COVID-19 and graft-versus-host disease: a tale of two diseases (and why age matters) – DocWire News
By daniellenierenberg
This article was originally published here
Lab Invest. 2020 Dec 9. doi: 10.1038/s41374-020-00520-2. Online ahead of print.
ABSTRACT
Disorders involving injury to tissue stem cells that ensure normal tissue homeostasis and repair have potential to show unusually devastating clinical consequences. Acute graft-versus-host disease (aGVHD) is one condition where relatively few cytotoxic immune cells target skin stem cells to produce significant morbidity and mortality. By analogy, SARS-CoV-2 is a vector that initially homes to pulmonary stem cells that preferentially express the ACE2 receptor, thus potentially incurring similarly robust pathological consequences. In older individuals, stem cell number and/or function become depleted due to pathways independent of disease-related injury to these subpopulations. Accordingly, pathologic targeting of stem cells in conditions like aGVHD and COVID-19 infection where these cells are already deficient due to the aging process may have dire consequences in elderly individuals. A hypothesis is herein advanced that, as with aGVHD, lung stem cell targeting is a potential co-factor in explaining age-related severity of COVID-19 infection.
PMID:33299126 | DOI:10.1038/s41374-020-00520-2
Go here to read the rest:
COVID-19 and graft-versus-host disease: a tale of two diseases (and why age matters) - DocWire News
Avenoir Cosmetics Launches Cell Repair Serum – Clinical Strength to Enhance Skin Tone & Minimize Appearance of Sunspots, Blemishes, Discoloration,…
By daniellenierenberg
TipRanks
Investing is all about profits, and part of generating profits is knowing when to start the game. The old adage says to buy low and sell high, and while its tempting just to discount cliches like that, theyve passed into common currency because they embody a fundamental truth. Buying low is always a good start in building a portfolio.The trick, however, is recognizing the right stocks to buy low. Prices fall for a reason, and sometimes that reason is fundamental unsoundness. Fortunately, Wall Streets analysts are busy separating the wheat from the chaff among the markets low-priced stocks, and some top stock experts have tagged several equities for big gains. These stocks are trading low now but the reasons are not necessarily bad for investors.Weve used the TipRanks database to pull up the data and reviews on two stocks that are priced low now, but may be primed for gains. Theyve been getting positive reviews, and despite their share depreciation, they hold Buy ratings and show upwards of 60% upside potential.Digital Media Solutions (DMS)We will start with Digital Media Solutions, an adtech company which connects online advertisers with customers through performance-based branding and marketplace solutions. DMS boasts a powerful consumer intelligence database, which it uses to fine-tune customer acquisition campaigns while offering advertisers accountability for the project budget.DMS went public in July of this year, via a merger with a special purpose acquisition company, Leo Holdings. The combination took the DMS name for the ticker, and initiated trading at $10 per share. The stock has been volatile since, and is currently down 27% since it started trading.Digital advertising is a huge and growing sector, worth $100 billion in 2019 and expected to reach $130 billion by the end of next year. DMS has a solid piece of that cash cow, and the Q3 numbers demonstrate that. Quarterly revenue hit a company record, of $82.8 million, which was up 10% sequentially and 44% year-over-year. Of that total revenue, the company saw a gross profit of $25.1 million, for a 30% gross margin. All in all, DMSs first quarter as a publicly traded company showed strong results.Covering the stock for Canaccord is analyst Maria Ripps, who is rated 5 stars by TipRanks, and stands in the top 1% out of more than 7,100 stock analysts. The company saw meaningful volume growth from both new and existing clients, with particular strength from its auto insurance business along with the eCommerce, education, and non-profit verticals We continue to think investors will gradually come to appreciate DMS similarities with other leading digital marketing peers that trade at more premium valuations, and expect multiple expansion over time as the story becomes better understood, Ripps noted.To this end, Ripps rates DMS stock a Buy, and her $15 price target suggests an upside of 106% from the current share price of $7.20. (To watch Ripps track record, click here)Overall, DMS Moderate Buy consensus rating is based on 2 recent reviews, both positive. The stock has an average price target of $14, which indicates a 92% upside potential. (See DMS stock analysis on TipRanks)ViaSat, Inc. (VSAT)From digital advertising we move on to digital networking. ViaSat provides customers with high-speed broadband access through a secure satellite network system. The company serves both military and commercial markets, meeting the growing need for secure communications links.The anti-coronavirus shutdown policies have particularly hard on ViaSat. This may sound counterintuitive, as online networking has been busier than ever, but a large segment of ViaSats business comes from the airlines, and with air travel first grounded and still facing depressed travel volumes, ViaSats shares have yet to recover from their February/March swoon.On a positive note and one that is indicative of the essential nature of secure satellite communications in todays networked economy ViaSat reported $577 million in Q3 contract awards, representing a 29% yoy gain. For the year to date, the company has seen awards totaling $1.9 billion, which is up 5% from this time last year. The third quarter (the companys fiscal Q2) revenues and earnings were somewhat mixed, reflecting both the increase in contract awards and the decline in airline business. Revenues were $554 million, down 6% yoy, but up almost 4% sequentially. EPS was 3 cents per share, beating the predicted 5 cent loss by a wide margin.JPMorgan analyst Philip Cusick writes of ViaSat: [We] believe long-term growth levers remain intact highlighted by record segment backlog of $1.1b We view ViaSat as a satellite innovation leader and believe the companys future ViaSat-3 fleet will accelerate growth in satellite services over the coming years. At the same time, we see a long-term government systems tailwind driven by the companys radio portfolio, mobile broadband, and SATCOM.In line with his bullish comments, Cusick rates VSAT shares an Overweight (i.e. Buy), and his $60 price target implies ~72% upside on the one-year time horizon. (To watch Cusicks track record, click here)Overall, the stock has 5 recent reviews, including 3 Buys and 2 Holds. Shares are priced at $34.14, and the average price target of $55 suggests a 61% upside potential from that level. (See VSAT stock analysis on TipRanks)To find good ideas for stocks trading at attractive valuations, visit TipRanks Best Stocks to Buy, a newly launched tool that unites all of TipRanks equity insights.Disclaimer: The opinions expressed in this article are solely those of the featured analysts. The content is intended to be used for informational purposes only. It is very important to do your own analysis before making any investment.
CBD: the beauty ingredient trend that can’t be stopped – CosmeticsDesign.com USA
By daniellenierenberg
Even while legalization and regulations are in flux throughout the Americas region and around the globe, cannabis beauty is making tremendous progress.
The cannabis market is emerging very, very rapidly around the world, said Shane MacGuill, Senior Head of Nicotine and Cannabis at Euromonitor during a webinar last month reviewing the global cannabis industry across market sectors and showcasing the launch of the market research companys newest Passport Research System focus: cannabis. And he added,the market is currently heavily concentrated in US Canada.
This year2020was the year that both Amway and Avon launched CBD skin care. Avon made the announcement first. In April, as Cosmetics Design reported, the social-selling beauty maker announced plans for a new vegan skin care line that would include a CBD oil. And today, Avon has 3 CBD products in its portfolio: Green Goddess Facial Oil, Veilment CBD Soothing & Nourishing Body Cream, and Veilment CBD Nourishing Body Cream, all of which contain 100mg of CBD. Though as the online product descriptions note, our collection does NOT contain THC. The only high youll get is knowing your skin feels cool, calm and collected.
Amway, as Cosmetics Design reported, announced the launch of its new Artistry Skin Studio product collection in September 2020. And that product line now includes Artistry Studio Zen Daze Ahead Facial Oil +300 mg CBD.
Colgate also got involved in the CBD Beauty market this year. In January the company announced an acquisition deal to buy Hello Products and the following month, Hello launched its CBD product collection, as Cosmetics Design reported. Hello is best known for its oral care products but the brand also makes CBD lip balm, for instance.
Ayuna, a luxury skin care brand out of Spain, just launched the latest limited-edition product in its sought-after Terra collection at the start of November: Terra Bella.
There are no cannabinoids, no THC, no CBD in this new cream. But the Terra Bella face cream is formulated with a remarkable extract derived from cultured Cannabis Sativa stem cells, as Isabel Ramos, Chief Scientific Officer at Ayuna, tells Cosmetics Design.
And the ingredient does something truly extraordinary: it instigates communication between the skin microbiome and the brain, explains Ramos. This topical ingredient is, she says, the first known instance of a skin care input helping and demonstrating that microbiota are acting on [or affecting] how we feel.
As the Ayuna example illustrates, theres a lot more to cannabis beauty than the ever-enchanting CBD. In fact, the entire cannabis plant and a full range of cannabinoid molecules are shaping the future of this buzz-worthy cosmetics and personal care category.
In October, Jennifer Grant, a biomedical engineer turned beauty entrepreneur launched a clean skin care brand called empyri that relies on upcycled cannabis root at its hero ingredient. And not long before that news made headlines here on Cosmetics Design, the biotechnology company behind brands like Bissance and Pipette, announced having successfully scaled production of biotech CBG (one of many cannabinoids naturally occurring in cannabis) for use in skin care product formulations. So while CBD beauty is here to stay, theres much more to Cannabis Sativa and to cannabis beauty than this one molecule. Ready to learn more? Revisit all the top CBD beauty news from 2019 here on CosmeticsDesign.com.
Originally posted here:
CBD: the beauty ingredient trend that can't be stopped - CosmeticsDesign.com USA
A Potential Therapy for One of the Leading Causes of Heart Disease – PRNewswire
By daniellenierenberg
After 15 years of unrelenting work, a team of scientists from Gladstone Institutes has now discovered a potential drug candidate for heart valve disease that works in both human cells and animals and is ready to move toward a clinical trial. Their findings were just published in the journal Science.
"The disease is often diagnosed at an early stage and calcification of the heart valves worsens over the patient's lifetime as they age," says Gladstone President and Director of the Roddenberry Stem Cell Center Deepak Srivastava, MD,who led the study. "If we could intervene early in life with an effective drug, we could potentially prevent the disease from occurring. By simply slowing the progression and shifting the age of people who require interventions by 5 or 10 years, we could avoid tens of thousands of surgical valve replacements every year."
This also applies to the millions of Americansabout one to two percent of the populationwith a congenital anomaly called bicuspid aortic valve, in which the aortic valve only has two leaflets instead of the normal three. While some people may not even know they have this common heart anomaly, many will be diagnosed as early as their forties.
"We can detect this valve anomaly through an ultrasound," explains Srivastava, who is also a pediatric cardiologist and a professor in the Department of Pediatrics at UC San Francisco (UCSF). "About a third of patients with bicuspid aortic valve, which is a very large number, will develop enough calcification to require an intervention."
Srivastava's research into heart valve disease started in 2005, when he treated a family in Texas who had this type of early-onset calcification. All these years later, thanks to the family's donated cells, his team has finally found a solution to help them and so many others.
A Holistic Approach in the Hunt for a Therapy
Members of the family treated by Srivastava had disease that crossed five generations, enabling the team to identify the causea mutation in one copy of the gene NOTCH1. Mutations in this gene cause calcific aortic valve disease in approximately four percent of patients and can also cause thickening of valves that trigger problems in newborns. In the other 96 percent of cases, the disease occurs sporadically.
"The NOTCH1 mutation provided a foothold for us to figure out what goes wrong in this common disease, but most people won't have that mutation," says Srivastava. "However, we found that the process that leads to the calcification of the valve is mostly the same whether individuals have the mutation or not. The valve cells get confused and start thinking they're bone cells, so they start laying down calcium and that leads to hardening and narrowing of the valves."
In the hunt for a treatment, the group of scientists chose a novel, holistic approach rather than simply focusing on a single target, such as the NOTCH1 gene.
"Our goal was to develop a new framework to discover therapeutics for human disease," says Christina V. Theodoris, MD, PhD, lead author of the study who is now completing her residency in pediatric genetics at Boston Children's Hospital. "We wanted to find promising therapies that could treat the disease at its core, as opposed to just treating some specific symptoms or peripheral aspects of the disease."
When Theodoris first joined Srivastava's lab at Gladstone, she was a graduate student at UCSF. At the time, they knew the NOTCH1 gene mutation caused valve disease, but they didn't have the tools to study the problem further, largely because it was very difficult to obtain valve cells from patients.
"My first project was to convert the cells from the patient families into induced pluripotent stem (iPS) cells, which have the potential of becoming any cell in the body, and turn them into cells that line the valve, allowing us to understand why the disease occurs," says Theodoris. "My second project was to make a mouse model of calcific aortic valve disease. Only then could we start using these models to identify a therapy."
One Drug Candidate Rises to the Top
For this latest study, the scientists searched for drug-like molecules that could correct the overall network that goes awry in heart valve disease and leads to calcification. To do so, they first had to determine the network of genes that are turned on or off in diseased cells.
Then, they used an artificial intelligence method, training a machine learning program to detect whether a cell was healthy or sick based on this network of genes. They subsequently treated diseased human cells with nearly 1,600 molecules to see if any drugs shifted the network in the cells enough that the machine learning program would reclassify them as healthy. The researchers identified a few molecules that could correct diseased cells back to the normal state.
"Our first screen was done with cells that have the NOTCH1 mutation, but we didn't know if the drugs would work on the other 96 percent of patients with the disease," says Srivastava.
Fortunately, Anna Malashicheva, PhD, from the Russian Academy of Sciences, had collected valve cells from over 20 patients at the time of surgical replacement, and Srivastava struck up a fruitful collaboration with her group to do a "clinical trial in a dish."
"We tested the promising molecules on cells from these 20 patients with aortic valve calcification without known genetic causes," Srivastava adds. "Remarkably, the molecule that seemed most effective in the initial study was able to restore the network in these patients' cells as well."
Once they had identified a promising candidate in cells in a dish for both NOTCH1 and sporadic cases of calcific aortic valve disease, Srivastava and his team did a "pre-clinical trial" in a mouse model of the disease. They wanted to determine whether the drug-like molecule would actually work in a whole, living organ.
The scientists confirmed that the therapeutic candidate could successfully prevent and treat aortic valve disease. In young mice who had not yet developed the disease, the therapy prevented the calcification of the valve. And in mice that already had the disease, the therapy actually halted the disease and, in some cases, led to reversal of the disease. This finding is especially important since most patients aren't diagnosed until calcification has already begun.
"Our strategy to identify gene networkcorrecting therapies that treat the core disease mechanism may represent a compelling path for drug discovery in a range of other human diseases," says Theodoris. "Many therapeutics found in the lab don't translate well to humans or focus only on a specific symptom. We hope our approach can offer a new direction that could increase the likelihood of candidate therapies being effective in patients."
The researchers' strategy relied heavily on technological advancements, including human iPS cells, gene editing, targeted RNA sequencing, network analysis, and machine learning.
"Our study is a really good example of how modern technologies are facilitating the kinds of discoveries that are possible today, but weren't not so long ago," says Srivastava. "Using human iPS cells and gene editing allowed us to create a large number of cells that are relevant to the disease process, while powerful machine learning algorithms helped us identify, in a non-biased fashion, the important genes for distinguishing between healthy and diseased cells."
"By using all the knowledge we gathered over a decade and a half, combined with the latest tools, we were able to find a drug candidate that can be taken to clinical trials," he adds. "Our ultimate goal is always to help patients, so the whole team is very pleased that we found a therapy that could truly improve lives."
About the Research Project
The paper, "Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease,"was published online by Science on December 10, 2020.
Other authors include Ping Zhou, Lei Liu, Yu Zhang, Tomohiro Nishino, Yu Huang, Sanjeev S. Ranade, Casey A. Gifford, Sheng Ding from Gladstone; Aleksandra Kostina from the Russian Academy of Sciences; and Vladimir Uspensky from the Almazov Federal Medical Research Centre in Russia.
The work was funded by the California Institute of Regenerative Medicine; the National Heart, Lung, and Blood Institute; and the National Center for Research Resources. Gladstone researchers also received support from the Winslow Family, the L.K. Whittier Foundation, The Roddenberry Foundation, the Younger Family Fund, the American Heart Association, several programs and fellowships at UCSF, residency programs from Boston Children's Hospital and the Harvard Medical School, the Uehara Memorial Foundation, and a Howard Hughes Medical Institute Fellowship of the Damon Runyon Cancer Research Foundation.
About Gladstone Institutes
To ensure our work does the greatest good, Gladstone Institutes focuses on conditions with profound medical, economic, and social impactunsolved diseases. Gladstone is an independent, nonprofit life science research organization that uses visionary science and technology to overcome disease.
Media Contact: Julie Langelier | Assistant Director, Communications | [emailprotected] | 415.734.5000
SOURCE Gladstone Institutes
Go here to see the original:
A Potential Therapy for One of the Leading Causes of Heart Disease - PRNewswire
Creative Medical Technology Holdings files Patent on Induction of Infectious Tolerance by Ex Vivo Reprogrammed Immune Cells Utilizing ImmCelz Cellular…
By daniellenierenberg
PHOENIX, Dec. 10, 2020 /PRNewswire/ --Creative Medical Technology Holdings trading under the ticker symbol CELZ announced today its patent filing based on data covering utilization of the Company's ImmCelz product at generating what is termed in the field of immunology as "infectious tolerance."
Using an animal model of rheumatoid arthritis, investigators demonstrated administration of ImmCel protected mice from immunologically mediated joint damage. Importantly, cells from treated mice were able to reverse disease when transferred to arthritic mice. Detailed scientific analysis revealed that ImmCelz administration caused generation of T regulatory cells and tolerogenic dendritic cells. Both of these cell types have previously been described to possess ability to suppress autoimmunity.
"In 2003, Dr. Weiping Min from the University of Western Ontario and myself published a paper describing the Tolerogenic Loop, in which we were able to perform fully mis-matched cardiac transplants without need for long term immune suppression1." Said Dr. Thomas Ichim, Chief Scientific Officer of the Company. "We are extremely enthusiastic to discover that ImmCelz, which is a personalized immunotherapy can induce similar biological processes and in this case suppress autoimmunity."
Creative Medical Technology Holdings possesses numerous issued patents in the area of cellular therapy including patent no. 10,842,815 covering use of T regulatory cells for spinal disc regeneration, patent no. 9,598,673 covering stem cell therapy for disc regeneration, patent no. 10,792,310 covering regeneration of ovaries using endothelial progenitor cells and mesenchymal stem cells, patent no. 8,372,797 covering use of stem cells for erectile dysfunction, and patent no. 7,569,385 licensed from the University of California covering a novel stem cell type.
"Given that our issued intellectual property covers multi-billion dollar markets, it is critical in our development plans to establish scientific mechanisms of action. By understanding how our products work at a cellular and molecular level, we feel we have an advantage when engaging Big Pharma in discussions for licensing/partnering interactions." Said Timothy Warbington, President and CEO of the Company.
The company intends to publish an update on the overall 2020 activities in the coming weeks.
About Creative Medical Technology Holdings
Creative Medical Technology Holdings, Inc. is a commercial stage biotechnology company specializing in stem cell technology in the fields of urology, neurology and orthopedics and trades on the OTC under the ticker symbol CELZ. For further information about the company, please visitwww.creativemedicaltechnology.com.
Forward Looking Statements
OTC Markets has not reviewed and does not accept responsibility for the adequacy or accuracy of this release. This news release may contain forward-looking statements including but not limited to comments regarding the timing and content of upcoming clinical trials and laboratory results, marketing efforts, funding, etc. Forward-looking statements address future events and conditions and, therefore, involve inherent risks and uncertainties. Actual results may differ materially from those currently anticipated in such statements. See the periodic and other reports filed by Creative Medical Technology Holdings, Inc. with the Securities and Exchange Commission and available on the Commission's website atwww.sec.gov.
Timothy Warbington, CEO[emailprotected] CreativeMedicalHealth.com
Creativemedicaltechnology.comwww.StemSpine.comwww.Caverstem.comwww.Femcelz.com
1 https://www.jimmunol.org/content/170/3/1304
SOURCE Creative Medical Technology Holdings, Inc.
Follow this link:
Creative Medical Technology Holdings files Patent on Induction of Infectious Tolerance by Ex Vivo Reprogrammed Immune Cells Utilizing ImmCelz Cellular...
The Technology Behind Bone Marrow Cellular Processing: The PXP System – marketscreener.com
By daniellenierenberg
Cell therapies involve the transfer of live cells into a patient to help treat, prevent or potentially cure diseases. One category of cell therapy focuses specifically on the use of stem cells, or cells within the body that have the potential to replace those that are lost through injury or disease. Their versatility and ability to transform allow them to replace problematic or deactivated cells with new, healthy ones is giving patients around the world a second chance at life.Stem cells are found all throughout the human bodyincluding the skin, muscle tissue and even deep inside bone marrow.
Bone marrow, the spongy substance that fills the inner cavities of our bones, is a rich source ofhematopoietic stem cells. These cells are particularly valuable for their ability to develop into all types of blood cells, including white blood cells, red blood cells and platelets. Due to their unique ability,hematopoietic cells can be used to treat certain types of cancer, such as leukemia and lymphomaand have become a staple in the field of regenerative medicine.
Bone marrow aspirate concentrate(BMAC) is a procedure that collects bone marrow from a patient's body and then concentrates it to create the optimal level of stem cells and other crucial growth factors, which can offer a variety of health benefits that traditional surgical methods simply can't offer. Stem cells and their descendants, known as progenitor cells, combined with other bone marrow cells and platelets, have the potential to restore function when injected directly into the patient's damaged tissue. The BMAC procedure is popularly used by physicians who practice orthopedic surgery, pain management and sports medicine. It has been shown torepair tissue damage, preserving function and strengthand in some cases has even beenused as an alternative for more intensive procedures such as joint and hip replacements.
Bone Marrow Aspirate Concentrate is currently being used to:
While there are many bone marrow concentrate technologies currently out on the market, there are none quite like theThermoGenesis PXPSystem. The PXPSystem is an automated, closed system designed for sterile bone marrow separation and concentration. The automated system utilizes highly sensitive sensors to reduce the amount of red blood cells (RBCs) from the initial bone marrow aspirate, providing physicians with a high-quality final product.Red blood cell contaminationis, by far, the biggest issue physicians encounter when using open, non-automated bone marrow processing systems. When high RBC contamination occurs in the bone marrow concentrate, it can impair cell function and diminish the overall effectiveness of the cell treatments. The PXPSystem is specifically designed to eliminate RBCs contamination head-on, boasting aRBC reduction of over 99 percent.
[Link]
The PXPSystem obtains bone marrow concentrates easily, consistently, and reliably, setting itself apart from any other competitors on the market today. The automated nature of the system eliminates factors created by human error and allows for increased precision and control. It gives its user the ability to harvest a precise volume of cell concentrate from the bone marrow aspirate, while producing consistently high mononuclear cells (MNCs) and CD34+ progenitor cell recoveries.
[Link][Link]
Bone marrow aspirate is collected from the patient through a minimally invasive procedure, usually done under local or general anesthesia. After extraction, the aspirate is transferred into the PXP System and processed in a centrifuge to compartmentalize the aspirate into three separate chambers within the Disposable Cartridge - the central processing chamber, the red blood cell depletion chamber and the harvest chamber. The plasma, nucleated cells and RBCs are all sorted by density to create maximum separation of components. The RBCs are then removed and transferred to the depletion chamber, leaving users with a 6 ml harvest of enriched bone marrow concentrate (containing stem cells, platelets, growth factors) ready to be reintroduced into the patient.
The entire process only takes about twenty minutes from the moment the bone marrow aspirate is placed in the system to the point where it can be reinjected. For added convenience, the automated control module provides users with accurate data tracking and serves as a record for the entire process.
The PXPSystem is a tool for physicians looking for a quick, easy and efficient system for processing bone marrow. It is one of the most innovative systems available on the market and our mission is to make it even better. We are currently working with our partners in the field and evolving our products based on their feedback. Based on their response, we've begun designing a stripped-down version of the PXPSystem that requires less accessories and generates a smaller footprint, while still delivering a high-quality final product. Our applications are being developed with the needs of laboratories and physicians in mind, giving them the resources, they need to better serve their patients.
ThermoGenesis Holdings, Inc. (formerly Cesca Therapeutics Inc.), is a pioneer and market leader in the development and commercialization of automated cell processing technologies for the cell and gene therapy fields. We market a full suite of solutions for automated clinical biobanking, COVID-19 testing, point-of-care applications and large-scale cell processing and manufacturing with a special emphasis on the emerging CAR-T immunotherapy market. We are committed to making the world a healthier place by creating innovative solutions for those in need.
To see our full suiteof automated solutions,please visit the shop portion of our website today.
Disclaimer
Thermogenesis Holdings Inc. published this content on 08 December 2020 and is solely responsible for the information contained therein. Distributed by Public, unedited and unaltered, on 09 December 2020 18:24:01 UTC
Read the original post:
The Technology Behind Bone Marrow Cellular Processing: The PXP System - marketscreener.com
City of Hope Doctors Present Innovative Therapies to Better Treat Blood Cancers at American Society of Hematology Virtual Conference – BioSpace
By daniellenierenberg
Dec. 8, 2020 16:00 UTC
DUARTE, Calif.--(BUSINESS WIRE)-- City of Hope doctors participated in research presented at the American Society of Hematology (ASH) virtual meeting, Dec. 5 to 8, that are helping advance the treatment of blood cancers, including one study which demonstrated allogeneic stem cell transplants do have a survival benefit for older adults with myelodysplastic syndromes (MDS) compared with current standard of care.
The study is the largest and most definitive trial to demonstrate the benefits of an allogeneic stem cell transplantation for older adults with MDS, and is just one of numerous studies that City of Hope doctors help lead with the aim of finding more effective treatments of various blood cancers.
This years ASH conference truly showcases City of Hopes leadership in finding more effective treatments for blood cancers, said Stephen J. Forman, M.D., director of City of Hopes Hematologic Malignancies Research Institute. Whether its finding innovative treatments to make it possible for more older adults with cancer to receive stem cell transplants, or pursuing therapies that are more effective with fewer side effects, City of Hope doctors continue to lead innovative research in blood cancers and other hematological malignancies.
City of Hope doctors are leading novel clinical trials for patients with leukemia, lymphoma and other blood cancers.
Multicenter clinical trial led by City of Hope makes stem cell transplant possible for older adults with myelodysplastic syndromes
Allogeneic hematopoietic cell transplantation, or stem cell/bone marrow transplants, for blood cancers that have recurred or are difficult to treat can put the disease into long-term remission and provide a potential cure. The therapy establishes a new, disease-free blood and immune system by transplanting healthy blood stem cells from a donor into a cancer patient after destroying the patients unhealthy bone marrow.
City of Hope and other institutions started this therapy in 1976, primarily for younger patients with blood cancers. The therapy involves using high-dose chemotherapy and/or radiotherapy to make room for a person to receive new stem cells; serious side effects can also occur after transplant. Because of these and other considerations, for many years, older adults with blood cancers have not been considered for transplants.
City of Hope has been leading the way to make transplants possible for more older adults with various cancers.
A new study presented at ASH demonstrates transplants are now a possibility and beneficial for patients with myelodysplastic syndromes (MDS). Approximately 13,000 people in the United States each year are diagnosed with MDS, an umbrella term describing several blood disorders that begin in the bone marrow.
Co-led by City of Hopes Ryotaro Nakamura, M.D., director of City of Hopes Center for Stem Cell Transplantation, the study is the largest and first trial to demonstrate the benefits of an allogeneic stem cell transplantation for older adults with MDS as opposed to the standard of care currently provided to these patients. The multicenter trial for patients aged 50 to 75 with serious MDS compared how long transplant patients survived with those who didnt receive a transplant, as well as disease progression and quality of life. The transplant therapy used reduced-intensity conditioning, which delivers less chemotherapy and radiation before transplant and relies more on the anti-tumor effects of the therapy.
Between 2014 and 2018, the study enrolled 384 participants at 34 cancer centers nationwide. It included 260 patients who were able to find a donor for a transplant, as well as 124 patients who did not find a donor for a transplant.
After three years, nearly 48% of MDS patients who found a donor for transplant had survived compared with about 27% of those patients who didnt have a donor for transplant and received current hypomethylating therapy, a type of chemotherapy that is current standard of care for MDS. Leukemia-free survival which is relevant because myelodysplastic syndrome can develop into leukemia was also greater in transplant recipients after three years nearly 36% compared with about 21% for those who did not have a transplant.
There was a large and significant improvement in survival for patients who had a transplant, Nakamura said. The benefit margin in overall survival was over 20% (21.3%) for patients who had a transplant.
In addition, quality of life was the same for both transplant and nontransplant patients. There were no clinically significant differences when taking such measurements as physical and mental competency scores.
This is an extremely exciting study because it provides evidence that stem cell transplant is highly beneficial for older patients with serious MDS and will likely be practice-changing for this group, Nakamura said. Before, many doctors wouldnt even consider a transplant for this group of patients, but our study demonstrates that these patients should be evaluated for a transplant, which could potentially provide a cure for their disease.
The trial is part of Blood and Marrow Transplant Clinical Trials Network, which was established with support from the National Heart, Lung, and Blood Institute and National Cancer Institute, because of a critical need for multi-institutional clinical trials focused directly on improving survival for patients undergoing hematopoietic cell transplantation.
Updated results from a study of a potential new CAR T cell therapy, liso-cel, for relapsed/refractory chronic lymphocytic leukemia
Patients with relapsed or difficult-to-treat chronic lymphocytic leukemia/small lymphocytic leukemia continue to do well 24 months after receiving lisocabtagene maraleucel (liso-cel) chimeric antigen receptor (CAR) T cells, according to Tanya Siddiqi, M.D., director of City of Hopes Chronic Lymphocytic Leukemia (CLL) Program, which is part of the Toni Stephenson Lymphoma Center. She presented these findings during the 2020 ASH annual meeting virtual conference.
Overall, 23 and 22 patients were evaluated for safety and efficacy in this phase 1 trial, respectively. Their median age was 66 and they had received a median of four prior therapies; all patients had received prior ibrutinib, which is one of the standard of care drugs for CLL.
The overall response rate, or patients whose CLL diminished after liso-cel CAR T cell therapy, was 82%, and 45% of patients also had complete responses, or remissions.
After 15 months of treatment, 53% of patients maintained their responses to the therapy, and six patients continued to be in remission. After 18 months, 50% of patients maintained their response, and there were five remissions. All seven patients who completed the 24-month study maintained their response. Median progression-free survival, or the amount of time the cancer did not worsen during and after treatment, was 18 months.
As early as 30 days after receiving liso-cel, about 75% of 20 patients evaluated for the therapys efficacy had undetectable minimal residual disease (MRD, or no detectable traces of cancer) in the blood and 65% had undetectable MRD in the marrow.
These are remarkable results for a group of patients that prior to this CAR T treatment had no good treatment options if they had already progressed on novel targeted therapies like ibrutinib and venetoclax, Siddiqi said. Liso-cel is providing new hope for CLL patients, and the remissions are also long lasting with few serious side effects.
Because of its safety and effectiveness in clinical trials, liso-cel, which targets the CD19 protein on cancer cells, may soon receive approval from the Food and Drug Administration as a commercial therapy for relapsed or refractory B cell lymphoma. City of Hope is also taking part in the phase 2 trial of liso-cel in CLL patients.
Consolidation treatment with brentuximab vedotin/nivolumab after auto stem cell transplant for relapsed/refractory Hodgkin lymphoma patients leads to 18-month progression free-survival
Patients who have Hodgkin lymphoma that has not been cured by initial treatment will usually receive more chemotherapy and an autologous hematopoietic cell transplant. But even after a stem cell transplant, recurrence of the lymphoma is possible.
This multicenter phase 2 clinical trial, led by City of Hope, examined whether treating patients with brentuximab vedotin (BV), an antibody-based treatment that targets delivery of chemotherapy only to Hodgkin lymphoma cells, and nivolumab, which works by blocking the PD-1 immune checkpoint pathway that Hodgkin lymphoma hijacks to evade the immune system, was safe and effective as consolidation to prevent disease recurrence after transplant in patients with high-risk Hodgkin lymphoma.
Alex Herrera, M.D., assistant professor in City of Hope's Department of Hematology & Hematopoietic Cell Transplantation, discussed 19-month progression-free survival for trial participants, as well as overall survival, safety and response rates during ASH.
Fifty-nine patients were enrolled in the trial. Patients received the consolidation treatment starting a median of 54 days after transplant, and received a median of eight cycles of the therapy. The 19-month progression-free survival in patients was 92%, and overall survival in patients was 98%. Only three patients relapsed after receiving BV and nivolumab consolidation after transplant, and one patient passed away due to PCP pneumonia unrelated to the study treatment.
The most common sides effects related to the treatment were peripheral neuropathy (51%), neutropenia (42%), fatigue (37%) and diarrhea (29%).
Using brentuximab vedotin and nivolumab after transplant is a promising approach for preventing relapse of Hodgkin lymphoma after transplant that merits further study, Herrera said.
City of Hope doctors published research on innovative approaches against graft-versus-host-disease
Historically, a bone marrow/stem cell transplant is more likely to be effective if patients have a donor who is a 100% match, or as close to that as possible. Finding that perfect match is more difficult for African Americans, Latinos, Asian Americans and other ethnic groups as bone marrow donor registries are still trying to increase the number of non-white donors.
Transplant doctors are also looking for ways to make the transplant more effective if a perfect match cant be found; donors who are not a 100% or close match are referred to as mismatched unrelated. One major barrier to these transplants being effective is a condition known as graft-versus-host-disease (GVHD). The condition, which is more common in transplants involving mismatched donors, is caused by donated cells that recognize the recipient's cells as foreign and attack them, damaging the skin, eyes, lungs, liver and digestive tract.
In order to help prevent GVHD, therapies can be given to patients after transplant. A prospective clinical trial at City of Hope examined whether using cyclophosphamide after an infusion of stem cells could prevent GVHD.
Thirty-eight patients were enrolled in the trial, which is the first to examine the use of cyclophosphamide in transplants with a mismatched unrelated donor.
With a median follow-up period of 18 months, 87% of patients had survived, and the majority did not relapse or develop severe GVHD.
During the first 100 days post-transplant, acute GVHD incidence was around 50%; most cases were mild to moderate while severe GVHD was only 15%. A year after transplant, 52% of patients had some form of chronic GVHD, but only 3% had moderate or severe chronic GVHD.
The trial also examined toxicities, infections and immune system recovery after the transplant.
Our study showed that patients who received a transplant from a mismatched unrelated donor using post-transplant cyclophosphamide had a comparable outcome to what we see in matched donor transplants with few cases of serious GVHD cases, said Monzr Al Malki, M.D., associate clinical professor of City of Hopes Department of Hematology & Hematopoietic Cell Transplantation and director of unrelated donor BMT and haploidentical transplant programs. Our data support further development of this therapy in transplant patients who would otherwise have no suitable donors and limited treatment options.
City of Hopes Anthony Stein, M.D., also led a pilot trial that examined whether a new treatment approach may reduce the rate of GVHD in patients with acute myelogenous leukemia (AML) who have received an allogeneic hematopoietic cell transplant. Although a transplant can put AML into remission, GVHD remains the main serious complication after transplant, impacting a patients quality of life and increasing health care costs.
Eighteen patients between the ages of 18 and 60 enrolled in the trial. Each patient received a novel conditioning regimen of total marrow and lymphoid irradiation, which targets a patients marrow and lymph nodes while reducing radiation to other parts of the body, and cyclophosphamide, a therapy that suppresses the immune system. Tacrolimus was also provided to patients.
Radiation was delivered twice daily on the fourth day before transplant and on the day of transplant without chemotherapy. Cyclophosphamide was given to patients on the third and fourth day after transplant.
There were mild to moderate toxicities. Acute GVHD developed in two patients and only one patient developed the most serious GVHD. Five patients developed mild chronic GVHD. Nearly 60% of patients had not developed GVHD or the condition had not worsened after a year.
After a year, all patients had survived, and 83% had not relapsed. After two years, nearly 86% of patients had survived, and the relapse number remained the same.
The therapeutic approach did not interfere with the transplant process as all patients engrafted, or the donors cells started to produce bone marrow and immune cells.
This is welcome news for AML patients who receive an allogeneic transplant and are concerned about developing GVHD, said Stein, associate director of City of Hope's Gehr Family Center for Leukemia Research. Our study demonstrated that using this new combination of therapies is safe and feasible and does not interfere with the engraftment process.
In addition, after a year, patients in this trial were no longer taking immunosuppressive therapy and had an improved quality of life, Stein said. He added that because many of the patients didnt have GVHD, health care costs after a year were also lower than if patients required treatment for the condition.
City of Hope now plans to start a larger phase 2 trial using this treatment approach.
Bispecific antibodies continue to show promise against blood cancers
Mosunetuzumab is a promising new immunotherapy for the treatment of relapsed/refractory non-Hodgkin lymphoma (NHL) that recently received breakthrough therapy designation from the Food and Drug Administration. The designation is intended to expedite the development and review of drugs for serious or life-threatening diseases.
Elizabeth Budde, M.D., Ph.D., assistant professor in City of Hope's Department of Hematology & Hematopoietic Cell Transplantation, is leading clinical trials that are showing how well mosunetuzumab works against NHL. At this years ASH, one trial discussed is how the therapy is working for patients with follicular lymphoma.
Mosunetuzumab is a bispecific antibody targeting both CD3 (a protein found on the surface on T cells) and CD20 on the surface of B cells. The therapy redirects T cells to engage and eliminate malignant B cells.
Sixty-two patients, ranging in age from 27 to 85 years old, were enrolled in the trial for follicular lymphoma. They received intravenous doses of mosunetuzumab.
Sixty-eight percent of the patients responded to the therapy, and 50% had a complete response, or went into remission. Consistent complete response rates occurred even in patients with double refractory disease and patients who received prior CAR T cell therapy. Median duration of response was approximately 20 months, and media progression free survival was nearly one year.
Side effects were reported in 60 patients with serious adverse effects in 22 patients. The most frequently reported serious side effects were hypophosphatemia, an electrolyte disorder, and neutropenia, a condition caused by low numbers of white blood cells. Fourteen patients experienced cytokine release syndrome, but none required extensive treatment for it.
Neurological side effects included headache, insomnia and dizziness.
Patients in this trial had high response rates and their disease remained in control for a year, Budde said. This is remarkable because many patients were no longer responding to other therapies.
About City of Hope
City of Hope is an independent biomedical research and treatment center for cancer, diabetes and other life-threatening diseases. Founded in 1913, City of Hope is a leader in bone marrow transplantation and immunotherapy such as CAR T cell therapy. City of Hopes translational research and personalized treatment protocols advance care throughout the world. Human synthetic insulin and numerous breakthrough cancer drugs are based on technology developed at the institution. A National Cancer Institute-designated comprehensive cancer center and a founding member of the National Comprehensive Cancer Network, City of Hope has been ranked among the nations Best Hospitals in cancer by U.S. News & World Report for 14 consecutive years. Its main campus is located near Los Angeles, with additional locations throughout Southern California. For more information about City of Hope, follow us on Facebook, Twitter, YouTube or Instagram.
View source version on businesswire.com: https://www.businesswire.com/news/home/20201208005458/en/
See the original post:
City of Hope Doctors Present Innovative Therapies to Better Treat Blood Cancers at American Society of Hematology Virtual Conference - BioSpace
Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach – BioSpace
By daniellenierenberg
HAMBURG, GERMANY / ACCESSWIRE / December 9, 2020 / Evotec SE (Frankfurt Stock Exchange: EVT, MDAX/TecDAX, ISIN: DE0005664809) and the life science company Sartorius announced today that they have entered into a partnership with the recently established Curexsys GmbH, a Goettingen, Germany-based technology leader specialising in the emerging field of therapeutic exosomes.
Curexsys delivers a proprietary isolation technology for exosomes based on a traceless immune-affinity process. This process is different from commonly used antibody-based processes and enables the company to overcome a key hurdle in exosome preparation, i.e. remaining antibodies in the final preparation. Curexsys is founded by Herbert Stadler, a serial biotech entrepreneur, and Jens Gruber, a former group leader of Medical RNA Biology who is going to lead Curexsys as Chief Scientific Officer.
Under the terms of the agreement, Evotec and Curexsys will collaborate with the production of Human Mesenchymal Stem Cells ("MSCs"), which serve as a source for exosomes. These are small vesicles that are naturally released from a cell. They contain proteins, nucleic acids and metabolites, which carry information from secreting to receiving cells. Exosomes have immunomodulatory and anti-inflammatory effects, which makes them a promising novel approach for innovative regenerative therapies, as therapeutics in age-related conditions, but also for diagnostic purposes. Curexsys aims to develop targeted approaches for a variety of diseases, initially focusing on Sicca Syndrome, commonly known as "dry eye", an inflammatory condition affecting 14% to 17% of the adult population for whom there is currently no effective treatment available.
The collaboration combines Evotec's industry-leading induced Pluripotent Stem Cell ("iPSC") platform with Curexsys' proprietary technology to selectively isolate exosomes. Sartorius will support Curexsys to set up a GMP-compliant and scalable manufacturing platform.
Furthermore, Evotec and Sartorius have formed a consortium to jointly invest in Curexsys' 8.2 m seed financing round with Evotec acquiring an equity stake of approx. 37% in Curexsys and Sartorius of approx. 21%.
Dr Cord Dohrmann, Chief Scientific Officer of Evotec, commented: "Therapeutic exosomes hold significant promise for regenerative medicine and beyond. Steadily increasing evidence suggests that exosomes derived from stem cells can aid tissue repair and engineering vesicles could carry drugs to diseased tissues. These efforts have been held back by a dearth of standardised methods to isolate and study vesicles. Combining Evotec's industrial-grade iPSC and PanOmics platforms with Curexsys' proprietary exosome isolation technology and Sartorius' ability to translate these into a fully GMP-compliant process is a unique opportunity to build the leading exosome company in the industry."
Dr Ren Faber, Head of Sartorius' Bioprocess Solutions Division, said: "With our integrated portfolio of manufacturing solutions Sartorius is the 'go-to' partner for developers of such new modalities when it comes to implementing GMP-compliant, flexible production processes. We are very much looking forward to contributing our proven and scalable technology platform to Curexsys process and help them achieve their next milestones faster."
Dr Jens Gruber, Chief Scientific Officer of Curexsys, added: "We are very happy that we were able to form such a consortium with industry leaders in their field. This unique constellation gives Curexsys an optimal starting position to advance our technologies for highly specific isolation of exosomes and to rapidly approach therapeutic applications."
About Exosomes and CurexsysExosomes are extracellular, nanoscale vesicles that are actively secreted from cells to transfer information to neighbouring cells and distant tissues. Exosomes carry information of secreting to receiving cells utilising proteins, nucleic acids and metabolites. MSC-derived exosomes function as paracrine mediators that limit inflammation, reprogram immune cells, and activate endogenous repair pathways, recapitulating to a large extent the therapeutic effects of parental MSCs. Exosomes hold potential as diagnostics, as therapeutics and cosmeceuticals. More than 100 clinical trials involving exosomes are currently ongoing, demonstrating their broad therapeutic potential.
Curexsys is a Goettingen, Germany-based start-up company founded by molecular biologist Dr Jens Gruber and the biochemist and serial entrepreneur Dr Herbert Stadler. With a scalable and semi-automated proprietary system for traceless immune-affinity cell sorting, Curexsys aims to become the leading supplier for clinical grade exosomes in regenerative medicine and anti-aging therapies.
About Evotec and iPSCInduced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from adult cells. Pluripotent stem cells hold great promise in the field of regenerative medicine. Because they can propagate indefinitely, as well as give rise to every other cell type in the body (such as neurons, heart, pancreatic and liver cells), they represent a single source of cells that could be used to replace those lost to damage or disease.
Evotec has built an industrialised iPSC infrastructure that represents one of the largest and most sophisticated iPSC platforms in the industry. Evotec's iPSC platform has been developed over the last years with the goal to industrialise iPSC-based drug screening in terms of throughput, reproducibility and robustness to reach the highest industrial standards, and to use iPSC-based cells in cell therapy approaches via the Company's proprietary EVOcells platform.
ABOUT SARTORIUSThe Sartorius Group is a leading international partner of life science research and the biopharmaceutical industry. With innovative laboratory instruments and consumables, the Group's Lab Products & Services Division concentrates on serving the needs of laboratories performing research and quality control at pharma and biopharma companies and those of academic research institutes. The Bioprocess Solutions Division with its broad product portfolio focusing on single-use solutions helps customers to manufacture biotech medications and vaccines safely and efficiently. The Group has been annually growing by double digits on average and has been regularly expanding its portfolio by acquisitions of complementary technologies. In fiscal 2019, the company earned sales revenue of some 1.83 billion euros. At the end of 2019, more than 9,000 people were employed at the Group's approximately 60 manufacturing and sales sites, serving customers around the globe.
SARTORIUS CONTACTPetra KirchhoffHead of Corporate Communications and Investor Relations+49 (0)551.308.3684 petra.kirchhoff@sartorius.comwww.sartorius.com
ABOUT EVOTEC SEEvotec is a drug discovery alliance and development partnership company focused on rapidly progressing innovative product approaches with leading pharmaceutical and biotechnology companies, academics, patient advocacy groups and venture capitalists. We operate worldwide and our more than 3,400 employees provide the highest quality stand-alone and integrated drug discovery and development solutions. We cover all activities from target-to-clinic to meet the industry's need for innovation and efficiency in drug discovery and development (EVT Execute). The Company has established a unique position by assembling top-class scientific experts and integrating state-of-the-art technologies as well as substantial experience and expertise in key therapeutic areas including neuronal diseases, diabetes and complications of diabetes, pain and inflammation, oncology, infectious diseases, respiratory diseases, fibrosis, rare diseases and women's health. On this basis, Evotec has built a broad and deep pipeline of more than 100 co-owned product opportunities at clinical, pre-clinical and discovery stages (EVT Innovate). Evotec has established multiple long-term alliances with partners including Bayer, Boehringer Ingelheim, Bristol Myers Squibb, CHDI, Novartis, Novo Nordisk, Pfizer, Sanofi, Takeda, UCB and others. For additional information please go to http://www.evotec.com and follow us on Twitter @Evotec.
FORWARD LOOKING STATEMENTSInformation set forth in this press release contains forward-looking statements, which involve a number of risks and uncertainties. The forward-looking statements contained herein represent the judgement of Evotec as of the date of this press release. Such forward-looking statements are neither promises nor guarantees, but are subject to a variety of risks and uncertainties, many of which are beyond our control, and which could cause actual results to differ materially from those contemplated in these forward-looking statements. We expressly disclaim any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in our expectations or any change in events, conditions or circumstances on which any such statement is based.
SOURCE: Evotec AG via EQS Newswire
View source version on accesswire.com:https://www.accesswire.com/620112/Evotec-and-Sartorius-Partner-with-Start-Up-Curexsys-on-IPSC-Based-Therapeutic-Exosome-Approach
RA Capital backs Oxford spinout PepGen with a $45M Series A, seeking to treat Duchenne and other similar diseases – Endpoints News
By daniellenierenberg
Less than two months after Peter Kolchinsky and Raj Shah announced a new $461 million fund, the partners at RA Capital Management appear to have made another investment.
RA is headlining a $45 million Series A round for the Oxford, UK-based biotech PepGen, which focuses on severe neuromuscular diseases like Duchenne muscular dystrophy. The company will use the funding to advance a slate of what theyre calling cell-penetrating peptides combined with some of their proprietary conjugates into the clinic.
We believe PepGens PPMOs have enormous potential for the treatment of severe neuromuscular and cardiac disorders, RA venture partner Ramin Farzaneh-Far told Endpoints News in an email. The financing reflects our confidence, and that of our syndicate partners, in the technology.
Oxford Sciences Innovation, PepGens seed investor, also participated in the round, as well as the University of Oxford and CureDuchenne Ventures. Wednesdays cash will also allow PepGen to build out a corporate team in the new Boston headquarters and expand the R&D hub in the UK, Farzaneh-Far said.
The move from RA comes shortly after Shah told Endpoints News in October that the cash for its Nexus I life sciences fund, roughly $300 million, was churned through at a relatively rapid pace. In just 15 months of investment, RA had spent about 80% of their fund, which prompted the Nexus II raise.
Though the new fund built off largely the first, the cash pools remain separate. Farzaneh-Far declined to comment to which Nexus fund Wednesdays investment belonged.
PepGen itself was spun out of Oxford in 2018 in order to further develop the peptides at the heart of its research. The biotech says that the cell-penetrating nature of the peptides, when conjugated with phosphorodiamidate morpholino oligomers or PPMOs, could allow for enhanced delivery of oligonucleotides to key tissues, while also improving safety compared to other medicines.
Specifically, PepGen is hoping to leapfrog the exon-skipping approaches already available in order to restore dystrophin expression in DMD patients, CEO and co-founder Caroline Godfrey said in a statement.
One of the areas where PepGen says its programs are beneficial is in the cardiovascular comorbidities that often accompany DMD. Because the peptides can penetrate cells, the company says its drug candidates strongly distribute to cardiac tissue.
With the recent approvals of treatments that generate small increases in dystrophin in skeletal muscle, patients may be ambulating and living longer, but this in turn is expected to shift the burden of morbidity and mortality towards an epidemic of heart disease, which is not adequately addressed by current DMD therapies, Farzaneh-Far said in an earlier statement.
This past summer, the FDA green-lit the third DMD drug when Japanese developer NS Pharma gained an accelerated approval for viltolarsen. That followed a wild back-and-forth between regulators and Sarepta, who originally rejected their DMD candidate in August 2019 but reversed course later that year.
The agency, however, still doesnt have full efficacy data on any of the three approved DMD drugs, as the OKs were all based on the same disease biomarker.
See original here:
RA Capital backs Oxford spinout PepGen with a $45M Series A, seeking to treat Duchenne and other similar diseases - Endpoints News
Treatment with Investigational LentiGlobin Gene Therapy for Sickle Cell Disease (bb1111) Results in Complete Elimination of SCD-Related Severe…
By daniellenierenberg
CAMBRIDGE, Mass.--(BUSINESS WIRE)--bluebird bio, Inc. (Nasdaq: BLUE) announced that new data from Group C of its ongoing Phase 1/2 HGB-206 study of investigational LentiGlobin gene therapy (bb1111) for adult and adolescent patients with sickle cell disease (SCD) show a complete elimination of severe VOEs and VOEs between six and 24 months of follow-up. These data are being presented at the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition, taking place virtually from December 5-8, 2020.
Now with more than two years of data, we continue to observe promising results in our studies of LentiGlobin for SCD that further illustrate its potential to eliminate the symptoms and devastating complications of sickle cell disease. Consistently achieving the complete resolution of severe vaso-occlusive events (VOEs) and VOEs between Month 6 and Month 24 follow-up is unprecedented other than with allogeneic stem cell transplantation. Importantly, our data show the potential for LentiGlobin for SCD to produce fundamentally disease-modifying effects with sustained pancellular distribution of gene therapy-derived anti-sickling HbAT87Q and improvement of key markers of hemolysis that approach normal levels, said David Davidson, M.D., chief medical officer, bluebird bio. In addition to these clinical outcomes, for the first time with a gene therapy we now have patient-reported outcomes through the validated PROMIS-57 tool, showing reduction in pain intensity at 12 months after treatment with LentiGlobin for SCD. These results provide insight into the potential real-life impact LentiGlobin for SCD may offer patients.
SCD is a serious, progressive and debilitating genetic disease. In the U.S., the median age of death for someone with sickle cell disease is 43 46 years. SCD is caused by a mutation in the -globin gene that leads to the production of abnormal sickle hemoglobin (HbS). HbS causes red blood cells to become sickled and fragile, resulting in chronic hemolytic anemia, vasculopathy and unpredictable, painful VOEs.
In the HGB-206 study of LentiGlobin for SCD, VOEs are defined as episodes of acute pain with no medically determined cause other than a vaso-occlusion, lasting more than two hours and severe enough to require care at a medical facility. This includes acute episodes of pain, acute chest syndrome (ACS), acute hepatic sequestration and acute splenic sequestration. A severe VOE requires a 24-hour hospital stay or emergency room visit or at least two visits to a hospital or emergency room over a 72-hour period, with both visits requiring intravenous treatment.
LentiGlobin for SCD was designed to add functional copies of a modified form of the -globin gene (A-T87Q-globin gene) into a patients own hematopoietic (blood) stem cells (HSCs). Once patients have the A-T87Q-globin gene, their red blood cells can produce anti-sickling hemoglobin (HbAT87Q) that decreases the proportion of HbS, with the goal of reducing sickled red blood cells, hemolysis and other complications.
As a hematologist, I regularly see the debilitating effects of pain events caused by sickle cell disease. Pain has an overwhelmingly negative impact on many facets of my patients lives and can lead to prolonged hospitalizations, said presenting study author Alexis A. Thompson, M.D., professor of pediatrics at Northwestern University Feinberg School of Medicine and head of hematology at Ann and Robert H. Lurie Childrens Hospital of Chicago. The results observed with LentiGlobin gene therapy for SCD include the complete elimination of severe vaso-occlusive pain episodes, which is certainly clinically meaningful, but also for the first time, we have documented patients reporting that they are experiencing improved quality of life. This degree of early clinical benefit is extraordinarily rewarding to observe as a provider."
As of the data cut-off date of August 20, 2020, a total of 44 patients have been treated with LentiGlobin for SCD in the HGB-205 (n=3) and HGB-206 (n=41) clinical studies. The HGB-206 total includes: Groups A (n=7), B (n=2) and C (n=32).
HGB-206: Group C Updated Efficacy Results
The 32 patients treated with LentiGlobin for SCD gene therapy in Group C of HGB-206 had up to 30.9 months of follow-up (median of 13.0; min-max: 1.1 30.9 months).
In patients with six or more months of follow-up whose hemoglobin fractions were available (n=22), median levels of gene therapy-derived anti-sickling hemoglobin, HbAT87Q, were maintained with HbAT87Q contributing at least 40% of total hemoglobin at Month 6. At last visit reported, total hemoglobin ranged from 9.6 15.1 g/dL and HbAT87Q levels ranged from 2.7 8.9 g/dL. At Month 6, the production of HbAT87Q was associated with a reduction in the proportion of HbS in total hemoglobin; median HbS was 50% and remained less than 60% at all follow-up timepoints. All patients in Group C were able to stop regular blood transfusions by three months post-treatment and remain off transfusions as of the data cut-off.
Nineteen patients treated in Group C had a history of severe VOEs, defined as at least four severe VOEs in the 24 months prior to informed consent (annualized rate of severe VOE min-max: 2.0 10.5 events) and at least six months follow-up after treatment with LentiGlobin for SCD. There have been no reports of severe VOEs in these Group C patients following treatment with LentiGlobin for SCD. In addition, all 19 patients had a complete resolution of VOEs after Month 6.
Hemolysis Markers
In SCD, red blood cells become sickled and fragile, rupturing more easily than healthy red blood cells. The breakdown of red blood cells, called hemolysis, occurs normally in the body. However, in sickle cell disease, hemolysis happens too quickly due to the fragility of the red blood cells, which results in hemolytic anemia.
Patients treated with LentiGlobin for SCD in Group C demonstrated near-normal levels in key markers of hemolysis, which are indicators of the health of red blood cells. Lab results assessing these indicators were available for the majority of the 25 patients with 6 months of follow-up.
The medians for reticulocyte counts (n=23), lactate dehydrogenase (LDH) levels (n=21) and total bilirubin (n=24) continued to improve compared to screening values and stabilized by Month 6. In patients with Month 24 data (n=7), these values approached the upper limit of normal by Month 24. These results continue to suggest that treatment with LentiGlobin for SCD may improve biological markers to near-normal levels for SCD.
Pancellularity
As previously reported, assays were developed by bluebird bio to enable the detection of HbAT87Q and HbS protein in individual red blood cells, as well as to assess if HbAT87Q was pancellular, or present throughout all of a patients red blood cells. In 25 patients with at least six months of follow-up, on average, more than 80% of red blood cells contained HbAT87Q, suggesting near-complete pancellularity of HbAT87Q distribution and with pancellularity further increasing over time.
HGB-206: Improvements in Health-Related Quality of Life
Health-related quality of life (HRQoL) findings in Group C patients treated with LentiGlobin for SCD in the HGB-206 study were generated using the Patient Reported Outcomes Measurement Information System 57 (PROMIS-57), a validated instrument in SCD.
Data assessing pain intensity experienced by nine Group C patients were analyzed according to baseline pain intensity scores relative to the general population normative value: 2.6 on a scale of 0-10, where 10 equals the most intense pain. Data were assessed at baseline, Month 6 and Month 12.
Of the five patients with baseline scores worse than the population normative value average, four demonstrated clinically meaningful reductions in pain intensity at Month 12; the group had a mean score of 6.0 at baseline and a mean score of 2.4 at Month 12. Of the four patients with better than or near population normative values at baseline, two reported improvement and two remained stable with a mean score of 2.3 at baseline and 0.8 at Month 12.
HGB-206: Group C Safety Results
As of August 20, 2020, the safety data from Group C patients in HGB-206 remain generally consistent with the known side effects of hematopoietic stem cell collection and myeloablative single-agent busulfan conditioning, as well as underlying SCD. One non-serious, Grade 2 adverse event (AE) of febrile neutropenia was considered related to LentiGlobin for SCD. There were no serious AEs related to LentiGlobin for SCD.
One patient with significant baseline SCD-related and cardiopulmonary disease died 20 months post-treatment; the treating physician and an independent monitoring committee agreed his death was unlikely related to LentiGlobin for SCD and that SCD-related cardiac and pulmonary disease contributed.
LentiGlobin for SCD Data at ASH
The presentation of HGB-206 Group C results and patient reported outcomes research are now available on demand on the ASH conference website:
About HGB-206
HGB-206 is an ongoing, Phase 1/2 open-label study designed to evaluate the efficacy and safety of LentiGlobin gene therapy for sickle cell disease (SCD) that includes three treatment cohorts: Groups A (n=7), B (n=2) and C (n=32). A refined manufacturing process designed to increase vector copy number (VCN) and further protocol refinements made to improve engraftment potential of gene-modified stem cells were used for Group C. Group C patients also received LentiGlobin for SCD made from HSCs collected from peripheral blood after mobilization with plerixafor, rather than via bone marrow harvest, which was used in Groups A and B of HGB-206.
About LentiGlobin for SCD (bb1111)
LentiGlobin gene therapy for sickle cell disease (bb1111) is an investigational treatment being studied as a potential treatment for SCD. bluebird bios clinical development program for LentiGlobin for SCD includes the completed Phase 1/2 HGB-205 study, the ongoing Phase 1/2 HGB-206 study, and the ongoing Phase 3 HGB-210 study.
The U.S. Food and Drug Administration granted orphan drug designation, fast track designation, regenerative medicine advanced therapy (RMAT) designation and rare pediatric disease designation for LentiGlobin for SCD.
LentiGlobin for SCD received orphan medicinal product designation from the European Commission for the treatment of SCD, and Priority Medicines (PRIME) eligibility by the European Medicines Agency (EMA) in September 2020.
bluebird bio is conducting a long-term safety and efficacy follow-up study (LTF-307) for people who have participated in bluebird bio-sponsored clinical studies of LentiGlobin for SCD. For more information visit: https://www.bluebirdbio.com/our-science/clinical-trials or clinicaltrials.gov and use identifier NCT04628585 for LTF-307.
LentiGlobin for SCD is investigational and has not been approved in any geography.
About bluebird bio, Inc.
bluebird bio is pioneering gene therapy with purpose. From our Cambridge, Mass., headquarters, were developing gene and cell therapies for severe genetic diseases and cancer, with the goal that people facing potentially fatal conditions with limited treatment options can live their lives fully. Beyond our labs, were working to positively disrupt the healthcare system to create access, transparency and education so that gene therapy can become available to all those who can benefit.
bluebird bio is a human company powered by human stories. Were putting our care and expertise to work across a spectrum of disorders: cerebral adrenoleukodystrophy, sickle cell disease, -thalassemia and multiple myeloma, using gene and cell therapy technologies including gene addition, and (megaTAL-enabled) gene editing.
bluebird bio has additional nests in Seattle, Wash.; Durham, N.C.; and Zug, Switzerland. For more information, visit bluebirdbio.com.
Follow bluebird bio on social media: @bluebirdbio, LinkedIn, Instagram and YouTube.
LentiGlobin and bluebird bio are trademarks of bluebird bio, Inc.
Forward-Looking Statements
This release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any forward-looking statements are based on managements current expectations of future events and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: regarding the potential for LentiGlobin for Sickle Cell Disease to treat SCD; the risk that the efficacy and safety results from our prior and ongoing clinical trials will not continue or be repeated in our ongoing or planned clinical trials; the risk that the current or planned clinical trials of our product candidates will be insufficient to support regulatory submissions or marketing approval in the United States and European Union; the risk that regulatory authorities will require additional information regarding our product candidates, resulting in delay to our anticipated timelines for regulatory submissions, including our applications for marketing approval; and the risk that any one or more of our product candidates, will not be successfully developed, approved or commercialized. For a discussion of other risks and uncertainties, and other important factors, any of which could cause our actual results to differ from those contained in the forward-looking statements, see the section entitled Risk Factors in our most recent Form 10-Q, as well as discussions of potential risks, uncertainties, and other important factors in our subsequent filings with the Securities and Exchange Commission. All information in this press release is as of the date of the release, and bluebird bio undertakes no duty to update this information unless required by law.
Could Gene Therapy Be Used To Mimic the Positive Effects of Exercise? – Technology Networks
By daniellenierenberg
It sounds too good to be true - and it is. But Jose Bianco Moreira and the CERG research group at the Norwegian University of Science and Technology (NTNU) are convinced that some of the positive health effects of physical exercise can be achieved using gene therapy and medication.
"We're not talking about healthy people and everyone who can exercise. They still have to train, of course," says Moreira. He and his colleagues at NTNU's Department of Circulation and Medical Imaging are studying the effect of exercise on our cells.
"But some people can't train, or only in a limited way. This could include individuals who've been in accidents, who are in wheelchairs, or who have diseases that prevent the possibility of physical expression. We want to create hope for these folks."
"A small group of healthy people out there also obtain very little effect from physical exercise - so-called low responders - and would benefit from a method that worked at the cellular level," says Moreira.
A lot of research confirms the health benefits of physical exercise, but we know far less about what happens in the cells that provides the positive effects.
"International research in this field is brand new. We've barely scratched the surface," says the researcher.
"We think increasing our knowledge about what happens at the cellular level will be important for discovering medications and treatments for heart disease. My group studies genes, proteins and mitochondria that produce energy and are key for chemical processes in the cells."
Moreira believes that gene therapy is the most effective method for reproducing the health benefits we normally get through physical exercise.
A medicine that uses gene therapy is already in use for spinal muscle atrophy, a serious disease that leads to muscle wasting. The drug uses a harmless virus to deliver a copy that replaces the damaged motor neuron network in patients.
This form of therapy can inhibit or enhance the expression of a gene. This is a very expensive medicine and has not been tried for heart disease, for example.
Moreira believes CRISPR will be the future go-to gene therapy method. He believes this method of editing the genes will revolutionize a lot of disease treatments.
"CRISPR is easier to use, faster and cheaper than today's gene therapy, which only attenuates or enhances the expression of a gene. CRISPR's potential is almost limitless. It can alter the gene itself. The parts of the gene that don't work properly are replaced with well-functioning parts."
Experiments on rats and mice have shown that the method works. Experiments have also been performed on human cells in the laboratory to confirm CRISPR's effectiveness, but it has not yet been tested on humans.
"CRISPR still has to be tested in large clinical studies. I'd be optimistic if I say gene editing will come into regular use in 10-15 years," says Moreira.
Moreira's research group has used CRISPR in its research, but the results are not yet ready for publication.
"We believe gene therapy is the most powerful method because patients don't have to take a pill every day. Usually, gene therapy changes the gene forever, perhaps with an injection or two. The challenge is to find the right gene that needs change, and an effective method to repair it," he says.
NTNU researchers are focusing on the heart. They have identified a protein that heart-diseased rats are deficit in, but which increases when the rats go through training.
"By increasing the amount of this protein through gene therapy, we've managed to strengthen the muscle cells and have replicated some of the positive effects of physical exercise," says Moreira.
Medications are another possible method of mimicking the effects of exercise. Some existing medicines might even be able to recreate some of the positive effect on the heart.
"The research now has powerful technology platforms to find possible other uses for medicines we already have. One problem, of course, is that medicine is chemistry that affects the whole body, not just the organ you want to help. Something that's good for the heart could be detrimental for the liver, for example. Compared to gene therapy, though, the potential for medications is much more limited," Moreira says.
When the research group at NTNU started their study, they had no idea which genes were affected by exercise. They performed experiments where rats with heart defects underwent training. Afterwards, the hearts were removed and examined. Then these hearts were compared with those from untrained rats with heart disease. Afterwards, the hearts of the trained and untrained rats with heart disease were compared to healthy rat hearts.
"We observed that genes were altered in the diseased hearts, but discovered that some of them were repaired in the rats that had trained. This way, we find genes that we can target. Through our measurements, we can find out exactly what training changes at the cellular level," says Moreira.
Reference: Moreira, J.B.N., Wohlwend, M. & Wislff, U. Exercise and cardiac health: physiological and molecular insights. Nat Metab. 2020;2,829839. doi:10.1038/s42255-020-0262-1
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.
Read more:
Could Gene Therapy Be Used To Mimic the Positive Effects of Exercise? - Technology Networks
Tissue chips and organoids: SpaceX is launching lots of science to space for NASA on Sunday – Space.com
By daniellenierenberg
Editor's note: SpaceX has successfully launched the Dragon CRS-21 cargo mission for NASA and landed its Falcon 9 rocket. Read our launch wrap story here.
CAPE CANAVERAL, Fla. The next SpaceX resupply launch to the International Space Station, scheduled for Sunday (Dec. 6), will carry a host of science gear to the astronauts living and working on the orbiting laboratory.
The robotic flight, called CRS-21, marks the 21st mission for SpaceX under its commercial cargo resupply services contract with NASA. Launch is scheduled for 11:17 a.m. EST (1617 GMT) on Sunday from NASA's Kennedy Space Center in Florida, and you can watch the action live here at Space.com, courtesy of NASA. You can also watch directly via NASA TV or SpaceX.
SpaceX initially aimed to launch the CRS-21 cargo mission for NASA on Saturday (Dec. 5), but foul weather prompted a delay. "Due to poor weather in the recovery area for todays attempt, now targeting Sunday, December 6 at 11:17 a.m. EST for launch of CRS-21," SpaceX wrote in an update early Saturday morning. SpaceX plans to recover the mission's Falcon 9 booster for later reuse.
The upgraded Dragon cargo capsule that will launch atop a veteran SpaceX Falcon 9 rocket is filled with 6,400 lbs. (2,903 kilograms) of supplies and science investigations. The research gear will support a variety of experiments in the life sciences, regenerative medicine and many other fields.
Related: How SpaceX's Dragon space capsule works (infographic)
Saturday's flight will mark the first time SpaceXs upgraded Dragon spacecraft will carry cargo. (Up until now, the advanced Dragon variant has solely carried astronauts.) The vehicle is a modified version of the Crew Dragon spacecraft that lacks the systems necessary for human missions, such as seats, cockpit controls and a life-support system, as well as the SuperDraco thrusters that provide a special emergency escape system that's only used if a problem occurs during launch.
This new Dragon allows more science to ride skyward. Costello explained that the interior of Dragon can now support more powered payloads, which is a huge benefit for the life sciences as it allows for more cold storage and other types of investigations. It also allows for the crew to store some of the powered payloads onboard Dragon while the craft is on orbit.
Several of the payloads on Dragon feature a unique piece of hardware called a tissue chip. Human cells and tissue grow on the chip scaffold, creating a 3D structure in microgravity that researchers can observe to learn more about how fundamental processes work in space, including aging and bone and muscle loss.
One such investigation, run by the University of Florida, will study how muscles atrophy in space. Sixteen samples of skeletal muscle will be sent to the space station, where the bundles of muscle tissue will be observed in microgravity. Half of the muscle samples were donated by younger, active individuals while the other half are from older, more sedentary volunteers.
Half of the samples in each group will be subjected to electric stimuli to see how the muscles contract in the absence of gravity. Researchers will use this experiment as a starting point for future research that will eventually test therapies to see if muscle degradation can be prevented.
Another payload will look at brain organoids created using stem cell technology. This investigation seeks to understand how microgravity affects the survival and function of brain cells, which could lead to advances in treatments for autism and Alzheimers disease, researchers said.
"Space travel mimics the effects of aging we see on Earth, only in a much shorter time span, making it easier to examine the processes that are taking place," Bill McLamb, chief scientist at Kentucky-based company Space Tango, told Space.com. "Its hard to study human brains in space, which is why these types of experiments are so beneficial."
The investigation will take stem cells and convert them into brain cells that will form three-dimensional structures called brain organoids. Stored in a special container called a well, these types of mini organs are able to mimic both the cellular variety and the function of the developing human brain.
This type of research could help NASA and its partners prepare for crewed missions to distant destinations such as Mars, which will expose astronauts to the rigors of space for long stretches, and also help combat degenerative brain disease here on Earth, researchers said.
A team of researchers from Stanford University will be looking at how engineered heart tissue behaves in microgravity. The Cardinal Heart investigation will send tissue samples that consist of cardiomyocytes, endothelial cells and cardiac fibroblasts to study how changes in gravity affect the heart at the cellular level.
Researchers know that microgravity causes changes in the workload and shape of the human heart, but it's still unknown if these changes could become permanent if a person lived for long periods of time in space.
The project's tissue bundles will be affixed to tissue chips. The experiment's results could help identify new treatments and support development of screening measures to predict cardiovascular risk prior to spaceflight, team members said. Follow-on investigations will include therapies that could treat heart disease.
The HemoCue investigation will look at how white blood cells react in space. Here on Earth, doctors use the total number of white blood cells, as well as the various types observed, to diagnose illness. HemoCue will debut a new type of technology that will allow users to do white blood cell counts on orbit.
The goal is to test how well the device works in microgravity. If effective, it could be a valuable tool in an astronauts medical kit, researchers said.
Another payload called Micro-14 looks at how yeast, in particular Candida albicans, responds to the space environment. C. albicans is an opportunistic pathogen, capable of causing severe and even life-threatening illness in immunocompromised hosts. Micro-14 will evaluate how the yeast responds to microgravity, looking for changes at the cellular and molecular levels.
Since astronauts can become immunocompromised during spaceflight, researchers are especially interested in how best to predict the health risks from this organism. Previous research has shown that many microbes exhibit increased virulence in a microgravity environment, but more research is needed on this particular pathogen.
NASAs Jet Propulsion Laboratory in Southern California is spearheading a project that will take swab samples from various locations within the station to look at the relationship between bacteria and their metabolites (chemicals produced by bacterial growth). The project will help researchers better understand the distribution of microbes and metabolites within closed environments and how this distribution affects human health. The research could aid administrators of hospitals and nursing homes, where residents are often immunocompromised.
Related: SpaceX rocket launches for record 7th time, nails landing at sea
Sunday's launch marks the 101st flight overall for SpaceXs workhorse two-stage Falcon 9 rocket. The liftoff is expected to feature a veteran Falcon 9 first stage, designated B1058, that already has three flights under its belt. This frequent flyer previously launched SpaceX's Demo-2 mission, which sent two NASA astronauts to the space station this past summer, well as a communications satellite for the South Korean military and a batch of the companys own Starlink satellites.
Flying previously flown boosters has become commonplace for SpaceX, as the company continues to prove the Falcon 9's reliability. In fact, CRS-21 marks the 24th flight of 2020 for SpaceX, with the majority of those missions having flown on veteran rockets rather than brand-new ones.
To date, SpaceX has successfully landed its first-stage boosters 67 times. Now that the company has two fully operational drone-ship landing platforms "Of Course I Still Love You" and "Just Read the Instructions" in Florida, its able to launch (and land) more rockets. "Of Course I Still Love You" is already at the recovery zone waiting for its turn to catch B1058 when it returns to Earth shortly after liftoff.
Weather was a concern for SpaceX going into the weekend. Forecasts predicted iffy weather for a Saturday launch attempt, with the 45th Weather Squadron predicting a 50% chance of favorable conditions for liftoff. The primary concerns were thick clouds and cumulus clouds. The backup attempt on Sunday looks much better, with the forecast improving to 70% favorable on that day.
If all goes as planned, the Dragon will arrive at the station and dock at the Harmony modules space-facing port just over 24 hours after it blasts off.
Editor's note: This story was updated at 8:22 a.m. EST to include SpaceX's launch delay to Sunday, Dec. 6, due to bad weather.
Follow Amy Thompson on Twitter @astrogingersnap. Follow us on Twitter @Spacedotcom or Facebook.
See the article here:
Tissue chips and organoids: SpaceX is launching lots of science to space for NASA on Sunday - Space.com
Autologous Stem Cell Based Therapies Market Research Report 2020: Market Competition Trend and Price by Manufacturers till 2026 – Factory Maintenance
By daniellenierenberg
The Autologous Stem Cell Based Therapies Market was valued at US$ XX million in 2019 and is projected to reach US$ XX million by 2025, at a CAGR of XX percentage during the forecast period. In this study, 2019 has been considered as the base and 2020 to 2025 as the forecast period to estimate the market size for Autologous Stem Cell Based Therapies Market
Deep analysis about market status (2016-2019), competition pattern, advantages and disadvantages of products, industry development trends (2019-2025), regional industrial layout characteristics and macroeconomic policies, industrial policy has also been included. From raw materials to downstream buyers of this industry have been analysed scientifically. This report will help you to establish comprehensive overview of the Autologous Stem Cell Based Therapies Market
Get a Sample Copy of the Report at: https://i2iresearch.com/report/global-autologous-stem-cell-based-therapies-market-2020-market-size-share-growth-trends-forecast-2025/
The Autologous Stem Cell Based Therapies Market is analysed based on product types, major applications and key players
Key product type:Embryonic Stem CellResident Cardiac Stem CellsUmbilical Cord Blood Stem Cells
Key applications:Neurodegenerative DisordersAutoimmune DiseasesCardiovascular Diseases
Key players or companies covered are:RegeneusMesoblastPluristem Therapeutics IncU.S. STEM CELL, INC.Brainstorm Cell TherapeuticsTigenixMed cell Europe
The report provides analysis & data at a regional level (North America, Europe, Asia Pacific, Middle East & Africa , Rest of the world) & Country level (13 key countries The U.S, Canada, Germany, France, UK, Italy, China, Japan, India, Middle East, Africa, South America)
Inquire or share your questions, if any: https://i2iresearch.com/report/global-autologous-stem-cell-based-therapies-market-2020-market-size-share-growth-trends-forecast-2025/
Key questions answered in the report:1. What is the current size of the Autologous Stem Cell Based Therapies Market, at a global, regional & country level?2. How is the market segmented, who are the key end user segments?3. What are the key drivers, challenges & trends that is likely to impact businesses in the Autologous Stem Cell Based Therapies Market?4. What is the likely market forecast & how will be Autologous Stem Cell Based Therapies Market impacted?5. What is the competitive landscape, who are the key players?6. What are some of the recent M&A, PE / VC deals that have happened in the Autologous Stem Cell Based Therapies Market?
The report also analysis the impact of COVID 19 based on a scenario-based modelling. This provides a clear view of how has COVID impacted the growth cycle & when is the likely recovery of the industry is expected to pre-covid levels.
Contact us:i2iResearch info to intelligenceLocational Office: *India, *United State, *GermanyEmail: [emailprotected]Toll-free: +1-800-419-8865 | Phone: +91 98801 53667
Five things that happen to your body in space – RocketSTEM
By daniellenierenberg
ESA astronaut Tim Peake during his 4 hour 43 minute spacewalk to replace a failed power regulator and install cabling on the ISS. Credit: ESA/NASA
Tim Peake is the first official British astronaut to walk in space. The former Army Air Corps officer has spent six months in space, after blasting off on a Russian Soyuz rocket to the International Space Station on December 15, 2016, but the spacewalk doubtless was his most gruelling test.
But what exactly did he go through, during his remarkable spell aboard the space station? Space travel leads to many changes in the human body, many of which have been investigated since Yuri Gargarin made the first manned spaceflight in 1961 and an extensive team provides guidance and preparation for astronauts before, during and after any spaceflight. But if youre planning an out-of-this-world trip, here are some of the things to expect.
The skeletal muscle system is the largest organ system of the human body. Hundreds of muscles are used for maintaining posture sitting, standing and performing a wide range of movements, with different loading conditions imposed by the forces of gravity on Earth.
Skeletal muscles have the ability to adapt to different purposes and the different loads placed on them, a quality known as plasticity. But like inactivity, space flight leads to loss of both skeletal muscle mass (atrophy) and strength.
During long spaceflights on the ISS, research found that 37 crew members experienced a decrease in mean isokinetic strength of between 8% and 17%. Men and women were similarly affected. In fact, this degradation occurs even when astronauts follow a strict exercise regime, meaning that it has profound implications for humans embarking on even longer journeys, such as to Mars. Data suggests that around 30% of muscle strength is lost after spending 110 to 237 days in microgravity.
Many parts of the cardiovascular system (including the heart) are influenced by gravity. On Earth, for example, the veins in our legs work against gravity to get blood back to the heart. Without gravity, however, the heart and blood vessels change and the longer the flight, the more severe the changes.
The size and shape of the heart, for example, changes with microgravity and the right and left ventricles decrease in mass. This may be because of a decrease in fluid volume (blood) and changes in myocardial mass. A human heart rate (number of beats per minute) is lower in space than on Earth, too. In fact, it has been found that the heart rate of individuals standing upright on the ISS is similar to their rate while lying down pre-flight on Earth. Blood pressure is also lower in space than on Earth.
The cardiac output of the heart the amount of blood pumped out of the heart each minute decreases in space, too. Without gravity, there is also a redistribution of the blood more blood stays in the legs and less blood is returned to the heart, which leads to less blood being pumped out of the heart. Muscle atrophy also contributes to reduced blood flow to the lower limbs.
This reduced blood flow to the muscles, combined with the loss of muscle mass, impacts aerobic capacity (below).
Aerobic capacity is a measure of aerobic fitness the maximum amount of oxygen that the body can use during exercise. This can be measured by VO2max and VO2peak tests. Changes to both the muscles and cardiovascular system caused by spaceflight contribute to reduced aerobic fitness.
After nine to 14 days of spaceflight, for example, research shows that aerobic capacity (VO2peak) is reduced by 20%-25%. But the trends are interesting. During longer spells in space say, five to six months after the initial reduction in aerobic capacity, the body appears to compensate and the numbers begin improving although they never return to pre-trip levels.
On Earth, the effects of gravity and mechanical loading are needed to maintain our bones. In space, this doesnt happen. Bone normally undergoes continual remodelling and two types of cells are involved: osteoblasts (these make and regulate the bone matrix) and osteoclasts (these absorb bone matrix). During spaceflight, however, the balance of these two processes is altered which leads to reduced bone mineral density. Research shows that a 3.5% loss of bone occurs after 16 to 28 weeks of spaceflight, 97% of which is in weight-bearing bones, such as the pelvis and legs.
The immune system, which protects the body against disease, is also affected. There are a number of variables which contribute to this, including radiation, microgravity, stress, isolation and alterations in the circadian rhythm, the 24-hour cycle of sleep and wakefulness that we follow on Earth. Also, while in space, astronauts will interact with microbes from themselves, other crew members, their food, their environment and these can alter their immune response, which may lead to challenging situations and increase the potential for infections among the crew as well as contamination of extraterrestrial sites.
This article is republished from The Conversation under a Creative Commons license.
Go here to see the original:
Five things that happen to your body in space - RocketSTEM
Multiple sclerosis iPS-derived oligodendroglia conserve their properties to functionally interact with axons and glia in vivo – Science Advances
By daniellenierenberg
Abstract
Remyelination failure in multiple sclerosis (MS) is associated with a migration/differentiation block of oligodendroglia. The reason for this block is highly debated. It could result from disease-related extrinsic or intrinsic regulators in oligodendroglial biology. To avoid confounding immune-mediated extrinsic effect, we used an immune-deficient mouse model to compare induced pluripotent stem cellderived oligodendroglia from MS and healthy donors following engraftment in the developing CNS. We show that the MS-progeny behaves and differentiates into oligodendrocytes to the same extent as controls. They generate equal amounts of myelin, with bona fide nodes of Ranvier, and promote equal restoration of their host slow conduction. MS-progeny expressed oligodendrocyte- and astrocyte-specific connexins and established functional connections with donor and host glia. Thus, MS oligodendroglia, regardless of major immune manipulators, are intrinsically capable of myelination and making functional axo-glia/glia-glia connections, reinforcing the view that the MS oligodendrocyte differentiation block is not from major intrinsic oligodendroglial deficits.
Remyelination occurs in multiple sclerosis (MS) lesions but its capacity decreases over time (13). Failed remyelination in MS leads to altered conduction followed by axon degeneration, which, in the long run, results in severe and permanent neurological deficits (4). MS lesions may or may not harbor immature oligodendroglia (oligodendrocyte progenitors and pre-oligodendrocytes), with these cells failing to differentiate into myelin-forming cells, suggesting that oligodendrocyte differentiation is blocked (57). So far, the mechanism underlying this block is poorly understood. It may result from adverse environmental conditions or the failed capacity of oligodendrocyte progenitors/pre-oligodendrocytes to migrate or mature efficiently into myelin-forming cells or even a combination of these conditions, all of which may worsen with aging. It has been shown that increasing remyelination either through manipulating the endogenous pool (8, 9) or by grafting competent myelin forming oligodendroglia (10, 11) or both (12) can restore the lost axonal functions, improve the clinical scores, and protect from subsequent axonal degeneration in experimental (13, 14) or clinical (3) settings.
There are multiple ways to investigate the oligodendroglial lineage in disease. Cells can be studied in postmortem tissue sections or purified from postmortem adult human brain for in vitro and transcriptomic/proteomic analysis. In this respect, in vitro experiments highlighted the heterogeneity of the adult human oligodendrocyte progenitor population in terms of antigen and microRNA expression, suggesting that remyelination in the adult human brain involves multiple progenitor populations (15). Moreover, single-cell transcriptomics characterized in detail the heterogeneity of human oligodendroglial cells, emphasizing changes in MS, with some subpopulations expressing disease-specific markers that could play a role in disease onset and/or aggravation (16, 17).
Yet, this MS signature could preexist or be acquired early at disease onset. Moreover, most of these MS postmortem analyses or experimental models cannot overlook the involvement of extrinsic factors such as immune factors that might add more complexity toward understanding the behavior of MS oligodenroglial cells.
Little is known about the biology of the MS oligodendroglial lineage, primarily due to the impossibility, for ethical reasons, to harvest oligodendroglial populations from patients and study the diseased cells and their matching controls in vitro or in vivo after cell transplantation. While cell-cell interactions and cell heterogeneity in diseased conditions generate more complexity when comparing control and pathological samples, the induced pluripotent stem cell (iPSC) technology provides a unique opportunity to study homogeneous populations of human oligodendroglial cells and gain further insights into monogenetic diseases and multifactorial diseases, such as MS. The iPSC technology has unraveled differences in oligodendroglia biology, in Huntingtons disease (18), and schizophrenia (19, 20), indicating that these cells can contribute autonomously to multifactorial diseases outcome. However, so far, little is known about the potential contribution of MS oligodendroglia to failed remyelination. While senescence affects iPSCneural precursor cells (NPCs) derived from patients with primary progressive MS (PPMS) (21), only few preliminary reports alluded to the fate of PPMS (22, 23) or relapsing-remitting (RRMS) (24) iPSC-derived oligodendroglia after experimental transplantation and did not study per se their capacity to differentiate into functional myelin-forming cells. We exploited a robust approach (25) to generate large quantities of iPSCs-derived O4+ oligodendroglial cells from skin fibroblasts (hiOLs) of three RRMS and three healthy subjects, including two monozygous twin pairs discordant for the disease. As a critical feature of the pluripotent-derived cells should be their ability to fully integrate and function in vivo, we compared the capacity of healthy and MS-hiOL derivatives to integrate and restore axo-glial and glial-glial functional interactions after engraftment in the developing dysmyelinated murine central nervous system (CNS). Our data show that in noninflammatory conditions, the intrinsic properties of iPSC-oligodendroglial cells to differentiate, myelinate, and establish functional cell-cell interactions in vivo are not altered in MS, making them candidates of interest for personalized drug/cell therapies as pluripotency maintains MS oligodendroglial cells in a genuine nonpathological state.
Fibroblasts were isolated from three control and three patients with MS and reprogrammed into iPSC. Pluripotent cells were differentiated into NPCs and further into O4+ hiOLs for 12 days in vitro under glial differentiation medium (GDM) conditions as previously described (25). hiOL cells were selected using flow cytometry for O4 before transplantation. Because our aim was to study the intrinsic properties of MS cells, we chose to engraft O4+ hiOLs in the purely dysmyelinating Shi/Shi:Rag2/ mouse model to avoid confounding immune-mediated extrinsic effects.
We first questioned whether MS-hiOLs differed from control-hiOLs wild type (WT) in their capacity to survive and proliferate in vivo. To this aim, we grafted MS- and control-hiOLs in the forebrain of neonatal Shi/Shi:Rag2/ mice. MS cells engrafted (one injection per hemisphere) in the rostral forebrain, spread primarily through white matter, including the corpus callosum and fimbria, as previously observed using control human fetal (11, 26, 27) and iPSC (25, 28) progenitors. With time, cells also spread rostrally to the olfactory bulb and caudally to the brain stem and cerebellum (fig. S1). Examining engrafted brains at 8, 12, and 16 weeks postgraft (wpg), we found that MS-hiOLs expressing the human nuclear marker STEM101 and the oligodendroglial-specific transcription factor OLIG2 maintained a slow proliferation rate at all times (5 to 19% of STEM+ cells), with no difference in Ki67+ MS-hiOLs compared to control (Fig. 1, A and C). Moreover, immunostaining for cleaved Caspase3 at 8 wpg indicated that MS cells survived as well as control-hiOLs (Fig. 1, B and D). Evaluation of the cell density of human cells based on STEM positivity at each stage revealed no significant difference between grafted MS-hiOLs and control cells (fig. S2).
(A and C) Immunodetection of the human nuclei marker STEM101 (red) combined with OLIG2 (green) and the proliferation marker Ki67 (white) shows that a moderate proportion of MS-hiOLs sustains proliferation (empty arrowheads in the insets) following transplantation in their host developing brain, with no significant difference in the rate of proliferation between MS- and control-hiOLs over time. (B and D) Immunodetection of the apoptotic marker Caspase3 (green) indicates that MS-hiOLs survive as well as control-hiOLs 8 wpg. Two-way analysis of variance (ANOVA) followed by Tukeys multiple comparison or Mann-Whitney t tests were used for the statistical analysis (n = 3 to 4 mice per group). Error bars represent SEMs. H, Hoechst dye. Scale bars, 100 m.
Because MS-hiOLs and control cells proliferated and survived to the same extent, we next questioned whether their differentiation potential into mature oligodendrocytes could be affected. We used the human nuclei marker STEM101 to detect all human cells in combination with SOX10, a general marker for the oligodendroglial lineage, and CC1 as a marker of differentiated oligodendrocytes. We found that the number of MS oligodendroglial cells (SOX10+) increased slightly but significantly with time, most likely resulting from sustained proliferation (Fig. 2, A and B). Moreover, they timely differentiated into mature CC1+ oligodendrocytes with a fourfold increase at 12 wpg and a fivefold increase at 16 wpg when compared to 8 wpg and with no difference with control-hiOLs (Fig. 2, B and C).
(A) Combined immunodetection of human nuclei marker STEM101 (red) with CC1 (green) and SOX10 (white) for control (top) and MS-hiOLs (bottom) at 8, 12, and 16 wpg. (B and C) Quantification of SOX10+/STEM+ cells (B) and CC1+ SOX10+ over STEM+ cells (C). While the percentage of human oligodendroglial cells increased only slightly with time, the percentage of mature oligodendrocytes was significantly time regulated for both MS- and control-hiOLs. Two-way ANOVA followed by Tukeys multiple comparison tests were used for the statistical analysis of these experiments (n = 3 to 4 mice per group). Error bars represent SEMs. *P < 0.05 and ****P < 0.0001. Scale bar, 100 m.
The absence of abnormal MS-hiOL differentiation did not exclude a potential defect in myelination potential. We further investigated the capacity of MS-hiOLs to differentiate into myelin-forming cells. We focused our analysis on the core of the corpus callosum and fimbria. MS-hiOLs, identified by the human nuclear and cytoplasmic markers (STEM101 and STEM121), evolved from a bipolar to multibranched phenotype (Fig. 3A and fig. S3: compare 4 wpg to 8 and 12 wpg) and differentiated progressively into myelin basic proteinpositive (MBP+) cells associated, or not, with T-shaped MBP+ myelin-like profiles of increasing complexity (Fig. 3A and figs. S3 and S4B). Myelin-like profiles clearly overlapped with NF200+ axons (fig. S4A) and formed functional nodes of Ranvier expressing ankyrin G and flanked by paranodes enriched for CASPR (fig. S4B) or neurofascin (fig. S4C), as previously observed with control-hiOLs (25).
(A) Combined detection of human nuclei (STEM101) and human cytoplasm (STEM 121) (red) with MBP (green) in the Shi/Shi Rag2/ corpus callosum at 8, 12, and 16 wpg. General views of horizontal sections at the level of the corpus callosum showing the progressive increase of donor-derived myelin for control- (top) and MS- (bottom) hiOLs. (B) Evaluation of the MBP+ area over STEM+ cells. (C and D) Quantification of the percentage of (C) MBP+ cells and (D) MBP+ ensheathed cells. (E) Evaluation of the average sheath length (m) per MBP+ cells. No obvious difference was observed between MS and control-hiOLs. Two-way ANOVA followed by Tukeys multiple comparison tests were used for the statistical analysis of these experiments (n = 6 to 14 mice per group). Error bars represent SEMs. *P < 0.05, **P < 0.01, and ***P < 0.001. Scale bar, 200 m. See also figs. S3 and S5.
We further analyzed, in depth, the myelinating potential of MS-hiOLs, applying automated imaging and analysis, which provided multiparametric quantification of MBP as established in vitro (29) for each donor hiOL (three controls and three RRMS) at 4, 8, 12, 16, and 20 wpg in vivo (Fig. 3, B to D). We first examined the MBP+ surface area generated by the STEM+ cell population (Fig. 3B). While MS-hiOLs generated very low amount of myelin at 4 wpg, they generated significantly more myelin at 12, 16, and 20 wpg, with similar findings for control-hiOLs, highlighting the rapid progress in the percentage of myelin producing STEM+ cells in MS group over time. Detailed MBP+ surface area generated by the STEM+ cell population per donor is presented in fig. S5 and shows differences among hiOLs in the control and MS groups, respectively.
We also quantified the percentage of STEM+ cells expressing MBP and the percentage of MBP+ with processes associated with linear myelin-like features, which we called MBP+ ensheathed cells. Both parameters increased significantly with time for control-hiOLs, reaching a plateau at 16 wpg. The same tendency was achieved for MS-hiOLs with no significant differences between the control- and MS-hiOL groups (Fig. 3, C and D).
Myelin sheath length is considered to be an intrinsic property of oligodendrocytes (30). We analyzed this paradigm in our MS cohort at 12 and 16 wpg, time points at which sheaths were present at a density compatible with quantification. For those time points, we found that the average MS MBP+ sheath length was equivalent to that of control with 25.86 0.98 and 27.74 1.52 m for MS-hiOLs and 24.52 1.48 and 27.65 0.96 m for control-hiOLs at 12 and 16 wpg, respectively (Fig. 3F). In summary, our detailed analysis of immunohistochemically labeled sections indicates that MS-hiOLs did not generate abnormal amounts of myelin in vivo when compared to control-hiOLs.
Moreover, the myelinating potential of MS-hiOLs was further validated after engraftment in the developing spinal cord (4 weeks of age). Immunohistological analysis 12 wpg revealed that STEM+ cells not only populated the whole dorsal and ventral columns of the spinal cord with preferential colonization of white matter but also generated remarkable amounts of MBP+ myelin-like internodes that were found on multiple spinal cord coronal sections (fig. S6), thus indicating that their myelination potential was not restricted to only one CNS structure.
The presence of normal amounts of donor MBP+ myelin-like structures in the shiverer forebrain does not exclude potential structural anomalies. Therefore, we examined the quality of MS derived myelin at the ultrastructural level at 16 wpg in the Shi/Shi:Rag2/ forebrain. In the corpus callosum of both MS and control-hiOLs grafted mice, we detected numerous axons surrounded by electron dense myelin, which at higher magnification was fully compacted compared to the uncompacted shiverer myelin (Fig. 4, A to F) (25, 31). Moreover, MS myelin reached a mean g ratio of 0.76 1.15 comparable to that of control myelin (0.75 1.56) (Fig. 4G) and thus a similar myelin thickness. This argues in favor of (i) MS-hiOLs having the ability to produce normal compact myelin and thus its functional normality and (ii) a similar rate of myelination between the two groups and, consequently, an absence of delay in myelination for MS-hiOLs.
(A to F) Ultrastructure of myelin in sagittal sections of the core of the corpus callosum 16 wpg with control-hiOLs (A to C) and MS-hiOLs (D to F). (A and D) General views illustrating the presence of some electron dense myelin, which could be donor derived. (B, C, E, and F) Higher magnifications of control (B and C) and MS (E and F) grafted corpus callosum validate that host axons are surrounded by thick and compact donor derived myelin. Insets in (C) and (F) are enlargements of myelin and show the presence of the major dense line. No difference in compaction and structure is observed between the MS and control myelin. (G) Quantification of g-ratio revealed no significant difference between myelin thickness of axons myelinated by control- and MS-hiOLs. Mann-Whitney t tests were used for the statistical analysis of this experiment (n = 4 mice per group). Error bars represent SEMs. Scale bars, (A and D) 5 m , (B and E) 2 m, and (C and F) 500 nm [with 200 and 100 nm, respectively in (C) and (F) insets].
Myelin compaction has a direct impact on axonal conduction with slower conduction in shiverer mice compared to WT mice (10, 32). We therefore questioned whether newly formed MS-hiOLderived myelin has the ability to rescue the slow axon conduction velocity of shiverer mice in vivo (Fig. 5). As previously performed with fetal glial-restricted progenitors (11), transcallosal conduction was recorded in vivo at 16 wpg in mice grafted with MS- and control-hiOLs and compared with nongrafted shiverer and WT mice. As expected, conduction in nongrafted shiverer mice was significantly slower compared to WT mice. However, axon conduction velocity was rescued by MS-hiOLs and, to the same extent, by control-hiOLs.
(A) Scheme illustrating that intracallosal stimulation and recording are performed in the ipsi- and contralateral hemisphere, respectively. (B) N1 latency was measured following stimulation in different groups of Shi/Shi:Rag2/: intact or grafted with control or MS-hiOLs and WT mice at 16 wpg. MS-hiOLderived myelin significantly restored transcallosal conduction latency in Shi/Shi:Rag2/ mice to the same extent than control-derived myelin (P = 0.01) and close to that of WT levels. One-way ANOVA with Dunnetts multiple comparison test for each group against the group of intact Shi/Shi:Rag2/ was used. Error bars represent SEMs. *P < 0.05. (C) Representative response profiles for each group. Scales in Y axis is equal to 10 V and in the X axis is 0.4 ms.
Rodent oligodendrocyte progenitors and oligodendrocytes can be distinguished by cell stagespecific electrophysiological properties (33, 34). To assess the electrophysiological properties of oligodendroglial lineage cells derived from human grafted control- and MS-hiOLs, red fluorescent protein (RFP)hiOLs were engrafted in the Shi/Shi:Rag2/ forebrain and recorded with a K-gluconatebased intracellular solution in acute corpus callosum slices at 12 to 15 wpg (Fig. 6A). As previously described for rodent cells, hiOLs in both groups were identified by their characteristic voltage-dependent current profile recognized by the presence of inward Na+ currents and outwardly rectifying steady-state currents (Fig. 6B). We found that ~60 and ~44% of recorded cells were oligodendrocyte progenitors derived from MS and control progenies, respectively. No significant differences were observed in the amplitude of Na+ currents measured at 20 mV (Fig. 6D) or steady-state currents measured at +20 mV between MS- and control-derived oligodendrocyte progenitors (Isteady = 236.70 19.45 pA and 262.10 31.14 pA, respectively; P = 0.8148, Mann Whitney U test). We further confirmed the identity of these cells by the combined expression of SOX10 or OLIG2 with STEM101/121 and the absence of CC1 in biocytin-loaded cells (Fig. 6F, top). The remaining recorded cells (MS and control) did not show detectable Na+ currents after leak subtraction and were considered to be differentiated oligodendrocytes by their combined expression of SOX10, STEM101/121, and CC1 in biocytin-loaded cells (Fig. 6F, bottom). The I-V curve of these differentiated oligodendrocytes displayed a variable profile that gradually changed from voltage dependent to linear as described for young and mature oligodendroglial cells in the mouse (33). Figure 6C illustrates a typical linear I-V curve of fully mature MS-derived oligodendrocytes. No significant differences were observed in the amplitude of steady-state currents measured at +20 mV between MS- and control-derived oligodendrocytes (Fig. 6E). Overall, the electrophysiological profile of oligodendrocyte progenitors and oligodendrocytes derived from control and MS was equivalent and showed similar characteristics to murine cells (33, 34).
(A) Schematic representation of the concomitant Biocytin loading and recording of single RFP+ hiOL derivative in an acute coronal brain slice prepared from mice engrafted with hiOLs (control or MS) and analyzed at 12 to 14 wpg. (B and C) Currents elicited by voltage steps from 100 to +60 mV in a control-oligodendrocyte progenitor (B, left) and a MS-oligodendrocyte (C, left). Note that the presence of an inward Na+ current obtained after leak subtraction in the oligodendrocyte progenitor, but not in the oligodendrocyte (insets). The steady-state I-V curve of the oligodendrocyte progenitor displays an outward rectification (B, right) while the curve of the oligodendrocyte has a linear shape (C, right). (D) Mean amplitudes of Na+ currents measured at 20 mV in control and MS iPSCs-derived oligodendrocyte progenitors (n = 8 and n = 9, respectively, for four mice per condition; P = 0.743, Mann-Whitney U test). (E). Mean amplitudes of steady-state currents measured at +20 mV in control and patient differentiated iPSC-derived oligodendrocytes (n = 10 and n = 6 for 3 and four mice, respectively; P = 0.6058, Mann-Whitney U test). (F) A control iPSC-derived oligodendrocyte progenitor loaded with biocytin and expressing OLIG2, STEM101/121, and lacking CC1 (top) and an MS iPSCderived oligodendrocyte loaded with biocytin and expressing SOX10, CC1, and STEM101/121 (bottom). Scale bar, 20 m.
(A) Z-stack identifying a target and connected cell. One single grafted human RFP+ cell (per acute slice) was loaded with biocytin by a patch pipette and allowed to rest for 30 min. The white arrowheads and insets in (A) illustrate biocytin diffusion up to the donut-shaped tip of the human oligodendrocyte processes. Another biocytin-labeled cell (empty yellow arrowhead) was revealed at different morphological level indicating diffusion to a neighboring cell and communication between the two cells via gap junctions. (B and C) Split images of (A) showing the target (B) and connected (C) cell separately at different levels. Immunolabeling for the combined detection of the human markers STEM101/121 (red), OLIG2 (blue), and CC1 (white) indicated that the target cell is of human origin (STEM+) and strongly positive for OLIG2 and CC1, a mature oligodendrocyte, and that the connected cell is of murine origin (STEM-) and weakly positive for OLIG2 and CC1, most likely an immature oligodendrocyte. Scale bars, 30 m. See also fig. S7.
Studies with rodents have reported that oligodendrocytes exhibit extensive gap-junctional intercellular coupling between other oligodendrocytes and astrocytes (35). Whether oligodendrocytes derived from grafted human cells can be interconnected with cells in the adult host mouse brain was not known, and whether MS-hiOLs maintain this intrinsic property was also not addressed. Because biocytin can pass through gap junctions, we inspected biocytin-labeled cells for dye coupling (Figs. 6A and 7, A and B).
We found that two of seven MS-derived oligodendrocytes (~29%) and 5 of 21 control-derived oligodendrocytes (~24%) were connected with a single neighboring cell, which was either human or murine (Fig. 7), except in one case where three mouse cells were connected to the biocytin-loaded human cell. These findings reveal that gap junctional coupling can occur between cells from the same or different species, and MS-hiOLs can functionally connect to other glial cells to the same extent as their control counterparts.
To validate the presence of glial-glial interactions, we investigated whether the grafted hiOL-derived progeny had the machinery to be connected to one another via gap junctions. To this end, we focused on oligodendrocyte-specific Cx47 and astrocyte-specific Cx43 as Cx43/47 channels, which are important for astrocyte/oligodendrocyte cross talk during myelination and demyelination (36, 37). Combined immunolabeling for hNOGOA, CC1, OLIG2, and Cx47 revealed that MS-derived oligodendrocyte cell bodies and processes were decorated by Cx47+ gap junction plaques, which were often shared by exogenous MS-derived oligodendrocytes or by MS and endogenous murine oligodendrocytes (fig. S7A). In addition, colabeling exogenous myelin for MBP and Cx43 identified the presence of several astrocyte-specific Cx43 gap junction plaques between human myelin internodes, highlighting contact points between astrocyte processes and axons at the human-murine chimeric nodes of Ranvier (fig. S7B).
Last, colabeling of hNOGOA, with Cx47 and the astrocyte-specific Cx43, revealed coexpression of oligodendrocyte- and astrocyte-specific connexins at the surface of MS-derived oligodendrocyte cell bodies and at the level of T-shaped myelin-like structures (fig. S7C), thus implying connections between human oligodendrocytes and murine and/or human astrocytes, as a small proportion of the grafted hiOLs differentiated into astrocytes. Immunolabeling for human glial fibrillary acidic protein (GFAP), and Cx43 showed that these human astrocytes were decorated by Cx43+ aggregates, as observed in the host subventricular zone (fig. S8A).
Furthermore, immunolabeling for human GFAP, mouse GFAP, and Cx43 indicated that Cx43+ gap junctions were shared between human and mouse astrocytes as observed at the level of blood vessels (fig. S8B). These data validate interconnections between the grafted-derived human glia (MS and controls) with murine host glial cells and confirm their interconnection with the pan-glial network.
Two main hypotheses have been considered in understanding MS pathology and etiology: the outside-in hypothesis highlighting the role of immune regulators and environmental inhibitors as extrinsic key players in MS pathology and possibly its repair failure or the inside-out hypothesis pointing to the intrinsic characteristics of neuroglia including oligodendroglial cells as the main contributors in the MS scenario. Single-cell transcriptomic analysis revealed the presence of disease-specific oligodendroglia expressing susceptibility genes in MS brains (16) and altered oligodendroglia heterogeneity in MS (17). The question remains open as to whether these altered oligodendroglial phenotypes are acquired in response to the disease environment or whether they reflect intrinsic traits of the MS oligodendroglial population. On the other hand, the whole exome sequencing analysis in 132 patients from 34 multi-incident families identified 12 candidate genes of the innate immune system and provided the molecular and biological rational for the chronic inflammation, demyelination, and neurodegeneration observed in patients with MS (38) and revealed the presence of epigenetic variants in immune cells and in a subset of oligodendrocytes contributing to risk for MS (39).
While none of these hypotheses have been fully proven or rejected, research efforts for a better understanding of this multifactorial disease have continued. Impaired remyelination or oligodendrocyte differentiation block in MS is still considered a potentially disease-relevant phenotype (40, 41). Many histological and experimental studies suggest that impaired oligodendrocyte progenitor to oligodendrocyte differentiation may contribute to limited remyelination in MS, although some reports question the contribution of newly generated oligodendrocytes to remyelination (17, 42, 43). Understanding MS oligodendrocyte biology has been challenging mainly due to the following reasons: (i) oligodendroglial cells are not easily accessible to be studied in vivo; (ii) dynamic remyelination observed in patients with MS, which points to their individual remyelination potential, is inversely correlated with their clinical disability (3), highlighting even more complexity in oligodendrocyte heterogeneity between patients with MS; and (iii) exclusion of the role of immune system players in understanding MS oligodendrocyte biology being inevitable in most of clinical or experimental studies.
In such a complex multifactorial disease, one of the most accessible and applicable approaches to overcome these problems is the generation of large quantities of disease and control oligodendroglia using the iPSC technology, and to investigate their genuine behavior in vivo after engraftment in a B and T cellfree system. Using a very efficient reprogramming method (25), and the purely dysmyelinating Shi/Shi:Rag2/ mouse model to avoid confounding immune-mediated extrinsic effects, we show that MS-hiOLs derivatives survive, proliferate, migrate, and timely differentiate into bona fide myelinating oligodendrocytes in vivo as efficiently as their control counterparts. Nicaise and colleagues reported that iPSC-NPCs from PPMS cases did not provide neuroprotection against active CNS demyelination compared to control iPSC-NPCs (44) and failed to promote oligodendrocyte progenitor genesis due to senescence without affecting their endogenous capacity to generate myelin-forming oligodendrocytes (21, 22). However, their myelinating potential was not evaluated against control cells. Generation of iPSC-oligodendrocyte progenitors from patients with PPMS or RRMS has also been reported by other groups, yet with no evidence for their capacity to become functional oligodendrocytes in vivo (23, 24). Thus, so far, no conclusion could be made regarding the potential impact of disease severity (PPMS verses RRMS) on the functionality of the iPSC-derived progeny.
We compared side by side, and at different time points after engraftment, hiOLs from patients with RRMS and controls including two pairs of homozygous twins discordant for disease. We found no significant difference in their capacity to timely differentiate (according to the human tempo of differentiation) and efficiently myelinate axons in the shiverer mouse in terms of the percentage of MBP+ cells generated, amount of myelin produced, length of MBP+ sheaths, and the ultrastructure and thickness of myelin sheaths. MS-hiOLs also reconstructed nodes of Ranvier expressing nodal components key to their function. We not only verified that the grafted MS-hiOLs derivatives were anatomically competent but also established their functionality at the electrophysiological level using (i) in vivo recordings of transcallosal evoked potentials and (ii) ex vivo recordings of the elicited current-voltage curves of the grafted MS-hiOLs verses controls. Our data show that the grafted MS-hiOLs were able to rescue the established delayed latency of shiverer mice to the same extent as control cells, as previously reported for human fetal glial progenitors grafted in the same model (11). Moreover, at the single-cell level, MS-hiOLderived oligodendrocyte progenitors and oligodendrocytes did not harbor aberrant characteristics in membrane currents compared to control cells ex vivo. Thus, iPSC-derived human oligodendroglial cells shift their membrane properties with maturation as previously observed in vitro (45) and these properties are not impaired in MS.
The absence of differences among control and MS-derivatives might be due to different causes. One might consider that pluripotency induction could by in vitro manipulation, erase cell epigenetic traits and/or reverse cells to an embryonic state, and as a result, modulate their intrinsic characteristics. Yet, several reports have highlighted differences in the behavior of diseased iPSC-derived oligodendrocytes in comparison to those from healthy controls using the same technology in multifactorial diseases such as schizophrenia (19, 20), Huntingtons disease (18), and others (46). In this regard, direct reprogramming of somatic cells into the desired cell type, bypassing the pluripotent stage, could be an attractive alternative. However, so far only mouse fibroblasts have been successfully directly converted into oligodendroglial cells, and with relatively low efficiency (47, 48).
iPSCs were transduced with three transcription factors to generate hiOLs in a fast and efficient way (25). While we cannot rule out that the use of these three transcription factors may have obscured differences between MS and controls, results for controls are quite comparable to our previously published data based on human fetal oligodendrocyte progenitor engraftment in the Shi/Shi:Rag2/ developing forebrain (49) or fetal NPC engrafted in the Shi/Shi:Rag2/ demyelinated spinal cord (50), suggesting that transduction with the three transcription factors does not overly modify the behavior of the grafted human cells. It could also be argued that the absence of differences between control and MS monozygous twins is not surprising given their equal genetic background. Yet, comparing controls with nonsibling MS hiOLS (compare C1 with RRMS2 and RRMS3; C2 with RRMS1, RRMS2, and RRMS3; and C3 with RRMS1 and RRMS2) revealed no defect in myelination for MS cells as well.
Analysis of hiOLs from each donor showed differences within each group. This could result from phenotypic instability, heterogeneity among donors, or disease subtype. Yet, the clinical history of each patient suggests a certain homogeneity among the MS disease phenotype, all being RRMS. In addition, the equal survival and proliferation rates between both groups argue in favor of cell stability. These confounding observations sustain that differences in terms of myelination are most likely due to heterogeneity among individuals rather than phenotypic instability or disease subtype.
While most preclinical transplantation studies have focused on myelination potential as the successful outcome of axo-glia interactions, less is known about the capacity of the grafted cells to fulfill glial-glial interactions in the pan-glial syncytium, which could ensure maintenance of newly generated myelin (51) and cell homeostasis (52). Oligodendrocytes are extensively coupled to other oligodendrocytes and oligodendrocyte progenitors through the homologous gap junctions Cx47 (35). These intercellular interactions between competing oligodendroglial cells influence the number and length of myelin internodes and the initiation of differentiation (53, 54). Oligodendrocytes are also coupled to astrocytes through heterologous gap junctions such as Cx32/Cx30 and Cx47/Cx43 (55). Disruption of oligodendrocytes from each other and from astrocytes, i.e., deconstruction of pan-glial network, has been observed in experimental models of demyelination (unpublished data) and frequently reported in MS and neuromyelitis optica (37, 56, 57). Mutations in Cx47 and Cx32 result in developmental CNS and PNS abnormalities in leukodystrophies (58, 59). Moreover, experimental ablation of Cx47 results in aberrant myelination (60) and significantly abolished coupling of oligodendrocytes to astrocytes (35).
In view of the major role of Cx-mediated gap junctions among oligodendrocytes and between oligodendrocytes and astrocytes during myelin formation (55), we asked whether the MS-hiOL progeny was capable of making functional gap junctions with other glial cells, and integrating into the host panglial network. We show that grafted MS-hiOLs, in common with rodent oligodendrocytes, express Cx47 that was frequently shared not only between the human and murine oligodendrocytes (through Cx47-Cx47) but also in conjunction with the astrocyte Cx43 (via Cx47/Cx43). The dye-coupling study highlighted that MS-hiOLs, similar to control cells, were capable of forming functional gap junctions with neighbor murine or human glial cells, indicating that MS-hiOLs retained the intrinsic property, not only to myelinate host axons but also to functionally integrate into the host pan-glial network. While our study focused mainly on oligodendroglial cells, a small proportion of the grafted hiOLs differentiated into astrocytes expressing Cx43. These human astrocytes were detected associated with blood vessels or the subventricular zone, where they were structurally gap-junction coupled to mouse astrocytes as observed after engraftment of human fetal glial restricted progenitors (61).
Together, our data highlight that human skinderived glia retain characteristics of embryonic/fetal brainderived glia as observed for rodent cells (10). In particular, we show that MS-hiOLs timely differentiate into mature oligodendrocytes, functionally myelinate host axons and contribute to the human-mouse chimeric pan-glial network as efficiently as control-hiOLs. These observations favor a role for extrinsic rather than intrinsic oligodendroglial factors in the failed remyelination of MS. The International Multiple Sclerosis Genetics Consortium after analyzing the genomic map of more than 47,000 MS cases and 63,000 control subjects, implicated microglia, and multiple different peripheral immune cell populations in disease onset (62). Moreover, neuroinflammation appears to block oligodendrocyte differentiation and to alter their properties and thereby aggravate the autoimmune process (63). Furthermore, MS lymphocytes are reported to exhibit intrinsic capacities that drive myelin repair in a mouse model of demyelination (64). On the other hand, a recent study highlighted the presence of disease-specific oligodendroglia in MS (16, 17). However, it should be considered that most of the data in the later were collected using single nuclei RNA sequencing of postmortem tissues from MS or control subjects of different ages that were suffering from other disorders ranging from cancer to sepsis and undergoing various treatment, and so died for different reasons, that may have influenced the type or level of RNA expression by the cells. In addition, the presence of genetic variants that alter oligodendrocyte function in addition to that of immune cells was also found (39). While this oligodendrocyte dysfunction contributes to MS risk factor, whether it is involved in other aspects of MS such as severity, relapse rate, and rate of progression is not yet known.
Numerous factors may cause the failure of oligodendrocyte progenitor maturation comprising factors such as axonal damage and/or altered cellular and extracellular signaling within the lesion environment (65) without neglecting aged-related environmental and cellular changes (40). Although the cells generated in this study are more of an embryonic nature, and did not experienced the kind of inhibitory environment that is present in MS, our data provide valuable findings in the scenario of MS pathology highlighting that RRMS-hiOLs, regardless of major manipulators of the immune system, do not lose their intrinsic capacity to functionally myelinate and interact with other neuroglial cells in the CNS under nonpathological conditions. Whether RRMS-hiOLs or oligodendroglial cells directly reprogrammed from MS fibroblasts would behave similarly well, if challenged with neuropathological inflammatory conditions as opposed to conditions wherein the immune system is intact (presence of T and B cells), or whether they would reflect intrinsic aging properties will require further investigation.
In summary, our findings provide valuable insights not only into the biology of MS oligodendroglia but also their application for cell-based therapy and should contribute to the establishment of improved preclinical models for in vivo drug screening of pharmacological compounds targeting the oligodendrocyte progenitors, oligodendrocytes, and their interactions with the neuronal and pan-glial networks.
We examined side by side the molecular, cellular, and functional behavior of MS hiOLs with their control counterparts after their engraftment in a dysmyelinating animal model to avoid the effect of major immune modulators. We used three MS and three control hiOLs including two monozygous twin pairs discordant for the disease. We performed in vivo studies in mouse with sample size between three to six animals per donor/time point/assay required to achieve significant differences. Numbers of replicates are listed in each figure legend. Animals were monitored carefully during all the study time, and animal welfare criteria for experimentation were fully respected. All experiments were randomized with regard to animal enrollment into treatment groups. The same experimenter handled the animals and performed the engraftment experiments to avoid errors. The data were analyzed by a group of authors.
Shiverer mice were crossed to Rag2 null immunodeficient mice to generate a line of Shi/Shi:Rag2/ dysmyelinating-immunodeficient mice to (i) prevent rejection of the grafted human cells and allow detection of donor-derived WT myelin and (ii) investigate the original behavior of MS-derived oligodendrocytes in a B cell/T cellfree environment. Mice were housed under standard conditions of 12-hour light/12-hour dark cycles with ad libitum access to dry food and water at the ICM animal facility. Experiments were performed according to European Community regulations and INSERM ethical committee (authorization 75-348; 20/04/2005) and were approved by the local Darwin ethical committee.
Fibroblasts were obtained under informed consent from three control and three RRMS subjects including two monozygous twin pairs discordant for the disease. They were reprogrammed into iPSCs using the replication incompetent Senda virus kit (Invitrogen) according to manufacturers instructions. Table S1 summarizes information about the human cell lines used in this study. The study was approved by the local ethical committees of Mnster and Milan (AZ 2018-040-f-S, and Banca INSpe).
Human iPSCs were differentiated into NPC by treatment with small molecules as described (66, 67). Differentiation of NPCs into O4+ oligodendroglial cells used a poly-cistronic lentiviral vector containing the coding regions of the human transcription factors Sox10, Olig2, and Nkx6.2 (SON) followed by an IRES-pac cassette, allowing puromycin selection for 16 hours (25). For single-cell electrophysiological recordings, the IRES-pac cassette was replaced by a sequence encoding RFP. Briefly, human NPCs were seeded at 1.5 105 cells per well in 12-well plates, allowed to attach overnight and transduced with SON lentiviral particles and protamine sulfate (5 g/ml) in fresh NPC medium. After extensive washing, viral medium was replaced with glial induction medium (GIM). After 4 days, GIM was replaced by differentiation medium (DM). After 12 days of differentiation, cells were dissociated by accutase treatment for 10 min at 37C, washed with phosphate-buffered saline (PBS) and resuspended in PBS/0.5% bovine serum albumin (BSA) buffer, and singularized cells were filtered through a 70-m cell strainer (BD Falcon). Cells were incubated with mouse immunoglobulin M (IgM) antiO4-APC antibody (Miltenyi Biotech) following the manufacturers protocol, washed, resuspended in PBS/0.5% BSA buffer (5 106 cells/ml), and immediately sorted using a FACS Aria cell sorter (BD Biosciences). Subsequently, human O4+ hiOLs were frozen and stored in liquid nitrogen. Media details were provided in (25). hiOLS from each donor was assayed individually (no cell mix) and studied as follows for forebrain engraftment: immunohistochemistry (all donors, three to seven mice per time point), electron microscopy (C1 and RRMS1, four mice per donor at 16 wpg), in vivo electrophysiology (C1 and RRMS1, six mice per donor and eight mice per medium at 16 wpg), dye coupling, and ex-vivo electrophysiology (C1-RFP and RRMS3-RFP, six to seven mice per donor at 16 wpg). For spinal cord engraftment: immuno-histochemistry (C1 and RRMS3, 3 and 4 mice respectively at 12 wpg).
RRMS1: Disease duration at biopsy was 11 years. Started on Rebif 22 and switched to Rebif 44 because of relapses. Relapse was treated with bolus of cortisone 20 to 30 days before biopsy and then switched to natalizumab.
RRMS2: Disease duration at biopsy was 16 months. Relapse at disease onset. On Rebif 22 from disease onset until biopsy with no episodes. A new lesion was identified 3 months after biopsy. At the time of biopsy, the patient reported cognitive difficulties, no motor dysfunctions.
RRMS3: Disease duration at biopsy was 15 months. Relapse 6 months before biopsy with dysesthesias and hypoesthesia right thigh and buttock. Active lesion identified by magnetic resonance imaging at day 10. On Rebif smart 44 mcg, 50 days later, and skin biopsy 4 months later. A new gadolinium negative temporal lesion identified 2 months after biopsy and the patient switched to Tecfidera.
To assay hiOL contribution to forebrain developmental myelination, newborn Shi/Shi:Rag2/ pups (n = 148) were cryo-anesthetized, and control and RRMS hiOLs were transplanted bilaterally, rostral to the corpus callosum. Injections (1 l in each hemisphere and 105 cells/l) were performed 1 mm caudally, 1 mm laterally from the bregma, and to a depth of 1 mm as previously described (49, 68). Animals were sacrificed at 4, 8, 12, 16, and, when indicated, 20 wpg for immunohistological studies and at one time point for electron microscopy (16 wpg), ex vivo (12 to 15 wpg), and in vivo (16 wpg) electrophysiology.
To assay the fate of hiOLs in the developing spinal cord, 4-week-old mice (n = 4) were anesthetized by intraperitoneal injection of a mixture of ketamine (100 mg/kg) (Alcyon) and xylazine (10 mg/kg) (Alcyon) and received a single injection at low speed (1 l/2 min) of hiOLs (1 l, 105 cells/l) at the spinal cord thoracic level using a stereotaxic frame equipped with a micromanipulator and a Hamilton syringe. Animals were sacrificed at 12 wpg for immunohistological studies.
Immunohistochemistry. Shi/Shi:Rag2/ mice grafted with control and RRMS hiOLs (n = 3 to 6 per group, donor and time point) were sacrificed by transcardiac perfusion-fixation with 4% paraformaldehyde in PBS. Tissues were postfixed in the same fixative for 1 hour and incubated in 20% sucrose in 1 PBS overnight before freezing at 80C. Serial horizontal brain and spinal cord cross sections of 12 m thickness were performed with a cryostat (CM3050S, Leica). Transplanted hiOLs were identified using anti-human cytoplasm [1:100; STEM121; Takara, Y40410, IgG1], anti-human nuclei (1:100; STEM101; Takara, Y40400, IgG1), and anti-human NOGOA (1:50; Santa Cruz Biotechnology, sc-11030, goat) antibodies. In vivo characterization was performed using a series of primary antibodies listed in tableS2. For MBP staining, sections were pretreated with ethanol (10 min, room temperature). For glial-glial interactions, oligodendrocyte-specific connexin was detected with anti-connexin 47 (1:200; Cx47; Invitrogen, 4A11A2, IgG1) and astrocyte-specific connexin, with anti-connexin 43 (1:50; Cx43; Sigma-Aldrich, C6219, rabbit), and sections were pretreated with methanol (10 min, 20C). Secondary antibodies conjugated with fluorescein isothiocyanate, tetramethyl rhodamine isothiocyanate (SouthernBiotech), or Alexa Fluor 647 (Life Technologies) were used, respectively, at 1:100 and 1:1000. Biotin-conjugated antibodies followed by AMCA AVIDIN D (1:20; Vector, A2006). Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI) (1 g/ml; Sigma-Aldrich) (1:1000). Tissue scanning, cell visualization, and imaging were performed with a Carl Zeiss microscope equipped with ApoTome 2.
Electron microscopy. For electron microscopy, Shi/Shi:Rag2/ mice grafted with control and RRMS hiOLs (n = 4 per group) were perfused with 1% PBS followed by a mixture of 4% paraformaldehyde/5% glutaraldehyde (Electron Microscopy Sciences) in 1% PBS. After 2-hour postfixation in the same solution, 100-m-thick sagittal sections were cut and fixed in 2% osmium tetroxide (Sigma-Aldrich) overnight. After dehydration, samples were flat-embedded in Epon. Ultra-thin sections (80 nm) of the median corpus callosum were examined and imaged with a HITACHI 120 kV HT-7700 electron microscope.
Electrophysiological recordings were performed in mice grafted with MS- and control-hiOLs, and compared with nongrafted intact or medium injected Shi/Shi:Rag2/ mice and WT mice 16 weeks after injection (n = 4 to 6 per group) as described (11). Briefly mice were anesthetized with 2 to 4% isoflurane performed under analgesia (0.1 mg/kg buprecare) and placed in a stereotaxic frame (D. Kopf, Tujunga, CA, USA). Body temperature was maintained at 37C by a feedback-controlled heating blanket (CMA Microdialysis). Electrical stimulation (0.1 ms at 0 to 0.1 mA) was applied using a bipolar electrode (FHC- CBBSE75) inserted to a depth of 200 m into the left cortex at 2 mm posterior to bregma and 3 mm from the midline. At the same coordinates in the contralateral hemisphere, homemade electrodes were positioned for recording local field potentials (LFPs) generated by transcallosal electric stimulation. Electrical stimulation and evoked LFPs were performed by the data acquisition system apparatus (Neurosoft, Russia), and signals were filtered at 0.01 to 1 000 Hz. Each response latency (in ms) was measured as the time between the onset of stimulus artifact to the first peak for each animal. A ground electrode was placed subcutaneously over the neck.
Slice preparation and recordings. Acute coronal slices (300 m) containing corpus callosum were made from Shi/Shi:Rag2/ mice grafted with control (n = 7) and RRMS (n = 6) RFP+ hiOLs. They were prepared from grafted mice between 12 and 15 wpg as previously described (69). Briefly, slices were performed in a chilled cutting solution containing 93 mM N-methyl-d-glucamine, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM Hepes, 25 mM glucose, 2 mM urea, 5 mM Na-ascorbate, 3 mM Na-pyruvate, 0.5 mM CaCl2, and 10 mM MgCl2 (pH 7.3 to pH 7.4; 95% O2 and 5% CO2) and kept in the same solution for 8 min at 34C. Then, they were transferred for 20 min to solution at 34C containing 126 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 20 mM glucose, 5 mM Na-pyruvate, 2 mM CaCl2, and 1 mM MgCl2 (pH 7.3 to pH 7.4; 95% O2 and 5% CO2). Transplanted RFP+ hiOLs were visualized with a 40 fluorescent water-immersion objective on an Olympus BX51 microscope coupled to a CMOS digital camera (TH4-200 OptiMOS) and an light-emitting diode light source (CoolLed p-E2, Scientifica, UK) and recorded in voltage-clamp mode with an intracellular solution containing 130 mM K-gluconate, 0.1 mM EGTA, 2 mM MgCl2, 10 mM Hepes, 10 mM -aminobutyric acid, 2 mM Na2-adenosine 5-triphosphate, 0.5 mM Na-guanosine 5-triphosphate, 10 mM Na2-phosphocreatine, and 5.4 mM biocytin (pH 7.23). Holding potentials were corrected by a junction potential of 10 mV. Electrophysiological recordings were performed with Multiclamp 700B and Pclamp10.6 software (Molecular Devices). Signals were filtered at 3 kHz, digitized at 10 kHz, and analyzed off-line.
Immunostainings and imaging of recorded slices. For analysis of recorded cells, one single RFP+ cell per hemisphere was recorded in a slice and loaded with biocytin for 25 min in whole-cell configuration. After gently removing the patch pipette, biocytin was allowed to diffuse for at least 10 min before the slice was fixed 2 hours in 4% paraformaldehyde at 4C. Then, the slice was rinsed three times in PBS for 10 min and incubated with 1% Triton X-100 and 10% normal goat serum (NGS) for 2 hours. After washing in PBS, slices were immunostained for SOX10, CC1, and STEM101/121. Tissues were incubated with primary antibodies for 3 days at 4C. Secondary antibodies were diluted in 2% NGS and 0.2% Triton X-100. Tissues were incubated with secondary antibodies for 2 hours at room temperature. Biocytin was revealed with secondary antibodies using DyLight-488 streptavidin (Vector Laboratories, Burlingame, USA, 1:200). Images of biocytin-loaded cells were acquired either with a Carl Zeiss microscope equipped with ApoTome 2 or a LEICA SP8 confocal microscope (63 oil objective; numerical aperture, 1.4; 0.75-m Z-step) and processed with National Institutes of Health ImageJ software (70).
We adapted the heuristic algorithm from (29) to identify STEM+ MBP+ OLs in tissue sections. The foundations of the quantitative method remained the same. A ridge-filter extracted sheath-like objects based on intensity and segments associated to cell bodies using watershed segmentation. Two additional features adapted the workflow beyond its original in vitro application. First, we added functionality to allow colocalization of multiple fluorescent stains, as we needed to quantify triple positive STEM+/MBP+/DAPI+ cell objects. Second, because oligodendrocyte sheaths are not parallel and aligned in situ as they are in dissociated nanofiber cell cultures, we adapted the algorithm to report additional metrics about MBP production locally and globally that do not rely on the dissociation of sheaths in dense regions.
Cell nuclei were identified using watershed segmentation of DAPI+ regions and then colocalized pixel-wise with STEM+ objects. The DAPI+ nuclei were then used as local minima to seed a watershed segmentation of the STEM+ stain to separate nearby cell bodies. Last, the identified STEM+ cell bodies were colocalized with overlapping MBP+ sheath-like ridges to define ensheathed cells. We reported the area of MBP overlapping with STEM fluorescence in colocalized regions associated with individual cells, as well as the number of single, double, and triple fluorescently labeled cells. In addition, different cellular phenotypes were noted in situ that were then captured with the adapted algorithm. Qualitatively, we observed cells with expansive MBP production without extended linear sheath-like segments that were not observed in previous applications of the algorithm. These cells were denoted as tuft cells, and were quantitatively defined as STEM+/MBP+/DAPI+ cells without fluorescent ridges that could be identified as extended sheath-like objects.
The myelination potential of three control and 3 MS hiOLs was evaluated at 4, 8, 12, 16, and 20 wpg (n = 2 to 7 per line and per time point; n = 6 to 14 per time point). For each animal, six serial sections at 180-m intervals were analyzed. The percentage of MBP+ cells (composed of ensheathed or tuft cells) was evaluated. Total MBP+ area per STEM+ cells and the average length of MBP+ sheaths per MBP+ cells were analyzed.
Cell survival, proliferation, and differentiation in vivo. The number of STEM101+ grafted cells expressing Caspase3, or Ki67, or SOX10 and CC1 was quantified in the core of the corpus callosum at 8, 12, and 16 wpg. For each animal (n = 3 per group), six serial sections at 180-m intervals were analyzed. Cell counts were expressed as the percentage of total STEM101+ cells.
Myelination by electron microscopy. G ratio (diameter of axon/diameter of axon and myelin sheath) of donor-derived compact myelin was measured as previously described (10). Briefly, the maximum and minimum diameters of a given axon and the maximum and minimum axon plus myelin sheath diameter were measured with the ImageJ software at a magnification of 62,000 for a minimum of 70 myelinated axons per animal. Data were expressed as the mean of the maximal and minimal values for each axon for mice from each group (n = 4 mice per group). Myelin compaction was confirmed at a magnification of 220,000.
Data are presented as means + SEM. Statistical significance was determined by two-tailed Mann Whitney U test when comparing two statistical groups, and with one-way or two-way analysis of variance (ANOVA) followed by Tukeys or Dunnetts (in vivo electrophysiology) multiple comparison tests for multiple groups. Because electrophysiological data in brain slices do not follow a normal distribution after a DAgostino-Pearson normality test, we also performed two-tailed Mann-Whitney U test for comparison between groups. Statistics were done in GraphPad Prism 5.00 and GraphPad Prism 8.2.1 (GraphPad Software Inc., USA). See the figure captions for the test used in each experiment.
Acknowledgments: Funding: This work was supported by the Progressive MS Alliance [PMSA; collaborative research network PA-1604-08492 (BRAVEinMS)] to G.M., J.P.A., A.B.-V.E., and T.K., the National MS Society (NMSS RG-1801-30020 to T.K. and A.B.-V.E.), INSERM and ICM grants to A.B.-V.E., the German Research Foundation (DFG CRC-TR-128B07 to T.K.), and the Italian Multiple Sclerosis Foundation (FISM) (project no. Neural Stem Cells in MS to G.M.). M.C.A. was supported by grants from Fondation pour laide la recherche sur la Sclrose en Plaques (ARSEP) and a sub-award agreement from the University of Connecticut with funds provided by grant no. RG-1612-26501 from National Multiple Sclerosis Society. During this work, S.M. was funded by European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS). B.G.-D. and M.J.F.L. were supported by the PMSA, PA-1604-08492 and the National MS Society (RG-1801-30020), respectively. B.M.-S. was supported by a Ph.D. fellowship from the French Ministry of Research (ED BioSPC). A.B. and M.C.A. thank respective imaging facilities, ICM Quant and IPNP NeurImag and their respective funding sources Institut des Neurosciences Translationnelles ANR-10-IAIHU-06 Fondation Leducq. Author contributions: Conceptualization: S.M. and A.B.-V.E. Methodology: S.M., L.S., B.M.-S., Y.K.T.X., B.G.-D., M.J.F.L., D.R., L.O., K.-P.K., H.R.S., J.P.A., T.K., G.M., T.E.K., M.C.A., and A.B.V.-E. Formal analysis: S.M., B.M-S., Y.K.T.X., M.C.A., and A.B.-V.E. Writing: S.M. and A.B.V.-E, with editing and discussion from all coauthors Funding acquisition: S.M. and A.B.V.-E. Supervision: A.B.V.-E. Competing interests: T.K. has a pending patent application for the generation of human oligodendrocytes. The authors declare that they have no other competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.
See original here:
Multiple sclerosis iPS-derived oligodendroglia conserve their properties to functionally interact with axons and glia in vivo - Science Advances
BerGenBio Presents Updated Clinical Data From Two Phase II Studies Of Bemcentinib in AML and MDS Patients At Ash 2020 – PRNewswire
By daniellenierenberg
BERGEN, Norway, Dec. 6, 2020 /PRNewswire/ --BerGenBio ASA (OSE: BGBIO), a clinical-stage biopharmaceutical company developing novel, selective AXL kinase inhibitors for severe unmet medical need, will present updated clinical data from two Phase II studies of bemcentinib in acute myeloid leukemia and high-risk myelodysplastic syndrome, in two poster sessions at the American Society of Hematology (ASH) Annual Meeting being held virtually from 5-8 December 2020.
Dr Sonja Loges will provide an update from the Company's Phase II study of bemcentinib (BGBC003) in combination with low dose cytarabine (LDAC) in elderly previously treated, relapsed and refractory AML patients.
The data indicates that treatment with the bemcentinib-LDAC combination shows promising efficacy in relapsed patients who are unfit for intensive chemotherapy. Of 11 evaluable relapsed patients a response rate of 45% to date has observed. CR/CRi rate was 36% with durable responses observed, and clinical benefit observed in eight patients (73%) to date.Although the study is ongoing, patients remain on drug, with median treatment of 6.2 months in CR patients.
The Company is currently undertaking an in-depth translational research program aiming to identify predictive molecular and biological factors associated with response.
Dr Sonja Loges, Principal Investigator on the trial commented"The current prognosis for relapsed AML patients is very bleak, so we are pleased to see such a positive clinical benefit rate in relapsed second line patients with many patients remaining on drug for extended durations. We are currently undertaking an analysis to identify the suspected immune based factors that potentiate the effects of the drug in certain patients. We hope that this will enable us to identify specific biomarkers that will help us decide which patients may benefit most from treatment with bemcentinib."
Details of this Poster presentation as follows:
Title:The Combination of AXL Inhibitor Bemcentinib and Low Dose Cytarabine Is Well Tolerated and Efficacious in Elderly Relapsed AML Patients: Update from the Ongoing BGBC003 Phase II Trial (NCT02488408)
Date:Sunday, December 6, 2020
Session name:613. Acute Myeloid Leukemia: Clinical Studies: Poster II
Time:7.00am - 3.30pm (Pacific Time) / 4.00pm - 12.30am (CET)
Abstract: https://ash.confex.com/ash/2020/webprogram/Paper136566.html
An update will also be presented from the fully recruited investigator sponsored BERGAMO Phase II Trial investigating bemcentinib monotherapy in patients having relapsed treatment with hypomethelating agents (HMAs) with High Risk Myelodysplastic Syndromes (HR-MDS) or Acute Myeloid Leukemia (AML).
The primary endpoint of overall response rate (ORR) was met, with the MDS cohort achieving a 36% response rate, while 8.3% of patients with AML achieved stable disease. Three patients remain on drug, with median treatment exceeding 8 months. A comprehensive translational research program is ongoing to identify and verify soluble plasma biomarkers, including sAXL, that continue to be predictive of response.
Richard Godfrey, Chief Executive Officer of BerGenBio, said: "We are pleased to continue sharing updates from our phase II clinical studies assessing bemcentinib with the scientific and medical community. Data from both of the studies being presented at ASH continue to show encouraging results in patients with a very poor prognosis with current treatment options. We believe these data provide further validation for our clinical development strategy in these indications as we prepare to progress bemcentinib into late stage randomised trials."
Details of this Poster presentations as follows:
Title:Efficacy and Safety of Bemcentinib in Patients with Myelodysplastic Syndromes or Acute Myeloid Leukemia Failing Hypomethylating Agents
Date:Saturday, December 5, 2020
Session name:637 Myelodysplastic Syndromes - Clinical Studies: Poster IHematology Disease Topics & Pathways: Diseases, Therapies, MDS, MyeloidMalignancies, Clinically relevant
Time:7.00am - 3.30pm (Pacific Time) / 4.00pm - 12.30am (CET)
Abstract:https://ash.confex.com/ash/2020/webprogram/Paper140240.html
Presentations will be made available at our website http://www.bergenbio.comunder Investors/Presentations at the date of the conference.
-End-
About AML and the BGBC003 trial
Acute myeloid leukaemia (AML) is a rapidly progressing blood cancer. AML is the most common form of acute leukaemia in adults, where malignant AML blasts interfere with the normal functioning of the bone marrow leading to a multitude of complications like anaemia, infections and bleeding. AML is diagnosed in over 20,000 patients in the US annually and is rapidly lethal if left untreated. Successful treatment typically requires intensive chemotherapy or bone marrow transplantation, and relapse and resistance are common. Consequently, there is an urgent need for effective novel therapies in relapsed/refractory patients, particularly those that are ineligible for intensive therapy or bone marrow transplant.
The BGBC003 trial is a phase Ib/II multi-centre open label study of bemcentinib in combination with cytarabine (part B2) and low dose decitabine (part B3 & B5) in patients with AML who are unsuitable for intensive chemotherapy as a result of advanced age or existing-co-morbidities.
For more information please access trial NCT02488408 at http://www.clinicaltrials.gov.
About MDS
Myelodysplastic syndromes (MDS) are stem cell disorders characterised by a decreased ability of the bone marrow to produce normal blood cells and platelets. MDS is associated with increased risk of developing AML and immune dysfunctions are seen in patients both with lower and higher-risk MDS. Hypomethylating agents (HMAs) are the standard of care for patients with higher-risk myelodysplastic syndrome not eligible for intensive chemotherapy or allogeneic stem cell transplantation. However, the majority of patients do not respond to these agents or relapse, and face a dismal outcome with very limited treatment options available. Hence, there is an urgent need for novel therapies to treat MDS
About AXL
AXL kinase is a cell membrane receptor and an essential mediator of the biological mechanisms underlying life-threatening diseases. In cancer, AXL suppresses the body's immune response to tumours and drives cancer treatment failure across many indications.AXL inhibitors, therefore, have potential high value at the centre of cancer combination therapy, addressing significant unmet medical needs and multiple high-value market opportunities. Research has also shown that AXL mediates other aggressive diseases.
About Bemcentinib
Bemcentinib (formerly known as BGB324), is a potentially first-in-class selective AXL inhibitor in a broad phase II clinical development programme. Ongoing clinical trials are investigating bemcentinib in multiple solid and haematological tumours, in combination with current and emerging therapies (including immunotherapies, targeted therapies and chemotherapy), and as a single agent. Bemcentinib targets and binds to the intracellular catalytic kinase domain of AXL receptor tyrosine kinase and inhibits its activity. Increase in AXL function has been linked to key mechanisms of drug resistance and immune escape by tumour cells, leading to aggressive metastatic cancers.
About BerGenBio ASA
BerGenBio is a clinical-stage biopharmaceutical company focused on developing transformative drugs targeting AXL as a potential cornerstone of therapy for aggressive diseases, including immune-evasive, drug resistant cancers. The company's proprietary lead candidate, bemcentinib, is a potentially first-in-class selective AXL inhibitor in a broad Phase II oncology clinical development programme focused on combination and single agent therapy in lung cancer and leukaemia. A first-in-class functional blocking anti-AXL antibody is undergoing Phase I clinical testing. In parallel, BerGenBio is developing a companion diagnostic test to identify those patient populations most likely to benefit from bemcentinib: this is expected to facilitate more efficient registration trials supporting a precision medicine-based commercialisation strategy. BerGenBio is based in Bergen, Norway with a subsidiary in Oxford, UK. The company is listed on the Oslo Stock Exchange (ticker: BGBIO). For more information, visit http://www.bergenbio.com
Contacts
Richard Godfrey CEO, BerGenBio ASA+47 917 86 304
Rune Skeie, CFO, BerGenBio ASA[emailprotected]+47 917 86 513
International Media Relations
Mary-Jane Elliott, Chris Welsh, Lucy Featherstone, Carina Jurs
Consilium Strategic Communications[emailprotected]+44 20 3709 5700
Media Relations in Norway
Jan Petter Stiff, Crux Advisers
[emailprotected]+47 995 13891
Forward looking statements
This announcement may contain forward-looking statements, which as such are not historical facts, but are based upon various assumptions, many of which are based, in turn, upon further assumptions. These assumptions are inherently subject to significant known and unknown risks, uncertainties and other important factors. Such risks, uncertainties, contingencies and other important factors could cause actual events to differ materially from the expectations expressed or implied in this announcement by such forward-looking statements.
This information is subject to the disclosure requirements pursuant to section 5-12 of the Norwegian Securities Trading Act.
This information was brought to you by Cision http://news.cision.com
The following files are available for download:
SOURCE BerGenBio ASA
UCART22 Safe and Active in CD22-Expressing B-Cell ALLs – Targeted Oncology
By daniellenierenberg
Early signs of clinical activity were observed in adult patients with relapsed/refractory CD22-positive B-cell acute lymphoblastic leukemia (ALL) who were treated with an investigational allogeneic off-the-shelf CD22-directed therapy. Findings from the phase 1 dose-escalation/expansion BALL1-01 study (NCT04150497) of UCART22 were presented during the 2020 ASH Annual Meeting demonstrating safety of the T-cell product across dose levels.1
Two patients achieved a complete remission (CR) with incomplete hematologic recovery on day 28 at the 1 x 105 cells/kg dose level. One of these patients attained a minimal residual disease (MRD)positive CR at day 42 followed by subsequent inotuzumab ozogamicin (Besponsa) and then transplant.
One patient at dose level 2, 1 x 106 cells/kg, experienced a significant bone marrow blast reduction at day 28, followed by disease progression.
No patients experienced dose-limiting toxicities (DLTs), immune effector cellassociated neurotoxicity syndrome (ICANS), graft-versus-host disease (GVHD), adverse effects (AE) of special interest (AESI), a UCART22-related AE that was grade 3 or higher, or a serious AE (SAE).
UCART22 showed no unexpected toxicities at the doses of 1 x 105 cells/kg and 1 x 106 cells/kg with fludarabine and cyclophosphamide lymphodepletion, lead study author Nitin Jain, MD, an assistant professor in the Department of Leukemia, The University of Texas MD Anderson Cancer Center, said in a virtual presentation during the meeting. Host immune recovery was observed early, and the addition of alemtuzumab [Lemtrada] to fludarabine and cyclophosphamide lymphodepletion is currently being explored with the goal to achieve deeper and more sustained T-cell depletion and to promote expansion and persistence of UCART22.
Standard treatment for adult patients with B-cell ALL includes multiagent chemotherapy with or without allogeneic stem cell transplant. However, 30% to 60% of patients with newly diagnosed B-cell ALL who achieve a CR will relapse, and the expected 5-year survival rate for those with relapsed/refractory disease is approximately 10%.
Previously, UCART19, when paired with lymphodepletion using fludarabine, cyclophosphamide, and alemtuzumab, was found to show efficacy in this patient population.2
CD22 is an FDA-approved therapeutic target in B-cell ALL. UCART22 is an immediately available, standardized, manufactured agent with the ability to re-dose, and its CAR expression redirects T cells to tumor antigens, Jain explained.
Moreover, through its mechanism of action, TRAC becomes disrupted using Transcription activator-like effector nucleases (Talen) technology to eliminate TCR from cell surface and reduce the risk of GVHD. CD52 is also disrupted with the use of Talen to eliminate sensitivity to lymphodepletion with alemtuzumab. Finally, there is a CD20 mimotope for rituximab (Rituxan) as a safety switch, Jain added.
UCART22 has also demonstrated in vivo antitumor activity in immune-compromised mice that were engrafted with CD22-positive Burkitt lymphoma cells in a dose-dependent manner.
In the dose-escalation/dose-expansion BALLI-01 study, investigators are enrolling up to 30 patients in a modified Toxicity Probability Interval design. There are 3 cohorts, which have 2 to 4 patients on each cohort: 1 x 105 cells/kg (dose level 1), 1 x 106 cells/kg (dose level 2), and 5 x 106 cells/kg. The focus of the dose-escalation phase of the trial was to determine the maximum-tolerated dose (MTD) and the recommended phase 2 dose (RP2D) before heading into the dose-expansion portion of the trial.
To be eligible for enrollment, patients must have been between 18 and 70 years old, have acceptable organ function, an ECOG performance status of 0 or 1, at least 90% of B-cell ALL blast CD22 expression, and had previously received at least 1 standard chemotherapy regimen and at least 1 salvage regimen.
End points of the trial included safety and tolerability, MTD/R2PD, investigator-assessed response, immune reconstitution, and UCART22 expansion and persistence.
The lymphodepletion regimens were comprised of fludarabine (at 30 mg/m2 x 4 days) plus cyclophosphamide (1 g/m2 x 3 days); the study has since been amended to include the regimen of fludarabine (at 30 mg/m2 x 3 days), cyclophosphamide (500 g/m2 x 3 days), and alemtuzumab (20 mg/day x 3 days) and is currently enrolling patients.
Following screening, lymphodepletion, and UCART22 infusion, patients underwent an observation period for DLTs with a primary disease evaluation at 28 days; additional efficacy evaluations occurred at 56 days and 84 days. Patients were followed for 2 years and continued to be assessed for long-term follow-up.
As of July 1, 2020, 7 patients were screened, of which 1 patient failed and 6 were therefore enrolled on the study. One patient discontinued therapy before receiving UCART22 due to hypoxia from pneumonitis that was linked with lymphodepletion. Five patients were treated with UCART22 at dose level 1 (n = 3) and dose level 2 (n = 2).
The median age of participants was 24 years (range, 22-52), 3 of the 5 patients were male, and 3 had an ECOG performance status of 0. The median number of prior therapies was 3 (range, 2-6), and there were a median 35% bone marrow blasts (range, 10%-78%) prior to lymphodepletion.
Three patients had complex karyotype and 2 had diploid cytogenetics. One patient each had the following molecular abnormalities: CRLF2, CRLF2 and JAK2, CDKN2A loss, KRAS and PTPN11, and IKZF1. Only 1 patient had undergone haploidentical transplant. Four patients previously received prior CD19- or CD22-directed therapy, including blinatumomab (Blincyto), inotuzumab ozogamicin (Besponsa), and CD19-directed CAR T-cell therapy. At study entry, 3 patients had refractory disease and 2 patients had relapsed disease.
Grade 3 or higher treatment-emergent AEs (TEAEs), which were unrelated to study treatment, included hypokalemia, anemia, increased bilirubin, and acute hypoxic respiratory failure. Also not related to UCART22, 3 patients experienced 4 treatment-emergent SAEs: porta-hepatis hematoma, sepsis, bleeding, and sepsis in the context of disease progression. No treatment discontinuations due to a treatment-related TEAE were reported.
The patient who achieved a CR followed by transplant was a 22-year-old male who had undergone 2 prior treatments for B-cell ALL and received UCART22 at a dose of 1 x 105 cells/kg. He did not experience CRS, ICANS, GVHD, nor a SAE, and all TEAEs were grade 1.
Jain also noted that host T-cell constitution was observed in all patients within the DLT observation period. UCART22 was also not detectable through flow cytometry or molecular analysis, the latter of which was at dose level 1 only.
References
1. Jain N, Roboz GJ, Konopleva M, et al. Preliminary results of BALLI-O1: a phase I study of UCART22 (allogeneic engineered T cells expressing anti-CD22 chimeric antigen receptor) in adult patients with relapsed/refractory anti-CD22+ B-cell acute lymphoblastic leukemia (NCT04150497). Presented at: 2020 ASH Annual Meeting and Exposition; December 4-8, 2020; Virtual. Abstract 163.
2. Benjamin R, Graham C, Yallop D, et al. Preliminary data on safety, cellular kinetics and anti-leukemic activity of UCART19, an allogeneic anti-CD19 CAR T-cell product, in a pool of adult and pediatric patients with high-risk CD19+ relapsed/refractory b-cell acute lymphoblastic leukemia. Blood. 2018;132(suppl 1):896. doi:10.1182/blood-2018-99-111356
Go here to see the original:
UCART22 Safe and Active in CD22-Expressing B-Cell ALLs - Targeted Oncology
How to Minimize Inflammation and Prevent Your Skin from Inflammaging – Coveteur
By daniellenierenberg
Were all familiar with the usual culprits that lead to skin aging, like not wearing a daily SPF, smoking, lack of hydration, genetics, stress, etc. But in the realm of internal and external factors that can zap your skin of its youthful bounce and glow, theres one important factor that isnt discussed nearly enough: inflammation.
While you might think of this condition only as it relates to a sprained ankle or a particularly aggressive zit, inflammation actually touches our daily lives in a multitude of ways. Its the result of those well-known aging factors (again, like stress and UV rays), but its not always a singular response, like redness or irritation. Says board-certified dermatologist Dr. Joshua Zeichner, Inflammation leads to free-radical damage in the skin, activation of matrix metalloproteinases, and [recruitment of] inflammatory blood cells. Collectively, this leads to damage to skin cells themselves along with destruction of supporting tissue like collagen and elastin. This explains why chronic inflammation can lead to weakening of the skin, premature wrinkling, and sagging.
Brands are starting to take note of how inflammation plays a central role in the aging process, particularly as it relates to the look and feel of our skin, and have dubbed this sequence of events as inflammaging. The beauty industry loves a trendy marketing term, sure, but in this case, there is some real data to back it up.
As Amir Nobakht, MD, MBA, and co-founder of Heraux, explains, Inflammation is supposed to be a temporary response to stress, activating stem cells to regenerate the skin after stress and injuries. However, if inflammation persists, the increased burden on stem cells accelerates the aging process as they are constantly in overdrive. This link between chronic inflammation and aging is referred to as inflammaging.
Together with his business partner Ben Van Handel, PhD, and a stem cell biologist at the University of Southern California, they founded their brand Heraux (which consists of a singular targeted serum with their proprietary molecule, HX-1) to address the signs and symptoms of this detrimental process and modulate the inflammatory pathway in the skin. Full disclosure: This editor has used their serum for as long as its been available, with no plans to stop anytime soon.
So why is this inflammation issue notable if you already know that things like smoking and tanning are bad for you? Well, unfortunately, inflammation is a rather stealthy foe, which can pop up in your skin without any visible indication that its happening. Dr. Nobakht emphasizes, Once [inflammation] is visible on the skin, that indicates a more severe response. This can include redness, rough texture, irritation, and even a burning sensation (think post-sunburn). Again, your skin is experiencing inflammation by its very nature as a barrier between the external and internal in our body. Inflammaging occurs when your skins ability to buffer inflammation is exceeded by the stressors present.
Essentially, the aging process is a slow, silent onethis we knowbut is exacerbated and accelerated by all the choices we make and the inflammatory responses they generate. Once your skin has weathered years and years of this type of inflammation, your defenses are weakened, and those signs of aging, like fine lines, hyperpigmentation, and sagging, inevitably appear.
As bleak as this may sound, there are things you can do to help slow the overall inflammaging progression and prevent premature signs of skin aging. Dr. Zeichner recommends a healthy lifestyle with a balanced diet and plenty of exercise to start, followed by a skin-care routine that incorporates daily sunscreen, gentle cleansers, antioxidant-rich products (think of antioxidants like fire extinguishers that put out inflammation caused by free radicals), a generous helping of moisturizer (particularly at night), and products that promote collagen production like retinoids and bakuchiol.
Advertisement
See original here:
How to Minimize Inflammation and Prevent Your Skin from Inflammaging - Coveteur
Reversing vision loss by turning back the aging clock – FierceBiotech
By daniellenierenberg
Aging has implications for a wide range of diseases. Researchers have been looking for ways to halt the aging process for millennia, but such methods remain elusive. Scientists at Harvard Medical School have now offered a glimmer of hope that the aging clock in the eye could be reversedat least in animals.
By reprogramming the expression of three genes, the Harvard team successfully triggered mature nerve cells in mice eyes to adopt a youthful state. The method reversed glaucoma in the mice and reversed age-related vision loss in elderly mice, according to results published in Nature.
Accelerate Biologics, Gene and Cell Therapy Product Development partnering with GenScript ProBio
GenScript ProBio is the bio-pharmaceutical CDMO segment of the worlds leading biotech company GenScript, proactively providing end-to-end service from drug discovery to commercialization with professional solutions and efficient processes to accelerate drug development for customers.
If further studies prove out the concept, they could pave the way for therapies that employ the same approach to repair damagein other organs and possibly treat age-related diseases in humans, the team said.
The researchers focused on the Yamanaka factors, which are four transcription factorsOct4, Sox2, Klf4 and c-Myc. In a Nobel Prize-winning discovery, Shinya Yamanaka found that the factors can change the epigenomehow genes are turned on or offand can thereby transform mature cellsback to a stem cell-like state. It has been hypothesized that changes to the epigenome drive cell aging, especially a process called DNA methylation, by which methyl groups are tagged onto DNA.
Past researches have tried to use the four Yamanaka factorsto turn back the age clock in living animals, but doing so caused cells to adopt unwanted new identities and induced tumor growth.
RELATED:Restoring eyesight with genetically engineered stem cells
To test whether the approach works in living animals, the scientists used adeno-associated virus to deliver the three genes into the retina of mice with optic nerve injuries. The treatment led to a two-fold increase in the number of retinal ganglion cells, which are neurons responsible for receiving and transmitting visual information. Further analysis showed that the injury accelerated DNA methylation age, while the gene cocktail counteracted that effect.
Next the scientists tested whether the gene therapy could also work in disease settings. In a mouse model of induced glaucomawhich is a leading cause of age-related blindness in peoplethe treatment increased nerve cell electrical activity and the animals visual acuity.
But can the therapy also restore vision loss caused by natural aging? In elderly, 12-month-old mice, the gene therapy also restored ganglion cells electrical activity as well as visual acuity, the team reported.
By comparing cells from the treated micewith retinal ganglion cells from young, 5-month-old mice, the researchers found that mRNA levels of 464 genes were altered during aging, and the gene therapy reversed 90% of those changes. The scientists also noticed reversed patterns of DNA methylation, which suggests that DNA methylation is not just the marker but rather the driver behind aging.
What this tells us is the clock doesn't just represent timeit is time. If you wind the hands of the clock back, time also goes backward, the studys senior author, David Sinclair, explained in a statement.
The study marks the first time that glaucoma-induced vision loss was reversednot just slowedin living animals, according to the team.
RELATED:Reprogrammed skin cells restore sight in mouse models of retinal disease
Other researchers are also studying regenerative approaches to treating eye diseases. A research group at the Centre for Genomic Regulation in Barcelona just showed that by modifying mesenchymal stem cells to express chemokine receptors Ccr5 and Cxcr6, retinal tissue could be saved from degeneration.
The idea of reversing age-related decline in humans by epigenetic reprogramming with a gene therapy is exciting, Sinclair said. The Harvard researchers intend to do more animal work that could allow them to start clinical trials in people with glaucoma in about two years.
Our study demonstrates that it's possible to safely reverse the age of complex tissues such as the retina and restore its youthful biological function, Sinclair said. If affirmed through further studies, these findings could be transformative for the care of age-related vision diseases like glaucoma and to the fields of biology and medical therapeutics for disease at large.
Read more from the original source:
Reversing vision loss by turning back the aging clock - FierceBiotech
Clinical Trials Offer Opportunities to Change Practice to Improve Prevention and Treatment of Blood Disorders – PRNewswire
By daniellenierenberg
WASHINGTON, Dec. 4, 2020 /PRNewswire/ --Four studies being presented during the 62nd American Society of Hematology (ASH) Annual Meeting and Exposition present opportunities to improve care for patients with a variety of blood disorders. Together, the studies provide support for new clinical approaches such as alternate treatment delivery methods, updated uses for existing therapies, and earlier referrals to specialty care.
"These are very practical trials with real-world implications," said press briefing moderator Lisa Hicks, MD, of St. Michael's Hospital and the University of Toronto. "They address important questions relevant to everyday practice in the clinic."
The first study supports administering the monoclonal antibody daratumumab for multiple myeloma via a quick injection instead of an intravenous infusion, an approach that could save significant time for patients and clinics.
The second study found that, despite being routinely used in practice, the clot stabilizer tranexamic acid does not prevent bleeding when used prophylactically for patients undergoing treatment for blood cancers, although it leaves open the possibility that the drug may be an effective treatment for these patients when bleeding occurs.
The third study reports the drug ruxolitinib can offer relief for patients with chronic graft-versus-host disease (GVHD) after a stem cell transplant, suggesting ruxolitinib is a viable second-line treatment for patients whose symptoms are not fully resolved with corticosteroids.
Finally, the fourth study supports referring older patients with myelodysplastic syndromes to transplant centers for allogeneic hematopoietic cell transplantation, an important shift from current practice that could offer many more patients the potential for a cure.
This press briefing will take place on Friday, December 4, at 9:30 a.m. Pacific time on the ASH annual meeting virtual platform.
Study Bolsters Case for Delivering Daratumumab Subcutaneously for Multiple Myeloma412: Apollo: Phase 3 Randomized Study of Subcutaneous Daratumumab Plus Pomalidomide and Dexamethasone (D-Pd) Versus Pomalidomide and Dexamethasone (Pd) Alone in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM)
A new study suggests the monoclonal antibody daratumumab has similar benefits when delivered via subcutaneous injection as it does when delivered intravenously to individuals with multiple myeloma which persists or recurs after first-line treatments. Patients given subcutaneous daratumumab along with the immunomodulator pomalidomide and the anti-inflammatory steroid dexamethasone were 37% less likely to die or have their disease worsen compared to patients who received pomalidomide and dexamethasone alone in the phase III trial.
"This is an effective combination with a predictable safety profile that allows for the use of subcutaneous daratumumab along with oral pomalidomide and dexamethasone for patients who have received at least one prior line of therapy that included lenalidomide and a proteasome inhibitor," said senior study authorMeletios A. Dimopoulos, MD,of National and Kapodistrian University of Athens in Athens, Greece. "Subcutaneous daratumumab is much easier for the patient and reduces the time they need to spend at the outpatient chemotherapy unit."
The combination of intravenous daratumumab and pomalidomide with dexamethasone has been widely adopted in the U.S. as a second-line therapy for patients whose multiple myeloma does not respond durably to lenalidomide and proteasome inhibitors. However, delivering daratumumab intravenously typically requires patients to spend a full day at the clinic for each infusion. Administering the therapy via a five-minute subcutaneous injection can substantially reduce the burden for patients and clinics, Dr. Dimopoulos said.
The researchers enrolled 304 patients in 12 European countries. Half were randomly assigned to receive daratumumab plus pomalidomide with dexamethasone and half only received pomalidomide with dexamethasone. Patients underwent 28-day treatment cycles until their disease worsened or they experienced unacceptable side effects.
About one-third of patients died during the trial's median follow-up period of about 17 months. The study met its primary endpoint, showing a significantly higher rate of progression-free survival at 12 months among patients receiving the combination therapy. Participants receiving the daratumumab-pomalidomide combination were treated for a median of nearly 12 months, substantially longer than the median treatment duration of less than seven months among those receiving pomalidomide alone.
Patients receiving daratumumab experienced adverse events at a rate consistent with previous studies, raising no new safety concerns. Dr. Dimopoulos said the findings suggest the combination therapy can be a good option for patients who have not experienced lasting benefits from lenalidomide and proteasome inhibitors, particularly those whose cancer is resistant to lenalidomide. He noted that the study suggested a slight trend toward increased survival in the daratumumab arm, but additional follow-up is necessary to assess any survival benefit.
Meletios A. Dimopoulos, MD,National and Kapodistrian University of Athens, will present this study in an oral presentation on Sunday, December 6, at 12:00 noon Pacific time on the ASH annual meeting virtual platform.
Tranexamic Acid Not Found to Prevent Bleeding in Patients with Blood Cancers 2: Effects of Tranexamic Acid Prophylaxis on Bleeding Outcomes in Hematologic Malignancy: The A-TREAT Trial
The clot stabilizer tranexamic acid performed no better than placebo when administered prophylactically to prevent bleeding in patients with blood cancers who also received routine prophylactic platelet transfusions. Researchers cautioned that the study's focus is different from other situations in which tranexamic acid has been found effective, such as its use in treating bleeding related to childbirth, surgery, or inherited blood disorders.
"Clearly patients with low platelet counts and blood cancers have a different kind of bleeding than the bleeding experienced by patients who have suffered some kind of trauma or surgery," said senior study author Terry B. Gernsheimer, MD, of the University of Washington School of Medicine. "Their bleeding likely is due to endothelial damage damage to the lining of blood vessels that tranexamic acid would not treat. To prevent bleeding in these patients, we may need to look at ways to speed the healing of the endothelium that occurs with chemotherapy, radiation, and graft-versus-host disease in patients receiving a transplant."
Between 48% and 70% of patients undergoing treatment for blood cancers experience bleeding complications of World Health Organization grade 2 or higher. Though not life-threatening, grade 2 bleeding for example, a nosebleed lasting more than 30 minutes can be concerning. Bleeding of grade 3 or 4 can be life-threatening and warrant blood transfusions. Most patients undergoing treatment for blood cancers are routinely given platelet transfusions to prevent bleeding, but many continue to experience bleeding episodes, nevertheless.
Tranexamic acid works by slowing the process by which blood clots naturally break down. To determine whether tranexamic acid could help to further reduce bleeding in these patients, the researchers enrolled 327 patients undergoing treatment for blood cancers at three U.S. medical centers. Half were randomly assigned to receive tranexamic acid and half received a placebo, administered either orally or intravenously three times a day until they recovered their platelet count, or for up to 30 days. Researchers regularly followed up with participants to assess bleeding events both in and outside of the hospital.
The results revealed no significant differences among the study groups in terms of the number of bleeding events, the number of red blood cell transfusions, or the number of platelet transfusions patients required during the treatment period and for up to 14 days afterward. Patients receiving tranexamic acid had a significantly higher rate of occlusions in their central venous line (a catheter placed in a large vein commonly used for delivering cancer drugs) which required clearing with a clot-dissolving drug, but there was no difference in the occurrence of clots in patients' veins or arteries.
Dr. Gernsheimer noted that other studies could help elucidate whether the drug may be helpful for specific subgroups of patients with blood cancers or as a treatment for bleeding, rather than as a preventive measure in these patients. It may also be useful to prevent or treat bleeding in patients with other causes of low platelet counts.
Terry B. Gernsheimer, MD, University of Washington School of Medicine, will present this study in a plenary presentation on Sunday, December 6, 2020 at 7:00 a.m. Pacific time on the ASH annual meeting virtual platform.
Researchers Report First Successful Second-Line Treatment for Chronic Graft-Versus-Host Disease77: Ruxolitinib (RUX) Vs Best Available Therapy (BAT) in Patients with Steroid- Refractory/Steroid-Dependent Chronic Graft-Vs-Host Disease (cGVHD): Primary Findings from the Phase 3, Randomized REACH3 Study
The drug ruxolitinib brought relief from the debilitating effects of chronic graft-versus-host disease (GVHD) at twice the rate of the best available therapy in a phase III trial. The findings represent a major step forward for patients with chronic GVHD that is not resolved by taking corticosteroids, said researchers. There is currently no approved second-line therapy for chronic forms of the disease.
"This is the first multicenter randomized controlled trial for chronic, steroid-refractory or steroid-dependent GVHD that is positive," said senior study authorRobert Zeiser, PhD,of University Medical Center, Freiburg Im Breisgau, Germany. "It shows a significant advantage for ruxolitinib. It is likely that this trial will lead to approval for this indication and change the guidelines for the treatment of this disease."
GVHD is a complication of allogeneic hematopoietic (stem) cell transplantation, a therapy used to treat blood cancers. It occurs when T cells (the graft) received from a donor through the transplant see the patient's healthy cells and tissue (the host) as foreign and start to attack them. Roughly half of patients undergoing a stem cell transplant develop GVHD. About half of these patients are able to resolve their symptoms with a temporary course of corticosteroids, a class of drugs that lower inflammation in the body. The remaining patients either do not respond to steroids, cannot take them, or must take them continuously to stave off symptoms.
Ruxolitinib is designed to block a molecular signal involved in triggering inflammation. A previous trial, REACH2, found that ruxolitinib offered benefits for patients with acute GVHD, a severe form of GVHD with a mortality rate of 80%. The new trial, REACH3, aimed to determine whether the drug could bring similar benefits for the much larger number of patients affected by chronic GVHD. While chronic GVHD is not nearly as deadly as acute GVHD, its symptoms, which include weight loss, skin stiffness, and multiple disabilities, can severely and permanently affect patients' quality of life.
Researchers enrolled 329 patients with moderate-to-severe chronic GVHD. Half were randomly assigned to receive ruxolitinib for six 28-day cycles. The other half received one of nine alternative treatments, representing the best available therapy, at the discretion of their physician. At the end of the six treatment cycles, researchers assessed symptoms of 125 patients who had completed the full course of treatment to which they were assigned.
The trial met its primary endpoint, showing a clear and substantial improvement in the overall response to treatment among patients taking ruxolitinib. Of the 125 patients assessed, 50% of those receiving ruxolitinib had at least some reduction in symptoms, compared to only 25% among those receiving best available therapy. Seven percent of those taking ruxolitinib saw their symptoms resolve completely, compared to only 3% among those receiving best available therapy.
Participants in both arms of the study experienced similar rates of adverse events, which aligned with the health challenges commonly faced by patients with chronic GVHD, suggesting ruxolitinib has an acceptable safety profile in these patients, according to Dr. Zeiser.
Robert Zeiser, PhD, University Medical Center, Freiburg Im Breisgau, Germany, will present this study in an oral presentation on Saturday, December 5, at 8:00 a.m. Pacific time on the ASH annual meeting virtual platform.
Curative Transplant Improves Survival for Older Adults with Myelodysplastic Syndrome75: A Multi-Center Biologic Assignment Trial Comparing Reduced Intensity Allogeneic Hematopoietic Cell Transplantation to Hypomethylating Therapy or Best Supportive Care in Patients Aged 50-75 with Advanced Myelodysplastic Syndrome: Blood and Marrow Transplant Clinical Trials Network Study 1102
Allogeneic hematopoietic cell transplantation nearly doubled the rate of survival among patients 50 to 75 years old with myelodysplastic syndrome (MDS) in a trial conducted by the Blood and Marrow Transplant Clinical Trials Network. Despite being the only known cure for MDS, this therapy is typically only offered to younger patients because its benefits for older adults have not previously been proven. Researchers say the study offers the most definitive evidence to date that this type of stem cell transplantation significantly improves the outlook for older adults who would otherwise face a high likelihood of dying.
"Transplantation has been underutilized, historically, in this patient group," said senior study author Corey Cutler, MD, MPH,of Dana-Farber Cancer Institute. "Based on our findings, all patients should at least be referred to a transplant center so that those who are eligible and who have a suitable donor can undergo transplant and have better survival. It is important to refer these patients early so that the transplant center can work on finding an optimal donor right from the get-go."
Allogeneic hematopoietic (stem) cell transplantation is a process to replace a recipient's stem cells and immune system with cells from a healthy donor. It is the only known method to cure patients with MDS. The Centers for Medicare and Medicaid Services (CMS) covers transplantation for MDS as part of a Coverage with Evidence Development program. CMS approved the design of the trial and is expected to consider the findings when determining future payment policies.
Researchers from the Blood and Marrow Transplant Clinical Trials Network enrolled 384 patients treated for MDS at 34 U.S. medical centers. Patients were referred to transplant centers, which searched for suitable stem cell donors. The 260 patients who were matched with a donor within 90 days were assigned to receive a stem cell transplant; the other 124 patients with no suitable donor received standard supportive care. Participants were followed for roughly three years from their date of enrollment.
Overall survival was much higher in patients assigned to receive a stem cell transplant (47.9%) compared to those who were not (26.6%) at three years from treatment assignment. Leukemia-free survival was also higher in those assigned to receive a transplant (35.8%) than those who were not (20.6%). The researchers observed no significant differences among subgroups and no differences in quality of life between the two study arms.
Dr. Cutler noted that starting the transplantation process as early as possible can increase a patient's chance of finding a suitable donor and successfully proceeding with a transplant.
This study was co-funded by the National, Heart, Lung and Blood Institute (NHLBI) and the National Cancer Institute (NCI), both part of the National Institutes of Health.
Corey Cutler, MD, MPH, Dana-Farber Cancer Institute, will present this study in an oral presentation on Saturday, December 5, at 7:30 a.m. Pacific time on the ASH annual meeting virtual platform.
Additional press briefings will take place throughout the meeting on health disparities, genome editing and cellular therapy, COVID-19, and late-breaking abstracts. For the complete annual meeting program and abstracts, visit http://www.hematology.org/annual-meeting. Follow ASH and #ASH20 on Twitter, Instagram, LinkedIn, and Facebook for the most up-to-date information about the 2020 ASH Annual Meeting.
The American Society of Hematology (ASH) (www.hematology.org) is the world's largest professional society of hematologists dedicated to furthering the understanding, diagnosis, treatment, and prevention of disorders affecting the blood. For more than 60 years, the Society has led the development of hematology as a discipline by promoting research, patient care, education, training, and advocacy in hematology. ASH publishes Blood (www.bloodjournal.org), the most cited peer-reviewed publication in the field, and Blood Advances (www.bloodadvances.org), an online, peer-reviewed open-access journal.
SOURCE American Society of Hematology