of apamistamab ( 20 mCi) approximately 19 days prior to HCT followed by a therapeutic dose of apamistamab, which is individually calculated for each patient based on an upper limit of 24 Gy to the liver. After, patients remain on radiation isolation for several days before receiving fludarabine conditioning therapy (30 mg/m2/day for 3 days) and finally low-dose total body irradiation (200 cGy) prior to HCT.

Among the first 75% of enrolled patients (n = 113), patients in the apamistamab arm (n = 56) had a median age of 63 years (range, 55-77), 35% had intermediate risk and 61% had adverse risk, the median

percent of marrow blasts at baseline was 29% (range, 4%-95%), and had received a median of 3 prior treatment regimens (range, 1-7). At randomization, 56% were in primary induction failure, 16% were in first early relapse, 15% had relapsed or refractory disease, and 13% were in their second or later relapse.

In the conventional care arm, the median age was 65 years (range, 55-77), 32% had intermediate risk and 63% had adverse risk, median marrow blasts was 20% (range, 5%-97%), and had received a median of 3 prior regimens (range, 1-6). At randomization, 49% were in primary induction failure, 21% were in first early relapse, 21% had relapsed or refractory disease, and 8.8% were in their second or later relapse. Patients who crossed over to receive apamistamab (n = 30) had similar baseline characteristics.

Forty-nine patients in the apamistamab-randomized arm were able to go on and undergo allogeneic HCT compared with 10 patients in the conventional care arm. In the investigational arm, a median of 646 mCi (range, 3541027) of apamistamab was infused at a dose of 14.7 Gy (range, 4.6-32) to the marrow. The median infused CD34-positive cell count was 5.6 x 106/Kg (range, 1.8-208). Forty-five patients received peripheral blood stem cells (PBSCs), 3 received marrow grafts, 17 had related donors, and 31 had unrelated.

Individualized therapy of Iomab-B provided myeloablative doses of radiation to the marrow, Gyurkocza, a medical oncologist at Memorial Sloan Kettering Cancer Center, commented.

These patients had a median of 30 days (range, 23-60) to HCT after randomization and 14 days (range, 9-22) to neutrophil engraftment, with no graft failure reported. Patients also had 18 days (range, 4-39) until platelet engraftment.

We also observed 100% neutrophil and platelet engraftment in patients who received Iomab-B conditioning, despite a heavy leukemia burden, Gyurkocza said.

In patients in the conventional arm who went on to HCT, conditioning regimens for HCT consisted of fludarabine/melphalan in 2, fludarabine/melphalan/total body irradiation in 1, busulfan/fludarabine in 1, cyclophosphamide/fludarabine/total body irradiation in 2, and 4 had no data on conditioning regimens available. Eight of these patients had PBSCs, 2 had marrow, 3 had related donors, 6 had unrelated, and 1 was unreported.

Median days to HCT was 67 (range, 52-104) with 17 days (range, 13-83) to neutrophil engraftment and 22 days (range, 8-35) to platelet engraftment. There was 1 graft failure.

Among the patients who crossed over to receive apamistamab before HCT, the median infused dose was 592 mCi (range, 313-1013) with 15.5 Gy (range, 6.3-42) to the marrow. The median infused CD34-positive cell count was 5.1 x 106/Kg (range, 1.8-16.1). Twenty-eight patients had PBSCs, 2 had marrow, 10 had related donors, and 20 had unrelated.

Patients had a median of 62 days (range, 36-100) to HCT, 14 days (range, 10-37) to neutrophil engraftment, and 19 days (range, 1-38) to platelet engraftment. No graft failure was reported in this group.

View original post here:
Apamistamab Conditioning Treatment Induces High Rates of HCT Success in AML - OncLive

To Read More: Apamistamab Conditioning Treatment Induces High Rates of HCT Success in AML – OncLive
categoriaBone Marrow Stem Cells commentoComments Off on Apamistamab Conditioning Treatment Induces High Rates of HCT Success in AML – OncLive | dataFebruary 11th, 2021
Read All

Jasper Therapeutics Announces Positive Data from Phase 1 Clinical Trial of JSP191 as Targeted Stem Cell Conditioning Agent in Patients with…

By daniellenierenberg

REDWOOD CITY, Calif.--(BUSINESS WIRE)--Jasper Therapeutics, Inc., a biotechnology company focused on hematopoietic cell transplant therapies, today announced positive preliminary findings from its ongoing multicenter Phase 1 clinical trial of JSP191, a first-in-class anti-CD117 (stem cell factor receptor) monoclonal antibody, as a conditioning agent in older patients with myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) undergoing hematopoietic (blood) cell transplantation.

Data from the first six patients who received a single dose of JSP191 prior to transplantation showed successful engraftment in all six patients. Complete donor myeloid chimerism (equal or greater than 95%) was observed in five of six evaluable patients at 28 days, and all three evaluable patients had total donor chimerism equal or greater than 95% observed at day 90. In addition, at 28 days, three of five evaluable patients showed complete eradication of measurable residual disease (MRD) as measured by next-generation sequencing. Two of the five evaluable patients showed substantial reductions in MRD. No treatment-related serious adverse events were reported.

The findings were presented by lead investigator Lori Muffly, M.D., M.S., Assistant Professor of Medicine (Blood and Bone Marrow Transplantation) at Stanford Medicine, as a late-breaking abstract at the 2021 Transplantation & Cellular Therapy (TCT) Meetings of the American Society for Transplantation and Cellular Therapy (ASTCT) and the Center for International Blood & Marrow Transplant Research (CIBMTR).

These early clinical results are the first to demonstrate that JSP191 administered in combination with a standard non-myeloablative regimen of low-dose radiation and fludarabine is well tolerated and can clear measurable residual disease in older adults with MDS or AML undergoing hematopoietic cell transplantation a patient population with historically few options, said Kevin N. Heller, M.D., Executive Vice President, Research and Development, of Jasper Therapeutics. These patients could be cured by hematopoietic cell transplantation, but the standard-of-care myeloablative conditioning regimens used today are highly toxic and associated with high rates of morbidity and mortality particularly in older adults. Traditional lower intensity transplant conditioning regimens are better tolerated in older adults, but are associated with higher rates of relapse in MDS/AML patients with measurable residual disease. JSP191, a well-tolerated biologic conditioning agent that targets and depletes both normal hematopoietic stem cells and those that initiate MDS and AML, has the potential to be a curative option for these patients.

The open-label, multicenter Phase 1 study (JSP-CP-003) is evaluating the safety, tolerability and efficacy of adding JSP191 to the standard conditioning regimen of low-dose radiation and fludarabine among patients age 65 to 74 years with MDS or AML undergoing hematopoietic cell transplantation. Patients were ineligible for full myeloablative conditioning. The primary outcome measure of the study is the safety and tolerability of JSP191 as a conditioning regimen up to one year following a donor cell transplant.

We designed JSP191 to be given as outpatient conditioning and to have both the efficacy and safety profile required for use in newborn patients and older patients for successful outcomes, said Wendy Pang, M.D., Ph.D. Executive Director, Research and Translational Medicine, of Jasper Therapeutics. We are enthusiastic about the reduction of measurable residual disease seen in these patients, especially given that it is associated with improved relapse-free survival. We are excited to continue our research in MDS/AML, with plans for an expanded study. We are evaluating JSP191, the only antibody of its kind, in two ongoing clinical studies and are encouraged by the positive clinical data seen to date.

About MDS and AML

Myelodysplastic syndromes (MDS) are a group of disorders in which immature blood-forming cells in the bone marrow become abnormal and do not make new blood cells or make defective blood cells, leading to low numbers of normal blood cells, especially red blood cells.1 In about one in three patients, MDS can progress to acute myeloid leukemia (AML), a rapidly progressing cancer of the bone marrow cells.1 Both are diseases of the elderly with high mortality. Each year, about 5,000 patients with MDS and 8,000 people with AML in the G7 countries receive hematopoietic cell transplants. These transplants are curative but are underused due to the toxicity of the current high-intensity conditioning regimen, which includes the chemotherapy agents busulfan and fludarabine.

About JSP191

JSP191 (formerly AMG 191) is a first-in-class humanized monoclonal antibody in clinical development as a conditioning agent that clears hematopoietic stem cells from bone marrow. JSP191 binds to human CD117, a receptor for stem cell factor (SCF) that is expressed on the surface of hematopoietic stem and progenitor cells. The interaction of SCF and CD117 is required for stem cells to survive. JSP191 blocks SCF from binding to CD117 and disrupts critical survival signals, causing the stem cells to undergo cell death and creating an empty space in the bone marrow for donor or gene-corrected transplanted stem cells to engraft.

Preclinical studies have shown that JSP191 as a single agent safely depletes normal and diseased hematopoietic stem cells, including in animal models of SCID, myelodysplastic syndromes (MDS) and sickle cell disease (SCD). Treatment with JSP191 creates the space needed for transplanted normal donor or gene-corrected hematopoietic stem cells to successfully engraft in the host bone marrow. To date, JSP191 has been evaluated in more than 90 healthy volunteers and patients.

JSP191 is currently being evaluated in two separate clinical studies in hematopoietic cell transplantation. A Phase 1/2 dose-escalation and expansion trial is evaluating JSP191 as a sole conditioning agent to achieve donor stem cell engraftment in patients undergoing hematopoietic cell transplantation for severe combined immunodeficiency (SCID), which is potentially curable only by this type of treatment. Data presented at the 62nd American Society of Hematology (ASH) Annual Meeting showed that a single dose of JSP191 administered prior to stem cell transplantation in a 6-month-old infant was effective in establishing sustained donor chimerism followed by development of B, T and NK immune cells. No treatment-related adverse events were reported. A Phase 1 clinical study is evaluating JSP191 in combination with another low-intensity conditioning regimen in patients with MDS or AML undergoing hematopoietic cell transplantation. For more information about the design of these two ongoing clinical trials, visit http://www.clinicaltrials.gov (NCT02963064 and NCT04429191).

Additional studies are planned to advance JSP191 as a conditioning agent for patients with other rare and ultra-rare monogenic disorders and autoimmune diseases.

About Jasper Therapeutics

Jasper Therapeutics is a biotechnology company focused on the development of novel curative therapies based on the biology of the hematopoietic stem cell. The companys lead compound, JSP191, is in clinical development as a conditioning antibody that clears hematopoietic stem cells from bone marrow in patients undergoing a hematopoietic cell transplant. This first-in-class conditioning antibody is designed to enable safer and more effective curative hematopoietic cell transplants and gene therapies. For more information, please visit us at jaspertherapeutics.com.

1 https://www.cancer.org/cancer/myelodysplastic-syndrome/about/what-is-mds.html

Go here to read the rest:
Jasper Therapeutics Announces Positive Data from Phase 1 Clinical Trial of JSP191 as Targeted Stem Cell Conditioning Agent in Patients with...

To Read More: Jasper Therapeutics Announces Positive Data from Phase 1 Clinical Trial of JSP191 as Targeted Stem Cell Conditioning Agent in Patients with…
categoriaBone Marrow Stem Cells commentoComments Off on Jasper Therapeutics Announces Positive Data from Phase 1 Clinical Trial of JSP191 as Targeted Stem Cell Conditioning Agent in Patients with… | dataFebruary 11th, 2021
Read All

Gamida Cell Presents Efficacy and Safety Results of Phase 3 Study of Omidubicel in Patients with Hematologic Malignancies at the 2021 TCT Meetings of…

By daniellenierenberg

BOSTON--(BUSINESS WIRE)--Gamida Cell Ltd. (Nasdaq: GMDA), an advanced cell therapy company committed to cures for blood cancers and serious hematologic diseases, today announced the results of a Phase 3 clinical study of omidubicel presented in an oral session at the Transplantation & Cellular Therapy Meetings of the American Society of Transplantation and Cellular Therapy (ASTCT) and Center for International Blood & Marrow Transplant Research (CIBMTR), or the TCT Meetings. Omidubicel is an advanced cell therapy under development as a potential life-saving allogeneic hematopoietic stem cell transplant solution for patients with hematologic malignancies.

This clinical data set was from the international, multi-center, randomized Phase 3 study of omidubicel that was designed to evaluate the safety and efficacy of omidubicel in patients with high-risk hematologic malignancies undergoing a bone marrow transplant compared to a comparator group of patients who received a standard umbilical cord blood transplant. This is the first presentation of these data in a peer-reviewed conference. The full presentation is available on the Gamida Cell website.

The results of this global Phase 3 study of omidubicel in patients with hematologic malignancies show that omidubicel resulted in faster hematopoietic recovery, fewer bacterial and viral infections and fewer days in hospital, all of which are meaningful results and represent potentially important advancements in care when considering the patient experience following transplant, said Mitchell Horwitz, M.D., principal investigator and professor of medicine at the Duke Cancer Institute. The comparator, a transplant with umbilical cord blood, has been historically shown to result in low incidence of graft versus host disease (GvHD) in relation to other graft sources, and in this study, omidubicel demonstrated a GvHD profile similar to the comparator. Moreover, previous studies have shown that engraftment with omidubicel is durable, with some patients in the Phase 1/2 study receiving their transplant more than 10 years ago. The data presented at this meeting indicate that omidubicel has the potential to be considered a new standard of care for patients who are in need of stem cell transplantation but do not have access to a matched donor.

Details of Phase 3 Efficacy and Safety Results Shared at the TCT Meetings

Patient demographics including racial and ethnic diversity and baseline characteristics were well-balanced across the two study groups. The studys intent-to-treat analysis included 125 patients aged 1365 years with a median age of 41. Diseases included acute lymphoblastic leukemia, acute myelogenous leukemia, chronic myelogenous leukemia, myelodysplastic syndrome or lymphoma. Patients were enrolled at more than 30 clinical centers in the United States, Europe, Asia, and Latin America.

Gamida Cell previously reported in May 2020 that the study achieved its primary endpoint, showing that omidubicel demonstrated a statistically significant reduction in time to neutrophil engraftment, a measure of how quickly the stem cells a patient receives in a transplant are established and begin to make healthy new cells, and a key milestone in a patients recovery from a bone marrow transplant. The median time to neutrophil engraftment was 12 days for patients randomized to omidubicel compared to 22 days for the comparator group (p<0.001).

All three secondary endpoints demonstrated a statistically significant improvement among patients who were randomized to omidubicel in relation to patients randomized to the comparator group (intent-to-treat). Platelet engraftment was significantly accelerated with omidubicel, with 55 percent of patients randomized to omidubicel achieving platelet engraftment at day 42, compared to 35 percent for the comparator (p = 0.028). The rate of infection was significantly reduced for patients randomized to omidubicel, with the cumulative incidence of first grade 2 or grade 3 bacterial or invasive fungal infection for patients randomized to omidubicel of 37 percent, compared to 57 percent for the comparator (p = 0.027). Hospitalization in the first 100 days after transplant was also reduced in patients randomized to omidubicel, with a median number of days alive and out of hospital for patients randomized to omidubicel of 60.5 days, compared to 48.0 days for the comparator (p = 0.005). The details of these data were first reported in December 2020.

Previously unpublished data from the study relating to exploratory endpoints also support the clinical benefit demonstrated by the studys primary and secondary endpoints. There was no statistically significant difference between the two patient groups related to grade 3/4 acute GvHD (14 percent for omidubicel, 21 percent for the comparator) or all grades chronic GvHD at one year (35 percent for omidubicel, 29 percent for the comparator). Non-relapse mortality was shown to be 11 percent for patients randomized to omidubicel and 24 percent for patients randomized to the comparator (p=0.09).

These clinical data results will form the basis of a Biologics License Application (BLA) that Gamida Cell expects to submit to the U.S. Food and Drug Administration (FDA) in the second half of 2021.

We believe that omidubicel has the potential to transform the field of hematopoietic bone marrow transplant by expanding access to this potentially curative cell therapy treatment for thousands of patients who are in need of a transplant but lack access to a matched related donor, said Julian Adams, Ph.D., chief executive officer of Gamida Cell. Sharing the results of the Phase 3 study of omidubicel with the transplant community is a major moment for Gamida Cell, and we are forever grateful to the patients who participated in this study, their caregivers, and the work of the investigators and their teams.

About Omidubicel

Omidubicel is an advanced cell therapy under development as a potential life-saving allogeneic hematopoietic stem cell (bone marrow) transplant solution for patients with hematologic malignancies (blood cancers). In both Phase 1/2 and Phase 3 clinical studies (NCT01816230, NCT02730299), omidubicel demonstrated rapid and durable time to engraftment and was generally well tolerated.1,2 Omidubicel is also being evaluated in a Phase 1/2 clinical study in patients with severe aplastic anemia (NCT03173937). The aplastic anemia investigational new drug application is currently filed with the FDA under the brand name CordIn, which is the same investigational development candidate as omidubicel. For more information on clinical trials of omidubicel, please visit http://www.clinicaltrials.gov.

Omidubicel is an investigational therapy, and its safety and efficacy have not been established by the FDA or any other health authority.

About Gamida Cell

Gamida Cell is an advanced cell therapy company committed to cures for patients with blood cancers and serious blood diseases. We harness our cell expansion platform to create therapies with the potential to redefine standards of care in areas of serious medical need. For additional information, please visit http://www.gamida-cell.com or follow Gamida Cell on LinkedIn or Twitter at @GamidaCellTx.

Cautionary Note Regarding Forward Looking Statements

This press release contains forward-looking statements as that term is defined in the Private Securities Litigation Reform Act of 1995, including with respect to timing of anticipated regulatory submissions, which statements are subject to a number of risks, uncertainties and assumptions, including, but not limited to the progress and expansion of Gamida Cells manufacturing capabilities and other commercialization efforts and clinical, scientific, regulatory and technical developments. In light of these risks and uncertainties, and other risks and uncertainties that are described in the Risk Factors section and other sections of Gamida Cells Annual Report on Form 20-F, filed with the Securities and Exchange Commission (SEC) on February 26, 2020, its Report on Form 6-K filed with the SEC on August 12, 2020, and other filings that Gamida Cell makes with the SEC from time to time (which are available at http://www.sec.gov), the events and circumstances discussed in such forward-looking statements may not occur, and Gamida Cells actual results could differ materially and adversely from those anticipated or implied thereby. Any forward-looking statements speak only as of the date of this press release and are based on information available to Gamida Cell as of the date of this release.

1 Horwitz M.E., Wease S., Blackwell B., Valcarcel D. et al. Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide. J Clin Oncol. 2019 Feb 10;37(5):367-374.

2 Gamida Cell press release, Gamida Cell Announces Positive Topline Data from Phase 3 Clinical Study of Omidubicel in Patients with High-Risk Hematologic Malignancies, issued May 12, 2020. Last accessed August 31, 2020.

View original post here:
Gamida Cell Presents Efficacy and Safety Results of Phase 3 Study of Omidubicel in Patients with Hematologic Malignancies at the 2021 TCT Meetings of...

To Read More: Gamida Cell Presents Efficacy and Safety Results of Phase 3 Study of Omidubicel in Patients with Hematologic Malignancies at the 2021 TCT Meetings of…
categoriaBone Marrow Stem Cells commentoComments Off on Gamida Cell Presents Efficacy and Safety Results of Phase 3 Study of Omidubicel in Patients with Hematologic Malignancies at the 2021 TCT Meetings of… | dataFebruary 11th, 2021
Read All

World Symposium Orchard leads the crop of Hurler syndrome hopefuls – Vantage

By daniellenierenberg

Gene therapy companies have been under pressure lately, but Orchard Therapeutics got a lift yesterday from promising early data with its mucopolysaccharidosis type I candidateOTL-203.

The company is seeking to supersede the current standard of care, enzyme-replacement therapy or bone marrow transplant. But other gene therapy contenders are not too far behind, notablyRegenxbio, which in December started a proof-of-concept study of its rival project, RGX-111.

Good IDUA

Both projects seek to deliver the -l-iduronidase (IDUA) gene, which is mutated in MPS-I, leading to a deficiency of the IDUA enzyme. This enzyme usually breaks down glycosaminoglycans (GAGs), so in MPS-I patients these build up, causing tissue and organ damage. Symptoms of MSP-I, also known as Hurler syndrome, include cognitive impairment and skeletal deformity; if left untreated, patients rarely survive beyond the age of 10.

And both OTL-203 and RGX-111 are designed as one-time therapies, whereas the current enzyme replacement, Biomarin/Sanofis Aldurazyme, is given intravenously once a week.

However, the gene therapy candidates go about restoring IDUA enzyme activity in different ways. OTL-203 uses hematopoietic stem cells taken from the patient, then genetically modified using a lentiviral vector to express the IDUA gene, before being reinfused.

RGX-111, meanwhile, uses an adeno-associated viral vector to deliver the gene directly to the brain, getting around a central problem with Aldurazyme, which cannot cross the blood-brain barrier.

Getting into the brain should not be a problem for OTL-203 either, Orchards head of medical affairs, Leslie Meltzer, told Evaluate Vantage. She explained that hematopoietic stem cells naturally cross the blood-brain barrier and, once in the CNS, differentiate into a microglial-like cell.

This claim appears to be supported by the latest data, which admittedly come in just a handful of subjects. The eight-patient phase I/II trial, presented at the World Symposium yesterday, found increases in the IDUA enzyme in patients blood and cerebrospinal fluid. There was also a decrease in GAGs in the CSF and urine.

Encouragingly, this activity appears to have translated into a clinical benefit: all eight patients showed stable cognitive scores and stable motor function versus baseline, as well as growth in the normal range for patients age.

Its a progressive disease, so youd expect these things to worsen over time, but the fact they continued to be stable is very promising, Ms Meltzer said.She admitted that the data were early, with only around a year of follow-up on most of the clinical endpoints.

Orchard plans to start a registrational study by the end of this year.Ms Meltzer would not give any details ondesign, saying this would be finalised after feedback from regulators.

Regenxbios proof-of-concept study of RGX-111 is due to complete in November, putting the project about a year behind OTL-203.

One candidate that will go no further is Sangamos SB-318. The company reported disappointing data with the in vivo zinc finger nuclease genome-editing project two years ago, and has since said it would focus on second-generation zinc finger projects.

Still, even two gene therapies might be too many for an ultra-rare disease like MPS-I, which affects just one in 100,000 people. Asked whether this market could support more than one gene therapy, Ms Meltzer said newborn screening recently implemented in countries including the UScould lead to a revision of that estimate.

But, as in other rare disorders that have attracted several gene therapy players, a battle over a limited patient pool could be shaping up.

Read the original post:
World Symposium Orchard leads the crop of Hurler syndrome hopefuls - Vantage

To Read More: World Symposium Orchard leads the crop of Hurler syndrome hopefuls – Vantage
categoriaBone Marrow Stem Cells commentoComments Off on World Symposium Orchard leads the crop of Hurler syndrome hopefuls – Vantage | dataFebruary 11th, 2021
Read All

Growth Factors of Hematopoietic Stem Cell Transplantation (HSCT) Market with Emerging Trends and Revenue Estimation By 2026 – AlgosOnline

By daniellenierenberg

Global Hematopoietic Stem Cell Transplantation (HSCT) Report offers market size, share, overview, segmentation by types, application, countries, key manufactures, cost analysis, industrial chain, sourcing strategy, downstream buyers, marketing strategy analysis, distributors/traders, factors affecting market, forecast and other important information for key insight.

The research report on Hematopoietic Stem Cell Transplantation (HSCT) market is an in-depth analysis of pivotal drivers, challenges, and growth prospects prevailing in the business space and their impact on the expansion graph over the ensuing years.

Request a sample Report of Hematopoietic Stem Cell Transplantation (HSCT) Market at:https://www.marketstudyreport.com/request-a-sample/3147041?utm_source=algosonline.com&utm_medium=Ram

According to the report, Hematopoietic Stem Cell Transplantation (HSCT) market is anticipated to record a y-o-y growth rate of XX% over the analysis duration (2020-2026) and is poised to amass substantial revenues by the end of study term.

Various disruptions are being observed on account of lockdowns imposed to control COVID-19 spread, leading to uncertainties. While all industry verticals are facing revenues troubles presently, some sectors will continue to fight these challenges even as economy emerges from pandemic blowback.

As a result, all the businesses are revising their budgets to formulate new profit trajectory for the forthcoming years. Our thorough analysis of this industry space will enable you to come up with contingency plans and prepare you to manage market qualms.

The research document scrutinizes different segmentations to offer comprehensive insights about the growth opportunities in the market.

Major points summarized in Hematopoietic Stem Cell Transplantation (HSCT) market report:

Elucidating Hematopoietic Stem Cell Transplantation (HSCT) market segmentations:

Regional terrain:

Ask for Discount on Hematopoietic Stem Cell Transplantation (HSCT) Market Report at:https://www.marketstudyreport.com/check-for-discount/3147041?utm_source=algosonline.com&utm_medium=Ram

Product scope:

Application landscape:

Competitive hierarchy:

Important Highlights of the Report:

Industry Size & Forecast: Estimations on the global Hematopoietic Stem Cell Transplantation (HSCT) industry size on the basis of value and volume are provided in this part of the report

Segmental Analysis: The report has examined the high-growth segments including product type, application, and end-users

Future Prospects: Future opportunities are estimated to emerge in the industry

Geography-Wise Analysis: The authors of the report have studied the regions having growth potential to help companies plan their future investments

Study on Competitive Landscape: The industry experts have offered thorough information about the strategic tactics adopted by the industry participants.

Key questions answered in the report:

For More Details On this Report: https://www.marketstudyreport.com/reports/global-hematopoietic-stem-cell-transplantation-hsct-market-2021-by-company-regions-type-and-application-forecast-to-2026

Related Reports:

2. Global Nasal Drops Market 2021 by Manufacturers, Regions, Type and Application, Forecast to 2026Read More: https://www.marketstudyreport.com/reports/global-nasal-drops-market-2021-by-manufacturers-regions-type-and-application-forecast-to-2026

Read More Reports On: https://www.marketwatch.com/press-release/giant-magnetoresistive-gmr-sensors-market-size-growth-factors-demand-and-trends-forecast-to-2026-2021-02-09

Contact Us:Corporate Sales,Market Study Report LLCPhone: 1-302-273-0910Toll Free: 1-866-764-2150 Email: [emailprotected]

Original post:
Growth Factors of Hematopoietic Stem Cell Transplantation (HSCT) Market with Emerging Trends and Revenue Estimation By 2026 - AlgosOnline

To Read More: Growth Factors of Hematopoietic Stem Cell Transplantation (HSCT) Market with Emerging Trends and Revenue Estimation By 2026 – AlgosOnline
categoriaBone Marrow Stem Cells commentoComments Off on Growth Factors of Hematopoietic Stem Cell Transplantation (HSCT) Market with Emerging Trends and Revenue Estimation By 2026 – AlgosOnline | dataFebruary 11th, 2021
Read All

Manageable Safety Profile Observed in Phase 1 Studies Examining UCART19 for Pediatric and Adult Patients with B-Cell ALL – Cancer Network

By daniellenierenberg

UCART19 produced a manageable safety profile in 2 separate phase 1 studies examining heavily pretreated pediatric and adult patients with relapsed or refractory B-cell acute lymphoblastic leukemia (ALL), according to data published in The Lancet.

For the first time, these studies support the feasibility of UCART19 and other genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor (CAR) T-cells to treat this group of patients with aggressive forms of ALL.

Phase 1 trials in paediatric and adult patients with late-stage relapsed or refractory B-cell acute lymphoblastic leukaemia have shown the feasibility, safety, and activity of UCART19, an off-the-shelf CAR T-cell product, wrote the investigative team. The results of these trials represent a substantial step forward in the development of CAR T cells and could herald a new, effective, and easily accessible cell therapy for patients with B-cell acute lymphoblastic leukaemia.

The results determined that the most common adverse event between both phase 1 studies was cytokine release syndrome (CRS), observed in 19 patients (91%). Three patients (14%) experienced grade 3/4 CRS.

More, 8 patients (38%) experienced grades 1/2 neurotoxicity, 2 (10%) experienced grade 1 acute skin graft-versus-host disease, and 6 (32%) had grade 4 prolonged cytopenia.

The research team recorded 2 treatment-related deaths between the 2 studies. The first was caused by neutropenic sepsis in a patient with concurrent CRS and the other was from pulmonary hemorrhage in a patient with persistent cytopenia.

Overall, 14 of 21 patients (67%) experienced a complete response or complete response with incomplete hematological recovery at 28 days following infusion. Median duration of response was recorded at 4.1 months, with 10 of 14 adult patients (71%) progressing to subsequent allogeneic stem cell transplant. The progression-free survival rate at 6 months was 27%, with an overall survival rate of 55%.

The adverse effects observed with UCART19 to date seem similar to those reported for autologous anti-CD19 CAR T cells, wrote the investigators. Cytokine release syndrome was encountered in the majority of patients in whom UCART19 expansion was detected and appeared no more severe than with approved autologous products.

The 2 ongoing, multicenter, clinical trials (NCT02808442 and NCT02746952) enrolled 7 pediatric and 14 adult patients from June 3, 2016, through October 23, 2018, to examine the safety profile and antileukemic activity of UCART19.

The dose-escalation studies began with patients undergoing lymphodepletion with fludarabine and cyclophosphamide, with or without alemtuzumab (Lemtrada), followed by different doses of UCART19 for adults and children. The primary end point of the data was adverse events.

The small sample size for the investigation is the leading limitation for the research, but the research team also mentioned the differing trial designs, lymphodepletion regimens, and UCART19 cell doses to be among limitations of both trials.

The results [of these studies] are an encouraging step forward for the field of allogeneic CAR T cells, and UCART19 offers the opportunity to treat patients with rapidly progressive disease and where autologous CAR T-cell therapy is unavailable, wrote the investigators.

Reference:

Benjamin R, Graham C, Yallop D, et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet. 2020;396(10266):1885-1894. doi: 10.1016/S0140-6736(20)32334-5

Visit link:
Manageable Safety Profile Observed in Phase 1 Studies Examining UCART19 for Pediatric and Adult Patients with B-Cell ALL - Cancer Network

To Read More: Manageable Safety Profile Observed in Phase 1 Studies Examining UCART19 for Pediatric and Adult Patients with B-Cell ALL – Cancer Network
categoriaSkin Stem Cells commentoComments Off on Manageable Safety Profile Observed in Phase 1 Studies Examining UCART19 for Pediatric and Adult Patients with B-Cell ALL – Cancer Network | dataFebruary 11th, 2021
Read All

Platelet Rich Plasma Therapy: The answer to a rejuvenated body, skin, hair and sex life! – Longevity LIVE – Longevity LIVE

By daniellenierenberg

You might associate platelet rich plasma therapy (PRP) with the renowned vampire facial and youd be right. However, theres so much more to this ground-breaking treatment than what youve seen in mainstream media. Founder of Anti-Aging Art Medical Aesthetics, Dr Reza Mia, shares more on this cutting-edge procedure.

PRP, or platelet rich plasma therapy, as its technically known, is a non-invasive treatment performed to accelerate healing, minimise the signs of ageing, accentuate parts of the body and to relieve pain. Incredibly versatile, this therapy is used among athletes to accelerate the healing of injuries, it is used to treat arthritis and tendonitis and is also popularly used as an anti-ageing facial treatment. PRP is considered a long-lasting solution to the bodys natural healing process, with results ranging from instant, to appearing after a couple of weeks, and lasting up to several years.

The science behind it

Plasma is the liquid part of the blood, consisting mainly of water and protein. It allows red and white blood cells, as well as platelets (a type of blood cell responsible for making blood clot, as well as for facilitating healing) to move through the bloodstream. Platelets are rich in connective tissue growth and healing factors; they initiate repair in the body and attract stem cells to injuries. This amazing healing ability is what makes them so effective in platelet rich plasma therapy.

To collect plasma, we draw blood from the body and then inserts it into a machine called a centrifuge, which spins the blood at high speeds, separating platelet-rich plasma from the rest of the blood. The red blood cells are discarded, and one is left with a concentration of platelets above normal values. This concentration can then be injected into various areas of the body to treat injuries or concerns.

Sports-related injuries

PRP has become a popular therapy among athletes. It is used to treat injured tendons, ligament sprains and tears, damaged ligaments and joints. Not only does it stimulate the healing of cartilage but it also helps reduce pain. Soft tissue injuries are most responsive to PRP treatment. Depending on the type of injury and the severity of it, some athletes who would have been side-lined for months have seen major results after around 6 weeks.

The vampire facial or facelift gained worldwide fame when reality star Kim Kardashian famously posted about it on Instagram a few years ago. Today, it is a common anti-ageing treatment. PRP is injected into the face to reduce wrinkles and rejuvenate the skin. The treatment provides a gradual increase in volume by helping to stimulate the bodys natural collagen production. Other benefits of the treatment include skin tightening, lifting and smoothing, and a more even skin tone.

Also known as a vampire breast lift, PRP for breast enhancement is a non-surgical form of breast augmentation. Unlike a traditional breast lift or augmentation which requires incisions, this treatment is performed by utilising PRP injections to create a fuller and firmer bust. A vampire breast lift wont increase your cup size or change the shape of your breast. However, it will create a fuller and firmer appearance and minimise the appearance of wrinkles and stretch marks. The results have been likened to those achieved by wearing a great quality push-up bra.

PRP therapy can be used to improve sexual function in both men and women. Platelet rich plasma sexual rejuvenation, involves injecting your own activated blood into the vagina or penis. The v-shot can enhance clitoral orgasms; increase arousal and lubrication and vaginal tightness. The benefits of the p-shot are longer, firmer and more sustainable erections and proven penis enlargement. The question on everyones lips is, of course, whether or not the latter procedure is painful. No. It is completely painless!

Did you know that PRP therapy is also successful when used to enhance hair growth? The treatment has shown to effectively treat androgenic alopecia (also known as male pattern baldness). PRP injections trigger and maintain natural hair growth by stimulating blood flow to the hair follicles. This treatment may be combined with otherhair loss procedures or medications.

Undergoing PRP therapy is simple and painless. The entire procedure, from drawing the blood to solution preparation, takes around half an hour and is performed in your aesthetic practitioners office. The time spent on the treatment performed with the PRP afterwards, is dependent on the individual treatment. Generally speaking, PRP injections are not painful,. We make use of various pain management techniques to ensure the comfort of our patients during their procedures. Depending on your treatment, you may experience some swelling and bruising for a few days, but this clears up quickly.

While the vampire facial put PRP on the general publics map, theres so much more that can be achieved by making use of this incredible treatment. Whether youre looking to treat an injury, minimise your wrinkles, rejuvenate your sex life or increase your hair growth, Plasma rich platelet therapy is a safe and effective treatment option to consider.

Visit http://www.drreza.co.za or or follow Dr Mia on Instagram @drreza.sa and @antiagingart

Visit link:
Platelet Rich Plasma Therapy: The answer to a rejuvenated body, skin, hair and sex life! - Longevity LIVE - Longevity LIVE

To Read More: Platelet Rich Plasma Therapy: The answer to a rejuvenated body, skin, hair and sex life! – Longevity LIVE – Longevity LIVE
categoriaSkin Stem Cells commentoComments Off on Platelet Rich Plasma Therapy: The answer to a rejuvenated body, skin, hair and sex life! – Longevity LIVE – Longevity LIVE | dataFebruary 11th, 2021
Read All

Outlook on the Cell Therapy Global Market to 2027 – Opportunity Analysis and Industry Forecasts – Yahoo Finance

By daniellenierenberg

Dublin, Feb. 09, 2021 (GLOBE NEWSWIRE) -- The "Cell Therapy Market by Cell Type, Therapy Type, Therapeutic Area, and End User: Global Opportunity Analysis and Industry Forecast, 2020-2027" report has been added to ResearchAndMarkets.com's offering.

The global cell therapy market accounted for $7,754. 89 million in 2019, and is expected to reach $48,115. 40 million by 2027, registering a CAGR of 25. 6% from 2020 to 2027.

Cell therapy involves administration of somatic cell preparations for treatment of diseases or traumatic damages. Cell therapy aims to introduce new, healthy cells into a patient's body to replace diseased or missing ones.

This is attributed to the fact that specialized cells, such as brain cells, are difficult to obtain from human body. In addition, specialized cells typically have a limited ability to multiply, making it difficult to produce sufficient number of cells required for certain cell therapies. Some of these issues can be overcome through the use of stem cells. In addition, cells such as blood and bone marrow cells, mature, immature & solid tissue cells, adult stem cells, and embryonic stem cells are widely used in cell therapy procedures.

Moreover, transplanted cells including induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), neural stem cells (NSCs), and mesenchymal stem cells (MSCs) are divided broadly into two main groups including autologous cells and non-autologous cells. Development of precision medicine and advancements in Advanced Therapies Medicinal Products (ATMPS) in context to their efficiency and manufacturing are expected to be the major drivers for the market. Furthermore, automation in adult stem cells and cord blood processing and storage are the key technological advancements that fuel growth of the market for cell therapy.

In addition, growth in aging patient population, The rise in cell therapy transplantations globally, and surge in disease awareness drive growth of the global cell therapy market. Furthermore, The rise in adoption of human cells over animal cells for cell therapeutics research, technological advancements in field of cell therapy, and increase in incidences of diseases such as cancer, cardiac abnormalities, and organ failure are the key factors that drive growth of the global market.

Moreover, implementation of stringent government regulations regarding the use of cell therapy is anticipated to restrict growth of the market. On the contrary, surge in number of regulations to promote stem cell therapy and increase in funds for research in developing countries are expected to offer lucrative opportunities to the market in the future.

The global cell therapy market is categorized on the basis of therapy type, therapeutic area, cell type, end user, and region. On the basis of therapy type, the market is segregated into autologous and allogenic. By therapeutics, it is classified into malignancies, musculoskeletal disorders, autoimmune disorders, dermatology, and others.

The global cell therapy market is categorized on the basis of therapy type, therapeutic, cell type, end user and region. On the basis of therapy type, the market is segregated into autologous and allogenic. By therapeutic area, it is classified into malignancies, musculoskeletal disorders, autoimmune disorders, dermatology, and others. On the basis of cell type, it is segregated into stem cell therapy and non-stem cell type. On the basis of end user, it is segregated into hospital & clinics and academic & research institutes. On the basis of region, the market is studied across North America, Europe, Asia-Pacific, and LAMEA.

Key Benefits

Story continues

The study provides an in-depth analysis of the global cell therapy market along with the current trends and future estimations to elucidate the imminent investment pockets.

Comprehensive analysis of factors that drive and restrict the market growth is provided in the report.

Comprehensive quantitative analysis of the industry from 2019 to 2027 is provided to enable the stakeholders to capitalize on the prevailing market opportunities.

Extensive analysis of the key segments of the industry helps in understanding the forms and types of cell therapy used across the globe.

Key market players and their strategies have been analyzed to understand the competitive outlook of the market.

Key Topics Covered:

Chapter 1: Introduction1.1. Report Description1.2. Key Benefits for Stakeholders1.3. Key Market Segments1.4. Research Methodology1.4.1. Secondary Research1.4.2. Primary Research1.4.3. Analyst Tools & Models

Chapter 2: Executive Summary2.1. Key Findings of the Study2.2. Cxo Perspective

Chapter 3: Market Overview3.1. Market Definition and Scope3.2. Key Findings3.2.1. Top Player Positioning3.2.2. Top Investment Pockets3.2.3. Top Winning Strategies3.3. Porter'S Five Forces Analysis3.4. Impact Analysis3.4.1. Drivers3.4.1.1. Technological Advancements in the Field of Cell Therapy3.4.1.2. The Rise in Number of Cell Therapy Clinical Studies3.4.1.3. The Rise in Adoption of Regenerative Medicine3.4.2. Restraint3.4.2.1. Developing Stage and Pricing3.4.3. Opportunity3.4.3.1. High Growth Potential in Emerging Markets3.5. Impact of Covid-19 on Cell Therapy Market

Chapter 4: Cell Therapy Market, by Cell Type4.1. Overview4.1.1. Market Size and Forecast4.2. Stem Cell4.2.1. Key Market Trends and Opportunities4.2.2. Market Size and Forecast, by Region4.2.3. Market Size and Forecast, by Type4.2.3.1. Bone Marrow, Market Size and Forecast4.2.3.2. Blood, Market Size and Forecast4.2.3.3. Umbilical Cord-Derived, Market Size and Forecast4.2.3.4. Adipose-Derived Stem Cell, Market Size and Forecast4.2.3.5. Others (Placenta, and Nonspecific Cells), Market Size and Forecast4.3. Non-Stem Cell4.3.1. Key Market Trends and Opportunities4.3.2. Market Size and Forecast, by Region

Chapter 5: Cell Therapy Market, by Therapy Type5.1. Overview5.1.1. Market Size and Forecast5.2. Autologous5.2.1. Key Market Trends and Opportunities5.2.2. Market Size and Forecast, by Region5.2.3. Market Analysis, by Country5.3. Allogeneic5.3.1. Key Market Trends and Opportunities5.3.2. Market Size and Forecast, by Region5.3.3. Market Analysis, by Country

Chapter 6: Cell Therapy Market, by Therapeutic Area6.1. Overview6.1.1. Market Size and Forecast6.2. Malignancies6.2.1. Market Size and Forecast, by Region6.2.2. Market Analysis, by Country6.3. Musculoskeletal Disorders6.3.1. Market Size and Forecast, by Region6.3.2. Market Analysis, by Country6.4. Autoimmune Disorders6.4.1. Market Size and Forecast, by Region6.4.2. Market Analysis, by Country6.5. Dermatology6.5.1. Market Size and Forecast, by Region6.5.2. Market Analysis, by Country6.6. Others6.6.1. Market Size and Forecast, by Region6.6.2. Market Analysis, by Country

Chapter 7: Cell Therapy Market, by End-user7.1. Overview7.1.1. Market Size and Forecast7.2. Hospitals & Clinics7.2.1. Key Market Trends and Opportunities7.2.2. Market Size and Forecast, by Region7.2.3. Market Analysis, by Country7.3. Academic & Research Institutes7.3.1. Key Market Trends and Opportunities7.3.2. Market Size and Forecast, by Region7.3.3. Market Analysis, by Country

Chapter 8: Cell Therapy Market, by Region8.1. Overview8.2. North America8.3. Europe8.4. Asia-Pacific8.5. LAMEA

Chapter 9: Company Profiles9.1. Allosource9.1.1. Company Overview9.1.2. Company Snapshot9.1.3. Operating Business Segments9.1.4. Product Portfolio9.1.5. Key Strategic Moves and Developments9.2. Cells for Cells9.2.1. Company Overview9.2.2. Company Snapshot9.2.3. Operating Business Segments9.2.4. Product Portfolio9.3. Holostem Terapie Avanzate Srl9.3.1. Company Overview9.3.2. Company Snapshot9.3.3. Operating Business Segments9.3.4. Product Portfolio9.4. Jcr Pharmaceuticals Co. Ltd.9.4.1. Company Overview9.4.2. Company Snapshot9.4.3. Operating Business Segments9.4.4. Product Portfolio9.4.5. Business Performance9.4.6. Key Strategic Moves and Developments9.5. Kolon Tissuegene, Inc.9.5.1. Company Overview9.5.2. Company Snapshot9.5.3. Operating Business Segments9.5.4. Product Portfolio9.5.5. Key Strategic Moves and Developments9.6. Medipost Co. Ltd.9.6.1. Company Overview9.6.2. Company Snapshot9.6.3. Operating Business Segments9.6.4. Product Portfolio9.6.5. Business Performance9.7. Mesoblast Ltd9.7.1. Company Overview9.7.2. Company Snapshot9.7.3. Operating Business Segments9.7.4. Product Portfolio9.7.5. Business Performance9.8. Nuvasive, Inc.9.8.1. Company Overview9.8.2. Company Snapshot9.8.3. Operating Business Segments9.8.4. Product Portfolio9.8.5. Business Performance9.9. Osiris Therapeutics, Inc.9.9.1. Company Overview9.9.2. Company Snapshot9.9.3. Operating Business Segments9.9.4. Product Portfolio9.10. Stemedica Cell Technologies, Inc.9.10.1. Company Overview9.10.2. Company Snapshot9.10.3. Operating Business Segments9.10.4. Product Portfolio

For more information about this report visit https://www.researchandmarkets.com/r/bja7iz

Go here to see the original:
Outlook on the Cell Therapy Global Market to 2027 - Opportunity Analysis and Industry Forecasts - Yahoo Finance

To Read More: Outlook on the Cell Therapy Global Market to 2027 – Opportunity Analysis and Industry Forecasts – Yahoo Finance
categoriaCardiac Stem Cells commentoComments Off on Outlook on the Cell Therapy Global Market to 2027 – Opportunity Analysis and Industry Forecasts – Yahoo Finance | dataFebruary 11th, 2021
Read All

Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -…

By daniellenierenberg

According to the new market research report Autologous Stem Cell Based Therapies Market Strategic recommendations, Trends, Segmentation, Use Case Analysis, Competitive Intelligence, Global and Regional Forecast (to 2026), published by In4Research, acknowledges you about the market developments, technological advancements, supply & demand scenario, pricing factors, and emerging trends that are going to influence the growth of the Autologous Stem Cell Based Therapies market. This research report also provides details on the revenue drivers, product innovations, government regulations & policies that act as a game-changer in the market growth.

The report provides insights on the following pointers:

Request for a sample copy of the report to get premium insights of Autologous Stem Cell Based Therapies market at https://www.in4research.com/sample-request/46884

The report also contains brief information on the key players in the Autologous Stem Cell Based Therapies industry operating on the Market. The report provides in-depth information on the industry overview, the share of revenues, developments, mergers and acquisitions, and key strategies. The report also includes a full analysis of product innovation and consumer behavior. The Autologous Stem Cell Based Therapies market has been segmented by commodity type, end-users, technology, industry verticals, and regions. The in-depth research will allow readers to better understand well-established and emerging players in shaping their business strategies to achieve long-term and short-term goals. The report outlines a wide range of areas and locations where key participants could identify opportunities for the future.

The Major Players Covered in Autologous Stem Cell Based Therapies Market Report are:

Application Analysis: Global Autologous Stem Cell Based Therapies market also specifically underpins end-use application scope and their improvements based on technological developments and consumer preferences.

Product Type Analysis: Global Autologous Stem Cell Based Therapies market also specifically underpins type scope and their improvements based on technological developments and consumer preferences.

For more Customization, Connect with us at https://www.in4research.com/customization/46884

The report is a versatile reference guide to understand developments across multiple regions such as depicted as under:

In this study, the years considered to estimate the market size of Autologous Stem Cell Based Therapies Market:

In the report, the market outlook section mainly encompasses fundamental dynamics of the market which include drivers, restraints, opportunities, and challenges faced by the industry. Drivers and restraints are intrinsic factors whereas opportunities and challenges are extrinsic factors of the Autologous Stem Cell Based Therapies Market.

In4Research narrows down the available data using primary sources to validate the data and use it in compiling a full-fledged market research study. The report contains a quantitative and qualitative estimation of market elements that interest the client. The Global Autologous Stem Cell Based Therapies Market is mainly bifurcated into sub-segments which can provide classified data regarding the latest trends in the market.

Ask Your Queries to our Analyst regarding Autologous Stem Cell Based Therapies Report at https://www.in4research.com/speak-to-analyst/46884

Chapters Covered in Autologous Stem Cell Based Therapies Market Report are As Follow:

Buy Full Research Report at https://www.in4research.com/buy-now/46884

FOR ALL YOUR RESEARCH NEEDS, REACH OUT TO US AT:

Contact Name: Rohan

Email: [emailprotected]

Phone: +1 (407) 768-2028

See the original post:
Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -...

To Read More: Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -…
categoriaCardiac Stem Cells commentoComments Off on Autologous Stem Cell Based Therapies Market Global Expansion by Key Segments and Industry Dynamics From 2021 to 2026 Atlantic Financial Management -… | dataFebruary 11th, 2021
Read All

PM Modi Waives off Rs 6 Crore Tax on Imported Medicine for 6-month-old Baby Girl from Mumbai – News18

By daniellenierenberg

For baby Teera Kamat, who has been on the earth for a mere six months, every day has been a struggle for existence and a grim reminder to her parents about the fragile little being that needed a miracle to be saved. Mumbai-born Teera is suffering from Spinal Muscular Atrophy, a very rare medical condition that often does not let children live beyond 5 months of age and her condition requires a lot of money for the treatment.

On Wednesday, Prime Minister Narendra Modi, in a humanitarian move, decided to waive off Rs 6 crore as a GST amount against Rs 16 crore of imported medicines that are required to treat Teera. Baby Teera's parents Priyanka and Mihir Kamat have raised Rs 16 crore through crowdfunding for their daughter who needs a surgery to be cured. It also includes the cost of the medicine Zolgensma which has to be imported from the US. The tax exemption for baby's treatment amounts to at least Rs 6.5 crore and it includes 23 percent import duty and 12 percent Goods Services Tax.

The infant's parents had earlier appealed to PM Modi in October last year about Teeras medical condition and in January this year. The Leader of Opposition Devendra Fadnavis also wrote to the Prime Minister and Finance Minister Nirmala Sitaraman reiterating the request to exempt taxes on the medicine import.

It is a type of genetic disorder and a motor neuron disease that results in a person not having any control over movement of their muscles due because of the lack of nerve cells, in their spinal cord and/or brain stem.

Spinal muscular atrophy (SMA) results in muscle wasting and weakness. For someone suffering from SMA, it is very difficult to stand, walk and control their movements. Some intense forms of the SMA can also result in inability to breathe and swallow.

SMA can either occur at birth or even appear at stages of life and they can affect one's life expectancy depending upon the seriousness and the type of the SMA.

So far, there has been no cure of SMA, but certain medicines do help, such as nusinersen (Spinraza) and onasemnogene abeparvovec-xioi (Zolgensma), that help slow the disease's progress.

The types of SMA depend on when they start showing up in a patient and how the symptoms vary in them. There are basically four kinds of SMA, as National Institute of Neurological Disorders and Stroke list, which affects symptoms and life expectancy.

The first type of SMA, or Werdnig-Hoffmann disease appears before the infant is even 6 months of age. The child might be born with difficulty in breathing and the serious condition can turn fatal if there's no treatment.

Those with SMA type II will start showing symptoms of the disease usually when they are between 6 and 18 months of age. These children can sit but will not be able to walk or stand without helped and without treatment, they might just lose their power to sit as well.

Children with SMA type III or Kugelberg-Welander disease start showing symptoms after they are 18 months of age and can walk on their own. They however, experience difficultly in walking or running and other such physical exercises related to legs.

Those with SMA type IV usually develop the symptoms after they are over 21 years of age ad have minor muscle weakness and other issues. It doesn't affect one's life expectancy.

The USA Food and Drug Administration has approved the Zolgensma gene therapy for children who show the signs of the disease and are less than 2 years. Last year in August, the FDA also gave its nod to the orally-administered drug risdiplam (Evrysdi) for patients who are older than two months of age and are diagnosed with SMA.

Physical therapy, occupational therapy, and rehabilitation are some measures that can be taken to help improve posture, stop joint immobility and help in case of muscle weakness and atrophy.

You can find the link to the crowdfunding page for baby Teera here.

Excerpt from:
PM Modi Waives off Rs 6 Crore Tax on Imported Medicine for 6-month-old Baby Girl from Mumbai - News18

To Read More: PM Modi Waives off Rs 6 Crore Tax on Imported Medicine for 6-month-old Baby Girl from Mumbai – News18
categoriaSpinal Cord Stem Cells commentoComments Off on PM Modi Waives off Rs 6 Crore Tax on Imported Medicine for 6-month-old Baby Girl from Mumbai – News18 | dataFebruary 11th, 2021
Read All

Engineered stem cells that evade immune detection could …

By daniellenierenberg

Sana Biotechnology was founded in 2018 with a mission of solving some of the most difficult challenges in gene and cell therapy. Toward that end, the company is engineering hypoimmune stem cells that can evade detection and destruction by the immune system.

Now, some of Sanas founders, who are scientists at the University of California, San Francisco (UCSF), are describing how these engineered stem cells are able to shut down the immune systems natural killer (NK) cells. They believe their findings could enhance the development of implantable cell therapies, as well as cancer immunotherapies, they reported in the Journal of Experimental Medicine.

The ability to evade NK cells could enhance a range of experimental treatments, including implants of insulin-producing cells for patients with diabetes and cardiac cells to repair heart damage. These cells are typically rejected by the immune systema problem hypoimmune stem cells were designed to circumvent.

How would you like to win free bench space at Lab Central for one scientist for an entire year? Enter the Agilent LabCentral Golden Ticket Winner Program

One innovative drug discovery or biotechnology company will be awarded a Golden Ticketone year of free individual bench space at LabCentrals shared facility, including all resident benefits! We will be accepting applications from now until February 17, 2021. Enter today!

The UCSF team used gene modification technology to design the cells so they avoid the immune responses that are either built into the bodys defense system or learned. The researchers achieved that feat by engineering the cells to express the protein CD47, which shuts down innate immune cells by activating signal regulatory protein alpha, or SIRP-alpha.

The researchers were surprised to discover that the hypoimmune stem cells were able to escape NK cells, even though NK cells were not previously known to express SIRP-alpha. Rather than studying lab-grown cell lines, they took cells directly from patients. Thats where they found SIRP-alpha.

Whats more, the UCSF team discovered that NK cells begin to express SIRP-alpha after they are activated by cytokines that are typically abundant in inflammatory states.

RELATED: Fierce Biotech's 2020 Fierce 15 | Sana Biotechnology

To further prove out the utility of engineered stem cells, the UCSF researchers implanted cells with rhesus macaque CD47 into monkeys. They documented the activation of SIRP-alpha in NK cells. Those NK cells did not kill the transplanted cells.

A similar technique could be used, but in reverse, to implant pig cardiac cells into people, the UCSF team argued. If human CD47 were engineered into pig heart cells, they could be implanted into people without risking rejection by NK cells, they suggested.

Sana made waves in 2018 when it raised a whopping $700 million in a single venture round from the likes of Arch Venture Partners, Flagship Pioneering and Bezos Expeditions. We believe that one of, if not the most, important thing happening in medicine over the next several decades is the ability to modulate genes, use cells as medicines, and engineer cells, said Steve Harr, president and CEO of Sana, at the time.

Sana did not provide materials or funding for the new study, but it is now developing the hypoimmune stem cell technology for clinical testing.

The UCSF team believes their findings could also boost cancer immunotherapy. The engineered cells could help combat checkpoints that allow tumors to evade immune detection, they said.

"Many tumors have low levels of self-identifying MHC-I protein and some compensate by overexpressing CD47 to keep immune cells at bay," said Lewis Lanier, Ph.D., director of the Parker Institute for Cancer Immunotherapy at the UCSF Helen Diller Family Comprehensive Cancer Center, in a statement. "This might be the sweet spot for antibody therapies that target CD47."

Link:
Engineered stem cells that evade immune detection could ...

To Read More: Engineered stem cells that evade immune detection could …
categoriaCardiac Stem Cells commentoComments Off on Engineered stem cells that evade immune detection could … | dataFebruary 10th, 2021
Read All

I Survived Cancer, and Then I Needed to Remember How to Live – The Atlantic

By daniellenierenberg

Ibram X. Kendi: What I learned from cancer

This is where I find myself, at the threshold between an old familiar state and an unknown future. Cancer no longer lives in my blood, but it lives on in other ways, dominating my identity, my relationships, my work, and my thoughts. Im done with chemo but I still have my port, which my doctors are waiting to remove until Im further out of the woods. Im left with the question of how to repatriate myself to the kingdom of the well, and whether I ever fully can. No treatment protocols or discharge instructions can guide this part of my trajectory. The way forward is going to have to be my own.

My first foray into this new selfhood is learning how to drive. As I get more comfortable behind the wheel, a hazy idea begins to crystallize into a grand plan. I need to leave the familiar, to trust that I can navigate the world alone. I need to become my own caregiver. It took me a while to say I was a cancer patient. Its time for me to figure out who I am now. By the time I finally pass my drivers test, the next step is obvious: Im going to embark on a solo cross-country road trip.

Over the next few weeks, I pack all of my belongings into boxes, put the boxes into storage, and sublet my apartment. I cant afford to buy my own car but my friend Gideon generously offers the use of his old Subaru. Between the extra income from renting out my apartment and the $4,000 in my savings account, I should be able to make do. I plan to camp and crash on couches as often as possible, staying in only the occasional motel room. I scour Craigslist for secondhand camping gear and buy a portable propane gas stove, a subzero sleeping bag, a foam bedroll, and a tent. I pack all this, along with a crate of books, a first-aid kit, a camera, and a sack of kibble for my scruffy terrier mutt, Oscar, into the car. Before leaving, I go in for a last checkup with my oncologist.

My road trip will take me 15,000 miles across 33 states. It will last 100 days, the maximum amount of time my medical team has agreed to until my next follow-up appointment. As I turn the keys in the ignition and drive away from New York City, I realize that this is a rite of passage that I hope will bridge the distance between no longer and not yet.

Either my GPS is a liar or I am an erratic driver, but I always seem to take nearly twice as long as it predicts to get to where Im going. Take a right turn inrecalculating its robotic voice says condescendingly when I miss yet another exit. My next destination, Columbus, Ohio, will entail my longest drive yet. The GPS predicts that, if I follow its barrage of orders exactly as told, I will arrive in nine hours and 21 minutes. Unlikely.

Since hitting the road, Im on no ones clock but my own.

Two weeks earlier, when I first left home, I was so tense that I regularly had to remind myself to breathe. Each minute behind the wheel presented new and overwhelming scenarios: Do I have the right of way? What does a blinking red light mean? Was that an Egyptian hieroglyph on the traffic sign? Lane changes and merging onto the freeway had proved especially stressfulan existential guessing game of will I live or will I not. But with each day, I am feeling more confident, and it has been at least 72 hours since another driver has honked at me in anger or bewilderment.

Originally posted here:
I Survived Cancer, and Then I Needed to Remember How to Live - The Atlantic

To Read More: I Survived Cancer, and Then I Needed to Remember How to Live – The Atlantic
categoriaBone Marrow Stem Cells commentoComments Off on I Survived Cancer, and Then I Needed to Remember How to Live – The Atlantic | dataFebruary 10th, 2021
Read All

Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice – Science

By daniellenierenberg

Endogenous activin A in ectopic bone formation

Heterotopic ossification (HO) is the formation of ectopic bone in soft tissues at sites of injury-induced inflammation. Similar to the development of normal endochondral bone, HO is initiated by a local mass of chondrocytes that progress through chondrogenesis, osteogenesis, and mineralization to form bone tissue. Using mouse models of both subcutaneous and intramuscular HO formation and single-cell RNA sequencing, Mundy et al. found that inflammatory cells and skeletal progenitor cells initially recruited to sites of HO formation expressed Inhba, which encodes the TGF- superfamily member activin A. Treating mice with an activin Aneutralizing antibody reduced the number of chondrogenic cells at HO sites and inhibited HO formation. These results demonstrate that this ligand plays an important role in the physiological progression in these mouse models of HO and suggest that interfering with activin A signaling may be effective in patients.

Heterotopic ossification (HO) is a common, potentially debilitating pathology that is instigated by inflammation caused by tissue damage or other insults, which is followed by chondrogenesis, osteogenesis, and extraskeletal bone accumulation. Current remedies are not very effective and have side effects, including the risk of triggering additional HO. The TGF- family member activin A is produced by activated macrophages and other inflammatory cells and stimulates the intracellular effectors SMAD2 and SMAD3 (SMAD2/3). Because HO starts with inflammation and because SMAD2/3 activation is chondrogenic, we tested whether activin A stimulated HO development. Using mouse models of acquired intramuscular and subdermal HO, we found that blockage of endogenous activin A by a systemically administered neutralizing antibody reduced HO development and bone accumulation. Single-cell RNA-seq analysis and developmental trajectories showed that the antibody treatment reduced the recruitment of Sox9+ skeletal progenitors, many of which also expressed the gene encoding activin A (Inhba), to HO sites. Gain-of-function assays showed that activin A enhanced the chondrogenic differentiation of progenitor cells through SMAD2/3 signaling, and inclusion of activin A in HO-inducing implants enhanced HO development in vivo. Together, our data reveal that activin A is a critical upstream signaling stimulator of acquired HO in mice and could represent an effective therapeutic target against forms of this pathology in patients.

Read more:
Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice - Science

To Read More: Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice – Science
categoriaSpinal Cord Stem Cells commentoComments Off on Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice – Science | dataFebruary 10th, 2021
Read All

Worldwide Cell Therapy Industry to 2027 – Profiling Allosource, Medipost and Mesoblast Among Others – PRNewswire

By daniellenierenberg

DUBLIN, Feb. 9, 2021 /PRNewswire/ -- The "Cell Therapy Market by Cell Type, Therapy Type, Therapeutic Area, and End User: Global Opportunity Analysis and Industry Forecast, 2020-2027" report has been added to ResearchAndMarkets.com's offering.

The global cell therapy market accounted for $7,754. 89 million in 2019, and is expected to reach $48,115. 40 million by 2027, registering a CAGR of 25. 6% from 2020 to 2027.

Cell therapy involves administration of somatic cell preparations for treatment of diseases or traumatic damages. Cell therapy aims to introduce new, healthy cells into a patient's body to replace diseased or missing ones.

This is attributed to the fact that specialized cells, such as brain cells, are difficult to obtain from human body. In addition, specialized cells typically have a limited ability to multiply, making it difficult to produce sufficient number of cells required for certain cell therapies. Some of these issues can be overcome through the use of stem cells. In addition, cells such as blood and bone marrow cells, mature, immature & solid tissue cells, adult stem cells, and embryonic stem cells are widely used in cell therapy procedures.

Moreover, transplanted cells including induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), neural stem cells (NSCs), and mesenchymal stem cells (MSCs) are divided broadly into two main groups including autologous cells and non-autologous cells. Development of precision medicine and advancements in Advanced Therapies Medicinal Products (ATMPS) in context to their efficiency and manufacturing are expected to be the major drivers for the market. Furthermore, automation in adult stem cells and cord blood processing and storage are the key technological advancements that fuel growth of the market for cell therapy.

In addition, growth in aging patient population, The rise in cell therapy transplantations globally, and surge in disease awareness drive growth of the global cell therapy market. Furthermore, The rise in adoption of human cells over animal cells for cell therapeutics research, technological advancements in field of cell therapy, and increase in incidences of diseases such as cancer, cardiac abnormalities, and organ failure are the key factors that drive growth of the global market.

Moreover, implementation of stringent government regulations regarding the use of cell therapy is anticipated to restrict growth of the market. On the contrary, surge in number of regulations to promote stem cell therapy and increase in funds for research in developing countries are expected to offer lucrative opportunities to the market in the future.

The global cell therapy market is categorized on the basis of therapy type, therapeutic area, cell type, end user, and region. On the basis of therapy type, the market is segregated into autologous and allogenic. By therapeutics, it is classified into malignancies, musculoskeletal disorders, autoimmune disorders, dermatology, and others.

The global cell therapy market is categorized on the basis of therapy type, therapeutic, cell type, end user and region. On the basis of therapy type, the market is segregated into autologous and allogenic. By therapeutic area, it is classified into malignancies, musculoskeletal disorders, autoimmune disorders, dermatology, and others. On the basis of cell type, it is segregated into stem cell therapy and non-stem cell type. On the basis of end user, it is segregated into hospital & clinics and academic & research institutes. On the basis of region, the market is studied across North America, Europe, Asia-Pacific, and LAMEA.

Key Benefits

Key Topics Covered:

Chapter 1: Introduction1.1. Report Description1.2. Key Benefits for Stakeholders1.3. Key Market Segments1.4. Research Methodology1.4.1. Secondary Research1.4.2. Primary Research1.4.3. Analyst Tools & Models

Chapter 2: Executive Summary2.1. Key Findings of the Study2.2. Cxo Perspective

Chapter 3: Market Overview3.1. Market Definition and Scope3.2. Key Findings3.2.1. Top Player Positioning3.2.2. Top Investment Pockets3.2.3. Top Winning Strategies3.3. Porter's Five Forces Analysis3.4. Impact Analysis3.4.1. Drivers3.4.1.1. Technological Advancements in the Field of Cell Therapy3.4.1.2. The Rise in Number of Cell Therapy Clinical Studies3.4.1.3. The Rise in Adoption of Regenerative Medicine3.4.2. Restraint3.4.2.1. Developing Stage and Pricing3.4.3. Opportunity3.4.3.1. High Growth Potential in Emerging Markets3.5. Impact of Covid-19 on Cell Therapy Market

Chapter 4: Cell Therapy Market, by Cell Type4.1. Overview4.1.1. Market Size and Forecast4.2. Stem Cell4.2.1. Key Market Trends and Opportunities4.2.2. Market Size and Forecast, by Region4.2.3. Market Size and Forecast, by Type4.2.3.1. Bone Marrow, Market Size and Forecast4.2.3.2. Blood, Market Size and Forecast4.2.3.3. Umbilical Cord-Derived, Market Size and Forecast4.2.3.4. Adipose-Derived Stem Cell, Market Size and Forecast4.2.3.5. Others (Placenta, and Nonspecific Cells), Market Size and Forecast4.3. Non-Stem Cell4.3.1. Key Market Trends and Opportunities4.3.2. Market Size and Forecast, by Region

Chapter 5: Cell Therapy Market, by Therapy Type5.1. Overview5.1.1. Market Size and Forecast5.2. Autologous5.2.1. Key Market Trends and Opportunities5.2.2. Market Size and Forecast, by Region5.2.3. Market Analysis, by Country5.3. Allogeneic5.3.1. Key Market Trends and Opportunities5.3.2. Market Size and Forecast, by Region5.3.3. Market Analysis, by Country

Chapter 6: Cell Therapy Market, by Therapeutic Area6.1. Overview6.1.1. Market Size and Forecast6.2. Malignancies6.2.1. Market Size and Forecast, by Region6.2.2. Market Analysis, by Country6.3. Musculoskeletal Disorders6.3.1. Market Size and Forecast, by Region6.3.2. Market Analysis, by Country6.4. Autoimmune Disorders6.4.1. Market Size and Forecast, by Region6.4.2. Market Analysis, by Country6.5. Dermatology6.5.1. Market Size and Forecast, by Region6.5.2. Market Analysis, by Country6.6. Others6.6.1. Market Size and Forecast, by Region6.6.2. Market Analysis, by Country

Chapter 7: Cell Therapy Market, by End-user7.1. Overview7.1.1. Market Size and Forecast7.2. Hospitals & Clinics7.2.1. Key Market Trends and Opportunities7.2.2. Market Size and Forecast, by Region7.2.3. Market Analysis, by Country7.3. Academic & Research Institutes7.3.1. Key Market Trends and Opportunities7.3.2. Market Size and Forecast, by Region7.3.3. Market Analysis, by Country

Chapter 8: Cell Therapy Market, by Region8.1. Overview8.2. North America8.3. Europe8.4. Asia-Pacific8.5. LAMEA

Chapter 9: Company Profiles9.1. Allosource9.1.1. Company Overview9.1.2. Company Snapshot9.1.3. Operating Business Segments9.1.4. Product Portfolio9.1.5. Key Strategic Moves and Developments9.2. Cells for Cells9.2.1. Company Overview9.2.2. Company Snapshot9.2.3. Operating Business Segments9.2.4. Product Portfolio9.3. Holostem Terapie Avanzate Srl9.3.1. Company Overview9.3.2. Company Snapshot9.3.3. Operating Business Segments9.3.4. Product Portfolio9.4. Jcr Pharmaceuticals Co. Ltd.9.4.1. Company Overview9.4.2. Company Snapshot9.4.3. Operating Business Segments9.4.4. Product Portfolio9.4.5. Business Performance9.4.6. Key Strategic Moves and Developments9.5. Kolon Tissuegene, Inc.9.5.1. Company Overview9.5.2. Company Snapshot9.5.3. Operating Business Segments9.5.4. Product Portfolio9.5.5. Key Strategic Moves and Developments9.6. Medipost Co. Ltd.9.6.1. Company Overview9.6.2. Company Snapshot9.6.3. Operating Business Segments9.6.4. Product Portfolio9.6.5. Business Performance9.7. Mesoblast Ltd9.7.1. Company Overview9.7.2. Company Snapshot9.7.3. Operating Business Segments9.7.4. Product Portfolio9.7.5. Business Performance9.8. Nuvasive, Inc.9.8.1. Company Overview9.8.2. Company Snapshot9.8.3. Operating Business Segments9.8.4. Product Portfolio9.8.5. Business Performance9.9. Osiris Therapeutics, Inc.9.9.1. Company Overview9.9.2. Company Snapshot9.9.3. Operating Business Segments9.9.4. Product Portfolio9.10. Stemedica Cell Technologies, Inc.9.10.1. Company Overview9.10.2. Company Snapshot9.10.3. Operating Business Segments9.10.4. Product Portfolio

For more information about this report visit https://www.researchandmarkets.com/r/shw12n

Media Contact:

Research and Markets Laura Wood, Senior Manager [emailprotected]

For E.S.T Office Hours Call +1-917-300-0470 For U.S./CAN Toll Free Call +1-800-526-8630 For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1904 Fax (outside U.S.): +353-1-481-1716

SOURCE Research and Markets

http://www.researchandmarkets.com

Read more:
Worldwide Cell Therapy Industry to 2027 - Profiling Allosource, Medipost and Mesoblast Among Others - PRNewswire

To Read More: Worldwide Cell Therapy Industry to 2027 – Profiling Allosource, Medipost and Mesoblast Among Others – PRNewswire
categoriaCardiac Stem Cells commentoComments Off on Worldwide Cell Therapy Industry to 2027 – Profiling Allosource, Medipost and Mesoblast Among Others – PRNewswire | dataFebruary 10th, 2021
Read All

Paragon Biosciences Expands Cell And Gene Therapy Platform – Contract Pharma

By daniellenierenberg

Paragon Biosciences, a life science innovator that creates, invests in and builds life science companies in biopharmaceuticals, cell and gene therapy and synthetic biology utilizing artificial intelligence, has launched CiRC Biosciences, a cell therapy company developing treatments for serious diseases with high, unmet needs with an initial focus on the eye."The addition of CiRC Biosciences to our portfolio builds upon our cell and gene therapy platform, an area that has tremendous potential to address serious genetic diseases," said Jeff Aronin, founder, chairman and chief executive officer, Paragon Biosciences. "CiRC Biosciences gives us the science to target retinal diseases that could lead to vision restoration with numerous other applications in the years ahead."CiRC Biosciences is currently advancing pre-clinical development of chemically induced retinal cells for vision restoration in Geographic Atrophy Age-Related Macular Degeneration (Dry AMD), which is the most common cause of irreversible vision loss over the age of 65, and advanced Retinitis Pigmentosa (RP), a genetic disorder that causes tunnel vision and eventual blindness. There are no U.S. Food & Drug Administration (FDA) approved treatments to restore vision loss in Dry AMD or RP.The company's novel mechanism of action is designed for direct chemical conversion of fibroblasts into other cell types using a cocktail of small molecules in an 11-day chemical conversion process. Pre-clinical studies have shown efficacy in blind mice that demonstrated vision restoration. CiRC Biosciences has provisional patent applications to protect its platform."Our technology transforms ordinary skin cells into specialized retinal cells using a cocktail of small molecules," said Sai Chavala, M.D., co-founder and chief scientific officer, CiRC Biosciences. "This process is potentially safer, quicker, more cost effective and easier to manufacturer than using traditional stem cells. Working with Paragon Biosciences to build and advance CiRC Biosciences provides us the opportunity to efficiently progress this technology through research and development stages.CiRC Biosciences first reported its discovery in the highly respected scientific journal Nature (April 15, 2020). A recently published New England Journal of Medicine article (Nov. 5, 2020) discussed CiRC's technology of using chemically induced cells to restore retinal function. The article concluded, "The new and emerging strategies for the rescue, regeneration, and replacement of photoreceptors suggest a bright future in the fight to preserve and restore vision in blinding eye diseases."The abstract in Nature is available here.Access to the NEJM article is available here.

Excerpt from:
Paragon Biosciences Expands Cell And Gene Therapy Platform - Contract Pharma

To Read More: Paragon Biosciences Expands Cell And Gene Therapy Platform – Contract Pharma
categoriaSkin Stem Cells commentoComments Off on Paragon Biosciences Expands Cell And Gene Therapy Platform – Contract Pharma | dataFebruary 10th, 2021
Read All

[Full text] Successful Use of Nivolumab in a Patient with Head and Neck Cancer Aft | OTT – Dove Medical Press

By daniellenierenberg

Introduction

Head and neck squamous cell carcinoma (HNSCC) is one of the major causes of cancer-associated illness and death, with more than 600,000 newly diagnosed cases worldwide each year1 and a continuously increasing incidence rate.2 HNSCC includes cancers of the oral cavity, pharynx, and larynx. The anatomical structures of the head and neck can be damaged by the tumor itself or treatments such as surgical resection and chemoradiotherapy, which sometimes cause speech, swallowing, and breathing impairments.3,4 Patients with HNSCC have been shown to bear greater psychological distress than those with other types of cancer.5

Despite the currently available therapies, patients with advanced HNSCC still experience poor outcomes.68 For example >50% of patients with locoregionally advanced HNSCC experience recurrence or metastases development within 3 years of treatment.911 Treatment options for patients with the recurrent and metastatic disease following progression after a platinum-based regimen are limited, and the median overall survival of such patients is less than 7 months.1215

The recurrence and metastasis of HNSCC are facilitated by immune evasion;16 therefore, as one of the methods to inhibit immune evasion, the use of programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway inhibitors is considered effective in the treatment of recurrent HNSCC.1719 Nivolumab, a fully human IgG4 antiPD-1 monoclonal antibody, has shown remarkable antitumor efficacy and safety when administered to patients with recurrent HNSCC whose disease had progressed within 6 months of platinum-based chemotherapy;19 Furthermore, nivolumab treatment has been shown to improve the quality of life of these patients.20 However, PD-1 inhibitors can upregulate T cells in vivo, which may lead to the development of graft-versus-host disease (GVHD) in patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT).2123 To the best of the authors knowledge, no studies have investigated the safety and efficacy of nivolumab in patients with HNSCC after allo-HSCT. Here, we report the case of a patient who experienced excellent control of left buccal squamous cell carcinoma with nivolumab after the failure of platinum-based chemotherapy despite receiving allogeneic bone marrow transplantation.

Without any family history of tumor, a 33-year-old man was diagnosed with Philadelphia chromosome-positive T cell acute lymphoblastic leukemia on March 19, 2014. He received one course of vincristine and prednisone therapy and four courses of vincristine, daunorubicin, cyclophosphamide, and prednisone therapy. He was in complete remission at the end of therapy. Subsequently, allogeneic bone marrow transplantation was performed; the donor was his human leukocyte antigen (HLA)-haploidentical sibling (sister). He experienced chronic GVHD (c GVHD) of the oral cavity and skin 3 months after transplantation, for which he was treated with steroid hormone- and cyclosporine-based therapies. Skin rejection lasted for more than 3 years. Imatinib mesylate was administered for 2 years after transplantation, and his leukemia was well controlled.

In August 2018, the patient developed an ulcer of approximately 0.5 0.5 cm size in the left buccal mucosa; the ulcer was slightly painful and covered with white moss. In September 2018, the patient was admitted to Peking University Stomatological Hospital, where a biopsy of the buccal mucosa was performed. The pathology results showed the presence of squamous cell carcinoma in the left cheek. Unfortunately, this patient was not a right candidate for HNSCC in terms of exposure to risk factors, such as long terms of smoking and drinking. On October 10, 2018, 18F-fluorodeoxyglucose-positron emission tomography/computed tomography (CT) showed that the mass in the left cheek was metabolically active, which is consistent with the activity of a malignant tumor. One course of an adjuvant therapy regimen (nimotuzumab [200 mg d0] + docetaxel [60 mg d1, 8]+ nedaplatin [60 mg d2, 3]) was administered on October 26, 2018. Following this, the patient developed degree II thrombocytopenia and redness, swelling, and ulceration of the cheek, which had discharge with a peculiar smell. On November 29, 2018, a head and neck CT scan showed a left buccal malignant tumor with the destruction of the neighboring mandibular bone and lymph node enlargement in the left submaxillary region and right carotid sheath. The CT examination revealed disease progression. Following a multidisciplinary consultation in our hospital, surgery was not recommended; instead, a chemotherapy-based comprehensive treatment was recommended as a better option for the patient. The patient received chemotherapy with albumin paclitaxel (200 mg d1, 8)+ bleomycin (15,000 units d2, 9) from November 30, 2018 to January 9, 2019. On another CT scan, the curative effect was evaluated as partial remission (showed in Video 1, Figure 1A); subsequently, two courses of a chemotherapy regimen comprising nivolumab (140 mg d1) + albumin paclitaxel (200 mg d1, d8) were administered. A CT examination showed stable disease (SD) on March 12, 2019, following which the patient was administered 120 mg of nivolumab once every 2 weeks from March 15 to May 23, 2019. Another CT examination was performed on May 28, 2019 (showed in Video 2, Figure 1B). During the therapy course, the related tumor markers showed an overall downward trend, the new metastases did not appear, the patients status became better than before. Subsequently, another CT examination performed in August 02, 2019 showed the extent of the tumor was obvious reduction than before (showed in video 3, Figure 1C). And the corresponding CT report in August 02, 2019 was described as follows Compared with the CT on 28 May, 2019, the extent of the tumor in the left cheek became obviously smaller, the tubercle in the left submandibular and the lymph nodes in the left neck also became smaller. There were no other significant changes in this image. Most importantly, the patient did not develop any form of GVHD following nivolumab administration.

Figure 1 Head and neck CT images showing tumor before (A) and after treatment with nivolumab (B, C, respectively).

Abbreviation: CT, computed tomography.

Note: The arrows indicate the maximum length diameter of tumor or tumor site.

Reliable data on the clinical safety and efficacy of nivolumab in the treatment of recurrent or metastatic HNSCC have been obtained in a Phase III randomized clinical trial (CheckMate 141).19 In this trial, 361 patients with recurrent HNSCC for whom disease had progressed within 6 months after platinum-based chemotherapy were enrolled between May 29, 2014, and July 31, 2015. The median follow-up duration for overall survival (OS) was 5.1 months (range, 016.8 months). OS was significantly greater in patients randomized to receive nivolumab than in those who received standard second-line, single-agent systemic therapy with either methotrexate, docetaxel, or cetuximab (hazard ratio, 0.70; 97.73% confidence interval (CI), 0.510.96; P = 0.01). The median OS was 7.5 months (95% CI, 5.59.1) in the nivolumab group versus 5.1 months (95% CI, 4.06.0) in the standard therapy group. The one-year survival was also greater in patients who received nivolumab than in those who received standard therapy (36.0%vs. 16.6%). Furthermore, the response rate was higher in those who received nivolumab than in those who received standard therapy (13.3% vs 5.8%); however, the median progression-free survival was not significantly different between the groups (2.0 vs 2.3 months; P=0.32). In this study, patients who were treated with nivolumab had a longer OS than those treated with standard therapy, regardless of tumor PD-L1 expression or p16 status. Grade 3 or 4 treatment-related adverse events occurred in 13.1% of patients who received nivolumab and 35.1% of those who received standard therapy. Physical function, role functioning, and social functioning were stable in the nivolumab group, whereas they were substantially worse in the standard therapy group.20 Moreover, among Asian patients, the survival benefits were consistent with the global group.24

It was unclear whether nivolumab could be used in patients with recurrent HNSCC after allo-HSCT, though Khaddour et al proved the efficacy and safety of Pembrolizumab in patients who underwent allo-HSCT after relapsed and refractory Szary Syndrome and cutaneous squamous cell carcinoma.25 However, some case reports (Table 1) and clinical trials (Table 2) have reported the efficacy and safety of nivolumab when administrated to patients with recurrent hematological malignancies (mostly Hodgkins lymphoma) after allo-HSCT.

Table 1 Case Reports of Nivolumab Use After Allo-HSCT

Table 2 Studies on Nivolumab Use After Allo-HSCT

In Herbaux et al, nivolumab (3 mg/kg, once every 2 weeks) was administered to 20 patients with Hodgkins lymphoma who experienced relapse after allo-HSCT. The overall response rate was 95%, the 1-year progression-free survival rate was 58.2%, and the 1-year OS rate was 78.8%.26 Compared with other treatment options, nivolumab was more effective in these patients.2730 Haverkos et al reported results after a median follow-up duration was 428 days (range, 133833 days). After treatment with PD-1 inhibitors [nivolumab 3 mg/kg, once every 2 weeks (n = 28) and pembrolizumab (n =3)], the overall response rate of 31 patients with relapsed lymphoma after allo-HSCT was 77%, the median progression-free survival was 591 days (range,400644 days), and 68% of the patients survived to the end of the study.23 These two studies showed that nivolumab is effective when administered to patients with recurrent blood cancers after allo-HSCT, which is consistent with the results of several other case reports3134 and case series.35,36 The PD-1/PD-L1 pathway plays a key role in the regulation of the balance among T cell activation, T-cell tolerance, and immune-mediated tissue damage. This pathway protects healthy cells from excessive inflammatory or autoimmune responses.37,38 Some studies have shown that the activation of the PD-1/PD-L1 pathway can reduce acute and chronic GVHD, whereas its blockade can accelerate the graft-versus-host response and increase the associated mortality.21,22,39 It is unclear whether the PD-1 inhibitor nivolumab increases the risk of GVHD and the associated mortality in patients after allo-HSCT.23,26 Some clinical studies and case reports have shown that nivolumab treatment-related GVHD and consequent death in patients after allo-HSCT might be affected by the following factors. First, GVHD after antiPD-1 treatment has been observed most frequently in matched sibling donor transplants; for which Haverkos et al reported an incidence of 75%.23 In a Phase I pilot study, without GVHD or G3/G4 immune toxicity after receiving multiple doses of nivolumab was only among one patient whose donor source was Haploidentical+cord blood Fludarabine.40 Second, a history of GVHD, especially for the acute GVHD, may lead to an increased risk of nivolumab treatment-related GVHD after allo-HSCT. In a French cohort, all patients who presented with acute GVHD after nivolumab treatment had a prior history of acute GVHD, among which three patients presented with steroid-refractory nivolumab-induced GVHD, and GVHD was not observed among patients without a history of GVHD.26 This phenomenon was also observed in Steinerovs medical report.41 In the study by Haverkos et al, 63% of patients with a history of GVHD prior to antiPD-1 treatment developed treatment-emergent GVHD after receiving antiPD-1.23 Third, the shorter the interval between transplantation and nivolumab use, the greater the risk of GVHD. In the study by Herbaux et al, the median intervals between transplantation and nivolumab use in cases with the presence and absence of GVHD were 8.5 months and 28.5 months, respectively.26 In another study by Wang et al, the reported four patients all experienced immune-related adverse events following nivolumab treatment and the median time from transplantation to nivolumab use was 7.8 months.40 Fourth, dose is a risk factor for nivolumab treatment-related GVHD. In a case report, chronic skin GVHD was observed when the dose of nivolumab was adjusted from 0.5 mg/kg to 2 mg/kg.33 Other factors, such as immunosuppressive therapy at the time of nivolumab administration, may also influence nivolumab treatment-related GVHD. Recently, a comprehensive literature review was launched by Awais et al to assess the safety and efficacy of the use of checkpoint inhibitors (ipilimumab, nivolumab and pembrolizumab) in blood cancers before and after allo-HSCT. Collective data showed that checkpoint inhibitors use after allo-HSCT for post-transplant relapse had higher efficacy but the risk of GVHD was significant. Moreover, the investigation indicated that higher drug doses, shorter intervals between checkpoint inhibitors exposure and allo-HSCT and prior history of GVHD had a positive correlation with the risk of GVHD.42

In the present case, HNSCC was effectively controlled without any nivolumab treatment-related acute or chronic GVHD after nivolumab administration, while the weight loss being the only adverse event. After comprehensive analysis, we found that many factors may impede the development of nivolumab treatment-related GVHD in our patient. On one hand, the appropriate donor, no use of checkpoint inhibitors prior to allo-HSCT, the long interval between nivolumab administration and allo-HSCT (36 months) and the standard dose use of nivolumab were the negative factors for GVHD development. On the other hand, the chronic GVHD of the oral cavity and skin before nivolumab use might lead to the development of GVHD. However, it remained unknown what role the immunosuppressant therapy played in the occurrence of GVHD, though we definitely known that immunosuppressant was administered more than 2 years after allo-HSCT and discontinued for 2 years before treatment with nivolumab in our patient. Finally, whether the two primary cancers in our case affected the efficacy and safety of nivolumab by some unknown pathways were unclear, which needed further exploration.

Nivolumab has been shown to be effective in patients with HNSCC for whom platinum-based therapy has failed. However, little is known about the efficacy and safety of nivolumab in patients with HNSCC who have undergone allo-HSCT. Our case report shows that nivolumab could be used effectively and safely in such patients, however, more clinical trials are required to confirm these results.

This study was approved by the Medical Ethics Committee of Tianjin Medical University Cancer Institute and Hospital. The authors state that they have obtained verbal and written informed consent from the patient for the inclusion of their medical and treatment history within this case report.

This work was supported by the Tianjin Science and Technology Commission (18ZXXYSY00070), Key Task Project of Tianjin Health and Family Planning Commission (16KG128), Anticancer Key Technologies R&D Program of Tianjin (12ZCDZSY16200), and Natural Science Foundation of Tianjin (18JCYBJC91600).

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359E386. doi:10.1002/ijc.29210

2. Jakobsen KK, Gronhoj C, Jensen DH, et al. Increasing incidence and survival of head and neck cancers in Denmark: a nation-wide study from 1980 to 2014. Acta Oncol. 2018;57:11431151. doi:10.1080/0284186X.2018.1438657

3. Sobecki-Ryniak D, Krouse HJ. Head and neck cancer: historical evolution of treatment and patient self-care requirements. Clin J Oncol Nurs. 2013;17(6):659663. doi:10.1188/13.CJON.659-663

4. Licitra L, Mesia R, Keilholz U. Individualised quality of life as a measure to guide treatment choices in squamous cell carcinoma of the head and neck. Oral Oncol. 2016;52:1823. doi:10.1016/j.oraloncology.2015.10.020

5. Singer S, Krauss O, Keszte J, et al. Predictors of emotional distress in patients with head and neck cancer. Head Neck. 2012;34(2):180187. doi:10.1002/hed.21702

6. Licitra L, Felip E. Squamous cell carcinoma of the head and neck: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol. 2009;20(Suppl 4):121122. doi:10.1093/annonc/mdp149

7. Adelstein D, Gillison ML, Pfister DG, et al. NCCN guidelines insights: head and neck cancers, version 2.2017. J Natl Compr Canc Netw. 2017;15(6):761770. doi:10.6004/jnccn.2017.0101

8. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45(45):309316. doi:10.1016/j.oraloncology.2008.06.002

9. Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med. 2004;350(19):19451952. doi:10.1056/NEJMoa032641

10. Blanchard P, Baujat B, Holostenco V, et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): a comprehensive analysis by tumour site. Radiother Oncol. 2011;100(1):3340. doi:10.1016/j.radonc.2011.05.036

11. Tanvetyanon T, Padhya T, McCaffrey J, et al. Postoperative concurrent chemotherapy and radiotherapy for high-risk cutaneous squamous cell carcinoma of the head and neck. Head Neck. 2015;37(6):840845. doi:10.1002/hed.23684

12. Guardiola E, Peyrade F, Chaigneau L, et al. Results of a randomised Phase II study comparing docetaxel with methotrexate in patients with recurrent head and neck cancer. Eur J Cancer. 2004;40(14):20712076. doi:10.1016/j.ejca.2004.05.019

13. Vermorken JB, Herbst RS, Leon X, Amellal N, Baselga J. Overview of the efficacy of cetuximab in recurrent and/or metastatic squamous cell carcinoma of the head and neck in patients who previously failed platinum-based therapies. Cancer. 2008;112(12):27102719. doi:10.1002/cncr.23442

14. Argiris A, Ghebremichael M, Gilbert J, et al. Phase III randomized, placebo-controlled trial of docetaxel with or without gefitinib in recurrent or metastatic head and neck cancer: an eastern cooperative oncology group trial. J Clin Oncol. 2013;31(11):14051414. doi:10.1200/JCO.2012.45.4272

15. Saloura V, Cohen EEW, Licitra L, et al. An open-label single-arm, phase II trial of zalutumumab, a human monoclonal anti-EGFR antibody, in patients with platinum-refractory squamous cell carcinoma of the head and neck. Cancer Chemother Pharmacol. 2014;73(6):12271239. doi:10.1007/s00280-014-2459-z

16. Ferris RL. Immunology and Immunotherapy of head and neck cancer. J Clin Oncol. 2015;33(29):32933304. doi:10.1200/JCO.2015.61.1509

17. Chow LQM, Haddad R, Gupta S, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34(32):38383845. doi:10.1200/JCO.2016.68.1478

18. Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956965. doi:10.1016/S1470-2045(16)30066-3

19. Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375(19):18561867. doi:10.1056/NEJMoa1602252

20. Harrington KJ, Ferris RL, Blumenschein G Jr, et al. Nivolumab versus standard, single-agent therapy of investigators choice in recurrent or metastatic squamous cell carcinoma of the head and neck (CheckMate 141): health-related quality-of-life results from a randomised, Phase 3 trial. Lancet Oncol. 2017;18:11041115. doi:10.1016/S1470-2045(17)30421-7

21. Blazar BR, Carreno BM, Panoskaltsis-Mortari A, et al. Blockade of programmed death-1 engagement accelerates graft-versus-host disease lethality by an IFN-gamma-dependent mechanism. J Immunol. 2003;171:12721277. doi:10.4049/jimmunol.171.3.1272

22. Saha A, Aoyama K, Taylor PA, et al. Host programmed death ligand 1 is dominant over programmed death ligand 2 expression in regulating graft-versus-host disease lethality. Blood. 2013;122:30623073. doi:10.1182/blood-2013-05-500801

23. Haverkos BM, Abbott D, Hamadani M, et al. PD-1 blockade for relapsed lymphoma post-allogeneic hematopoietic cell transplant: high response rate but frequent GVHD. Blood. 2017;130:221228. doi:10.1182/blood-2017-01-761346

24. Kiyota N, Hasegawa Y, Takahashi S, et al. A randomized, open-label, Phase III clinical trial of nivolumab vs. therapy of investigators choice in recurrent squamous cell carcinoma of the head and neck: a subanalysis of Asian patients versus the global population in checkmate 141. Oral Oncol. 2017;73:138146. doi:10.1016/j.oraloncology.2017.07.023

25. Khaddour K, Musiek A, Cornelius LA, et al. Rapid and sustained response to immune checkpoint inhibition in cutaneous squamous cell carcinoma after allogenic hematopoietic cell transplant for szary syndrome. J Immunol Cancer. 2019;7:338. doi:10.1186/s40425-019-0801-z

26. Herbaux C, Gauthier J, Brice P, et al. Efficacy and tolerability of nivolumab after allogeneic transplantation for relapsed hodgkin lymphoma. Blood. 2017;129:24712478. doi:10.1182/blood-2016-11-749556

27. Peggs KS, Kayani I, Edwards N, et al. Donor lymphocyte infusions modulate relapse risk in mixed chimeras and induce durable salvage in relapsed patients after T-cell-depleted allogeneic transplantation for hodgkins lymphoma. J Clin Oncol. 2011;29:971978. doi:10.1200/JCO.2010.32.1711

28. Anastasia A, Carlo-Stella C, Corradini P, et al. Bendamustine for Hodgkin lymphoma patients failing autologous or autologous and allogeneic stem cell transplantation: a retrospective study of the fondazione Italiana linfomi. Br J Haematol. 2014;166:140142. doi:10.1111/bjh.12821

29. Carlo-Stella C, Ricci F, Dalto S, et al. Brentuximab vedotin in patients with hodgkin lymphoma and a failed allogeneic stem cell transplantation: results from a named patient program at four Italian centers. Oncologist. 2015;20:323328. doi:10.1634/theoncologist.2014-0420

30. Tsirigotis P, Danylesko I, Gkirkas K, et al. Brentuximab vedotin in combination with or without donor lymphocyte infusion for patients with hodgkin lymphoma after allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51:13131317. doi:10.1038/bmt.2016.129

31. Angenendt L, Schliemann C, Lutz M, et al. Nivolumab in a patient with refractory Hodgkins lymphoma after allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51:443445. doi:10.1038/bmt.2015.266

32. Yared JA, Hardy N, Singh Z, et al. Major clinical response to nivolumab in relapsed/refractory hodgkin lymphoma after allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51:850852. doi:10.1038/bmt.2015.346

33. Onizuka M, Kojima M, Matsui K, et al. Successful treatment with low-dose nivolumab in refractory hodgkin lymphoma after allogeneic stem cell transplantation. Int J Hematol. 2017;106:141145. doi:10.1007/s12185-017-2181-9

34. Shad AT, Huo JS, Darcy C, et al. Tolerance and effectiveness of nivolumab after pediatric T-cell replete, haploidentical, bone marrow transplantation: a case report. Pediatr Blood Cancer. 2017;64. doi:10.1002/pbc.26257

35. Godfrey J, Bishop MR, Syed S, Hyjek E, Kline J. PD-1 blockade induces remissions in relapsed classical hodgkin lymphoma following allogeneic hematopoietic stem cell transplantation. J Immunol Cancer. 2017;5:11. doi:10.1186/s40425-017-0211-z

36. El Cheikh J, Massoud R, Abudalle I, et al. Nivolumab salvage therapy before or after allogeneic stem cell transplantation in hodgkin lymphoma. Bone Marrow Transplant. 2017;52:10741077. doi:10.1038/bmt.2017.69

37. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677704. doi:10.1146/annurev.immunol.26.021607.090331

38. Francisco LM, Sage PT, Sharpe AH, The PD-1. pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219242.

39. Fujiwara H, Maeda Y, Kobayashi K, et al. Programmed death-1 pathway in host tissues ameliorates Th17/Th1-mediated experimental chronic graft-versus-host disease. J Immunol. 2014;193:25652573. doi:10.4049/jimmunol.1400954

40. Wang AY, Kline J, Stock W, et al. Unexpected toxicities when nivolumab was given as maintenance therapy following allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2020;26:10251027. doi:10.1016/j.bbmt.2020.01.021

41. Steinerov K, Jindra P, Lysk D, Karas M. Development of resistant GvHD in a patient treated with nivolumab for hodgkins lymphoma relapse after allogeneic unrelated transplantation. Klin Onkol. 2019;32:6669. doi:10.14735/amko201966

42. Ijaz A, Khan AY, Malik SU, et al. Significant risk of graft-versus-host disease with exposure to checkpoint inhibitors before and after allogeneic transplantation. Biol Blood Marrow Transplant. 2019;25:9499. doi:10.1016/j.bbmt.2018.08.028

43. Albring JC, Inselmann S, Sauer T, et al. PD-1 checkpoint blockade in patients with relapsed AML after allogeneic stem cell transplantation. Bone marrow transplantation. 2017. doi:10.1038/bmt.2016.274

44. Covut F, Pinto R, Cooper BW, et al. Nivolumab before and after allogeneic hematopoietic cell transplantation. Bone marrow transplantation. 2017. doi:10.1038/bmt.2017.44

45. Herbaux C, Gauthier J, Brice P, et al. Nivolumab Is Effective and Reasonably Safe in Relapsed or Refractory Hodgkin's Lymphoma after Allogeneic Hematopoietic Cell Transplantation: A Study from the Lysa and SFGM-TC. Blood. 2015. doi:10.1182/blood.V126.23.3979.3979

46. Schoch LK, Borrello I, Fuchs EJ, et al. Checkpoint Inhibitor Therapy and Graft Versus Host Disease in Allogeneic Bone Marrow Transplant Recipients of Haploidentical and Matched Products with Post-Transplant Cyclophosphamide. Blood. 2016. doi:10.1182/blood.V128.22.4571.4571

47. Davids MS, Kim HT, Costello C, et al. Optimizing Checkpoint Blockade As a Treatment for Relapsed Hematologic Malignancies after Allogeneic Hematopoietic Cell Transplantation. Blood. 2017. doi:10.1182/blood.V130.Suppl_1.275.275

View original post here:
[Full text] Successful Use of Nivolumab in a Patient with Head and Neck Cancer Aft | OTT - Dove Medical Press

To Read More: [Full text] Successful Use of Nivolumab in a Patient with Head and Neck Cancer Aft | OTT – Dove Medical Press
categoriaSkin Stem Cells commentoComments Off on [Full text] Successful Use of Nivolumab in a Patient with Head and Neck Cancer Aft | OTT – Dove Medical Press | dataFebruary 10th, 2021
Read All

Researchers curb local immune response in horses receiving stem cell injury therapy – Horsetalk

By daniellenierenberg

Cultures with treated stem cells had a 50% higher stem cell survival rate than untreated cultures. Image by carolem41

Treating equine donor stem cells with a growth factor called TGF-2 may allow them to avoid tripping the immune response in recipients, according to new research.

The work carried out at North Carolina State University could simplify the stem cell treatment process for ligament and tendon injuries in horses, and may also have implications for human stem cell therapies.

Mesenchymal stem cell therapy is a promising avenue for treating musculoskeletal injuries, particularly tendon and ligament injuries, in horses.

Mesenchymal stem cells are adult stem cells found in bone marrow that act as repair directors, producing secretions that recruit healing-related paracrine factors to the site of injury.

Just as blood cells have types, depending upon which antigens are on the blood cells surface, mesenchymal stem cells have differing sets of major histocompatibility complex molecules, or MHCs, on their surfaces.

If the MHCs of donor and recipient arent a match, the donors stem cells cause an immune response. In organ transplants, MHCs are carefully matched to prevent rejection.

These treatments arent like a bone marrow transplant or an organ transplant, says Lauren Schnabel, associate professor of equine orthopedic surgery at the university and corresponding author of the study, reported in the journal Frontiers in Cell and Developmental Biology.

Since the mesenchymal stem cells are being used temporarily to treat localized injury, researchers once thought that they didnt need to be matched that they wouldnt cause an immune response. Unfortunately, that isnt the case.

Schnabel and Alix Berglund, a research scholar at the university and lead author of the paper, wanted to find a way to use mesenchymal stem cell therapy without the time, effort and additional cost of donor/recipient matching.

Since these cells dont have to be in the body as long as an organ does, hiding them from the immune system long enough for them to secrete their paracrine factors could be a way around donor/recipient matching, Berglund says. Downregulating expression of the MHC molecules could be one way to do this.

The researchers cultured stem cells and lymphocytes, or T cells, from eight horses, cross-pairing them in vitro so that the stem cells and lymphocytes had differing MHC haplotypes.

In one group, stem cells had been treated with transforming growth factor beta (TGF-2) prior to being added to the lymphocytes in the culture media; the other group was untreated. TGF-2 is a cell-signaling molecule produced by white blood cells that blocks immune responses.

Cultures with treated stem cells had a 50% higher stem cell survival rate than untreated cultures.

We use mesenchymal stem cells to treat musculoskeletal injuries particularly tendon injuries in horses very effectively, Schnabel says.

And while you can extract the secretions from the stem cells, you get better results with the cells themselves. Stem cells arent just a reservoir of secretions, theyre a communications hub that tells other cells what they should be doing. So finding a way to utilize these cells without stimulating immune response gives us better treatment options.

This is a promising pilot study, Berglund says. Our next steps will be to further explore the immune response in vivo, and to look at human cells in vitro, as this work has excellent potential to help humans with these injuries as well.

The research was supported by the National Institutes of Health and the Morris Animal Foundation. Research specialist Julie Long and statistician James Robertson, both with the university, also contributed to the work.

TGF-b2 Reduces the Cell-Mediated Immunogenicity of Equine MHC-Mismatched Bone Marrow-Derived Mesenchymal Stem Cells Without Altering Immunomodulatory PropertiesAlix K. Berglund, Julie M. Long, James B. Robertson, Lauren V. SchnabelCell Dev. Biol., 04 February 2021 https://doi.org/10.3389/fcell.2021.628382

The study, published under a Creative Commons License, can be read here.

Read more from the original source:
Researchers curb local immune response in horses receiving stem cell injury therapy - Horsetalk

To Read More: Researchers curb local immune response in horses receiving stem cell injury therapy – Horsetalk
categoriaBone Marrow Stem Cells commentoComments Off on Researchers curb local immune response in horses receiving stem cell injury therapy – Horsetalk | dataFebruary 7th, 2021
Read All

Cord Blood Banking: Myths And Facts You Should Be Aware Of, As Per Expert – NDTV Doctor

By daniellenierenberg

Cord blood collection process is the easiest and safest for both mother and the baby in normal and C-Section delivery. Cord blood is collected after the baby is born and the umbilical cord is clamped and cut. Read here to know more.

A baby's umbilical cord contains blood-forming stem cells which can rebuild the immune system

As a parent to be, there are multiple things on your mind to consider and plan before the little one arrives. Between scan appointments and packing hospital bags, you certainly are on the lookout for the best for your baby. Every mother is always anxious to give birth to a healthy baby and assure that it has a healthy future. When you want to give it a healthy future, you need to think about life saving benefits. One of the most important decision which is made at birth for the baby and its family is preserving its cord blood from umbilical cord. The umbilical cord, which connects the baby and the mother in womb has life-saving benefits.

After the birth of the baby, the blood left in the umbilical cord has life-saving cells that can potentially treat over 80 medical conditions pertaining to blood disorders. Cord Blood Banking is the procedure of safely collecting blood from umbilical cord and placenta and preserving it in a sterile environment, thereby ensuring access to stem cells for one's lifetime.

The stem cells which is preserved can be used for blood related disorders. In simple words, stem cells can act like the body's own repair kit and help the body heal from life threatening diseases.

With several advancements, community cord-blood banking is a frontier in medical practice that will help secure not just your baby's future but also your extended family's health. Despite its benefits, there remains many common misconceptions about cord blood banking. Dr Anjali Kumar, Director, Obstetrics and Gynecology, C K Birla Hospital, Gurgaon debunks the myths and facts about Cord Blood banking.

Cord blood can secure baby's future and also your extended family's healthPhoto Credit: iStock

Also read:Expert Reveals Common Skin Problems In Newborn Babies And How To Take Care Of Them

Fact: Cord blood collection process is the easiest and safest for both mother and the baby in normal and C-Section delivery. Cord blood is collected after the baby is born and the umbilical cord is clamped and cut. The cord blood that is collected is blood that would normally be discarded after birth, so collection doesn't affect your baby's blood supply during pregnancy or delivery.

Fact: Cord Blood extracted from baby's umbilical cord is rich and can be easily available for the family and the child if preserved at birth. Incase of bone marrow or other source of stem cells, the donor has to be registered and should be a match to the family. Cord blood may be accessed more quickly than stem cells from an adult donor who may have registered for donation years ago. The donor must be located, consented, tested and harvested. The extraction of stem cells through Bone Marrow can be painful as well.

Also read:Newborn Care During Winter Season: Here's A Complete Guide For Parents

Fact: According to The Indian Council of Medical Research (ICMR) guidelines commercial banking of Cord Tissue is not permitted to be collected and preserved.

Fact: A baby's umbilical cord contains blood-forming stem cells which be transplanted and rebuild the immune system and bone marrow by saving a patient life with a certain life-threatening condition such as leukemia, lymphoma or thalassemia. Infusion of these cells can also treat patients with inherited genetic disorders, bone marrow failure or inherited immune deficiency.

Fact: It is difficult to find a matching donor of Indian origin of the times hence its important to bank baby's umbilical cord. Incase even if a match is found, it can also be incredibly costly to obtain donor stem cells. The cost to obtain a unit of stem cells can be anywhere between 15-20 lakhs and upwards.

Also read:What Is The Best Time To Give Water To Your Newborn?

(Dr Anjali Kumar, Director, Obstetrics and Gynecology, C K Birla Hospital, Gurgaon)

Disclaimer: The opinions expressed within this article are the personal opinions of the author. NDTV is not responsible for the accuracy, completeness, suitability, or validity of any information on this article. All information is provided on an as-is basis. The information, facts or opinions appearing in the article do not reflect the views of NDTV and NDTV does not assume any responsibility or liability for the same.

Excerpt from:
Cord Blood Banking: Myths And Facts You Should Be Aware Of, As Per Expert - NDTV Doctor

To Read More: Cord Blood Banking: Myths And Facts You Should Be Aware Of, As Per Expert – NDTV Doctor
categoriaBone Marrow Stem Cells commentoComments Off on Cord Blood Banking: Myths And Facts You Should Be Aware Of, As Per Expert – NDTV Doctor | dataFebruary 7th, 2021
Read All

I got stung by a stingray, and all I got was this deeper understanding of venom medicine – NOVA Next

By daniellenierenberg

Three years ago, wading in the sun-warmed waters of the Florida Keys, I felt a sharp pinch and looked down at my feet in surprise. My friend Jen and I had driven down from Miami for a weekend full of strong Cuban coffee and Hemingways six-toed cats. Tempted by water so warm and aquamarine it was almost a cliche, we had stopped to swim at a roadside beach on Bahia Honda Key. I had eased in, careful to drag my feet slowly across the seafloor in a dance known to beachgoers as the stingray shuffle, hoping to alert any local sealife to my approach. But not careful enough.

My foot throbbing, I stumbled back to the beach toward Jen, who wondered if I might have stepped on some glass. But in the next half hour, as my ankle and foot ballooned and the pain ratcheted upfrom stinging to aching, from aching to bone breakingit became clear I must have been stung by something. Then my foot started to turn blue, and we drove to the hospital.

Bahia Honda? the nurse said. Youre the fourth person to come in with a stingray sting from there today.

The pain didnt subside until the next day, when my foot had returned to its normal color. That was the start of a six-week recovery, which also involved crutches, painkillers, heavy-duty antibiotics, and a horrible rash. I wouldnt wish the experiencewhich involves a level of discomfort that some have compared to a gunshot woundon anyone. But in retrospect, its an interesting one to consider. Because, it turns out, animal venoms like the one coursing through my veins on Bahia Honda Key are sought after for drug development, with seven FDA-approved drugs derived from venom toxins on the market so far. Harnessing their power to hurt opens up a world of possibilities for healing.

The Bahia Honda beach where the author had a run-in with a stingray. Image Credit: Giuseppe Milo, Flickr (CC BY 2.0)

Chemical biologist Mand Holford, who studies venom science at her lab at Hunter College, compares what was happening in my foot in the moment after the sting to a cluster bomb. The toxins in animal venom have been engineered by evolution over many millennia to incapacitate by affecting some component in the blood, brain, or cell membranes, she says. Youre getting invaded with 200 to 300 different toxins, all trying to figure out how to reach their target, moving through and rupturing cell membranes, doing all sorts of damage.

The nurse at the emergency room told me stingrays were migrating through the area, their path bringing them close to the cove where I went wading. Stingrays deliver their venom through one or more serrated barbs that lie along their tails. While at rest, a stingray keeps its barb tucked away, immunologist Carla Lima told me in an email. But when it feels threatenedsay, by the feet of a clueless human out for a swimit pushes its tail perpendicular to its body, puncturing that humans flesh with its venom-laden spine.

Lima studies toxins in venomous fish at the Butantan Institute in So Paolo, Brazil. Her research into stingray venom has shown that whats in that venom actually changes as a stingray matures. In the freshwater species she studieswhose venom properties are better explored than the marine stingray that got methe venom of young rays tends to contain toxins that cause pain to the target. Lima hypothesizes this may be to chase predators away. In contrast, the toxins in adult venom have a necrotizing effect, meaning they destroy tissue, which would be helpful for hunting.

Peptides, short chains of amino acids that play key roles in the biological functions of all kinds of organisms, make up a large part of most animal venomsand some are only found in those venoms. Lima and other researchers have identified the peptides porflan and orpotrin as two of the elements in the freshwater stingrays toxic cocktail, along with a number of different proteases, which are enzymes that break down peptides.

As I sat cradling my foot on the beach in Bahia Honda, similar proteases and related proteins worked to break down the structure of cells in my heel, helping the venom spread further, and to prompt an inflammatory reaction that led to the swelling I saw. The peptides, on the other hand, likely caused the arteries to constrict and blood to pool, creating more inflammation and blocking circulationperhaps the cause of my foot turning blue.

A southern stingray (Dasyatis americana) cruises the ocean floor off Grand Turk Island in the Caribbean. Image Credit: Nate Madden, Shutterstock

That a substance that causes so much pain and wreaks so much biological havoc can be used in medicine is what Holford calls the yin and yang of nature. And the fact that damage and healing are, at least in this case, two sides of the same coin forms the basis for the work she does in her lab, identifying new drug applications for various components of animal venom.

Venoms have great potential to contribute to drug development because they are both potent and highly targeted, Holford says, with peptides that fit physically into cell receptors and change how those cells function. Thanks to this dynamic, venom-based drugs can work almost instantaneously. And theyre not what people in the pharmaceutical business call leaky, meaning they tend to only act on the intended cell component and dont stop at other spots along the way causing side effects.

Most stingray venom research, like Limas, takes place in areas where stingrays pose a threat to people: tropical spots like Brazil and Australia. On a drug-development level, we still dont know much about it, Lima says. But we do know a lot about other venomsin particular those created by cone snails and snakes.

For one thing, not all venom toxins cause pain. Some peptides present in snake venom focus on manipulating proteins in the wound so blood flows freely, acting as natural anticoagulants. Other peptides in Gila monster venom promote insulin production, helpful for a hungry lizard that hasnt eaten for awhile. And yet other peptides in cone-snail venom do the opposite of what stingray venom does: paralyze and suppress pain, keeping the snails prey from going into fight-or-flight mode and slowing it down until the (also slow) snail can come nab it for a snack.

This last type of venom is one of the focuses at Holfords lab. Many cone-snail venom peptides are rich in cysteine amino acids, whose structure she compares to Velcro. That makes it relatively easy for them to stick in the hourglass-shaped pores on the surface of cells that let important minerals like sodium, calcium, and potassium flow in and out. The free movement of those minerals is part of how cells talk to each other.

With those channels shut down, neurons cant communicate with one another to indicate pain. Thats what makes Prialt, the commercial version of the cone snails ziconotide peptide, an effective pain medication. Holford and her colleagues are also exploring the potential of other related cone-snail peptides to help dampen signals firing too fast in someone having a heart attack or an epileptic seizure.

She even sees possible applications here for cancer treatment. Current chemotherapy regimens dont discriminate between normal cells and tumor, she says. But because venom peptides work on specific receptorsreceptors that some tumors grow too many of as part of their developmentthey could help create a cancer drug that specifically starves cancer cells of essential minerals, stopping their growth.

The saw-scaled viper (Echis carinatus) is one of the deadliest snakes in India, and its venom is the basis of the blood-thinning drug Tirofiban. Image Credit: Sagar Khunte, Wikimedia Commons (CC BY-SA 4.0)

The venom that nearly ruined my Florida Keys vacation (though I still got to enjoy some beautiful sunsets, and the seafood was fantastic) was incredibly sophisticated, honed by evolution to inflict pain and physiological damage with laser precision. It was almost comforting to learn this in the weeks after, as I hobbled around on my crutches and watched with fascinated disgust as the wound developed a stingray-shaped blister. (My boyfriend said it was a sign I was developing superpowers, but sad to say none appeared.)

We know from nature that these peptides work, Holford says. What we dont know is massive: where they work, how they work, how effective they are. And thats a huge game of Wheres Waldo. Holford and her colleagues have come up with a protocol for finding new venom components that have potential in drug applications, then figuring out how to get them there. The first step is a practical look at the natural world: identifying which animal species are creating venom, especially venom that can be extracted manually. Next, the team uses new technologies that Holford refers to as the omics genomics, transcriptomics, proteomicsto identify the toxins within those venoms, by examining the instructions the animals' DNA and RNA contain and the proteins built by following those instructions.

From there, the team is able to use that genetic code to manufacture more of a chosen peptide in the lab, which is especially useful when it comes to studying venoms that are produced in small quantities in nature. They then test the synthetic toxin on the animals natural prey to make sure its effective and further tweak it to ensure its as specifically targeted as it can be for humans. And finally, they start to think about drug delivery. Does this drug need to cross the blood-brain barrier? Would it work if administered orally? These are essential questions, since potential drugs that cant be delivered effectively cant really be drugs at all.

Much like the experience of the sting itself, the possibilities for new drugs here are dizzying. Most venom-based drugs on the market are derived from a single peptide. But my stingrays venom (just like other naturally occurring venoms) featured hundreds of peptides. And with the advent of the omics, drug development with venom has become more efficient. Time- and resource-intensive experiments can now be run much more quickly using computer modeling, making the whole process more viable and opening up a whole world of drug prospects.

Lima and her colleagues in Brazil, for example, are continuing to explore the realm of fish venom. One synthetic peptide derived from the venom of a species of toadfish shows particular promise. A 2017 study suggested that peptide, known as TnP, has powerful anti-inflammatory and therapeutic effects in mice. Effects that could potentially help stem the autoimmune reactions that lead to spinal cord damage in patients with multiple sclerosis.

As Holford and her team navigate the new technological landscape, theyre also looking for ways to simplify their process. One innovation Holford is excited about is organoids, in this case, venom glands grown independently in a laboratory. Growing organoids would make acquiring venom samples much easier, she says, and would not require sacrificing an animal for the initial sample.

Thats especially important with climate change and habitat loss fueling a looming biodiversity collapse that could take with it undiscovered venoms with the capacity to heal. In 10 years were heading toward this major shift thats coming if we dont change our attitudes and lifestyle, she says. We could lose a lot of things on the planet that are potentially lifesaving.

Receive emails about upcoming NOVA programs and related content, as well as featured reporting about current events through a science lens.

The rest is here:
I got stung by a stingray, and all I got was this deeper understanding of venom medicine - NOVA Next

To Read More: I got stung by a stingray, and all I got was this deeper understanding of venom medicine – NOVA Next
categoriaSpinal Cord Stem Cells commentoComments Off on I got stung by a stingray, and all I got was this deeper understanding of venom medicine – NOVA Next | dataFebruary 6th, 2021
Read All

Page 54«..1020..53545556..6070..»


Copyright :: 2025