MorphoSys and Incyte Announce Acceptance by Health Canada of the New Drug Submission for Tafasitamab – PharmiWeb.com
By daniellenierenberg
DGAP-News: MorphoSys AG / Key word(s): Miscellaneous12.01.2021 / 22:00 The issuer is solely responsible for the content of this announcement.
Media Release
MorphoSys and Incyte Announce Acceptance by Health Canada of the New Drug Submission for Tafasitamab
PLANEGG/MUNICH, Germany and MONTREAL, Canada - January 12, 2021 - MorphoSys AG (FSE: MOR; Prime Standard Segment; MDAX & TecDAX; NASDAQ:MOR) and Incyte (NASDAQ: INCY) today announced that Health Canada has accepted the New Drug Submission (NDS) for tafasitamab, an anti-CD19 antibody. The application seeks approval of tafasitamab in combination with lenalidomide, followed by tafasitamab monotherapy, for the treatment of adult patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), including DLBCL arising from low grade lymphoma, who are not eligible for, or refuse, autologous stem cell transplant (ASCT).
"With the acceptance of the NDS by Health Canada, review of the data can begin, an important step on the path to making tafasitamab available in Canada for use in combination with lenalidomide in eligible patients with relapsed or refractory DLBCL," said Jose Brisebois, Ph.D., Head of Medical Affairs, Incyte Biosciences Canada. "We intend to work closely with Health Canada as we seek to bring this innovative targeted therapeutic option to the clinical community and to appropriate patients for whom few treatment options exist."
"This important milestone moves tafasitamab in combination with lenalidomide into the regulatory review process in Canada, with the potential to significantly advance patient care in the treatment of relapsed or refractory DLBCL," said Nuwan Kurukulasuriya, Ph.D., Senior Vice President Global Medical Affairs, MorphoSys.
The NDS, submitted by Incyte, is based on data from the L-MIND study evaluating tafasitamab in combination with lenalidomide as a treatment for patients with relapsed or refractory DLBCL not eligible for autologous stem cell transplant, and is supported by the RE-MIND study, an observational retrospective study in relapsed or refractory DLBCL.
Incyte has exclusive commercialization rights for tafasitamab outside of the United States and, if approved, Incyte will hold the marketing authorization for tafasitamab in Canada. This NDS marks the second marketing application that Incyte Biosciences Canada has made to Health Canada since establishing operations in Canada in April 2020.
About Diffuse Large B-cell Lymphoma (DLBCL)DLBCL is the most common type of non-Hodgkin lymphoma in adults worldwide1, characterized by rapidly growing masses of malignant B-cells in the lymph nodes, spleen, liver, bone marrow or other organs. It is an aggressive disease with about 40% of patients not responding to initial therapy or relapsing thereafter2, leading to a high medical need for new, effective therapies3, especially for patients who are not eligible for an autologous stem cell transplant in this setting.
About L-MINDThe L-MIND trial is a single arm, open-label, multicenter Phase 2 study (NCT02399085) investigating the combination of tafasitamab and lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) who have had at least one, but no more than three prior lines of therapy, including an anti-CD20 targeting therapy (e.g. rituximab), who are not eligible for high-dose chemotherapy or refuse subsequent autologous stem cell transplant. The study's primary endpoint is Overall Response Rate (ORR). Secondary outcome measures include Duration of Response (DoR), Progression-Free Survival (PFS) and Overall Survival (OS). In May 2019, the study reached its primary completion.
For more information about L-MIND, visit https://clinicaltrials.gov/ct2/show/NCT02399085
About RE-MINDRE-MIND, an observational retrospective study (NCT04150328), was designed to isolate the contribution of tafasitamab in combination with lenalidomide and to prove the combinatorial effect. The study compares real-world response data of patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) who received lenalidomide monotherapy with the efficacy outcomes of the tafasitamab-lenalidomide combination, as investigated in MorphoSys' L-MIND trial. RE-MIND collected the efficacy data from 490 relapsed or refractory DLBCL patients in the U.S. and EU. Qualification criteria for matching patients of both studies were pre-specified. As a result, 76 eligible RE-MIND patients were identified and matched 1:1 to 76 of 80 L-MIND patients based on important baseline characteristics. Objective Response Rates (ORR) were validated based on this subset of 76 patients in RE-MIND and L-MIND, respectively. The primary endpoint of RE-MIND was met and shows a statistically significant superior best ORR of the tafasitamab-lenalidomide combination compared to lenalidomide monotherapy.
For more information about RE-MIND, visit https://clinicaltrials.gov/ct2/show/NCT04150328.
About TafasitamabTafasitamab is a humanized Fc-modified cytolytic CD19 targeting monoclonal antibody. In 2010, MorphoSys licensed exclusive worldwide rights to develop and commercialize tafasitamab from Xencor, Inc. Tafasitamab incorporates an XmAb(R) engineered Fc domain, which mediates B-cell lysis through apoptosis and immune effector mechanism including Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) and Antibody-Dependent Cellular Phagocytosis (ADCP). In January 2020, MorphoSys and Incyte entered into a collaboration and licensing agreement to further develop and commercialize tafasitamab globally. Following approval by the U.S. Food and Drug Administration in July 2020, tafasitamab is being co-commercialized by MorphoSys and Incyte in the United States. Incyte has exclusive commercialization rights outside the United States.
Tafasitamab is being clinically investigated as a therapeutic option in B-cell malignancies in a number of ongoing combination trials.
XmAb(R) is a registered trademark of Xencor, Inc.
The safety and efficacy of tafasitamab is under review and the market authorization in Canada has not yet been obtained.
About MorphoSysMorphoSys (FSE & NASDAQ: MOR) is a commercial-stage biopharmaceutical company dedicated to the discovery, development and commercialization of innovative therapies for patients suffering from cancer and autoimmune diseases. Based on its leading expertise in antibody, protein and peptide technologies, MorphoSys, together with its partners, has developed and contributed to the development of more than 100 product candidates, of which 27 are currently in clinical development. In 2017, Tremfya(R), developed by Janssen Research & Development, LLC and marketed by Janssen Biotech, Inc., for the treatment of plaque psoriasis, became the first drug based on MorphoSys' antibody technology to receive regulatory approval. In July 2020, the U.S. Food and Drug Administration (FDA) granted accelerated approval of MorphoSys' proprietary product Monjuvi(R) (tafasitamab-cxix) in combination with lenalidomide in patients with a certain type of lymphoma. Headquartered near Munich, Germany, the MorphoSys group, including the fully owned U.S. subsidiary MorphoSys US Inc., has more than 600 employees. More information at http://www.morphosys.com or http://www.morphosys-us.com.
Monjuvi(R) is a registered trademark of MorphoSys AG.
Tremfya(R) is a registered trademark of Janssen Biotech, Inc.
About Incyte Incyte is a Wilmington, Delaware-based, global biopharmaceutical company focused on finding solutions for serious unmet medical needs through the discovery, development and commercialization of proprietary therapeutics. For additional information on Incyte, please visit Incyte.com and follow @Incyte.
MorphoSys Forward-looking Statements This communication contains certain forward-looking statements concerning the MorphoSys group of companies, including the expectations regarding Monjuvi's ability to treat patients with relapsed or refractory diffuse large B-cell lymphoma, the further clinical development of tafasitamab-cxix, including ongoing confirmatory trials, additional interactions with regulatory authorities and expectations regarding future regulatory filings and possible additional approvals for tafasitamab-cxix as well as the commercial performance of Monjuvi. The words "anticipate," "believe," "estimate," "expect," "intend," "may," "plan," "predict," "project," "would," "could," "potential," "possible," "hope" and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. The forward-looking statements contained herein represent the judgment of MorphoSys as of the date of this release and involve known and unknown risks and uncertainties, which might cause the actual results, financial condition and liquidity, performance or achievements of MorphoSys, or industry results, to be materially different from any historic or future results, financial conditions and liquidity, performance or achievements expressed or implied by such forward-looking statements. In addition, even if MorphoSys' results, performance, financial condition and liquidity, and the development of the industry in which it operates are consistent with such forward-looking statements, they may not be predictive of results or developments in future periods. Among the factors that may result in differences are MorphoSys' expectations regarding risks and uncertainties related to the impact of the COVID-19 pandemic to MorphoSys' business, operations, strategy, goals and anticipated milestones, including its ongoing and planned research activities, ability to conduct ongoing and planned clinical trials, clinical supply of current or future drug candidates, commercial supply of current or future approved products, and launching, marketing and selling current or future approved products, the global collaboration and license agreement for tafasitamab, the further clinical development of tafasitamab, including ongoing confirmatory trials, and MorphoSys' ability to obtain and maintain requisite regulatory approvals and to enroll patients in its planned clinical trials, additional interactions with regulatory authorities and expectations regarding future regulatory filings and possible additional approvals for tafasitamab-cxix as well as the commercial performance of Monjuvi, MorphoSys' reliance on collaborations with third parties, estimating the commercial potential of its development programs and other risks indicated in the risk factors included in MorphoSys' Annual Report on Form 20-F and other filings with the U.S. Securities and Exchange Commission. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements. These forward-looking statements speak only as of the date of publication of this document. MorphoSys expressly disclaims any obligation to update any such forward-looking statements in this document to reflect any change in its expectations with regard thereto or any change in events, conditions or circumstances on which any such statement is based or that may affect the likelihood that actual results will differ from those set forth in the forward-looking statements, unless specifically required by law or regulation.
Incyte Forward-looking Statements Except for the historical information set forth herein, the matters set forth in this press release, including statements regarding whether or when tafasitamab might be approved in Canada for the treatment of, and whether or when tafasitamab might provide a successful treatment option for, in combination with lenalidomide, certain patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), and the L-MIND and RE-MIND clinical trial programs. These forward-looking statements are based on the Company's current expectations and subject to risks and uncertainties that may cause actual results to differ materially, including unanticipated developments in and risks related to: unanticipated delays; further research and development and the results of clinical trials possibly being unsuccessful or insufficient to meet applicable regulatory standards or warrant continued development; the ability to enroll sufficient numbers of subjects in clinical trials; determinations made by Canadian regulatory authorities or other regulatory authorities, including the U.S. FDA; the Company's dependence on its relationships with its collaboration partners; the efficacy or safety of the Company's products and the products of the Company's collaboration partners; the acceptance of the Company's products and the products of the Company's collaboration partners in the marketplace; market competition; sales, marketing, manufacturing and distribution requirements; greater than expected expenses; expenses relating to litigation or strategic activities; and other risks detailed from time to time in the Company's reports filed with the Securities and Exchange Commission, including its Form 10-Q for the quarter ending September 30, 2020. The Company disclaims any intent or obligation to update these forward-looking statements.
Contacts:
References1Sarkozy C, et al. Management of relapsed/refractory DLBCL. Best Practice Research & Clinical Haematology. 2018 31:209-16. doi.org/10.1016/j.beha.2018.07.014.2 Skrabek P, et al. Emerging therapies for the treatment of relapsed or refractory diffuse large B cell lymphoma. Current Oncology. 2019 26(4): 253-265. doi.org/10.3747/co.26.5421.3 Skrabek P, et al. Emerging therapies for the treatment of relapsed or refractory diffuse large B cell lymphoma. Current Oncology. 2019 26(4): 253-265. doi.org/10.3747/co.26.5421.
12.01.2021 Dissemination of a Corporate News, transmitted by DGAP - a service of EQS Group AG.The issuer is solely responsible for the content of this announcement.
The DGAP Distribution Services include Regulatory Announcements, Financial/Corporate News and Press Releases. Archive at http://www.dgap.de
Originally posted here:
MorphoSys and Incyte Announce Acceptance by Health Canada of the New Drug Submission for Tafasitamab - PharmiWeb.com
Warm Up with Homemade Broths and Stocks – The Source Weekly
By daniellenierenberg
Abowl of hot soup or warm broth can take the chill out of a cold winter day. While grocery store shelves are usually stocked with an array of canned and boxed varieties, making a delicious broth for sipping or a stock as a base for other soups and recipes is something you can do while doing other things, such as working on your computer or doing the laundry. Once you get it going, you only have to check on it occasionally until it's done.
According to Food & Wine, the difference between stock and broth is minimal. A stock is to be made with bones in addition to a mirepoix, a mix of carrots, onions and celery. At its most basic, broth is simply any liquid that meat has been cooked in. A broth can also be made with just vegetables. While broth is something you sip, stock is typically used as a base in sauces and soups, providing body rather than flavor.
As author Sally Fallon Morell points out in her book, "Nourishing Broth: An Old-Fashioned Remedy for the Modern World," bone broth has rich dissolves of collagen, cartilage, bone and marrow which give the body the right stuff to rebuild and rejuvenatestuff such as vitamins, minerals, amino acids and healing sugars.
"Deep in the center of bones is marrow, a creamy substance valued by our ancestors for its life-giving, reproduction-enhancing, and brain-building fat and cholesterol. As the seed of blood and stem cells, it's prized as a sacred, energizing, and regenerative food in native cultures all over the world," Morell writes. Of course, most are aware of the benefits of eating plenty of plants in our diet, too.
Whether you're going for bones or carrots or both, the basic technique is the same. Simmer veggie scraps or bones in water for a long, slow time (in the case of straight-up vegetable broth, it can be finished in one hour or less).
Simple Vegetable BrothA swirl of your favorite oil1 onion, chopped2 stalks celery, chopped2 large carrots, choppedLeftover vegetable scraps you have on hand (onion skins, carrot ends, celery leaves, herbs, potato peels, greens, etc.)Several cloves of garlic, smashedFresh parsley/thymePinch of saltTwo bay leavesWater to cover
Saut chopped veggies in a bit of oil or water to soften. Add salt, herbs, bay leaves and water to cover. Bring to almost boiling, then turn heat down to simmer for 45-60 minutes, longer if desired. Strain. Cool.
Basic Bone Broth
Roast bones on baking sheet in hot oven (400 degrees) for 30 minutes. Place bones and vegetables in big pot. Cover with water. Bring to an easy roll then immediately turn heat down. Simmer uncovered, skimming scum as it rises. Cook for 24-72 hours. Turn off overnight, turn back on to simmer next morning. During last 10 minutes of cooking, toss in fresh parsley for added flavor. Let broth cool before straining. Store in fridge up to one week or freezer up to six months.
Pro Tips:
The number one goal for bone broth/stock is to get it gelatinous, meaning it sets up in a solid gel if you put it in the fridge. Bones, such as knucklebones and chicken/pig feet with lots of cartilage help make the broth gelatinous. Include meaty bones, such as short ribs, to add flavor.
Water should just cover the bones.
Never overheat the broth/stock. A roiling boil will break down collagen fibers that won't coagulate when cooled. So heat over medium heat only until the liquid starts to "roll," then turn the heat down until it barely simmers.
Simmer with the lid off to prevent boiling and allow the gradual reduction of the stock and concentration of gelatin.
To avoid cloudiness, skim the scum that rises to the top as the liquid starts to cook and occasionally throughout cooking.
To freeze stock, only fill the container full.
Read the rest here:
Warm Up with Homemade Broths and Stocks - The Source Weekly
Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine – Science Advances
By daniellenierenberg
Abstract
Terminally differentiated murine osteocytes and adipocytes can be reprogrammed using platelet-derived growth factorAB and 5-azacytidine into multipotent stem cells with stromal cell characteristics. We have now optimized culture conditions to reprogram human adipocytes into induced multipotent stem (iMS) cells and characterized their molecular and functional properties. Although the basal transcriptomes of adipocyte-derived iMS cells and adipose tissuederived mesenchymal stem cells were similar, there were changes in histone modifications and CpG methylation at cis-regulatory regions consistent with an epigenetic landscape that was primed for tissue development and differentiation. In a non-specific tissue injury xenograft model, iMS cells contributed directly to muscle, bone, cartilage, and blood vessels, with no evidence of teratogenic potential. In a cardiotoxin muscle injury model, iMS cells contributed specifically to satellite cells and myofibers without ectopic tissue formation. Together, human adipocytederived iMS cells regenerate tissues in a context-dependent manner without ectopic or neoplastic growth.
The goal of regenerative medicine is to restore function by reconstituting dysfunctional tissues. Most tissues have a reservoir of tissue-resident stem cells with restricted cell fates suited to the regeneration of the tissue in which they reside (14). The innate regenerative capacity of a tissue is broadly related to the basal rate of tissue turnover, the health of resident stem cells, and the hostility of the local environment. Bone marrow transplants and tissue grafts are frequently used in clinical practice but for most tissues, harvesting and expanding stem and progenitor cells are currently not a viable option (5, 6). Given these constraints, research efforts have been focused on converting terminally differentiated cells into pluripotent or lineage-restricted stem cells (7, 8). However, tissues are often a complex mix of diverse cell types that are derived from distinct stem cells. Therefore, multipotent stem cells may have advantages over tissue-specific stem cells. To be of use in regenerative medicine, these cells would need to respond appropriately to regional cues and participate in context-dependent tissue regeneration without forming ectopic tissues or teratomas. Mesenchymal stem cells (MSCs) were thought to have some of these characteristics (911), but despite numerous ongoing clinical trials, evidence for their direct contribution to new tissue formation in humans is sparse, either due to the lack of sufficient means to trace cell fate in hosts in vivo or failure of these cells to regenerate tissues (12, 13).
We previously reported a method by which primary terminally differentiated somatic cells could be converted into multipotent stem cells, which we termed as induced multipotent stem (iMS) cells (14). These cells were generated by transiently culturing primary mouse osteocytes in medium supplemented with azacitidine (AZA; 2 days) and platelet-derived growth factorAB (PDGF-AB; 8 days). Although the precise mechanisms by which these agents promoted cell conversion was unclear, the net effect was reduced DNA methylation at the OCT4 promoter and reexpression of pluripotency factors (OCT4, KLF4, SOX2, c-MYC, SSEA-1, and NANOG) in 2 to 4% of treated osteocytes. iMS cells resembled MSCs with comparable morphology, cell surface phenotype, colony-forming unit fibroblast (CFU-F), long-term growth, clonogenicity, and multilineage in vitro differentiation potential. iMS cells also contributed directly to in vivo tissue regeneration and did so in a context-dependent manner without forming teratomas. In proof-of-principle experiments, we also showed that primary mouse and human adipocytes could be converted into long-term repopulating CFU-Fs by this method using a suitably modified protocol (14).
AZA, one of the agents used in this protocol, is a cytidine nucleoside analog and a DNA hypomethylating agent that is routinely used in clinical practice for patients with higher-risk myelodysplastic syndrome (MDS) and for elderly patients with acute myeloid leukemia (AML) who are intolerant to intensive chemotherapy (15, 16). AZA is incorporated primarily into RNA, disrupting transcription and protein synthesis. However, 10 to 35% of drug is incorporated into DNA resulting in the entrapment and depletion of DNA methyltransferases and suppression of DNA methylation (17). Although the relationship between DNA hypomethylation and therapeutic efficacy in MDS/AML is unclear, AZA is known to induce an interferon response and apoptosis in proliferating cells (1820). PDGF-AB, the other critical reprogramming agent, is one of five PDGF isoforms (PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC, and PDGF-DD), which bind to one of two PDGF receptors (PDGFR and PDGFR) (21). PDGF isoforms are potent mitogens for mesenchymal cells, and recombinant human (rh)PDGF-BB is used as an osteoinductive agent in the clinic (22). PDGF-AB binds preferentially to PDGFR and induces PDGFR- homodimers or PDGFR- heterodimers. These are activated by autophosphorylation to create docking sites for a variety of downstream signaling molecules (23). Although we have previously demonstrated induction of CFU-Fs from human adipocytes using PDGF-AB/AZA (14), the molecular changes, which underlie conversion, and the multilineage differentiation potential and in vivo regenerative capacity of the converted cells have not been determined.
Here, we report an optimized PDGF-AB/AZA treatment protocol that was used to convert primary human adipocytes, a tissue source that is easily accessible and requires minimal manipulation, from adult donors aged 27 to 66 years into iMS cells with long-term repopulating capacity and multilineage differentiation potential. We also report the molecular landscape of these human iMS cells along with that of MSCs derived from matched adipose tissues and the comparative in vivo regenerative and teratogenic potential of these cells in mouse xenograft models.
Primary mature human adipocytes were harvested from subcutaneous fat (Fig. 1A and table S1) and their purity confirmed by flow cytometry with specific attention to the absence of contaminating adipose-derived MSCs (AdMSCs) (fig. S1, A and B). As previously described (14), plastic adherent adipocytes were cultured in Alpha Minimum Essential Medium (MEM) containing rhPDGF-AB (200 ng/ml) and 20% autologous serum (AS) with and without 10 M AZA for 2 and 23 days, respectively (Fig. 1A). During daily observations, unilocular lipid globules were observed to fragment within adipocytes ~day 10 with progressive extrusion of fat into culture medium, coincident with changes in cell morphology (movie S1). Consistent with these observations, when fixed and stained with Oil Red O, adipocytes that were globular in shape at the start of culture resembled lipid laden stromal cells at day 12 and lipid-free stromal cells at day 25 (Fig. 1B).
(A) Generation and reprogramming of adipocytes. (B) Oil Red Ostained adipocytes (days 0, 12, and 25) during treatment with recombinant human platelet-derived growth factorAB (rhPDGF-AB) and AZA. (C) Flow cytometry plots of LipidTOX and PDGFR in adipocytes cultured as in (A). (D) CFU-F counts from treated and untreated adipocytes during conversion. (E) CFU-F counts from adipocytes treated (Rx) with indicated combinations of rhPDGF-AB, AZA, fetal calf serum (FCS), autologous serum (AS), or serum-free media (SFM). (F) CFU-F counts from adipocytes reprogrammed in the presence of 0, 1, or 10 M PDGFR/ inhibitor AG1296. (G) CFU-F counts per 400 reprogrammed adipocytes from three donor age groups (n = 3 for each) generated using indicated combinations of rhPDGF-AB and AZA. (H) Long-term growth of reprogrammed adipocytes from three donor age groups (n = 3 for each) generated using indicated combinations of rhPDGF-AB and AZA. (I) Long-term growth of iMS cells cultured in SFM or media supplemented with FCS, autologous, or allogeneic serum. Error bars indicate SD, n = 3; *P < 0.05, **P < 0.01, and ***P < 0.0001 calculated using either a Students t test (E and F) or a linear mixed model (H). Photo credit: Avani Yeola, UNSW Sydney.
To evaluate these changes in individual cells, we performed flow cytometry at multiple time points during treatment and probed for adipocyte (LipidTOX) (24) and stromal cell characteristics [PDGFR expression (25); Fig. 1C]. A subpopulation of adipocytes, when cultured in media supplemented with PDGF-AB/AZA and AS (Fig. 1C, top; treated), showed reduced LipidTOX staining intensity at day 10, with progressive reduction and complete absence in all cells by day 19. Adipocytes cultured in the absence of PDGF-AB/AZA retained LipidTOX staining, albeit with reduced intensity (Fig. 1C, bottom; untreated). Adipocytes expressed PDGFR [fig. S1C, (i) and (ii)] but not PDGFR (Fig. 1C) at day 0 but both the frequency and intensity of PDGFR staining increased from day 21. To record these changes in real time, we also continuously live-imaged treated adipocytes from days 15 to 25 and recorded the extrusion of fat globules, change in cell morphology from globular to stromal, and acquisition of cell motility and cell mitosis (movie S1 and fig. S1D). Intracellular fragmentation of fat globules was observed over time in untreated adipocytes (fig. S1E), consistent with variable LipidTOX staining intensity. CFU-F capacity was absent at day 10, present in day 15 cultures, and tripled by day 19 with no substantial increase at days 21, 23, and 25 (Fig. 1D). It is noteworthy that CFU-F potential was acquired before PDGFRA surface expression when adipocytes had started to display stromal cell morphology and had diminished fat content. There was also no CFU-F capacity in adipocytes cultured in MEM with fetal calf serum (FCS) or AS, unless supplemented with both PDGF-AB and AZA. CFU-F capacity was significantly higher with AS than with FCS and absent in serum-free media (SFM) (Fig. 1E and fig. S1F). As previously shown with reprogramming of murine osteocytes, there was dose-dependent inhibition of CFU-F capacity when AG1296, a potent nonselective PDGF receptor tyrosine kinase inhibitor (26), was added to the reprogramming media (Fig. 1F).
To evaluate the impact of patient age and concentrations of PDGF-AB and AZA on the efficiency of human adipocyte conversion, we harvested subcutaneous fat from donors aged 40 (n = 3), 41 to 60 (n = 3), and 61 (n = 3) years and subjected each to three different concentrations of PDGF-AB (100, 200, and 400 ng/ml) and three different concentrations of AZA (5, 10, and 20 M) (Fig. 1G). Although all combinations supported cell conversion in all donors across the three age groups, rhPDGF-AB (400 ng/ml) and 5 M AZA yielded the highest number of CFU-Fs (Fig. 1G). When these cultures were serially passaged in SFM (with no PDGF-AB/AZA supplementation, which was used for cell conversion only), adipocytes converted with reprogramming media containing rhPDGF-AB (400 ng/ml) and 5 M AZA were sustained the longest (Fig. 1H, fig. S2A, and table S2). The growth plateau that was observed even with these cultures [i.e., adipocytes converted with rhPDGF-AB (400 ng/ml) and 5 M AZA when expanded in SFM or FCS] was overcome when cells were expanded in either autologous or allogeneic human serum (Fig. 1I). The genetic stability of human iMS cells (RM0072 and RM0073) was also assessed using single-nucleotide polymorphism arrays and shown to have a normal copy number profile at a resolution of 250 kb (fig. S2B). Together, these data identify an optimized protocol for converting human primary adipocytes from donors across different age groups and show that these can be maintained long term in culture.
Given the stromal characteristics observed in human adipocytes treated with PDGF-AB/AZA (Fig. 1), we performed flow cytometry to evaluate their expression of MSC markers CD73, CD90, CD105, and STRO1 (13) and noted expression levels comparable to AdMSCs extracted from the same subcutaneous fat harvest (Fig. 2A). Primary untreated adipocytes (day 25 in culture) did not express any of these MSC markers (fig. S3A). The global transcriptomes of iMS cells and matched AdMSCs were distinct from untreated control adipocytes but were broadly related to each other [Fig. 2B, (i) and (ii)]. Ingenuity pathway analysis (IPA) using genes that were differentially expressed between AdMSCs versus adipocytes [3307 UP/4351 DOWN in AdMSCs versus adipocytes; false discovery rate (FDR) 0.05] and iMS versus adipocytes (3311 UP/4400 DOWN in iMS versus adipocytes; FDR 0.05) showed changes associated with gene expression, posttranslational modification, and cell survival pathways and organismal survival and systems development [Fig. 2B(iii)]. The number of differentially expressed genes between iMS cells and AdMSCs was limited (2 UP/26 DOWN in iMS versus AdMSCs; FDR 0.05) and too few for confident IPA annotation. All differentially expressed genes and IPA annotations are shown in table S3 (A to E, respectively).
(A) Flow cytometry for stromal markers on AdMSCs (green) and iMS cells (purple) from matched donors. Gray, unstained controls. (B) (i) Principal components analysis (PCA) plot of adipocyte, AdMSC, and iMS transcriptomes. (ii) Hierarchical clustering of differentially expressed genes (DEGs, FDR 0.05). (iii) Ingenuity pathway analysis (IPA) of DEG between AdMSCs/adipocytes (top) or iMS cells/adipocytes (bottom). The most enriched annotated biological functions are shown. (C) (i) Chromatin immunoprecipitation sequencing (ChIP-seq) profiles in AdMSCs and iMS cells from matched donors at a representative locus. Gray bar indicates differential enrichment. (ii) Volcano plots of H3K4me3, H3K27Ac, and H3K27me3 enrichment peaks significantly UP (red) or DOWN (blue) in iMS cells versus AdMSCs. (iii) IPA of corresponding genes. log2FC, log2 fold change. (D) (i) DNA methylation at a representative locus in AdMSCs and iMS cells from matched donors. (ii) Volcano plot of regions with significantly higher (red) or lower (blue) DNA methylation in iMS cells versus AdMSCs. (iii) IPA using genes corresponding to differentially methylated regions (DMRs). (E) OCT4, NANOG, and SOX2 expression in iPS, AdMSCs, and iMS cells. Percentage of cells expressing each protein is indicated. DAPI, 4,6-diamidino-2-phenylindole. (F) AdMSCs and iMS cells differentiated in vitro. Bar graphs quantify staining frequencies, error bars show SD, n = 3. ***P < 0.001 (Students t test). Photo credit: Avani Yeola, UNSW Sydney.
In the absence of significant basal differences in the transcriptomes of AdMSCs and iMS cells, and the use of a hypomethylating agent to induce adipocyte conversion into iMS cells, we examined global enrichment profiles of histone marks associated with transcriptionally active (H3K4me3 and H3K27Ac) and inactive (H3K27me3) chromatin. There were differences in enrichment of specific histone marks in matched AdMSCs versus iMS cells at gene promoters and distal regulatory regions [Fig. 2C(i) and fig. S3, B to D]. H3K4me3, H3K27ac, and H3K27me3 enrichments were significantly higher at 255, 107, and 549 regions and significantly lower at 222, 78, and 98 regions in iMS cells versus AdMSCs [Fig. 2C(ii) and table S4, A to C] and were assigned to 237, 84, and 350 and 191, 58, and 67 genes, respectively. IPA was performed using these gene lists to identify biological functions that may be primed in iMS cells relative to AdMSCs [Fig. 2C(iii) and table S4, D to F]. Among these biological functions, annotations for molecular and cellular function (cellular movement, development, growth, and proliferation) and systems development (general; embryonic and tissue development and specific; cardiovascular, skeletal and muscular, and hematological) featured strongly and overlapped across the different epigenetic marks.
We extended these analyses to also assess global CpG methylation in matched AdMSCs and iMS cells using reduced representation bisulfite sequencing [RRBS; (27)]. Again, there were loci with differentially methylated regions (DMRs) in iMS cells versus AdMSCs [Fig. 2D(i)] with increased methylation at 158 and reduced methylation at 397 regions among all regions assessed [Fig. 2D(ii) and table S4G]. IPA of genes associated with these DMRs showed a notable overlap in annotated biological functions [Fig. 2D(iii) and table S4H] with those associated with differential H3K4me3, H3K27Ac, and H3K27me3 enrichment [Fig. 2C(iii) and table S4, E to G]. Together, these data imply that although basal transcriptomic differences between iMS cells and AdMSCs were limited, there were notable differences in epigenetic profiles at cis-regulatory regions of genes that were associated with cellular growth and systems development.
We next compared iMS cells to adipocytes from which they were derived. Expression of genes associated with adipogenesis was depleted in iMS cells (fig. S4A and table S4I). The promoter regions of these genes in iMS cells had broadly retained an active histone mark (H3K4me3), but, in contrast with adipocytes, many had acquired an inactive mark (H3K27me3) (fig. S4B and table S4J). However, there were examples where iMS cells had lost active histone marks (H3K4me3 and H3K27ac) at gene promoters and potential regulatory regions and gained repressive H3K27me3 [e.g., ADIPOQ; fig. S4C(i)]. In contrast, stromal genes had acquired active histone marks and lost repressive H3K27me3 [e.g. EPH2A; fig. S4C(ii)]. It is noteworthy that promoter regions of genes associated with muscle and pericytes (table S4K) were enriched for active histone marks in iMS cells compared with adipocytes [fig. S4D, (i) and (ii)]. We also compared demethylated CpGs in iMS cells and adipocytes (fig. S4E). There were 7366 sites in 2971 genes that were hypomethylated in iMS cells, of which 236 showed increased expression and were enriched for genes associated with tissue development and cellular growth and proliferation (fig. S4E).
PDGF-AB/AZAtreated murine osteocytes (murine iMS cells), but not bone-derived MSCs, expressed pluripotency associated genes, which were detectable by immunohistochemistry in 1 to 4% of cells (14). To evaluate expression in reprogrammed human cells, PDGF-AB/AZAtreated human adipocytes and matched AdMSCs were stained for OCT4, NANOG, and SOX2 with expression noted in 2, 0.5, and 3.5% of iMS cells respectively, but no expression was detected in AdMSCs (Fig. 2E). In addition to these transcription factors, we also evaluated surface expression of TRA-1-60 and SSEA4. Both proteins were uniformly expressed on iPSCs and absent in AdMSCs [fig. S4F(i)] and adipocytes [fig. S4F(ii)]. Although TRA-1-60 was absent in iMS cells, most (78%) expressed SSEA4 but rarely (<1%) coexpressed OCT4 and NANOG [fig. S4F(i)].
MSCs can be induced to differentiate in vitro into various cell lineages in response to specific cytokines and culture conditions. To evaluate the in vitro plasticity of human iMS cells, we induced their differentiation along with matched AdMSCs and primary adipocytes, into bone, fat, and cartilage, as well as into other mesodermal Matrigel tube-forming assays for endothelial cells (CD31) and pericytes (PDGFR) and muscle (MYH, myosin heavy chain; SMA, smooth muscle actin), endodermal (hepatocyte; HNF4, hepatocyte nuclear factor ), and neuroectodermal (TUJ1; neuron specific class III beta tubulin) lineages (Fig. 2F and fig. S4G). Whereas primary adipocytes remained as such and were resistant to transdifferentiation, iMS cells and AdMSCs showed comparable differentiation potential with the notable exception that only iMS cells generated pericyte-lined endothelial tubes in Matrigel. In keeping with these findings, relative to AdMSCs, iMS cells showed permissive epigenetic marks at pericyte genes [increased H3K4me3 and H3K27Ac; EPHA2 and MCAM; fig. S4H(i); and reduced CpG methylation; NOTCH1, SMAD7, TIMP2, AKT1, and VWF; fig. S4H(ii)]. Together with the notable differences in epigenetic profiles, these functional differences and low-level expression of pluripotency genes in iMS cell subsets suggested that these cells could be more amenable than matched AdMSCs to respond to developmental cues in vivo.
To evaluate spontaneous teratoma formation and in vivo plasticity of iMS cells, we tagged these cells and their matched AdMSCs with a dual lentiviral reporter, LeGO-iG2-Luc2 (28), that expresses both green fluorescent protein (GFP) and luciferase under the control of the cytomegalovirus promoter (Fig. 3A). To test teratoma-initiating capacity, we implanted tagged cells under the right kidney capsules of NOD Scid Gamma (NSG) mice (n = 3 per treatment group) after confirming luciferase/GFP expression in cells in culture (fig. S5, A and B). Weekly bioluminescence imaging (BLI) confirmed retention of cells in situ [Fig. 3B(i)] with progressive reduction in signal over time [Fig. 3B(ii)] and the absence of teratomas in kidneys injected with either AdMSCs or iMS cells [Fig. 3B(iii)]. Injection of equivalent numbers of iPS cells and iPS + iMS cell mixtures (1:49) to approximate iMS fraction expressing pluripotency markers led to spontaneous tumor formation in the same timeframe [Fig. 3B(iii)].
(A) Generation of luciferase/GFP-reporter AdMSCs and iMS cells, and assessment of their in vivo function. (B) Assessment of teratoma initiating capacity; (i) bioluminescence images at 0, 2, 6, and 8 weeks after implantation of 1 106 matched AdMSCs and iMS cells (P2; RM0057; n = 2 per group) under the right kidney capsules. (ii) Quantification of bioluminescence. (iii) Gross kidney morphology 8 weeks following subcapsular implantation of cells (R) or vehicle control (L). (C) Assessment of in vivo plasticity in a posterior-lateral intertransverse lumbar fusion model; (i) bioluminescence images following lumbar implantation of 1 106 matched AdMSCs or iMS cells (P2; RM0038; n = 3 per group) at 1 and 365 days after transplant. (ii) Quantification of bioluminescence. (iii) Tissues (bone, cartilage, muscle, and blood vessels) harvested at 6 months after implantation stained with (left) hematoxylin and eosin or (right) lineage-specific anti-human antibodies circles/arrows indicate regions covering GFP and lineage markerpositive cells. Corresponding graphs show donor cell (GFP+) contributions to bone, cartilage, muscle, and blood vessels as a fraction of total (DAPI+) cells in four to five serial tissue sections. Bars indicate confidence interval, n = 3. Photo Credit: Avani Yeola, UNSW Sydney.
To evaluate whether iMS cells survived and integrated with damaged tissues in vivo, we implanted transduced human iMS cells and matched AdMSCs controls into a posterior-lateral intertransverse lumbar fusion mouse model (Fig. 3A) (29). Cells were loaded into Helistat collagen sponges 24 hours before implantation into the posterior-lateral gutters adjacent to decorticated lumbar vertebrae of NSG mice (n = 9 iMS and n = 9 AdMSC). Cell retention in situ was confirmed by intraperitoneal injection of d-luciferin (150 mg/ml) followed by BLI 24 hours after cell implantation, then weekly for the first 6 weeks and monthly up to 12 months from implantation [Fig. 3C(i)]. The BLI signal gradually decreased with time but persisted at the site of implantation at 12 months, the final assessment time point [Fig. 3C(ii)]. Groups of mice (n = 3 iMS and n = 3 AdMSC) were euthanized at 3, 6, and 12 months and tissues harvested from sites of cell implantation for histology and immunohistochemistry [Fig. 3C(iii)]. Although implanted iMS cells and AdMSCs were present and viable at sites of implantation at 3 months, there was no evidence of lineage-specific gene expression in donor human cells (fig. S5C). By contrast, at 6 months after implantation, GFP+ donor iMS cells and AdMSCs were shown to contribute to new bone (BMP2), cartilage (SOX9), muscle (MYH), and endothelium (CD31) at these sites of tissue injury [Fig. 3C(iii)]. The proportion of donor cells expressing lineage-specific markers in a corresponding tissue section was significantly higher in iMS cells compared with matched AdMSCs at 6 months [Fig. 3C(iii) and table S2] as well as 12 months (fig. S5, E and D, and table S2). There was no evidence of malignant growth in any of the tissue sections or evidence of circulating implanted GFP+ iMS cells or AdMSCs (fig. S5E). Together, these data show that implanted iMS cells were not teratogenic, were retained long term at sites of implantation, and contributed to regenerating tissues in a context-dependent manner with greater efficiency than matched AdMSCs.
Although appropriate to assess in vivo plasticity and teratogenicity of implanted cells, the posterior-lateral intertransverse lumber fusion mouse model is not suited to address the question of tissue-specific differentiation and repair in vivo. To this end, we used a muscle injury model (30) where necrosis was induced by injecting 10 M cardiotoxin (CTX) into the left tibialis anterior (TA) muscle of 3-month-old female severe combined immunodeficient (SCID)/Beige mice. CTX is a myonecrotic agent that spares muscle satellite cells and is amenable to the study of skeletal muscle regeneration. At 24 hours after injury, Matrigel mixed with either 1 106 iMS cells or matched AdMSCs (or no cells as a control) was injected into the damaged TA muscle. The left (injured) and right (uninjured control) TA muscles were harvested at 1, 2, or 4 weeks after injury to assess the ability of donor cells to survive and contribute to muscle regeneration without ectopic tissue formation (Fig. 4A; cohort A). Donor human iMS cells or AdMSCs compete with resident murine muscle satellite cells to regenerate muscle, and their regenerative capacity is expected to be handicapped not only by the species barrier but also by having to undergo muscle satellite cell commitment before productive myogenesis. Recognizing this, a cohort of mice was subject to a second CTX injection, 4 weeks from the first injury/cell implantation followed by TA muscle harvest 4 weeks later (Fig. 4A; cohort B).
(A) Generation of iMS and AdMSCs and their assessment in TA muscle injury model. (B) (i) Confocal images of TA muscle stained for human CD56+ satellite cells (red) and laminin basement membrane protein (green; mouse/human). Graph shows donor hCD56+ satellite cell fraction for each treatment group. (ii) Confocal images of TA muscle harvested at 4 weeks and stained for human spectrin (red) and laminin (green; mouse/human). For each treatment, the left panel shows a tile scan of the TA muscle and the right panel a high magnification confocal image. Graph shows contribution of mouse (M), human (H), or chimeric (C) myofibers in three to five serial TA muscle sections per mouse (n = 3 mice per treatment group). (C) Confocal images of TA muscle 4 weeks following re-injury with CTX, stained for human spectrin (red) and laminin (green; mouse/human). For each treatment, left panel shows a tile scan of the TA muscle, upper right panel a low-magnification image, and lower right panel a high magnification image of the area boxed above. Graph shows contribution of mouse (M), human (H), or chimeric (C) myofibers in three to five serial TA muscle sections per mouse (n = 3 mice per treatment group). Graph bars indicate confidence interval. *P < 0.05, **P < 0.01, and ***P < 0.001 (linear mixed model). Photo credit: Avani Yeola, UNSW Sydney.
In tissue sections harvested from cohort A, donor-derived muscle satellite cells (31) [hCD56 (Thermo Fisher Scientific, MA5-11563)+; red] were evident in muscles implanted with both iMS cells and AdMSCs at each time point but were most numerous at 2 weeks after implantation [Fig. 4B(i) and fig. S6A]. The frequency of hCD56+ cells relative to total satellite cells [sublaminar 4,6-diamidino-2-phenylindolepositive (DAPI+) cells] was quantified in three to five serial sections of TA muscles per mouse in each of three mice per treatment group and was noted to be higher following the implantation of iMS cells compared with AdMSCs at all time points [week 1, 5.6% versus 2.4%; week 2, 43.3% versus 18.2%; and week 4, 30.7% versus 14.6%; Fig. 4B(i), table S2, and fig. S6A]. Donor cell contribution to regenerating muscle fibers was also assessed by measuring human spectrin (32) costaining with mouse/human laminin [(33) at 4 weeks (Fig. 4B(ii)]. At least 1000 myofibers from three to five serial sections of TA muscles for each of three mice in each treatment group were scored for human [H; hSpectrin+ (full circumference); laminin+], murine (M; mouse; hSpectrin; laminin+), or mouse/human chimeric [C; hSpectrin+ (partial circumference); laminin+] myofibers. Although none of the myofibers seen in cross section appeared to be completely human (i.e., donor-derived), both iMS cells and AdMSCs contributed to chimeric myofibers [Fig. 4B(ii)]. iMS cell implants contributed to a substantially higher proportion of chimeric fibers than AdMSC implants (57.7% versus 30.7%; table S2). In cohort B, TA muscles were allowed to regenerate following the initial CTX injection/cell implantation, and re-injured 4 weeks later with a repeat CTX injection. In these mice, although total donor cell contributions to myofibers in TA muscles harvested 4 weeks after re-injury were comparable to that observed in cohort A, there were no myofibers that appeared to be completely human (Fig. 4C). There were substantially more human myofibers following iMS cell implants than with AdMSCs (9.7% versus 5.4%; table S2). There was no evidence of ectopic tissue formation in TA muscles following implantation of either iMS cells or AdMSCs in either cohort.
To assess the physiological properties of muscles regenerated with human myofibers, we performed tetanic force contractions in extensor digitorum longus (EDL) muscles following the schema shown in Fig. 4A. Tetanic forces evoked by electrical pulses of various stimulus frequencies were not significantly different between the experimental cohorts or between the experimental cohorts and control animals [fig. S6B, (i) to (iii)]. However, when challenged with a sustained train of electrical pulses [fig. S6C(i)], the iMS group demonstrated significantly greater absolute [fig. S6C(ii)] and specific [fig. S6C(iii)] forces over a 3- to 6-s period. Together, these data showed that iMS cells had the capacity to respond appropriately to the injured environment and contribute to tissue-specific regeneration without impeding function.
We have optimized a protocol, originally designed for mouse osteocytes, to convert human primary adipocytes into iMS cells. We show that these long-term repopulating cells regenerate tissues in vivo in a context-dependent manner without generating ectopic tissues or teratomas.
PDGF-AB, AZA, and serum are indispensable ingredients in reprograming media, but the underlying reasons for their cooperativity and the observed dose-response variability between patients are not known. PDGF-AB is reported to bind and signal via PDGFR- and PDGFR- but not PDGFR- subunits (21). Mouse osteocytes and human adipocytes lack PDGFR, although surface expression was detectable as cells transition during reprogramming [mouse; day 2 of 8 (14) and human day 21 of 25]. However, these cells express PDGFR (14). Given that PDGFR inhibition attenuates iMS cell production in both mice (14) and humans, a degree of facilitated binding of PDGF-AB to PDGF- subunits or signaling through a noncanonical receptor is likely to occur, at least at the start of reprogramming. PDGF-Bcontaining homo- and heterodimers are potent mitogens that increase the pool of undifferentiated fibroblasts and preosteoblasts with rhPDGF-BB used in the clinic to promote healing of chronic ulcers and bone regeneration (34). However, the unique characteristics of PDGF-AB but not PDGF-BB or PDGF-AA that facilitate reversal and plasticity of cell identity in combination with AZA and serum (14) remain unknown.
PDGF-AB was replenished in culture throughout the reprogramming period, but AZA treatment was limited to the first 2 days for both mouse osteocyte and human adipocyte cultures. DNA replication is required for incorporation of AZA into DNA (35) and hence DNA demethylation is unlikely to be an initiating event in the conversion of terminally differentiated nonproliferating cells such as osteocytes and mature adipocytes. However, the majority of intracellular AZA is incorporated into RNA, which could directly affect the cellular transcriptome and proteome as an early event (36, 37). It is feasible that subsequent redistribution of AZA from RNA to DNA occurs when cells replicate resulting in DNA hypomethylation as a later event (38).
In the absence of serum, we could neither convert primary human adipocytes into iMS cells nor perpetuate these cells long term in culture. The efficiency of conversion and expansion was significantly higher with human versus FCS and highest with AS. The precise serum factor(s) that are required for cell conversion in conjunction with PDGF-AB and AZA are not known. The volumes of blood (~50 ml 2) and subcutaneous fat (5 g) that we harvested from donors were not limiting to generate sufficient numbers of P2 iMS cells (~10 106) for in vivo implantation and are in the range of cell numbers used in prospective clinical trials using mesenchymal precursor cells for chronic discogenic lumbar back pain (NCT02412735; 6 106) and hypoplastic left heart syndrome (NCT03079401; 20 106).
Our motivation was to optimize a protocol that could be applied to primary uncultured and easily accessible cells for downstream therapeutic applications, and adipose tissue satisfied these criteria. We have not surveyed other human cell types for their suitability for cell conversion using this protocol. It would be particularly interesting to establish whether tissue-regenerative properties of allogeneic mesenchymal precursor populations that are currently in clinical trials could be boosted by exposure to PDGF-AB/AZA. However, given that iMS cells and MSCs share stromal cell characteristics, identifying a unique set of cell surface markers that can distinguish the former is a priority that would assist in future protocol development and functional assessment of iMS cells.
Producing clinical-grade autologous cells for cell therapy is expensive and challenging requiring suitable quality control measures and certification. However, the advent of chimeric antigen receptor T cell therapy into clinical practice (39) has shown that production of a commercially viable, engineered autologous cellular product is feasible where a need exists. Although there were no apparent genotoxic events in iMS cells at P2, ex vivo expansion of cells could risk accumulation of such events and long-term follow-up of ongoing and recently concluded clinical trials using allogeneic expanded mesenchymal progenitor cells will be instructive with regard to their teratogenic potential. The biological significance of the observed expression of pluripotency-associated transcription factors in 2 to 3% of murine and human iMS cells is unknown and requires further investigation. However, their presence did not confer teratogenic potential in teratoma assays or at 12-month follow-up despite persistence of cells at the site of implantation. However, this risk cannot be completely discounted, and the clinical indications for iMS or any cell therapy require careful evaluation of need.
In regenerating muscle fibers, it was noteworthy that iMS cells appeared to follow canonical developmental pathways in generating muscle satellite cells that were retained and primed to regenerate muscle following a second muscle-specific injury. Although iMS cells were generated from adipocytes, there was no evidence of any adipose tissue generation. This supports the notion that these cells have lost their native differentiation trajectory and adopted an epigenetic state that favored response to local differentiation cues. The superior in vivo differentiation potential of iMS cells vis--vis matched AdMSCs was consistent with our data showing that despite the relatively minor transcriptomic differences between these cell types, the epigenetic state of iMS cells was better primed for systems development. Another clear distinction between iMS cells and AdMSCs was the ability of the former to produce CD31+ endothelial tube-like structures that were enveloped by PDGFR+ pericytes. An obvious therapeutic application for iMS cells in this context is vascular regeneration in the setting of critical limb ischemia to restore tissue perfusion, an area of clear unmet need (40).
An alternative to ex vivo iMS cell production and expansion is the prospect of in situ reprogramming by local subcutaneous administration of the relevant factors to directly convert subcutaneous adipocytes into iMS cells, thereby eliminating the need for ex vivo cell production. AZA is used in clinical practice and administered as a daily subcutaneous injection for up to 7 days in a 28-day cycle, with responders occasionally remaining on treatment for decades (41). Having determined the optimal dose of AZA required to convert human adipocytes into iMS cells in vitro (2 days, 5 M), the bridge to ascertaining the comparable in vivo dose would be to first measure levels of AZA incorporation in RNA/DNA following in vitro administration and match the dose of AZA to achieve comparable tissue levels in vivo. A mass spectrometrybased assay was developed to measure in vivo incorporation of AZA metabolites (AZA-MS) in RNA/DNA and is ideally suited to this application (38). The duration of AZA administration for adipocyte conversion was relatively short (i.e., 2 days), but PDGF-AB levels were maintained for 25 days. One mechanism of potentially maintaining local tissue concentrations would be to engineer growth factors to bind extra cellular matrices and be retained at the site of injection. Vascular endothelial growth factor A (VEGF-A) and PDGF-BB have recently been engineered with enhanced syndecan binding and shown to promote tissue healing (42). A comparable approach could help retain PDGF-AB at the site of injection and maintain local concentrations at the required dose. While our current data show that human adipocytederived iMS cells regenerate tissues in a context-dependent manner without ectopic or neoplastic growth, these approaches are worth considering as an alternative to an ex vivo expanded cell source in the future.
Extended methods for cell growth and differentiation assays and animal models are available in the Supplementary Materials, and antibodies used are detailed in the relevant sections.
The primary objective of this study was to optimize conditions that were free of animal products for the generation of human iMS cells from primary adipocytes and to characterize their molecular landscape and function. To this end, we harvested subcutaneous fat from donors across a broad age spectrum and used multiple dose combinations of a recombinant human growth factors and a hypomethylating agent used in the clinic and various serum types. We were particularly keen to demonstrate cell conversion and did so by live imaging and periodic flow cytometry for single-cell quantification of lipid loss and gain of stromal markers. Using our previous report generating mouse iMS cells from osteocytes and adipocytes as a reference, we first characterized the in vitro properties of human iMS cells including (i) long-term growth, (ii) colony-forming potential, (iii) in vitro differentiation, and (iv) molecular landscape. Consistent with their comparative morphology, cell surface markers, and behavioral properties, the transcriptomes (RNA sequencing) were broadly comparable between iMS cells and matched AdMSCs, leading to investigation of epigenetic differences [Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) histone chromatin immunoprecipitation sequencing (ChIP-seq), and RRBS for DNA methylation differences] that might explain properties that were unique to iMS cells (expression of pluripotency factors, generation of endothelial tubes in vitro with pericyte envelopes, and in vivo regenerative potential). Context-dependent in vivo plasticity was assessed using a tissue injury model that was designed to promote bone/cartilage/muscle/blood vessel contributions from donor cells and simultaneously assess the absence of ectopic/malignant tissue formation by these cells (labeled and tracked in vivo using a bioluminescence/fluorescence marker). Tissue-specific regeneration and the deployment of canonical developmental pathways were assessed using a specific muscle injury model, and donor cell contributions in all injury models were performed on multiple serial tissue sections in multiple mice with robust statistical analyses (see below). Power calculations were not used, samples were not excluded, and investigators were not blinded. Experiments were repeated multiple times or assessments were performed at multiple time points. Cytogenetic and Copy Number Variation (CNV) analyses were performed on iMS and AdMSCs pretransplant, and their teratogenic potential was assessed both by specific teratoma assays and long-term implantation studies.
Subcutaneous fat and blood were harvested from patients undergoing surgery at the Prince of Wales Hospital, Sydney. Patient tissue was collected in accordance with National Health and Medical Research Council (NHMRC) National Statement on Ethical Conduct in Human Research (2007) and with approval from the South Eastern Sydney Local Health District Human Research Ethics Committee (HREC 14/119). Adipocytes were harvested as described (43). Briefly, adipose tissue was minced and digested with 0.2% collagenase type 1 (Sigma-Aldrich) at 37C for 40 min and the homogenized suspension passed through a 70-m filter, inactivated with AS, and centrifuged. Primary adipocytes from the uppermost fatty layer were cultured using the ceiling culture method (44) for 8 to 10 days. AdMSCs from the stromal vascular pellet were cultured in MEM + 20% AS + penicillin (100 g/ml) and streptomycin (250 ng/ml), and 200 mM l-glutamine (complete medium).
Adherent mature adipocytes were cultured in complete medium supplemented with AZA (R&D systems; 5, 10, and 20 M; 2 days) and rhPDGF-AB (Miltenyi Biotec; 100, 200, and 400 ng/ml; 25 days) with medium changes every 3 to 4 days. For inhibitor experiments, AG1296 was added for the duration of the culture. Live imaging was performed using an IncuCyte S3 [10 0.25numerical aperture (NA) objective] or a Nikon Eclipse Ti-E (20 0.45-NA objective). Images were captured every 30min for a period of 8 days starting from day 15. Twelve-bit images were acquired with a 1280 1024 pixel array and analyzed using ImageJ software. In vitro plasticity was determined by inducing the cells to undergo differentiation into various cell types using differentiation protocols adapted from a previous report (45).
Animals were housed and bred with approval from the Animal Care and Ethics Committee, University of New South Wales (UNSW; 17/30B, 18/122B, and 18/134B). NSG (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ) and SCID/Beige (C.B-Igh-1b/GbmsTac-Prkdcscid-Lystbg N, sourced from Charles River) strains were used as indicated. The IVIS Spectrum CT (Perkin Elmer) was used to capture bioluminescence. Briefly, 15 min after intraperitoneal injection of d-luciferin (150 mg/kg), images were acquired for 5 min and radiance (photon s1 cm2 sr1) was used for subsequent data analysis. The scanned images were analyzed using the Living Image 5.0 software (Perkin Elmer).
Teratoma assays (46) were performed on 3- to 4-month-old female NSG mice. Lentiviral-tagged cells (5 105) in 20 l of phosphate-buffered saline containing 80% Matrigel were injected under the right kidney capsule using a fine needle (26 gauges) and followed weekly by BLI until sacrifice at week 8. Both kidneys were collected, fixed in 4% paraformaldehyde (PFA) for 48 hours, embedded in optimal cutting temperature compound (OCT), cryosectioned, and imaged for GFP.
Posterior-lateral intervertebral disc injury model (29). Lentiviral-tagged (28) AdMSCs (1 106) or iMS cells were loaded onto Helistat collagen sponges and implanted into the postero-lateral gutters in the L4/5 lumbar spine region of anesthetized NSG mice following decortication of the transverse processes. Animals were imaged periodically for bioluminescence to track the presence of transplanted cells. At 3, 6, or 12 months, mice were euthanized, and spines from the thoracic to caudal vertebral region, including the pelvis, were removed whole. The specimens were fixed in 4% PFA for 48 hours, decalcified in 14% (w/v) EDTA, and embedded in OCT.
Muscle injury model (47). The left TA and EDL muscles of 3- to 4-month-old female SCID/Beige mice were injured by injection with 15 l of 10 M CTX (Latoxan). Confocal images of three to four serial sections (TA) per mouse were captured by Zen core/AxioVision (Carl Zeiss) and visualized by ImageJ with the colocalization and cell counter plugins [National Institutes of Health; (48)]. Tetanic force contractions were performed on EDL muscles (49).
Total RNA was extracted using the miRNeasy Mini Kit (Qiagen) according to manufacturers instructions, and 200 ng of total RNA was used for Illumina TruSeq library construction. Library construction and sequencing was performed by Novogene (HK) Co. Ltd. Raw paired-end reads were aligned to the reference genome (hg19) using STAR (https://github.com/alexdobin/STAR), and HTSeq (50) was used to quantify the transcriptomes using the reference refFlat database from the UCSC Table Browser (51). The resulting gene expression matrix was normalized and subjected to differential gene expression using DeSeq2 (52). Normalized gene expression was used to compute and plot two-dimensional principal components analysis, using the Python modules sklearn (v0.19.1; https://scikit-learn.org/stable/) and Matplotlib (v2.2.2; https://matplotlib.org/), respectively. Differentially expressed genes (log2 fold change |1|, adjusted P < 0.05) were the input to produce an unsupervised hierarchical clustering heat map in Partek Genomics Suite software (version 7.0) (Partek Inc., St. Louis, MO, USA). Raw data are available using accession GSE150720.
ChIP was performed as previously described (53) using antibodies against H3K27Ac (5 g per IP; Abcam, ab4729), H3K4Me3 (5 g per IP; Abcam ab8580), and H3K27Me3 (5 g per IP; Diagenode, C15410195). Library construction and sequencing were performed by Novogene (HK) Co. Ltd. Paired-end reads were aligned to the hg38 genome build using Burrows Wheeler Aligner (BWA) (54) duplicate reads removed using Picard (http://broadinstitute.github.io/picard/), and tracks were generated using DeepTools bamCoverage (https://deeptools.readthedocs.io/en/develop/). Peaks were called using MACS2 (55) with the parameter (P = 1 109). Differentially bound regions between the AdMSC and iMS were calculated using DiffBind (http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf) and regions annotated using ChIPseeker (56). Raw data are available using accession GSE151527. Adipocyte ChIP data were downloaded from Gene Expression Omnibus (GEO); accession numbers are as follows for the three histone marks: GSM916066, GSM670041, and GSM772771.
Total genomic DNA was extracted using the DNA MiniPrep Kit (Qiagen), and RRBS library construction and sequencing were performed by Novogene (HK) Co. Ltd. Raw RRBS data in fastq format were quality and adapter trimmed using trim_galore (0.6.4) with rrbs parameter (www.bioinformatics.babraham.ac.uk/projects/trim_galore). The trimmed fastq files were then aligned to a bisulfite-converted genome (Ensembl GRCh38) using Bismark (2.3.5), and methylation status at each CpG loci was extracted (57). The cytosine coverage files were converted to BigWig format for visualization. Differentially methylated cytosines (DMCs) and DMRs were identified using methylKit (1.10) and edmr (0.6.4.1) packages in R (3.6.1) (58, 59). DMCs and DMRs were annotated using ChIPseeker (56), and pathway enrichment was performed as detailed below. Raw data are available using accession number GSE151527. Adipocyte RRBS data were downloaded from GEO: GSM2342293 and GSM2342392.
IPA (Qiagen) was used to investigate enrichment in molecular and cellular functions, systems development and function, and canonical pathways.
Statistical analysis was performed in SAS. For the dose-optimization experiments (Fig. 1), a linear mixed model with participant-level random effects was used to estimate maximum time by dose level and age group. A linear mixed model with participant-level random effects was used to analyze statistical differences in lineage contribution outcomes between treatment groups (Fig. 3) and at different time points posttransplant, to estimate the percentage of cells by treatment and lineage. For the in vivo regeneration experiment (Fig. 4), a linear model was used to model the percent of cells over time for each group. Quadratic time terms were added to account for the observed increase from 1 to 2 weeks and decrease from 2 to 4 weeks. In the muscle regeneration experiment, a linear model was applied to cohort A and cohort B, to estimate and compare percent cells by treatment and source. Statistical modeling data are included in table S2.
Acknowledgments: We are indebted to the patients who donated tissue to this project. We thank E. Cook (Prince of Wales Private Hospital), B. Lee (Mark Wainwright Analytical Centre, UNSW Sydney), and technicians at the UNSW BRC Facility for assistance with sample and data collection and animal care; Y. Huang for technical assistance; and A. Unnikrishnan and C. Jolly for helpful discussions and critical reading of the manuscript. We acknowledge the facilities and scientific and technical assistance of the National Imaging Facility, a National Collaborative Research Infrastructure Strategy (NCRIS) capability, at the BRIL (UNSW). The STRO-1 antibody was a gift from S. Gronthos, University of Adelaide, Australia. Funding: We acknowledge the following funding support: A.Y. was supported by an Endeavour International Postgraduate Research scholarship from the Australian Government. S.S. is supported by an International Postgraduate Student scholarship from UNSW and the Prince of Wales Clinical School. P.S. is supported by an International Postgraduate Student scholarship from UNSW. M.L.T. and D.D.M. acknowledge funding from St. Vincents Clinic Foundation and Arrow BMT Foundation. K.A.K. acknowledges funding from Australian Research Council (FT180100417). J.M. is supported, in part, by the Olivia Lambert Foundation. M.K. is supported by a NHMRC Program Grant (APP1091261) and NHMRC Principal Research Fellowship (APP1119152). L.B.H. acknowledges funding from MTPConnect MedTech and Pharma Growth Centre (PRJ2017-55 and BMTH06) as part of the Australian Governmentfunded Industry Growth Centres Initiative Programme and The Kinghorn Foundation. D.B. is supported by a Peter Doherty Fellowship from the National Health and Medical Research Council of Australia, a Cancer Institute NSW Early Career Fellowship, the Anthony Rothe Memorial Trust, and Gilead Sciences. R.M. acknowledges funding from Jasper Medical Innovations (Sydney, Australia). J.E.P., V.C., and E.C.H. acknowledge funding from the National Health and Medical Research Council of Australia (APP1139811). Author contributions: The project was conceived by V.C. and J.E.P., and the study design and experiments were planned by A.Y., V.C., and J.E.P. Most of the experiments and data analyses were performed by A.Y., guided and supervised by V.C. and J.E.P. S.S., R.A.O., C.A.L., D.C., F.Y., M.L.T., P.S., T.H., J.R.P., P.H., W.R.W., and V.C. performed additional experiments and data analyses, with further supervision from R.M., C.P., J.A.I.T., D.C., J.W.H.W., L.B.H., D.B., and E.C.H. Statistical analyses were performed by J.O. R.M., D.D.M., J.M., K.A.K., and M.K. provided critical reagents. The manuscript was written by A.Y., J.A.I.T., V.C., and J.E.P., and reviewed and agreed to by all coauthors. Competing interests: V.C. and J.E.P. are named inventors on a patent A method of generating cells with multi-lineage potential (US 9982232, AUS 2013362880). All other authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.
Read the rest here:
Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine - Science Advances
Gamida Cell to Present Full Data from Phase 3 Study of Omidubicel at TCT, the Combined Transplantation and Cellular Therapy Meetings of ASTCT and…
By daniellenierenberg
CARLSBAD, Calif., Jan. 12, 2021 /PRNewswire/ Today Callaway Golf Company (NYSE: ELY), an industry leader in golf equipment and innovation, announced its new family of Apex Irons and Apex Hybrids. These irons provide exceptional forged performance and A.I.-designed ball speed technologies for a wide range of players. And the hybrids feature new Jailbreak A.I. Velocity Blades for fast ball speeds in versatile, high performance offerings.
Apex 21, Apex Pro 21, and Apex DCB Irons
Apex is widely recognized for establishing the forged distance category, and the Apex 21 Irons deliver an exceptional level of performance and craftsmanship. They're the first forged Apex irons with an A.I-designed Flash Face Cup, for high ball speeds and increased spin robustness across the face. Increased forgiveness comes from a massive Tungsten Energy Core, while the 100% forged body and proprietary urethane microspheres deliver remarkable sound and feel at impact. Callaway has also enhanced the shaping for even better turf interaction.
In the players category, new Apex Pro 21 Irons promote Tour distance and performance for scratch or single-digit handicap golfers. They also utilize an A.I.-designed Flash Face in each iron for high COR's and fast ball speeds, along with extremely soft feel from an all-new forged 1025 hollow body construction and urethane microspheres. There are up to 90 grams of tungsten in the longer irons, the most ever for any Apex model, to improve launch characteristics while simultaneously improving forgiveness.
In the game-improvement category, new Apex DCB Irons extend the forged Apex offering to a wider group of golfers than ever before. They combine the look, feel and performance of a forged players club with the forgiveness of a deep cavity back. The deep cavity back design and enhanced sole width promote easy launch and solid turf interaction out of a variety of lies. The irons are engineered with an A.I.-designed Flash Face Cup, up to 50 grams of tungsten per iron for outstanding launch and forgiveness on off-center hits, and forged feel.
All of these Apex Irons will be available for online pre-order on January 26, and at retail on February 11, at a price of $1,480 for a standard 8-piece steel set ($185 per individual steel iron), and $1,600 for a standard 8-piece graphite set ($200 per individual graphite iron). Combo sets are also available.
Apex 21 and Apex Pro 21 Hybrids
The Apex 21 Hybrids are suited to help a wide range of players. They feature new Jailbreak A.I. Velocity Blades designed to increase vertical stiffness near the sole of the club, promoting more speed low on the face where players often mishit their hybrids. The blades allow the Face Cup to flex on the crown to create better spin rate consistency, and the bars are spread to enhance torsional stiffness, to provide more forgiveness across the face.
Every model and every face in the Apex Hybrids are uniquely designed using advanced A.I. This proven ball speed technology puts an even greater emphasis on center and off-center ball speeds. To create high launch and forgiveness. Callaway has implemented a massive amount of tungsten, and the adjustable hosel helps to optimize loft, trajectory and control.
Apex Pro Hybrids also incorporate Jailbreak A.I. Velocity Blades and an A.I-designed Flash Face. The Forged 455 steel provides strength and flexibility, while the iron-like design and fixed hosel create a look at address that highly skilled players prefer.
These new hybrids will all be available for online pre-order on January 26, and at retail on February 11, at a price of $269.99 each.
The Apex Family
Apex is synonymous with legendary performance and we've created a truly special offering with our new 2021 lineup, said Callaway Sr. VP of R&D, Dr. Alan Hocknell. Now we've implemented A.I.-designed ball speeds, enhanced launch characteristics, and reliable forgiveness to advance this iconic name. There's nothing like our best, and that's Apex.
About Callaway Golf Company Callaway Golf Company (NYSE: ELY) is a premium golf equipment and active lifestyle company with a portfolio of global brands, including Callaway Golf, Odyssey, OGIO, TravisMathew and Jack Wolfskin. Through an unwavering commitment to innovation, Callaway manufactures and sells premium golf clubs, golf balls, golf and lifestyle bags, golf and lifestyle apparel and other accessories. For more information please visitwww.callawaygolf.com, http://www.odysseygolf.com,www.ogio.com, http://www.travismathew.com,andwww.jack-wolfskin.com.
MEDIA CONTACTS: Jeff NewtonCallaway Golf Company[emailprotected]
View original content to download multimedia:http://www.prnewswire.com/news-releases/callaway-golf-announces-new-apex-irons-and-hybrids-301205740.html
SOURCE Callaway Golf
Go here to see the original:
Gamida Cell to Present Full Data from Phase 3 Study of Omidubicel at TCT, the Combined Transplantation and Cellular Therapy Meetings of ASTCT and...
Bone Marrow Processing Systems Market Recent developments in the competitive landscape forecast 2018 2025 – SoccerNurds
By daniellenierenberg
Bone marrow aspiration and trephine biopsy are usually performed on the back of the hipbone, or posterior iliac crest. An aspirate can also be obtained from the sternum (breastbone). For the sternal aspirate, the patient lies on their back, with a pillow under the shoulder to raise the chest. A trephine biopsy should never be performed on the sternum, due to the risk of injury to blood vessels, lungs or the heart.
The need to selectively isolate and concentrate selective cells, such as mononuclear cells, allogeneic cancer cells, T cells and others, is driving the market. Over 30,000 bone marrow transplants occur every year. The explosive growth of stem cells therapies represents the largest growth opportunity for bone marrow processing systems.
Get PDF Sample for the Report:https://www.trendsmarketresearch.com/report/sample/3374
Europe and North America spearheaded the market as of 2018, by contributing over 74.0% to the overall revenue. Majority of stem cell transplants are conducted in Europe, and it is one of the major factors contributing to the lucrative share in the cell harvesting system market.
In 2018, North America dominated the research landscape as more than 54.0% of stem cell clinical trials were conducted in this region. The region also accounts for the second largest number of stem cell transplantation, which is further driving the demand for harvesting in the region.
You can Buy This Report from Here @https://www.trendsmarketresearch.com/checkout/3374/Single
Asia Pacific is anticipated to witness lucrative growth over the forecast period, owing to rising incidence of chronic diseases and increasing demand for stem cell transplantation along with stem cell-based therapy. Japan and China are the biggest markets for harvesting systems in Asia Pacific. Emerging countries such as Mexico, South Korea, and South Africa are also expected to report lucrative growth over the forecast period. Growing investment by government bodies on stem cell-based research and increase in aging population can be attributed to the increasing demand for these therapies in these countries.
Major players operating in the global bone marrow processing systems market are ThermoGenesis (Cesca Therapeutics inc.), RegenMed Systems Inc., MK Alliance Inc., Fresenius Kabi AG, Harvest Technologies (Terumo BCT), Arthrex, Inc. and others.
To Get Discount:https://www.trendsmarketresearch.com/report/discount/3374
Read the rest here:
Bone Marrow Processing Systems Market Recent developments in the competitive landscape forecast 2018 2025 - SoccerNurds
Four promising COVID-19 therapies being tested at nearby UVA – Rappahannock News
By daniellenierenberg
Over the past nine months, clinical trials conducted at the University of Virginia have led to new treatments for patients fighting COVID-19 and new tools for health care workers saving lives around the commonwealth and world.
We have been able to learn very quickly, and try new things that have changed the way we approach treatment for this virus, said Dr. Kyle Enfield, a professor and physician in pulmonary and critical care medicine who has helped to coordinate clinical trials at UVA Health.
We are seeing clinical research happen at a speed that has never been seen before, both for drug therapies and vaccine development, Dr. Linda Duska, associate dean for clinical research in the School of Medicine, added. Weve also seen funding and the regulatory apparatus really adapt to this pandemic, while maintaining rigorous standards.
Four clinical trials of COVID-19 drug therapies either underway or completed at UVA, and their implications for patients and for the ongoing pandemic, are summarized below.
A single-site trial based at UVA, the study examines the use of convalescent plasma derived from blood donated by recovered COVID-19 patients to treat patients hospitalized with the virus, but not yet in intensive care. In theory, the antibodies in the plasma will bind to virus cells, blocking them from harming healthy cells.
Convalescent plasma therapy has been around for more than 100 years, and there has been a lot of interest in it since COVID-19 appeared, said Dr. Jeff Sturek, who specializes in pulmonary and critical care medicine and is the principal investigator for the trial. We wanted to bring this therapy to UVA, to contribute to the development of the field and to offer our patients as many options as possible.
The trial was approved in April and patients were enrolled at UVA from May to August. Researchers are now in the process of analyzing results, which look promising.
UVA is part of a multisite Adaptive COVID-19 Treatment Trial, or ACTT, testing the antiviral drug remdesivir in adults hospitalized with COVID-19.
Results from the first part of the trial found that the drug sped recovery time in patients with advanced cases of COVID-19, prompting the U.S. Food and Drug Administration to issue an emergency use authorization for remdesivir. It was the first drug authorized to treat COVID-19.
The trial is now in its third phase; it began with comparing remdesivir to a placebo drug, and then progressed to pairing different drugs with remdesivir, to see which combination was most effective.
The trial was designed to be iterative, to allow us to continue to adapt the study as we learn more about the drug, Duska said. That lets us continually improve treatment without having to go through a complete restart.
Another multisite trial that includes UVA is investigating if infusion of the mesenchymal stromal cell remestemcel-L, a type of stem cell derived from bone marrow, can increase survival rates among COVID-19 patients experiencing acute respiratory distress syndrome.
The cells have been shown to migrate to the lungs when inflammation occurs and release anti-inflammatory factors that can reduce cytokines secreted by the immune systems. High levels of cytokine production have been associated with severe illness and death among COVID-19 patients.
These adult bone marrow stem cells have been used to treat a variety of inflammatory diseases, which means they have already been through early safety trials and we could move more quickly into a larger trial, said Sturek, also the principal investigator for this trial. We hope that the cells can turn down inflammation in the lungs and help the lungs repair themselves, especially for critical ill patients on ventilators.
The trial is halfway through its enrollment process, with a target of enrolling 300 patients. It has already passed initial safety checks with the National Institutes of Healths Data Safety Monitoring Board.
In this multisite trial, researchers are working to determine if monoclonal antibodies made by the drug company Regeneron Pharmaceuticals can prevent COVID-19 infection among people who have been exposed by someone in their household, but have not yet developed the disease. The trial is testing the same antibody cocktail given to President Trump when he was hospitalized with COVID-19, though with a different use.
In this case, the antibodies are intended to prevent people from getting sick if they have a household member with COVID, Enfield said. So far, UVA has done a good job with recruitment, which is particularly tricky in this case as you have to find people who have been exposed to COVID in their household, but who do not yet have COVID.
UVA is recruiting 40 participants for the study, each of whom will receive four injections of either the antibodies or a placebo. Participants must have been exposed to COVID-19 by someone in their household within the previous 96 hours and continue to live with that person for a month.
Its been a rapid process, and a testament to the multidisciplinary team involved, from infectious disease clinicians and researchers to cell therapy, pulmonary critical care and several other departments, Sturek said. Its been all-hands-on-deck.
{Sign up for the C-19 Daily Update, a free newsletter delivered to your email inbox every morning.}
Read this article:
Four promising COVID-19 therapies being tested at nearby UVA - Rappahannock News
Orchard Therapeutics Announces 2021 Corporate Priorities Supporting the Build-out of its Commercial Business in Hematopoietic Stem Cell (HSC) Gene…
By daniellenierenberg
Preparations on Track for First Half 2021 Commercial Launch of Libmeldy (OTL-200), the First Approved Product for Metachromatic Leukodystrophy (MLD) in the EU
Filing Strategy for OTL-200 Biologics License Application (BLA) in MLD in the U.S. to be Communicated by Mid-2021 Following Additional Regulatory Interactions
Marketing Authorization Application (MAA) Filing for OTL-103 in Wiskott-Aldrich Syndrome (WAS) on Track for Year End 2021 in the EU; Followed by BLA Filing in 2022 in the U.S.
New Clinical Data for OTL-203 (for MPS-I) and OTL-201 (for MPS-IIIA) Accepted for Oral Presentation at February 2021 WORLD Symposium; Preclinical Data from Research Programs in Larger Indications Expected in 2021
$192M in Cash and Investments to Support Strategic Execution into the First Half of 2022
BOSTONandLONDON, Jan. 11, 2021 (GLOBE NEWSWIRE) -- Orchard Therapeutics (Nasdaq: ORTX), a global gene therapy leader, today outlined the companys 2021 strategic priorities in advance of its attendance at the virtual 39thAnnual J.P. Morgan Healthcare Conference. These priorities support the companys plan of building a successful commercial business in HSC gene therapy and advancing its portfolio of investigational medicines for high-value, high-need indications.
In a year that challenged how we live and work, Im extremely proud of Orchards achievements in 2020, said Bobby Gaspar, M.D., Ph.D., chief executive officer, Orchard Therapeutics. Our accomplishments were a direct result of the drive and innovation that fuels our commitment to bring our potentially life-saving HSC therapies to patients, including Libmeldy, which is the first product approved for the treatment of eligible patients with early-onset MLD in the EU. With the HSC approach to gene therapy as our scientific foundation, we are focused on the capabilities that can deliver our therapies on a global commercial scale and support our ability to also treat larger indications over time. It has been a privilege to be a pioneer in changing the way medicine is practiced in these conditions, and we look forward to another year of continued execution and scientific progress.
2021 Corporate PrioritiesOrchard has outlined the following key corporate objectives and expected milestones for 2021:
In preparation for a European launch, Orchard has put in place the commercial infrastructure to support Libmeldy as well as future product launches. The company is qualifying five treatment centers in the UK, Germany, Italy, France and the Netherlands with specialized expertise in transplant and disease area knowledge. In addition, the company expects to leverage cross-border and treatment abroad reimbursement pathways in both Europe and markets such as the Middle East and Turkey. Activities are also underway to drive timely MLD patient identification and access, including disease awareness, genetic testing and newborn screening studies, which have started or are on track to initiate in five countries in 2021.
The company also provided an update concerning the impact of the COVID-19 pandemic on certain development activities. These include restrictions to laboratory access at Orchard and third-party service providers, which is impacting the timeline to develop a specific functional potency assay for OTL-103 in WAS, as requested by the FDA. As a result, the company now expects to file a BLA for OTL-103 in the U.S. in 2022. Orchard is utilizing the benefits provided under OTL-103s RMAT designation and plans to continue interacting with the FDA in 2021 to confirm the data package for the BLA filing. In addition, with several of the follow-up visits associated with the companys active clinical trials impacted by COVID-19 travel restrictions and other trial site limitations, Orchard is using alternative data collection approaches to capture the necessary data to support future regulatory filings.
Frank Thomas, president and chief operating officer continued, Starting 2021 with a clear set of strategic priorities is crucial to our ability to effectively manage the business while fueling Orchards continued growth. Our launch preparations for Libmeldy not only mark our evolution towards a fully integrated company but establish a common manufacturing, commercial and operational infrastructure to support multiple future potential products. This work is complemented by our exciting proof-of-concept and research pipeline that we look forward to advancing internally or in partnership.
Key 2020 AchievementsOrchards key 2020 achievements are highlighted below.
Cash GuidanceThe company ended 2020 with approximately $192 million of cash and investments. The company expects that its cash, cash equivalents and marketable securities as of December 31, 2020 will enable the funding of its currently anticipated operating expenses and capital expenditure requirements into the first half of 2022. This excludes the $50 million expected to be available under the companys credit facility and any non-dilutive capital received from potential future partnerships or priority review vouchers.
About Libmeldy / OTL-200
Libmeldy (autologous CD34+ cell enriched population that contains hematopoietic stem and progenitor cells (HSPC) transduced ex vivo using a lentiviral vector encoding the human arylsulfatase-A (ARSA) gene), also known as OTL-200, has been approved by the European Commission for the treatment of MLD in eligible early-onset patients characterized by biallelic mutations in the ARSA gene leading to a reduction of the ARSA enzymatic activity in children with i) late infantile or early juvenile forms, without clinical manifestations of the disease, or ii) the early juvenile form, with early clinical manifestations of the disease, who still have the ability to walk independently and before the onset of cognitive decline. Libmeldy is the first therapy approved for eligible patients with early-onset MLD.
The most common adverse reaction attributed to treatment with Libmeldy was the occurrence of anti-ARSA antibodies. In addition to the risks associated with the gene therapy, treatment with Libmeldy is preceded by other medical interventions, namely bone marrow harvest or peripheral blood mobilization and apheresis, followed by myeloablative conditioning, which carry their own risks. During the clinical studies, the safety profiles of these interventions were consistent with their known safety and tolerability.
For more information about Libmeldy, please see the Summary of Product Characteristics (SmPC) available on the EMA website.
Libmeldy is not approved outside of the European Union, UK, Iceland, Liechtenstein and Norway. OTL-200 is an investigational therapy in the US.
Libmeldy was developed in partnership with the San Raffaele-Telethon Institute for Gene Therapy (SR-Tiget) in Milan, Italy.
About Orchard
Orchard Therapeuticsis a global gene therapy leader dedicated to transforming the lives of people affected by rare diseases through the development of innovative, potentially curative gene therapies. Ourex vivoautologous gene therapy approach harnesses the power of genetically modified blood stem cells and seeks to correct the underlying cause of disease in a single administration. In 2018, Orchard acquired GSKs rare disease gene therapy portfolio, which originated from a pioneering collaboration between GSK and theSan Raffaele Telethon Institute for Gene Therapy inMilan, Italy. Orchard now has one of the deepest and most advanced gene therapy product candidate pipelines in the industry spanning multiple therapeutic areas where the disease burden on children, families and caregivers is immense and current treatment options are limited or do not exist.
Orchard has its global headquarters inLondonandU.S.headquarters inBoston. For more information, please visitwww.orchard-tx.com, and follow us on TwitterandLinkedIn.
Availability of Other Information About Orchard
Investors and others should note that Orchard communicates with its investors and the public using the company website (www.orchard-tx.com), the investor relations website (ir.orchard-tx.com), and on social media (TwitterandLinkedIn), including but not limited to investor presentations and investor fact sheets,U.S. Securities and Exchange Commissionfilings, press releases, public conference calls and webcasts. The information that Orchard posts on these channels and websites could be deemed to be material information. As a result, Orchard encourages investors, the media, and others interested in Orchard to review the information that is posted on these channels, including the investor relations website, on a regular basis. This list of channels may be updated from time to time on Orchards investor relations website and may include additional social media channels. The contents of Orchards website or these channels, or any other website that may be accessed from its website or these channels, shall not be deemed incorporated by reference in any filing under the Securities Act of 1933.
Forward-Looking Statements
This press release contains certain forward-looking statements about Orchards strategy, future plans and prospects, which are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements include express or implied statements relating to, among other things, Orchards business strategy and goals, including its plans and expectations for the commercialization of Libmeldy, the therapeutic potential of Libmeldy (OTL-200) and Orchards product candidates, including the product candidates referred to in this release, Orchards expectations regarding its ongoing preclinical and clinical trials, including the timing of enrollment for clinical trials and release of additional preclinical and clinical data, the likelihood that data from clinical trials will be positive and support further clinical development and regulatory approval of Orchard's product candidates, and Orchards financial condition and cash runway into the first half of 2022. These statements are neither promises nor guarantees and are subject to a variety of risks and uncertainties, many of which are beyond Orchards control, which could cause actual results to differ materially from those contemplated in these forward-looking statements. In particular, these risks and uncertainties include, without limitation: the risk that prior results, such as signals of safety, activity or durability of effect, observed from clinical trials of Libmeldy will not continue or be repeated in our ongoing or planned clinical trials of Libmeldy, will be insufficient to support regulatory submissions or marketing approval in the US or to maintain marketing approval in the EU, or that long-term adverse safety findings may be discovered; the risk that any one or more of Orchards product candidates, including the product candidates referred to in this release, will not be approved, successfully developed or commercialized; the risk of cessation or delay of any of Orchards ongoing or planned clinical trials; the risk that Orchard may not successfully recruit or enroll a sufficient number of patients for its clinical trials; the risk that prior results, such as signals of safety, activity or durability of effect, observed from preclinical studies or clinical trials will not be replicated or will not continue in ongoing or future studies or trials involving Orchards product candidates; the delay of any of Orchards regulatory submissions; the failure to obtain marketing approval from the applicable regulatory authorities for any of Orchards product candidates or the receipt of restricted marketing approvals; the inability or risk of delays in Orchards ability to commercialize its product candidates, if approved, or Libmeldy, including the risk that Orchard may not secure adequate pricing or reimbursement to support continued development or commercialization of Libmeldy; the risk that the market opportunity for Libmeldy, or any of Orchards product candidates, may be lower than estimated; and the severity of the impact of the COVID-19 pandemic on Orchards business, including on clinical development, its supply chain and commercial programs. Given these uncertainties, the reader is advised not to place any undue reliance on such forward-looking statements.
Other risks and uncertainties faced by Orchard include those identified under the heading "Risk Factors" in Orchards quarterly report on Form 10-Q for the quarter endedSeptember 30, 2020, as filed with theU.S. Securities and Exchange Commission(SEC), as well as subsequent filings and reports filed with theSEC. The forward-looking statements contained in this press release reflect Orchards views as of the date hereof, and Orchard does not assume and specifically disclaims any obligation to publicly update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except as may be required by law.
Contacts
InvestorsRenee LeckDirector, Investor Relations+1 862-242-0764Renee.Leck@orchard-tx.com
MediaChristine HarrisonVice President, Corporate Affairs+1 202-415-0137media@orchard-tx.com
Go here to see the original:
Orchard Therapeutics Announces 2021 Corporate Priorities Supporting the Build-out of its Commercial Business in Hematopoietic Stem Cell (HSC) Gene...
Brave West Lothian women discovers back pain is actually deadly blood cancer – Daily Record
By daniellenierenberg
A brave West Lothian mum was floored after doctors found her sciatica pain was actually a symptom of a deadly blood cancer which had hollowed out her bones.
Judith Green had suffered from back pain on several occasions over the last 10 years but was repeatedly told it was likely due to a trapped nerve and would resolve itself.
The 42-year-olds pain became too much in June 2019 when she woke screaming in the middle of the night before repeatedly vomiting blood over the next two days.
She took herself to St Johns Hospital in Livingston where doctors soon made the shock diagnosis of myeloma cancer which had left her kidneys functioning at only 15 per cent.
The mum-of-two was told that the condition - which normally affects men over the age of 60 - was incurable but doctors hoped to extend her life through various treatments.
She underwent a stem cell transplant with her own cells in January 2019 but was heartbroken when medics revealed the cancer had returned just seven months later.
The former waitress has vowed to keep fighting so she can meet her future grandchildren and is urging people to register as stem cell donors in a bid to save more lives.
She explained: I remember thinking but its just a sore back. I had never heard of myeloma before I got diagnosed with it.
I 100 per cent thought I was going to hospital that day because I had sciatica. With myeloma, it eats away at your bone marrow.
My ribs were sore but I brushed it off thinking it was my new bra digging in. When my back hurt, I thought it was the new car seat causing it.
But in reality, I had almost no bone marrow. It was 90 per cent cancerous cells. I just made excuse after excuse but looking back I now realise that it was all part of it.
My kidneys were only working at 15 per cent, which explained why I was so thirsty.
Doctors immediately started Judith on a course of chemotherapy and steroids before attempting to harvest some of her remaining bone marrow.
The first attempt was unsuccessful but the next managed to gather enough cells to provide at least three more transplants.
The cells were then deep frozen before being transplanted back into the mum-of-two in January this year - a move which they hoped would buy her at least 18 more months.
But a blood test in August revealed that the myeloma had returned a lot quicker than expected meaning she now has to undergo a second transplant from a mystery donor.
They then discovered Judith had sepsis and MRSA and having no immune system and blood cancer, Judith said she was the sickest she had ever been.
She continued: They were hoping I would make it 18 months post transplant but they discovered in August that the cancer had returned and it had only worked for seven months.
Thats when we found out that they wouldnt be able to use my own cells again because it wasnt worth putting me through all that again.
So now Ill be going back on chemo in January and getting a transplant from a worldwide donor. Thankfully the transplant team has already found a match for me on the system.
Judith continued: Im really lucky that theres a match out there for me. But there are so many others, who are a lot sicker than I am, that dont have theirs yet.
The reason I wanted to speak out is to raise awareness of myeloma and stem cell donation.
You really could be giving someone a second chance at life by spitting into a tube. Back in the day it was a bone marrow transplant but now its stem cells.
Its no different from giving blood. I would just ask everyone to go have a look into it and see if they want to or are able to register.
Judith, who lives with her two sons and partner Steven (46), added: I may not be able to do some of the things I did before like go to the cinema with the boys but Im still here.
And I hope to be here long enough to see my grandkids. I know Ill keep fighting after that to see them grow up then. But for now, its just taking each day as it comes.
To find out more about stem cell donation for those aged under 30 visit https://www.anthonynolan.org/.
Those over 30 can visit https://www.dkms.org.uk/en.
Continued here:
Brave West Lothian women discovers back pain is actually deadly blood cancer - Daily Record
Coronavirus Impact Editon of Autologous Stem Cell Based Therapies Market Report Future Development, Top Manufacturers, Technological Advancement,…
By daniellenierenberg
Global Coronavirus pandemic has impacted all industries across the globe, Autologous Stem Cell Based Therapies market being no exception. As Global economy heads towards major recession post 2009 crisis, Cognitive Market Research has published a recent study which meticulously studies impact of this crisis on Global Autologous Stem Cell Based Therapies market and suggests possible measures to curtail them. This press release is a snapshot of research study and further information can be gathered by accessing complete report.
Checkout Inquiry for Buying or Customization of Report: https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report#download_report
The number of coronavirus cases is increasing rapidly which has not only taken a number of lives but has also affected the global economic structure. The Coronavirus Disease Pandemic (COVID-19) has affected all parts of the world. This virus has changed all the market conditions and hampers the growth of the various sectors of the global Autologous Stem Cell Based Therapies market. The report covers rapidly altering market scenario due to COVID-19 and market fluctuation during the forecast period. Cognitive Market Research has published Autologous Stem Cell Based Therapies market report accordingly.To Get Detailed Analysis Mail us @ [emailprotected] or call us on +1-312-376-8303.
The Autologous Stem Cell Based Therapies market report is an in-depth analysis of Autologous Stem Cell Based Therapies market which provides wide array of parameters, such as industry segments size & trends, inhibitors, dynamics, drivers, opportunities & challenges, environment & policy, cost overview, porters five force analysis, and key companies profiles including business overview and recent development. The research and analysis of complete report is done by our research expertise in order to provide holistic view on Autologous Stem Cell Based Therapies market.
Any query? Enquire Here For Discount (COVID-19 Impact Analysis Updated Sample): Click Here>https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report
The Autologous Stem Cell Based Therapies Market is Classified into:Based on Product Types:Embryonic Stem Cell, Resident Cardiac Stem Cells, Umbilical Cord Blood Stem Cells
Based on End-User/Application:{application)
Compitative Analysis
some of the key players are focusing on strategies such as new product development and acquisitions & mergers to increase their market presence. Key players operating in the market are Regeneus, Mesoblast, Pluristem Therapeutics Inc, U.S. STEM CELL INC., Brainstorm Cell Therapeutics, Tigenix, Med cell Europe. The report additionally delivers detailed information of the key players (company profile, business overview, business strategy, product description, company revenue, SWOT analysis & other relevant information).
Autologous Stem Cell Based Therapies market report provides complete SWOT analysis of each and every company involved in Autologous Stem Cell Based Therapies market report. The market is further fragmented into geographical regions providing Autologous Stem Cell Based Therapies market share in various regions. It shows highest share of Autologous Stem Cell Based Therapies product in a particular region. The report has also included impact of COVID-19 on Autologous Stem Cell Based Therapies market and its further impact on market in coming years. Geographically, this report studies the top producers and consumers, focuses on product capacity, production, value, consumption, market share and growth opportunity.
Request Free Sample Copy @https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report
The research report categorically identifies product type and end-use applications to highlight the core developments simultaneously dominant across all regional areas and their subsequent implications on the holistic growth trajectory of Autologous Stem Cell Based Therapies Market. Additionally, report involves additional segments if required by our readers. Furthermore, Autologous Stem Cell Based Therapies market report delivers competitive analysis based on major players involved in the market. It includes prominent players with business overview, their basic information, product description as well as their recent key developments and moves. We also provide company's revenue for two consecutive years along with their research and development investment and geographical presence. The company profiling of top players includes their strategy that help new entrants to take decision more efficiently.
Important Points that are covered in the Global Autologous Stem Cell Based Therapies Market: Deep analysis of the investment scenario of the global Autologous Stem Cell Based Therapies market Information related to the ongoing research and development projects and pipeline research and development projects Business overview and business strategies of key players Impact of COVID-19 pandemic on the growth of the Autologous Stem Cell Based Therapies market Growth map on technology improvement and with an impact on market analysisCustomization of the Report: This report can be customized to meet the clients requirements. Please connect with our sales team so that we can meet your requirements.
Get A Free Sample of Autologous Stem Cell Based Therapies Market Report: https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report#download_report
Additional pointers from the global Autologous Stem Cell Based Therapies market report: The valuation and assessment of the industry chain for the global Autologous Stem Cell Based Therapies market report is performed, which is based on distribution channels and upstream raw materials & equipment suppliers. Moreover, the market research report study also offers an overview for investigating the viability of a new project with reference to specifics concerning the project schedules, project production solutions, investment budget, and project name.
Key Questions Answered by the Report
Impact of the Covid-19 on the global Autologous Stem Cell Based Therapies market growth and sizing The top players of the global Autologous Stem Cell Based Therapies market The performance of the global Autologous Stem Cell Based Therapies market in the coming years with the current status of the market. The key factors that are driving the growth of the global Autologous Stem Cell Based Therapies market The opportunities that will drive the growth of the global Autologous Stem Cell Based Therapies market in the forecast period The structure of the global Autologous Stem Cell Based Therapies marketFor better and effective understanding of Autologous Stem Cell Based Therapies market, report has been depicted by various graphs, tables, stat charts and pie charts.
For purchasing the entire report mail us @:https://www.cognitivemarketresearch.com/autologous-stem-cell-based-therapies-market-report#download_report
About Us:Cognitive Market Research is one of the finest and most efficient Market Research and Consulting firm. The company strives to provide research studies which include syndicate research, customized research, round the clock assistance service, monthly subscription services, and consulting services to our clients. We focus on making sure that based on our reports, our clients are enabled to make most vital business decisions in easiest and yet effective way. Hence, we are committed to delivering them outcomes from market intelligence studies which are based on relevant and fact-based research across the global market.Contact Us: +1-312-376-8303Email: [emailprotected]Web: https://www.cognitivemarketresearch.com/
Go here to read the rest:
Coronavirus Impact Editon of Autologous Stem Cell Based Therapies Market Report Future Development, Top Manufacturers, Technological Advancement,...
Global Cardiovascular Drug Delivery Technologies, Companies & Markets to 2028: Focus on Cell Therapy, Gene Therapy, Drug-Eluting Stents – WFMZ…
By daniellenierenberg
DUBLIN, Jan. 11, 2021 /PRNewswire/ --
The "Cardiovascular Drug Delivery - Technologies, Markets & Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.
The cardiovascular drug delivery markets are estimated for the years 2018 to 2028 on the basis of epidemiology and total markets for cardiovascular therapeutics. The estimates take into consideration the anticipated advances and availability of various technologies, particularly drug delivery devices in the future. Markets for drug-eluting stents are calculated separately. The role of drug delivery in developing cardiovascular markets is defined and unmet needs in cardiovascular drug delivery technologies are identified.
Drug delivery to the cardiovascular system is different from delivery to other systems because of the anatomy and physiology of the vascular system; it supplies blood and nutrients to all organs of the body. Drugs can be introduced into the vascular system for systemic effects or targeted to an organ via the regional blood supply. In addition to the usual formulations of drugs such as controlled release, devices are used as well. This report starts with an introduction to molecular cardiology and discusses its relationship to biotechnology and drug delivery systems.
Drug delivery to the cardiovascular system is approached at three levels: (1) routes of drug delivery; (2) formulations; and finally (3) applications to various diseases. Formulations for drug delivery to the cardiovascular system range from controlled release preparations to delivery of proteins and peptides. Cell and gene therapies, including antisense and RNA interference, are described in full chapters as they are the most innovative methods of delivery of therapeutics. Various methods of improving the systemic administration of drugs for cardiovascular disorders are described including the use of nanotechnology.
Cell-selective targeted drug delivery has emerged as one of the most significant areas of biomedical engineering research, to optimize the therapeutic efficacy of a drug by strictly localizing its pharmacological activity to a pathophysiologically relevant tissue system. These concepts have been applied to targeted drug delivery to the cardiovascular system. Devices for drug delivery to the cardiovascular system are also described.
The role of drug delivery in various cardiovascular disorders such as myocardial ischemia, hypertension, and hypercholesterolemia is discussed. Cardioprotection is also discussed. Some of the preparations and technologies are also applicable to peripheral arterial diseases. Controlled release systems are based on chronopharmacology, which deals with the effects of circadian biological rhythms on drug actions. A full chapter is devoted to drug-eluting stents as treatment for restenosis following stenting of coronary arteries.Fifteen companies are involved in drug-eluting stents.
New cell-based therapeutic strategies are being developed in response to the shortcomings of available treatments for heart disease. Potential repair by cell grafting or mobilizing endogenous cells holds particular attraction in heart disease, where the meager capacity for cardiomyocyte proliferation likely contributes to the irreversibility of heart failure. Cell therapy approaches include attempts to reinitiate cardiomyocyte proliferation in the adult, conversion of fibroblasts to contractile myocytes, conversion of bone marrow stem cells into cardiomyocytes, and transplantation of myocytes or other cells into injured myocardium.
Advances in the molecular pathophysiology of cardiovascular diseases have brought gene therapy within the realm of possibility as a novel approach to the treatment of these diseases. It is hoped that gene therapy will be less expensive and affordable because the techniques involved are simpler than those involved in cardiac bypass surgery, heart transplantation and stent implantation. Gene therapy would be a more physiologic approach to deliver vasoprotective molecules to the site of vascular lesions. Gene therapy is not only a sophisticated method of drug delivery; it may at times need drug delivery devices such as catheters for transfer of genes to various parts of the cardiovascular system.
Selected 80+ companies that either develop technologies for drug delivery to the cardiovascular system or products using these technologies are profiled and 80 collaborations between companies are tabulated. The bibliography includes 200 selected references from recent literature on this topic. The report is supplemented with 31 tables and 9 figures.
Key Topics Covered:
Executive Summary
1. Cardiovascular Diseases
2. Methods for Drug Delivery to the Cardiovascular System
3. Cell Therapy for Cardiovascular Disorders
4. Gene Therapy for Cardiovascular Disorders
5. Drug-Eluting Stents
6. Markets for Cardiovascular Drug Delivery
7. Companies involved in Cardiovascular Drug Delivery
8. References
For more information about this report visit https://www.researchandmarkets.com/r/eizl23
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.
Media Contact:
Research and MarketsLaura Wood, Senior Managerpress@researchandmarkets.com
For E.S.T Office Hours Call +1-917-300-0470For U.S./CAN Toll Free Call +1-800-526-8630For GMT Office Hours Call +353-1-416-8900
U.S. Fax: 646-607-1907Fax (outside U.S.): +353-1-481-1716
Stem Cell Therapy Market Latest Report with Forecast to 2025 – Jumbo News
By daniellenierenberg
Of late, there has been an increasing awareness regarding the therapeutic potential of stem cells for management of diseases which is boosting the growth of the stem cell therapy market. The development of advanced genome based cell analysis techniques, identification of new stem cell lines, increasing investments in research and development as well as infrastructure development for the processing and banking of stem cell are encouraging the growth of the global stem cell therapy market.
Get Exclusive PDF Sample Copy Of This Report:https://www.tmrresearch.com/sample/sample?flag=B&rep_id=1787
One of the key factors boosting the growth of this market is the limitations of traditional organ transplantation such as the risk of infection, rejection, and immunosuppression risk. Another drawback of conventional organ transplantation is that doctors have to depend on organ donors completely. All these issues can be eliminated, by the application of stem cell therapy. Another factor which is helping the growth in this market is the growing pipeline and development of drugs for emerging applications. Increased research studies aiming to widen the scope of stem cell will also fuel the growth of the market. Scientists are constantly engaged in trying to find out novel methods for creating human stem cells in response to the growing demand for stem cell production to be used for disease management.
It is estimated that the dermatology application will contribute significantly the growth of the global stem cell therapy market. This is because stem cell therapy can help decrease the after effects of general treatments for burns such as infections, scars, and adhesion. The increasing number of patients suffering from diabetes and growing cases of trauma surgery will fuel the adoption of stem cell therapy in the dermatology segment.
Global Stem Cell Therapy Market: Overview
Also called regenerative medicine, stem cell therapy encourages the reparative response of damaged, diseased, or dysfunctional tissue via the use of stem cells and their derivatives. Replacing the practice of organ transplantations, stem cell therapies have eliminated the dependence on availability of donors. Bone marrow transplant is perhaps the most commonly employed stem cell therapy.
Osteoarthritis, cerebral palsy, heart failure, multiple sclerosis and even hearing loss could be treated using stem cell therapies. Doctors have successfully performed stem cell transplants that significantly aid patients fight cancers such as leukemia and other blood-related diseases.
Buy This Report @https://www.tmrresearch.com/checkout?rep_id=1787<ype=S
Global Stem Cell Therapy Market: Key Trends
The key factors influencing the growth of the global stem cell therapy market are increasing funds in the development of new stem lines, the advent of advanced genomic procedures used in stem cell analysis, and greater emphasis on human embryonic stem cells. As the traditional organ transplantations are associated with limitations such as infection, rejection, and immunosuppression along with high reliance on organ donors, the demand for stem cell therapy is likely to soar. The growing deployment of stem cells in the treatment of wounds and damaged skin, scarring, and grafts is another prominent catalyst of the market.
On the contrary, inadequate infrastructural facilities coupled with ethical issues related to embryonic stem cells might impede the growth of the market. However, the ongoing research for the manipulation of stem cells from cord blood cells, bone marrow, and skin for the treatment of ailments including cardiovascular and diabetes will open up new doors for the advancement of the market.
Global Stem Cell Therapy Market: Market Potential
A number of new studies, research projects, and development of novel therapies have come forth in the global market for stem cell therapy. Several of these treatments are in the pipeline, while many others have received approvals by regulatory bodies.
In March 2017, Belgian biotech company TiGenix announced that its cardiac stem cell therapy, AlloCSC-01 has successfully reached its phase I/II with positive results. Subsequently, it has been approved by the U.S. FDA. If this therapy is well- received by the market, nearly 1.9 million AMI patients could be treated through this stem cell therapy.
Another significant development is the granting of a patent to Israel-based Kadimastem Ltd. for its novel stem-cell based technology to be used in the treatment of multiple sclerosis (MS) and other similar conditions of the nervous system. The companys technology used for producing supporting cells in the central nervous system, taken from human stem cells such as myelin-producing cells is also covered in the patent.
Global Stem Cell Therapy Market: Regional Outlook
The global market for stem cell therapy can be segmented into Asia Pacific, North America, Latin America, Europe, and the Middle East and Africa. North America emerged as the leading regional market, triggered by the rising incidence of chronic health conditions and government support. Europe also displays significant growth potential, as the benefits of this therapy are increasingly acknowledged.
Asia Pacific is slated for maximum growth, thanks to the massive patient pool, bulk of investments in stem cell therapy projects, and the increasing recognition of growth opportunities in countries such as China, Japan, and India by the leading market players.
Global Stem Cell Therapy Market: Competitive Analysis
Several firms are adopting strategies such as mergers and acquisitions, collaborations, and partnerships, apart from product development with a view to attain a strong foothold in the global market for stem cell therapy.
Some of the major companies operating in the global market for stem cell therapy are RTI Surgical, Inc., MEDIPOST Co., Ltd., Osiris Therapeutics, Inc., NuVasive, Inc., Pharmicell Co., Ltd., Anterogen Co., Ltd., JCR Pharmaceuticals Co., Ltd., and Holostem Terapie Avanzate S.r.l.
To know more about the table of contents, you can click @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=1787
About TMR Research
TMR Research is a premier provider of customized market research and consulting services to busi-ness entities keen on succeeding in todays supercharged economic climate. Armed with an experi-enced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.
Read the original:
Stem Cell Therapy Market Latest Report with Forecast to 2025 - Jumbo News
Bath And Body Routines That Make You Look And Feel Good From Day To Night – Forbes
By daniellenierenberg
Bath and body rituals add to the feeling of overall wellness from day to night.
Long baths and showers are immensely underrated. The same goes for the body rituals that follow. Its strange to think that we would be willing to spend $300 for face creams yet scrimp on nourishing oils for the body. Truth is, bath and body rituals ought to be the norm instead of being an occasional indulgence. There are countless benefits that go with an invigorating shower in the morning, energizing body oils before heading out for the day, and a relaxing bath by nighttime. Apart from hygiene, the rituals that nurture and nourish our bodies are essential for overall sense of wellness. It can awaken the senses, create a feeling of balance, ease nerves and tension.
Firm, Toned and Cellulite-Free
Plant Collagen Body Mist for firmer and younger looking skin from ADONIA ORGANICS
Our bodies change in countless ways as we age. While exercise is a great way to keep our bodies in shape, skin tends to be less supple and firm as time progresses. ADONIA ORGANICS Plant Collage Body Mist is a plant based body spritz that helps to boost natural collagen all over the body. It is a potion that I love to use as a compliment to daily workouts. Formulation helps to boost the bodys ability to produce collagen, which is responsible for keeping skin smooth and firm. The non-greasy, easily absorbed spray creates a youthful skin tone and texture.
Reduce appearance of cellulite with ADONIA ORGANICS Legtone Serum
You may also want to complement your Collagen Body Mist with ADONIA ORGANICS Legtone Serum. Utilizing organic plant stem cells that reduce the appearance of cellulite, this toning serum renders visible results by 47% within nine minutes from first application. Rosemary Verbenone boosts cell renewal while Neroli helps bring back skin elasticity. It also helps improve the appearance of stretch marks and scarring. The Legtone Serum is also great to use for arms and other parts of the body where there is cellulite.
The Miracle Marula Oil Shower
Moo and Yoo Miracle Body Lotion is infused with skin hero ingredient, Marula Oil.
Many of us are in the habit of choosing a body wash and lotion based solely on scent. Oftentimes, we forget to look into ingredients or the sustainability practices that go into our bath and body products. MOO AND YOOs MIRACLE LOTION and BODY WASH leaves skin feeling squeaky clean and fresh without use of harmful fragrances. The company uses recyclable glass containers, which makes for a chic addition to the bath and body vanity shelf. Since getting into more mindful and sustainable beauty, plastics containers have become eye sores in the boudoir.
The Miracle Body Was from MOO AND YOO is packed with anti oxidants and ingredients with anti ... [+] inflammatory properties.
The Miracle Body Wash is blended with Marual Oil and Icelandic Moss, which act as an antioxidant. A soft powdery scent enhances that clean and fresh feeling after cleansing with the Miracle Body Wash. Following purification, the Miracle Body Lotion will help to revitalize skin, leaving a soft and nourished feel all day long. This duo is great to use for daily showers that set the tone for an amazing day.
Young, Fabulous and Polished at the Farmhouse
Just like facial skin, our bodies also need the regular exfoliation to scrub off dead skin cells. This allows for the skin to better absorb nutrients from hydrating creams, lotions or oils. During the winter, a scrub or body polish is recommended for addressing dry, flaky skin. FARMHOUSE FRESH Muscadine Moonshine Liquor Infused Body Polish is an intoxicatingly invigorating skin treat that helps to stimulate skin renewal. Formulated with Georgia muscadine grapes, sea salt and a small batch of Moonshine (distilled in Austin, Texas), this delicious body cocktail will leave skin feeling like silk. Its delicious scent will also leave you wanting morejust as you would your favorite happy hour cocktail.
Farmhouse Fresh's Muscadine Moonshine Liquor Infused Body Polish is an intoxicatingly delicious skin ... [+] treat that help to stimulate skin renewal
Moondip Back To Youth Ageless Mousse by FARMHOUSE FRESH is an ultra light body whip infused with ... [+] peptides and retinol to keep skin youthful.
After a body polish, pamper skin with the Moondip Back To Youth Ageless Body Mousse. This light-as-air anti-aging body whip is formulated with fresh notes of winter mint, apple, amber and greens. It glides like clouds against skin without the greasy or sticky feel. Infusion of age defying peptides and retinol visibly improve appearance of skin especially when applied over necklines, arms, legs and chest. Ageless Body Mousse is the jar to keep on your bedside for a pre slumber self care treat.
An Undisturbed Staycation
The Feelist Staycation Detoxifying Salt Soak is formulated with Broad Spectrum CBD, Himalayan, Epsom ... [+] and sea salts
CBD is a wonder ingredient for relaxation as well as alleviating pains and aches. It has also worked beautifully in soothing inflammation. THE FEELISTs best-selling Staycation Detoxifying Salt Soak is a treat that the body will particularly enjoy after an intense workout. This purifying soak is formulated with Broad Spectrum CBD, Himalayan, Epsom and sea salts to soothe and relax the senses. Light a candle, enjoy a glass (or two or three) or Pinot and soak in all the goodness on a Friday night.
The Feelist Do Not Disturb Extra Strength Body Cream will ease lull you into your deepest slumber ... [+] yet.
For a complete bath and body spa experience, top off your bath and body ritual with Do Not Disturb Extra Strength Body Cream. This restorative and relaxing cream is infused with an extra dose of Broad Spectrum CBD, essential oils and natural extracts that will ease lull you into your deepest slumber yet. This body cream is also idea for addressing inflammation and body cramps.
Magic at Midnight
Pink Moon's Midnight Melody Body and Hair Oil is hydrating, calming and multipurpose oil formulated ... [+] with essences of Night Blooming Tuberose, Petitgrain, and Ylang Ylang
Over the holidays, PINK MOON launched its very own calming body oil in small batches called Midnight Melody Body and Hair Oil. Since my very own bottle arrived, its been sitting on my bedside. This fresh, fragrance and clean formula of organic flower seed, apricot kernel and meadow foam is great for after a warm evening bath. Pat on slightly damp skin and allow to sink into skin. This will leave the surface feeling clean smooth and hydrated. You can also add a few drops into your bath for the most soothing bath after a long day of work from home. Essences of tuberose, ylang ylang, peppery wood and petit grain transport ease the senses into deep relaxation. What makes this the holy grail of oils is that you can also wear it as a hair oil or perfume. I love to massage this onto my scalp at night for hair that is soft, silky and revitalized.
Glow Like A Goddess
The newly launched Dry Body Oil from HIGH ON LOVE is infused with cannabis oil to give hair and skin ... [+] a goddesses glow without the greasy feel.
Self care rituals that leave you feeling and looking good are priceless. I particularly love pampering the body with oils and creams that help to amp confidence and sense of self. For years, oils that help create that glow from within radiance have been my go-to everything I set out to paint the town red. HIGH ON LOVEs Dry Body Oil is a gem that nourishes and illuminates skin. This non-greasy, cannabis seed oil formula softens and hydrates skin without the unwanted shine. For optimum results, apply all over the body. You may also use this for hair. Gently massage to allow the oils to soak. Tip: Use this body oil just before putting on that slip dress youve been waiting to wear for a special night out on town.
The Truth About Dry Brushing
The Perfect Skin Brush from ROSEBUD is made using sustainably sourced materials like sisal and ... [+] beechwood, resulting in the ideal skin lymphatic massager.
It was only very recently when my good friend and health guru Chechel Joson suggested I add dry brushing to my wellness routine. It exfoliates from dead skin and boosts lymphatic drainage, she explained. Skin is also visibly smoother and silkier after dry brushing. A few days following the conversation, ROSE BUDs Perfect Skin Brush arrived in the mail as on cue. Made using sustainably sourced sisal and beeechwood that paddle is firm enough to render maximum results even with light pressure. The key to dry brushing is to work towards the lymph nodes near the armpits and groin area. Start with a five-minute brushing routine and extend as the days progress. Follow your dry brushing routine with a warm (not hot0 shower) using a gentle body cleanser. Other benefits of brushing include: detoxification and better immune function. Tip: Try a quick dry brushing session just before a post-workout shower to feel completely energized in the mornings.
Soak, Disconnect and Breathe
PURSOMA's Just Breathe Ritual is a clearing sea salt concoction infused with clearing eucalyptus, ... [+] rosemary, lavender, and ginger.
Flu and allergy season has many of us looking for ways to ease and soothe discomforts from sneezing, sniffles and congestion. Peppermint and eucalyptus essential oils are great natural remedies now occupying prime real estate by the bedside. Ive also recently added a calming and clearing eucalyptus bath treatment with PURSOMAs Just Breathe Ritual to the current routine. This highly therapeutic French Grey Sea Salt concoction, infused natural essential oils gives sinuses relief and supports immune strength. After 20 minutes of undisturbed me-time immersed in this ritual, mind and body emerges energized and feeling brand new.
Here is the original post:
Bath And Body Routines That Make You Look And Feel Good From Day To Night - Forbes
Worldwide Organ and Tissue Transplantation and Alternatives Industry to 2024 – Featuring Mylan, Novartis & Pfizer Among Others -…
By daniellenierenberg
DUBLIN--(BUSINESS WIRE)--The "Organ and Tissue Transplantation and Alternatives" report has been added to ResearchAndMarkets.com's offering.
This report offers forecasts, by product segment, from 2018 through 2024, including supporting analyses for projections. Product segments covered consist of the solid organ (e.g., kidneys, liver, heart-lung, pancreas, intestines) and the tissue transplantation (e.g., bone, skin, cornea, heart valve) markets, along with the pharmaceuticals that accompany each market.
Also included are experimental xenografts and artificial organs; tissue transplants; and cell transplants (e.g., bone marrow, cord blood, peripheral blood, islet cell). The report touches on the use of fetal cells, stem cells, and altered cancer cells.
The arrangement of this report offers an overview of the key elements in the transplantation process: tissue typing, procurement and preservation, immunosuppressants for solid organ and tissue transplants, and postoperative monitoring. International markets are discussed, and information is provided on industry structure and the regulatory environment.
Within each section are discussions of commercialization opportunities for each segment of the market. New or emerging devices, techniques, and pharmaceuticals are highlighted.
Profiles of leading companies involved with solid organ transplantation, tissue transplantation, and alternative technologies are included. The report provides information on company placement within the market and strategic analyses of the companies' available and emerging products.
An appendix featuring various terms and processes used in transplantation is provided at the end of the report.
This report cites autologous products only in relation to their impact on the market for allografts. It does not include blood products, except for peripheral and umbilical cord blood as a source of stem cells.
Companies Mentioned
Report Includes:
Key Topics Covered:
Chapter 1 Introduction
Chapter 2 Summary and Highlights
Chapter 3 Market and Technology Background
Chapter 4 Market Dynamics
Chapter 5 Market Breakdown by Product & Devices
Chapter 6 Market Breakdown by Region
Chapter 7 Impact of COVID-19
Chapter 8 Overview of Donation Process
Chapter 9 Regulations & Reimbursement
Chapter 10 Competitive Landscape
Chapter 11 Company Profiles
Chapter 12 Appendix: Acronyms
For more information about this report visit https://www.researchandmarkets.com/r/c4x7cw
See the original post:
Worldwide Organ and Tissue Transplantation and Alternatives Industry to 2024 - Featuring Mylan, Novartis & Pfizer Among Others -...
BENEV Announces Investigative Report on Combination Treatment with Human Adipose Tissue Stem Cell- derived Exosomes and Fractional CO2 Laser for Acne…
By daniellenierenberg
This report outlines the investigative study that was conducted by a team of world renowned scientists, doctors including Hyuck Hoon KWON, Steven Hoseong YANG, Joon LEE, Byung Chul PARK, Kui Young PARK, Jae Yoon JUNG, Youin BAE,and Gyeong-Hun at Oaro Dermatology Institute (Seoul, South Korea), Guam Dermatology Institute (Guam, USA), Department of Dermatology, Dankook University, College of Medicine (Cheonan, South Korea), Department of Dermatology, Chung-Ang University, College of Medicine (Seoul, South Korea), and Department of Dermatology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine (Hwaseong, South Korea). Researchers involved in this study evaluated the clinical efficacy and safety of adipose tissue stem cell-derived exosomes as an adjuvant therapy after application of fractional CO2laser for acne scars. 25 patients consisting of 18 men and 7 women, between ages 19 and 54, 12 with Fitzpatrick Skin Type 3 and 13 with Fitzpatrick skin type 4 and atrophic acne scars, underwent the 12-week prospective, double-blind, randomized, split-face trial. Each received three consecutive treatment sessions of fractional CO2laser to the whole face, with a follow-up evaluation, and a post- laser split face regimen, where one side of each patient's face was treated with an adipose tissue stem cell-derived exosome gel. Exosomes in this study were acquired from human ASC-CM by ExoSCRT technology developed by ExoCoBio Inc., and the other side of the face was treated with control gel. Findings revealed that the adipose tissue stem cell-derived exosome-treated sides of the face had achieved a significantly greater improvement than the control sides at the final follow-up visit (percentage reduction in echelle d'evaluation clinique des cicatrices d'acne scores: 32.5 vs 19.9%, p<0.01). Treatment-related erythema was milder, and post-treatment downtime was shorter on the applications of human adipose tissue stem cell-derived exosome-treated side.
The investigative study proved that a variety of applications of human adipose tissue stem cell-derived exosomes can serve as a novel cell-free therapeutic strategy in the regenerative and aesthetic medical fields and demonstrated the suitability of adipose tissue stem cell derived exosomes as an adjuvant treatment modality in combination with fractional carbon dioxide laser for the treatment of acne scars.
This reportis an open access article under the CC BY-NC license Society for Publication of Acta Dermato-Venereologica.
"The science is clearly demonstrating that exosomes are the wave of the future not just for aesthetics but for many other areas of medicine, and the richest source of this material, by far, is adipose tissue," says Dr. Randy Miller, M.D., F.A.C.S.
Facial atrophic acne scarring is a psychologically damaging condition that can cause emotional, mental, and social disability. "With a huge percentage of the world population struggling with this condition, the need for widening of therapeutic options was astoundingly clear," says Dr. Diane Duncan, M.D., F.A.C.S. who added, "While ablative fractional carbon dioxide laser resurfacing has demonstrated clinical efficacy in acne scar treatments, patients have sustained side-effects during post-procedural wound healing and had demanded improvement. The adjuvant application of adipose-derived stem cell conditioned medium with synergistic effects in augmenting treatment responses and reducing adverse effects through its potential to accelerate tissue rejuvenation is a victory for those suffering."
The sentiments have been echoed by so many other medical professionals, including, Dr. JD McCoy, NMP, whose patient roster includes professional athletes who do not have time for extended downtime and need to recover fast. "Since implementing the addition of Exosome Regenerative Complex powered by ExoSCRT into my protocol, I've observed a significant improvement in the speed of healing, skin quality and comfort during recovery," said Dr. Richard Jin, M.D., PhD. "Patients suffering from acne scarring range in all ages, and the pain that they feel is very real. Ensuring that my patients receive the best treatment results with the least amount of downtime and discomfort is non-negotiable, and that's why I choose to integrate Exosome Regenerative Complex powered by ExoSCRT, into all of my treatments."
Exosomes are lipid bilayer-enclosed extracellular vesicles, 30200 nm in diameter, produced by almost all cells and present in all body fluids (810). They are regarded as an essential mediator of intercellular communication by transferring proteins and genetic material between cells. Several studies have shown that mesenchymal stem cell-derived exosomes carry the essential properties of mesenchymal stem cells suggesting that exosomes may be a compelling alternative in regenerative and aesthetic medicine, as they would avoid most of the problems associated with live mesenchymal stem cell-based therapy. Interestingly, recent studies have shown that human adipose tissue stem cell-derived exosomes possess the critical properties of stem cells and are as potent as mesenchymal stem cells in the repair of various organ injuries.
BENEV's Exosome Regenerative Complex powered by ExoSCRT was developed and designed in tandem with the 4th largest exosome research company in the world, ExoCoBio. The intensive dual action complex is quickly absorbed into the skin, delivering the concentrated power of over 2.5 billion lyophilized exosomes, potent growth factors, peptides, co-enzymes, minerals, amino acids and vitamins. The paraben-free, steroid-free, and hypoallergenic patented technologies and ingredients are clinically proven to rejuvenate and regenerate the skin. "Lyophilizing exosomes maximize topical therapeutic potential. Making them ideal for treatments," says Dr. Richard Goldfarb, M.D., F.A.C.S.
ExoCoBio's ExoSCRT, is an innovative patented purification method of separating and refining 0.1 pure exosomes from stem cell conditioned media. The concentration of materials is significantly greater than what can be achieved with a product such as PRP. Studies have shown that this product increases fibroblast production by 180% and collagen production by 300%.
BENEV Company Inc. Medical Advisory Board Members:
Richard Jin, MD, PhD, BENEV's Chief Medical Director, studied at the Boston University School of Medicine, Harvard Medical School and the University of California Irvine. He completed research in the areas of cardiovascular disease, pulmonary hypertension, antioxidant enzyme properties, cell signaling, cellular redox mechanisms, free radical-induced oxidant stress, platelet biology, growth factors, and wound healing. For more information visitwww.rjclinicalinstitute.com
Richard M. Goldfarb, M.D, F.A.C.S., graduated from the University of Health Sciences /Finch University, The Chicago Medical School with top honors in Surgery. He completed his surgical training atNortheastern Ohio College of Medicine. He did additional training in cosmetic surgery at theUniversity of Pennsylvania, Department of Plastic Surgery andYale University. Dr. Goldfarb's 30 years of combined experience in General, Vascular, and Cosmetic Surgery provides his patients with the surgical expertise they are seeking. Dr. Goldfarb established the Center for SmartLipo & Plastic Surgery in 2007. For more information visitwww.centerforsmartlipo.com
Diane I. Duncan, M.D., F.A.C.S., obtained her medical degree from the Tulane University School of Medicine. She is certified by the American Board of Plastic Surgery and is a member of several plastic surgery professional societies, including the American Society of Plastic Surgeons (ASPS), the American Society of Aesthetic Plastic Surgeons (ASAPS) and the International Society of Aesthetic Plastic Surgeons (ISAPS). In addition to these affiliations, Dr. Duncan is a fellow of the American College of Surgeons (ACS). Dr. Duncan joined our Medical Advisory Board with over 30 years of experience in private practice as a plastic surgeon. She is an internationally recognized speaker and educator in plastic surgery and has delivered presentations at industry conferences around the world. She has also authored medical journal articles on a variety of subjects in plastic surgery and currently serves as a member of the editorial review board for theAesthetic Surgery Journal. For more information visit http://www.drdianeduncan.com
Randy B. Miller, M.D., is a board certified cosmetic and reconstructive plastic surgeon practicing in Miami, Florida. Dr. Miller earned his Bachelor of Arts in psychology and a Master's degree in clinical immunology and completed medical school at Jefferson Medical College where he graduated at the top of his class. He completed his training in general surgery and otolaryngology - head and neck surgery at Thomas Jefferson University Hospital in Philadelphia. Dr. Miller performed his plastic surgery training at Baylor College of Medicine located within the Texas Medical Center in Houston, which is the largest medical center in the world. Dr. Miller is a former president of the Miami Society of Plastic Surgeons, the Florida Society of Plastic Surgeons, and the Plastic Surgeons Patient Safety Foundation. Having served five consecutive terms on the Board of Directors of the Dade County Medical Association and as a delegate to the Florida Medical Association, Dr. Miller is a member of, and has received presidential appointments from, the American Society of Plastic Surgeons. In addition to his role as a clinical professor in the Division of Plastic Surgery at the University of Miami, Dr. Miller serves as a plastic surgery resident mentor. For many years he has served as the liaison between the University of Miami, Division of Plastic Surgery, and the Miami Society of Plastic Surgeons. Based on his research, publications and 25 years of clinical experience, Dr. Miller has become an internationally recognized expert in the fields of stem cell research and therapy, including human and veterinary tissue regeneration. Dr. Miller provides a uniquely comprehensive approach to aesthetics and age management. For more information visit http://www.millerplasticsurgery.com
Dr. J.D. McCoy, NMP, received his doctorate in Naturopathic Medicine at the Canadian College of Naturopathic Medicine. He is one of the most accomplished naturopathic physicians practicing aesthetic medicine in the country. He completed an internship in internal medicine in Hawaii, and began specialized training, certification, and externship in cosmetic medicine and light-based therapies. Dr. McCoy has devoted his specialization, passion and his entire practice to the art of less-invasive cosmetic rejuvenation, weight-management, and natural bio-identical hormone therapy since 2003. Dr. McCoy's principles in the practice of aesthetic medicine include prevention, the use of natural substances (light/energy, nutrients and other natural substances), and the use of the least invasive treatments possible. Dr. McCoy finds innovative solutions that reduce or eliminate the need for more invasive surgery- beautiful results naturally. He is recognized as an innovator and physician trainer for multiple technologies and techniques in cosmetic medicine including but most certainly not limited to a Physician Member: American Academy of Cosmetic Surgery, American Academy of Aesthetic Medicine, American Society of Aesthetic Mesotherapy, International Federation for Adipose Therapeutics and Science. For more information visitwww.contourmedical.com
BENEV Company Inc.1-949-457-2222 http://www.BENEV.com
SOURCE BENEV
Read the original:
BENEV Announces Investigative Report on Combination Treatment with Human Adipose Tissue Stem Cell- derived Exosomes and Fractional CO2 Laser for Acne...
Factor Bioscience spins out a new cell therapy player with eyes on the clinic within 2 years – Endpoints News
By daniellenierenberg
The quest for CAR-T 2.0 is gaining an mRNA player, as Cambridge, Massachusetts-based Factor Bioscience sends a spinoff racing toward the clinic.
Factor drew the curtains on Exacis Biotherapeutics on Wednesday morning, with Sollis Therapeutics co-founder Gregory Fiore at the helm of a small immuno-oncology focused team built around Factors technology. The spinoff has the rights to 51 patents and just a bit of seed money from friends and family to get it going but Fiore says an IND submission is on the horizon.
We are 18 to 24 months from an IND submission, and weve identified our first target, which will be CD19, Fiore told Endpoints News.
The company will be unveiling a CD19-targeted CAR-T and CAR-NK, Fiore said, with ROR1 as its next target.
The CEO says Exacis approach is what differentiates it from others in the crowded cell therapy field, beginning with mRNA technology in-licensed from Factor. The process starts with induced pluripotent stem cells (iPSC), which are blood or skin cells that have been engineered back into an embryonic-like stem cell state. Theyre created with mRNA reprogramming, and then edited to avoid host immune surveillance, add a CAR and enhance the cells for potency against tumors.
That iPSC is quite a robust cell. It can handle a lot of editing and the cells are able to recover from a lot of editing and manipulation, Fiore said. And the fact that no viruses or DNA are used significantly decreases the resource requirement for manufacturing, he added later.
The idea of an off-the-shelf CAR-T or CAR-NK therapy as opposed to harvesting a patients cells, engineering them into a cancer attack vehicle and reinjecting them isnt a new one. Allogene released a positive snapshot of their off-the-shelf CAR-T program at ASCO 2020, and CRISPR Therapeutics offered a glimpse at their own CAR-T success in October although it was clouded by the death of a patient given a high dose of the treatment.
Exacis team of four including co-founder James Pan and former MaxiVAX CEO Dimitrios Goundis as CBO is shooting for a Series A in the coming months to bolster its team and pipeline. The company also says its in talks with several potential development partners.
We are working towards a Series A funding to be completed in Q1 of 2021, and well use those funds to build out our internal team and lab, as well as further the development along the lines of differentiation into T and NK, obtaining CARs, really putting together these target cell types, Fiore said.
While Fiore stayed mum about the the specific terms of Exacis licensing deal with Factor, he said that Factor has a majority ownership in exchange for the execution of the license.
The CEO, who was inspired to get into the field by his fathers battle with cancer, said Factor and Exacis incentives were aligned. Theres plenty of opportunity to improve the patient experience as well as outcomes, he said.
Read more from the original source:
Factor Bioscience spins out a new cell therapy player with eyes on the clinic within 2 years - Endpoints News
Spinogenix Wins Grant to Advance Testing of Potential Oral Therapy – ALS News Today
By daniellenierenberg
Spinogenix has been awarded a research grant from the U.S. Department of Defense (DOD) to further test its lead compound as a potential treatment of amyotrophic lateral sclerosis (ALS), the company announced.
We are pleased that the DoD has recognized the potential of our novel drug candidate to change the course of disease progression in ALS, Stella Sarraf, PhD, founding CEO at Spinogenix, said in a press release. The grants amount and its duration were not disclosed in the release.
ALS is characterized by the progressive loss of motor neurons, or the nerve cells involved in the control of voluntary movement. Although some ALS treatments can slow nerve cell degeneration, they are not disease modifying and provide only a modest survival benefit. Spinogenix also noted in its release that not all patients tolerate these treatments well.
Spinogenixslead therapy candidate is a small, orally bioavailable, molecule designed to induce an increase in synapses the point of contact between two nerve cells that allows them to communicate. Its goal is to restore these neuronal connections and reverse patients decline in cognition and motor function, two faculties often affected in neurodegenerative diseases.
Spinogenix reports that the compounds mechanism is well understood, and believed to work across all the diseases where synapse loss occurs, regardless of the underlying disease mechanism.
With this grant from the DODs Congressionally Directed Medical Research Programs, Spinogenix aims to study the potential therapy using induced pluripotent stem cells (iPSCs) derived from both ALS patients and healthy controls.
iPSCs are stem cells generated from mature cells derived from the skin or blood that can give rise to different cell types, including nerve cells, depending on the particular chemical cues they are given. When these cells are derived directly from patients, they generate cellular models that mimic the diseases genetic and clinical diversity.
Additional experiments will also be conducted in ALS animal models.
Under the grant, Spinogenix will collaborate with researchers Rita Sattler, PhD, at the Barrow Neurological Institute, and Justin Ichida, PhD, at the Keck School of Medicine of the University of South Carolina.
Spinogenixs novel approach has the potential to demonstrate that replacing lost synapses may result in drugs that can provide a meaningful benefit for patients with ALS, said Merit Cudkowicz, MD, director of the Sean M. Healey and AMG Center for ALS at Mass General Hospital.
Diana holds a PhD in Biomedical Sciences, with specialization in genetics, from Universidade Nova de Lisboa, Portugal. Her work has been focused on enzyme function, human genetics and drug metabolism.
Total Posts: 45
Ins holds a PhD in Biomedical Sciences from the University of Lisbon, Portugal, where she specialized in blood vessel biology, blood stem cells, and cancer. Before that, she studied Cell and Molecular Biology at Universidade Nova de Lisboa and worked as a research fellow at Faculdade de Cincias e Tecnologias and Instituto Gulbenkian de Cincia. Ins currently works as a Managing Science Editor, striving to deliver the latest scientific advances to patient communities in a clear and accurate manner.
Read more here:
Spinogenix Wins Grant to Advance Testing of Potential Oral Therapy - ALS News Today
Exosome Therapeutic Market Overview By Size, Share, Trends, Growth Factors and Leading Players With Detailed Analysis of Industry Structure – KSU |…
By daniellenierenberg
DBMR has added a new report titled Exosome Therapeutic Market with analysis provides the insights which bring marketplace clearly into the focus and thus help organizations make better decisions. This Exosome Therapeutic Market research report understands the current and future of the market in both developed and emerging markets. The report assists in realigning the business strategies by highlighting the business priorities. It throws light on the segment expected to dominate the industry and market. It forecast the regions expected to witness the fastest growth. This report is a collection of pragmatic information, quantitative and qualitative estimation by industry experts, the contribution from industry across the value chain. Furthermore, the report also provides the qualitative results of diverse market factors on its geographies and Segments.
Exosome therapeutic market is expected to gain market growth in the forecast period of 2019 to 2026. Data Bridge Market Research analyses that the market is growing with a CAGR of 21.9% in the forecast period of 2019 to 2026 and expected to reach USD 31,691.52 million by 2026 from USD 6,500.00 million in 2018. Increasing prevalence of lyme disease, chronic inflammation, autoimmune disease and other chronic degenerative diseases are the factors for the market growth.
Get Sample Report + All Related Graphs & Charts (with COVID 19 Analysis) @https://www.databridgemarketresearch.com/request-a-sample/?dbmr=global-exosome-therapeutic-market&pm
Exosomes are used to transfer RNA, DNA, and proteins to other cells in the body by making alteration in the function of the target cells. Increasing research activities in exosome therapeutic is augmenting the market growth as demand for exosome therapeutic has increased among healthcare professionals.
Increased number of exosome therapeutics as compared to the past few years will accelerate the market growth. Companies are receiving funding for exosome therapeutic research and clinical trials. For instance, In September 2018, EXOCOBIO has raised USD 27 million in its series B funding. The company has raised USD 46 million as series a funding in April 2017. The series B funding will help the company to set up GMP-compliant exosome industrial facilities to enhance production of exosomes to commercialize in cosmetics and pharmaceutical industry.
Increasing demand for anti-aging therapies will also drive the market. Unmet medical needs such as very few therapeutic are approved by the regulatory authority for the treatment in comparison to the demand in global exosome therapeutics market will hamper the market growth market. Availability of various exosome isolation and purification techniques is further creates new opportunities for exosome therapeutics as they will help company in isolation and purification of exosomes from dendritic cells, mesenchymal stem cells, blood, milk, body fluids, saliva, and urine and from others sources. Such policies support exosome therapeutic market growth in the forecast period to 2019-2026.
This exosome therapeutic market report provides details of market share, new developments, and product pipeline analysis, impact of domestic and localised market players, analyses opportunities in terms of emerging revenue pockets, changes in market regulations, product approvals, strategic decisions, product launches, geographic expansions, and technological innovations in the market. To understand the analysis and the market scenario contact us for anAnalyst Brief, our team will help you create a revenue impact solution to achieve your desired goal.
Grab Your Report at an Impressive 30% Discount! Please click Here @https://www.databridgemarketresearch.com/inquire-before-buying/?dbmr=global-exosome-therapeutic-market&pm
Competitive Landscape and Exosome Therapeutic Market Share Analysis
Global exosome therapeutic market competitive landscape provides details by competitor. Details included are company overview, company financials, revenue generated, market potential, investment in research and development, new market initiatives, global presence, production sites and facilities, company strengths and weaknesses, product launch, product trials pipelines, concept cars, product approvals, patents, product width and breadth, application dominance, technology lifeline curve. The above data points provided are only related to the companys focus related to global exosome therapeutic market.
The major players covered in the report are evox THERAPEUTICS, EXOCOBIO, Exopharm, AEGLE Therapeutics, United Therapeutics Corporation, Codiak BioSciences, Jazz Pharmaceuticals, Inc., Boehringer Ingelheim International GmbH, ReNeuron Group plc, Capricor Therapeutics, Avalon Globocare Corp., CREATIVE MEDICAL TECHNOLOGY HOLDINGS INC., Stem Cells Group among other players domestic and global. Exosome therapeutic market share data is available for Global, North America, Europe, Asia-Pacific, and Latin America separately. DBMR analysts understand competitive strengths and provide competitive analysis for each competitor separately.
Many joint ventures and developments are also initiated by the companies worldwide which are also accelerating the global exosome therapeutic market.
For instance,
Partnership, joint ventures and other strategies enhances the company market share with increased coverage and presence. It also provides the benefit for organisation to improve their offering for exosome therapeutics through expanded model range.
Global Exosome Therapeutic Market Scope and Market Size
Global exosome therapeutic market is segmented of the basis of type, source, therapy, transporting capacity, application, route of administration and end user. The growth among segments helps you analyse niche pockets of growth and strategies to approach the market and determine your core application areas and the difference in your target markets.
Based on type, the market is segmented into natural exosomes and hybrid exosomes. Natural exosomes are dominating in the market because natural exosomes are used in various biological and pathological processes as well as natural exosomes has many advantages such as good biocompatibility and reduced clearance rate compare than hybrid exosomes.
Exosome is an extracellular vesicle which is released from cells, particularly from stem cells. Exosome functions as vehicle for particular proteins and genetic information and other cells. Exosome plays a vital role in the rejuvenation and communication of all the cells in our body while not themselves being cells at all. Research has projected that communication between cells is significant in maintenance of healthy cellular terrain. Chronic disease, age, genetic disorders and environmental factors can affect stem cells communication with other cells and can lead to distribution in the healing process. The growth of the global exosome therapeutic market reflects global and country-wide increase in prevalence of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases, along with increasing demand for anti-aging therapies. Additionally major factors expected to contribute in growth of the global exosome therapeutic market in future are emerging therapeutic value of exosome, availability of various exosome isolation and purification techniques, technological advancements in exosome and rising healthcare infrastructure.
Rising demand of exosome therapeutic across the globe as exosome therapeutic is expected to be one of the most prominent therapies for autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases treatment, according to clinical researches exosomes help to processes regulation within the body during treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases. This factor has increased the research activities in exosome therapeutic development around the world for exosome therapeutic. Hence, this factor is leading the clinician and researches to shift towards exosome therapeutic. In the current scenario the exosome therapeutic are highly used in treatment of autoimmune disease, chronic inflammation, Lyme disease and chronic degenerative diseases and as anti-aging therapy as it Exosomes has proliferation of fibroblast cells which is significant in maintenance of skin elasticity and strength.
For More Insights Get FREE Detailed TOC @https://www.databridgemarketresearch.com/toc/?dbmr=global-exosome-therapeutic-market&pm
Exosome therapeutic Market Country Level Analysis
The global exosome therapeutic market is analysed and market size information is provided by country by type, source, therapy, transporting capacity, application, route of administration and end user as referenced above.
The countries covered in the exosome therapeutic market report are U.S. and Mexico in North America, Turkey in Europe, South Korea, Australia, Hong Kong in the Asia-Pacific, Argentina, Colombia, Peru, Chile, Ecuador, Venezuela, Panama, Dominican Republic, El Salvador, Paraguay, Costa Rica, Puerto Rico, Nicaragua, Uruguay as part of Latin America.
Country Level Analysis, By Type
North America dominates the exosome therapeutic market as the U.S. is leader in exosome therapeutic manufacturing as well as research activities required for exosome therapeutics. At present time Stem Cells Group holding shares around 60.00%. In addition global exosomes therapeutics manufacturers like EXOCOBIO, evox THERAPEUTICS and others are intensifying their efforts in China. The Europe region is expected to grow with the highest growth rate in the forecast period of 2019 to 2026 because of increasing research activities in exosome therapeutic by population.
The country section of the report also provides individual market impacting factors and changes in regulation in the market domestically that impacts the current and future trends of the market. Data points such as new sales, replacement sales, country demographics, regulatory acts and import-export tariffs are some of the major pointers used to forecast the market scenario for individual countries. Also, presence and availability of global brands and their challenges faced due to large or scarce competition from local and domestic brands, impact of sales channels are considered while providing forecast analysis of the country data.
Huge Investment by Automakers for Exosome Therapeutics and New Technology Penetration
Global exosome therapeutic market also provides you with detailed market analysis for every country growth in pharma industry with exosome therapeutic sales, impact of technological development in exosome therapeutic and changes in regulatory scenarios with their support for the exosome therapeutic market. The data is available for historic period 2010 to 2017.
About Data Bridge Market Research:
An absolute way to forecast what future holds is to comprehend the trend today!Data Bridge set forth itself as an unconventional and neoteric Market research and consulting firm with unparalleled level of resilience and integrated approaches. We are determined to unearth the best market opportunities and foster efficient information for your business to thrive in the market. Data Bridge endeavors to provide appropriate solutions to the complex business challenges and initiates an effortless decision-making process.
Contact:
Data Bridge Market Research
US: +1 888 387 2818
UK: +44 208 089 1725
Hong Kong: +852 8192 7475
Email @ Corporatesales@databridgemarketresearch.com
Go here to read the rest:
Exosome Therapeutic Market Overview By Size, Share, Trends, Growth Factors and Leading Players With Detailed Analysis of Industry Structure - KSU |...
Ulta Beautys Love Your Skin Event Is Here | January 2021 – Allure
By daniellenierenberg
I'm not the biggest fan of New Year's resolutions, but I like to think that as we enter the top of January there is no better time to try something new. If you haven't thought about what that something might be maybe I can inspire you. I look at every year as an opportunity to test out new products, specifically skin care because I'm always looking for ways to maintain a clear complexion.
While this task can seem like an easy one, it can also be pricey. Lucky for us, Ulta Beauty is starting 2021 with a sale that's all about treating our skin meet the Love Your Skin Event.
The epic skin-care sale has started and runs through January 23. The best part is that Ulta Beauty is sharing all the deals for each day early and, folks, this sale is so good. Products from brands like Zitsticka, Clinique, Philosophy, and more will be up to 50 percent off on certain days of the month. To make it easy for you, we organized every deal by day. Here's what's on sale this week, plus a peek at the rest of the month. Happy shopping!
ZitSticka's Killa Kit is a one-way ticket to clear skin. The bundle includes four Killa Spot Clarifying Microdart Patches, which have niacinamide to fade darkness and salicylic acid to diminish the zit, and four Cleana Cleansing Swabs that are soaked salicylic acid that can be dabbed on a pimple to help shrink it.
For brighter skin, check out the Clinique Endless Glow Moisture Surge Set. It holds the entire collection that includes a Moisture Surge 72-Hour Auto-Replenishing Hydrator, a Moisture Surge Hydrating Supercharged Concentrate, a Moisture Surge Eye 96-Hour Hydro-Filler Concentrate, and a Moisture Surge Hydrating Lotion. All of which have hyaluronic acid to ensure your skin is never dry.
Loaded with hyaluronic acid and ceramides, the It Cosmetics Confidence in A Neck Cream Anti-Aging Moisturizer works to smooth out any fine lines. And to soothe dry lips, try Becca Cosmetics' Hydra-Light Smoothing Lip Scrub. Its formula has moisturizing mango butter and coconut oil and natural sugars to exfoliate any dryness or flakiness.
The Juice Beauty Stem Cellular Anti-Wrinkle Overnight Cream & Eye Treatment is made with primrose oil, which reduces dark circles, and vitamin C to hydrate the eye area. If you're more of a mask person, the Este Lauder Perfectly Clean Multi-Action Foam Cleanser and Purifying Mask may be for you. It's a two-in-one cleanser and mask that unclogs pores using salicylic acid. Either wash it off right away like a face wash or let it sit for three minutes like a mask to prevent and calm any acne.
See the rest here:
Ulta Beautys Love Your Skin Event Is Here | January 2021 - Allure
Global Organ and Tissue Transplantation and Alternatives Market to 2024 – Impact Analysis of COVID-19 – Yahoo Finance
By daniellenierenberg
Dublin, Jan. 06, 2021 (GLOBE NEWSWIRE) -- The "Organ and Tissue Transplantation and Alternatives" report has been added to ResearchAndMarkets.com's offering.
This report offers forecasts, by product segment, from 2018 through 2024, including supporting analyses for projections. Product segments covered consist of the solid organ (e.g., kidneys, liver, heart-lung, pancreas, intestines) and the tissue transplantation (e.g., bone, skin, cornea, heart valve) markets, along with the pharmaceuticals that accompany each market.
Also included are experimental xenografts and artificial organs; tissue transplants; and cell transplants (e.g., bone marrow, cord blood, peripheral blood, islet cell). The report touches on the use of fetal cells, stem cells, and altered cancer cells.
The arrangement of this report offers an overview of the key elements in the transplantation process: tissue typing, procurement and preservation, immunosuppressants for solid organ and tissue transplants, and postoperative monitoring. International markets are discussed, and information is provided on industry structure and the regulatory environment.
Within each section are discussions of commercialization opportunities for each segment of the market. New or emerging devices, techniques, and pharmaceuticals are highlighted.
Profiles of leading companies involved with solid organ transplantation, tissue transplantation, and alternative technologies are included. The report provides information on company placement within the market and strategic analyses of the companies' available and emerging products.
An appendix featuring various terms and processes used in transplantation is provided at the end of the report.
This report cites autologous products only in relation to their impact on the market for allografts. It does not include blood products, except for peripheral and umbilical cord blood as a source of stem cells.
By geography, the market has been segmented into North America, Europe, Asia-Pacific, and Rest of the World regions. Detailed analysis of the market in major countries such as the U.S., Germany, the U.K., Italy, France, Spain, Japan, China, India, Brazil, Mexico, GCC countries, and South Africa will be covered in the regional segment. For market estimates, data will be provided for 2019 as the base year, with estimates for 2020 and forecast value for 2024.
Story continues
Report Includes:
26 data tables and 37 additional tables
An overview of the global organ and tissue transplantation and alternatives market
Estimation of the market size and analyses of market trends, with data from 2018 to 2019, estimates for 2020, and projection of CAGR through 2024
Details about organ and tissue transplantation and alternatives, their pathophysiology and effects, and major advancement and latest trends
A look at the regulatory scenarios and initiatives by a government organization
Analysis of current and future market dynamics and identification of key drivers, restraints, and opportunities such as increasing incidence of organ donations, improved awareness about organ donations, side effects of organ and tissue transplantation, and antibiotic resistance infections
Coverage of emerging procedures and products in development and discussion on the prevalence of major chronic diseases which initiates organ damage or donation
Discussion on the role of the organ procurement organization and information on transplantation process and preparation and coverage of issues like black market donors
Impact analysis of COVID-19 on organ and tissue transplantation and alternatives market
Market share analysis of the key companies of the industry and coverage of events like mergers & acquisitions, joint ventures, collaborations or partnerships, and other key market strategies
Company profiles of major players of the industry, including Abiomed Inc., Bayer AG, F. Hoffmann-La Roche & Co., Johnson & Johnson, Novartis AG, Pfizer Inc., and XVIVO Perfusion
Growth of the global market is attributed to factors such as the growing prevalence of obesity, diabetes, cancer, and other chronic diseases which leads to organ damage, a strong product regulatory scenario, and strong investment in research and development activities by key market players including Abbott Laboratories, Cryolife Inc., Bristol-Myers Squibb, Novartis Ag, F. Hoffmann-La Roche Ltd., Medtronic, Arthrex Inc., Depuy Synthes (Johnson & Johnson), and Allosource.
Although various factors facilitate the global market for organ and tissue transplantation and alternatives, certain parameters such as challenges in HLA sequencing and gaps in supply and demand can constrain market growth. For instance, although there is an increasing need for organ transplants, the shortage of organs worldwide limits the number of transplant procedures performed, and in turn, creates an impact on transplant diagnostics procedures. An increasing number of candidates on the waiting list for organ transplant procedures worldwide further widens this gap of availability and requirement of organs for transplant purposes.
Successful organ and tissue transplantation began to arrive in the mid-1970s when tissue typing coupled with the use of cyclosporine provided more successful graft and patient survival. Today, patient and graft survival for kidney transplants is higher than 90% for the first year post-transplant, and often the success rate is 80% to 90% for five years post-transplant, with some recipients living more than 20 years after their transplant.
Continuing developments in organ procurement, organ preservation, tissue typing, and immunosuppressant use have bolstered successful transplantation surgical techniques. Evolving posttransplant drug and testing regimens have added to the success rate with close post-transplant monitoring and immunosuppressant dosage review.
Key Topics Covered:
Chapter 1 Introduction
Chapter 2 Summary and Highlights
Chapter 3 Market and Technology Background
Organ and Tissue Transplantation and Alternatives
Cost of Care
Solid Organ Preservation
Immunosuppression
Organ Transplantation Alternatives
Trends in Organ and Tissue Transplantation Techniques and Their Alternatives
3D Tissue Assembly
Nanotechnology for Tissue Regeneration
Innovation by Small Firms
Chapter 4 Market Dynamics
Market Drivers
Increasing Epidemiology of Different Diseases Influencing Organ Transplantations
Rise in the Geriatric Population
Rising Awareness of Importance of Organ and Tissue Donation
New Therapeutic Pathways for Organ Transplantation and Their Alternatives
Market Restraints
Challenges in Human Leukocyte Antigen (HLA) Sequencing
Demand and Supply Gap
Market Opportunities
Growing Economic Benefits of Organ and Tissue Transplants
Improvement in Healthcare Infrastructure
Chapter 5 Market Breakdown by Product & Devices
Global Market for Organ and Tissue Transplantation and Alternatives
Alternative Technologies
Market Size and Forecast
Alternatives to Heart Transplantation
Surgical
Mechanical
Total Artificial Heart
Ventricular Assist Devices (VADs)
Generations of Designs
Orthopedic Alternatives
Tissue Products
Market Size and Forecast
Immunosuppressants
Market Size and Forecast
Solid Organ Preservation Solutions
Market Size and Forecast
Preservation Solutions in Development
Tissue Typing
Market Size and Forecast
Chapter 6 Market Breakdown by Region
Global Market for Organ and Tissue Transplantation and Alternatives by Region
North America
United States
Canada
Mexico
Europe
Germany
France
U.K.
Italy
Spain
Rest of Europe
Asia-Pacific
Japan
China
India
Australia and New Zealand
Rest of Asia-Pacific
Rest of the World
Market Analysis
Brazil
South Africa
Rest of the World Countries
Chapter 7 Impact of COVID-19
Introduction
Impact on Kidney Transplant Program
Impact on Pharmaceutical Companies
Donor Testing
Read this article:
Global Organ and Tissue Transplantation and Alternatives Market to 2024 - Impact Analysis of COVID-19 - Yahoo Finance
A celebrity dermat’s tips for new moms on how to deal with postpartum hair and skin issues – VOGUE India
By daniellenierenberg
Ah, pregnancy. That wild, magical time when youre growing new life and all that, but also experiencing crazy symptoms of bodily change daily. Today, a fire-breathing dragon might be sending shooting flames of heartburn up your oesophagus, while tomorrow, pigmentation-induced maps of lost lands might appear overnight on your body. Its a game of Russian roulette because you never know what youre going to get.
A womans skin and hair are two of the areas that undergo massive change, and just like with other pregnancy side effects, you cant predict which ones youll get. Women whove never suffered a zit in their life can suddenly sprout a crop of hormonal acne, or find their bright, taut complexion is now droopy and sallow, while others are plagued by melasma and other pigmentation issues. These problems may be cosmetic, but they can be as unsettling and debilitating for women as other medical side effects, at a time when their bodies and minds are going through profound changes.
Dr Lara Devgan, a celebrity plastic surgeon in New York, shares the most common skin and hair concerns she sees in pregnant women and shares her top tips to safely alleviate them, using a combination of products and in-clinic procedures. Devgan also has six children of her own and is no stranger to post-baby skin and hair issues herself, so this advice is definitely doctor-vetted.
Hyperpigmentation and melasma are the most common skin complaints during and after pregnancy. An even skin tone is a marker of beauty, so hyperpigmentation can be quite unsettling. Melasma is so life-altering that it is sometimes referred to as the mask of pregnancy. Hyperpigmentation is multifactorialdue to genetics, hormonal fluctuations, environmental exposures like sun and heat, stress, trauma, and other unknown phenomena. The best way to address hyperpigmentation is multifactorial as well: topical skincare products like Vitamin C and E are safe to use during pregnancy and breastfeeding. After that, Devgan suggests adding a retinol or bakuchiol serum and considering microinfusion, micro-needling, peels, and lasers for more aggressive treatment of hyperpigmentation.
Pregnancy can often be associated with dullness, dryness, and loss of skin elasticity and lustre. Devgan recommends a hyaluronic serum for increased skin hydration during pregnancy. Postpartum, she suggests laser resurfacing; Its an amazing technique for rejuvenation of the skin, offering a complete skin reset to improve lustre, texture, discolouration and fine lines. She recommends the Erbium laser for a thorough resurfacing of the skins surface; it also has a much lower risk of post-laser hyperpigmentation in Indian skin tones.
Getting wrinkles and pimples at the same time can seem like the worst of both worlds for pregnant and nursing women. The best way to address acne during pregnancy is spot treatment with benzoyl peroxide and salicylic acid-based treatments. It is also important to think about daily routines and habits like cleansing the face, regularly changing pillowcases, and sterilising cell phone screens, says Devgan. Once nursing is complete, in-office treatments can also help. Intense Pulsed Light (IPL) can be used to selectively target the bacteria that causes acne. Prescription oral medications may also help. Often, when hormones normalise after delivery, the skin also tends more toward its baseline homeostasis, says Devgan.
Hair loss is one of the most distressing things to happen in the postpartum period. Because of a rapid decrease in progesterone as well as fluctuations in oestrogen levels, the thick, beautiful hair of pregnancy begins to shed shortly after delivery. Hair loss is a complex and multifactorial issue, with many solutions, says Devgan. A supplement rich in biotin, folate, and vitamin B derivatives can help boost growth by restoring the deficient cellular building blocks needed for hair growth. Topical sprays and foams such as minoxidil (Rogaine) can also help the survivalof hair follicles. Devgan also frequently performs Platelet Rich Plasma (PRP) injections into the scalp to help boost growth factors and stem cells needed for hair growth.
8 skincare rules you need to keep in mind during your pregnancy
All the skincare and wellness changes you need to make during pregnancy
Anushka Sharma on her experience of pregnancy: You are more connected to your body, to all that is happening