Cells Reach Out and Touch, Providing Evidence of Foresight and Design – Discovery Institute
By daniellenierenberg
Photo: Cichlid fish, by Russell D. Fernald and Sabrina S. Burmeister / CC BY (https://creativecommons.org/licenses/by/2.5).
Anarticle yesterdayforEvolution Newsabout allostery showed how an individual protein or RNA can send information to its distant domains. Information sharing can also occur between chains of molecules arranged in a signaling cascade, where each one triggers action in the next. This is a bit more like the Rube Goldberg technique, except that in cells, it is much more logical and reliable. Here are new examples ofmechanosensing(the ability to sense a touch) andmechanotransduction(the ability to pass on touch information). A paper onbioRxivexplains, Cells sense the physical properties of their environment, translate them into biochemical signals and adapt their behaviour accordingly.
One such system is the MAPK/ERK pathway that all eukaryotic cells use to get information from the cell surface into the nucleus. A diagram onWikipedias page makes it clear that many individual factors take part. Once the EGFR receptor triggers ERK on the cells exterior membrane, a signaling cascade begins with at least 16 cofactors and proteins transporting the information to the cell nucleus, which responds by transcribing code proteins or enzymes. ERK signals can also spread throughout the cytoplasm, leading to a variety of responses depending on the nature of the triggering molecule.
Now, Japanese scientists have noticed a further response in neighboring cells. When one cells ERK pathway is triggered, that cell shrinks. Neighboring cells sense the change and respond by shrinking themselves, causing a chain reaction.Researchers at Kyoto Universitylikened this to how crowds do The Wave at sporting arenas, passing collective motion throughout the stadium.
Cells are tightly connected and packed together, so when one starts contracting from ERK activation, it pulls in its neighbors, elaborates [Tsuyoshi] Hirashima. This then caused surrounding cells to extend, activating their ERK, resulting in contractions thatlead to a kind of tug-of-war propagating into colony movement.[Emphasis added.]
The response involves both chemical and mechanical factors. Our work clearly shows that the ERK-mediatedmechano-chemical feedback systemgenerates complicated multicellular patterns, the lead author comments.
Another touch-sensitive mechanism is the so-called Hedgehog (Hh) pathway, so named because defects in its function cause fruit fly embryos to look like the spiny animals. Hedgehog pathways are often associated with the primary cilium, an organelle that sticks out like an antenna from the cell membrane and senses its environment. When triggered, it also causes a cascade of reactions inside the cell.
Craig Albertson, a researcher at theUniversity of Massachusetts, Amherstwas curious why cichlid fish can evolve so quickly to environmental changes, including changing the shapes and densities of bone in their jaws. This capacity for phenotypic plasticity is not evolution of a Darwinian kind, but rather a programmed response to environmental cues.
Albertson works with a system cichlid fishes known throughout the scientific world as champions of phenotypic plasticity thatcan alter, in a single season, jawbone hardness or shape to match feeding conditions.They are also well known for their rapid evolution and diversity in jaw shapes, which hasenabled cichlids to adapt to many different food sources, including algae, plankton, fish, snails and even the scales of other fishes.
Albertson speculated that this capacity for rapid response to environmental cues might be associated with the Hedgehog signaling pathway. By tuning the amount of Hh signal, his research team discovered that more bone was deposited, or vice versa.
Albertson, explains, Bone cells in these fish are innatelysensitive to differentmechanical environments. But we were able to play with this system using a single molecular switch you turn up the Hh signal and the cells become more sensitive to the environment, or you turn the molecular sensor down and the cells become almost deaf to the environment.
Like ERK, the Hedgehog signaling pathway involves numerous factors that interact in chain reactions. And it is triggered by a mechano-sensor on the cell, the primary cilium.
An important clue came as Albertson learned more about how this molecular pathway works. He explains, There isa well-known mechano-sensor on most cells, including those that make the skeleton, called the primary cilium. Cells that lack this organelle are unable to sense or respond to environmental input, includingmechanical load.It turns out that several key protein components of the Hedgehog pathway are physically associated with this structure, making it an obvious candidate for an environmentally sensitive signal.
The team believes this kind of response to environmental cues could be responsible for other kinds of rapid evolution in other animals. The Hh signal has also been shown to regulate plasticity inbeetle horns, so there may be something special that positions it to be anenvironmental sensor across tissues and animals, Albertson says. This is not Darwinism; it is pre-programmed response using molecular machines capable of sensing touch.
How does skin stretch when a body grows? The answers may rely on mechanosensitive factors.Nature News and Views said recently, Stretching the skin of mice reveals thatmechanical strain is communicated by a subpopulation of stem cellsthat proliferate and promote mechanical resistance,and so generate extra skin.
One of the most remarkable examples of touch communication was announced this month inNature. Researchers at theUniversity of Montrealconfirmed the existence of nanotubes that grow out of cell membranes and reach across comparatively large distances to touch other cells, affect their behaviors, and even share organelles with them. They found these nanotubes in the retinas of mice, and believe they are responsible for controlling blood flow in the capillaries.
For the first time, we have identifieda communication structure between cellsthat is required to coordinate blood supply in the living retina, said Dr. Adriana Di Polo, a neuroscience professor at Universit de Montral and holder of a Canada Research Chair in glaucoma and age-related neurodegeneration, who supervised the study.
We already knew that activated retinal areas receive more blood than non-activated ones, she said, butuntil now no one understood how this essential blood delivery was finely regulated.
These nanotubes tunnel through the mass of retinal cells to distant capillaries, where they contact pericytes, cells that have the ability to control the amount of blood passing through a single capillary simply by squeezing and releasing it. This touch communication allows a retinal cell to tell the capillary it needs more blood or less blood.
Using a microscopy technique to visualize vascular changes in living mice, we showed that pericytes project very thin tubes, calledinter-pericyte tunnelling nanotubes, tocommunicate with other pericytes located in distant capillaries, said Alarcon-Martinez. Through these nanotubes,the pericytes can talk to each other to deliver blood where it is most needed.
Video micrographs show that even mitochondria can be passed down these nanotubes. The paper inNaturesays:
Here we identify nanotube-like processes that connect two bona fide pericytes on separate capillary systems, forming a functional network in the mouse retina, which we named interpericyte tunnelling nanotubes (IP-TNTs). We provide evidence that these (i) have an open-ended proximal side and a closed-ended terminal (end-foot) that connects with distal pericyte processes via gap junctions, (ii)carry organelles including mitochondria, which can travelalong these processes, and (iii) serve as a conduit for intercellular Ca2+waves, thusmediating communication between pericytes.
The cells literally reach out and touch other pericytes bound to other capillaries, and hand off signals and organelles. This gives the retinal cells, dependent on a steady supply of oxygen and nutrients, a way to fine-tune their own blood supply. The gap junctions act like filters: Small particles, such as ions, can pass through this junction, but larger objects, such as organelles, cannot. Tunneling nanotubes had been noted between cells in a petri dish before, but a companion article onNature News and Viewscalls this the firstin vivoevidence for the existence of a type of TNT-like protrusion. Maybe it wont be the first for long. The research teams headline calls them, Nanotubes in the eye that help us see.
These are just some of the ways that cells respond to mechanical forces. The chains of reactions can be very elaborate and irreducibly complex. But first, they have to be triggered by well-designed mechanosensors that can feel a factor in the environment and then pass along that information to downstream processes that can do something about it. Undoubtedly many more examples of mechanosensing and mechanotransduction remain to be discovered. Its hard to conceive of any of these systems arising piecemeal by accumulated mistakes (mutations).
Instead, they appear as systems of coordinated parts that were planned to adapt to changes, providing robustness. It is exciting to ponder how such pre-programmed responses to environmental cues could trigger rapid adaptations, giving rise to some of the spectacular variations seen in birds, beetles, fish, and other organisms. Prematurely attributed to Darwinian processes, these examples of phenotypic plasticity actually show foresight and design.
Read more from the original source:
Cells Reach Out and Touch, Providing Evidence of Foresight and Design - Discovery Institute
Mike Tyson reveals all after doctors gave him blood injection that left him feeling weird during stem cell t – The Irish Sun
By daniellenierenberg
MIKE TYSON has revealed he was injected with nearly-translucent blood in his bid to make a comeback... and the former heavyweight champ said it made him feel "weird".
The 54-year-old - who initially retired from boxing in 2005 - will fight Roy Jones Jr in November in his eagerly-anticipated comeback fight.
2
His return to action has been aided by stem-cell research therapy, which has left him feeling like a "different person".
In May, Tyson claimed: "You know what I had done? I had stem-cell research therapy.
"I feel like a different person but I can't comprehend why I feel this way.
"It's really wild what scientists can do."
Stem-cell therapy is the use of stem cells to treat or prevent a disease or condition that usually takes the form of a bone marrow transplantation.
Tyson opened up on the effects the treatment has had on him in an recent interview with rapper LL Cool J on the Rock the Bells Radio show on SiriusXM, earlier in 2020.
Commenting on the mental aspect of training for a fight for the first time in 15 years, he said: "My mind wouldnt belong to me.
"My mind would belong to somebody that disliked me enough to break my soul, and I would give them my mind for that period of time.
"Six weeks of this and Id be in the best shape Ive ever dreamed of being in. As a matter of fact, Im going through that process right now. And you know what else I did, I did stem-cell research."
Tyson was then asked whether that meant if his white blood had been spun and then put back in, to which he replied: "Yes. As they took the blood it was red and when it came back it was almost transfluid (sic).
"I could almost see through the blood, and then they injected it in me.
"And Ive been weird ever since, Ive got to get balanced now."
2
Exclusive
BOIS POISEDDubois confident he can take over soon after shock KOs for Joshua and Whyte
HALl-MARKHow Eddie Hall is transforming into boxer for Thor fight with intense training
WEIGH TO GOConor Benn tips 'animal' Vergil Ortiz to surpass Spence and Crawford
NOT FINE WITH ITDelfine Persoon now claims she deserved to beat Katie Taylor
BROTHERLY GLOVETyson Fury tips Tommy to go 'all the way' as brothers share training vid
FUR SUREDubois tips Fury to beat Joshua having sparred with BOTH heavyweight champs
WHAT IS STEM CELL TREATMENT USED FOR?
Stem cell transplants are carried out when bone marrow is damaged or isnt able to produce healthy blood cells.
It can also be used to replace damaged blood cells as the result of intensive cancer treatment.
Here are conditions that stem cell transplants can be used to treat:
Iron Mike had been called out by former rival Evander Holyfield to complete their trilogy following their two meetings in 1990s.
But he has since looked elsewhere, taking on Jones Jr later this year - potentially in front of a packed house.
Tyson is looking in incredible condition, too as he continues this hard graft.
Continued here:
Mike Tyson reveals all after doctors gave him blood injection that left him feeling weird during stem cell t - The Irish Sun
Genetic mutations may be linked to infertility, early menopause – Washington University School of Medicine in St. Louis
By daniellenierenberg
Visit the News Hub
Gene in fruit flies, worms, zebrafish, mice and people may help explain some fertility issues
Researchers at Washington University School of Medicine in St. Louis have identified a gene that plays an important role in fertility across multiple species. Pictured is a normal fruit fly ovary (left) and a fruit fly ovary with this gene dialed down (right). Male and female animals missing this gene had substantially defective reproductive organs. The study could have implications for understanding human infertility and early menopause.
A new study from Washington University School of Medicine in St. Louis identifies a specific genes previously unknown role in fertility. When the gene is missing in fruit flies, roundworms, zebrafish and mice, the animals are infertile or lose their fertility unusually early but appear otherwise healthy. Analyzing genetic data in people, the researchers found an association between mutations in this gene and early menopause.
The study appears Aug. 28 in the journal Science Advances.
The human gene called nuclear envelope membrane protein 1 (NEMP1) is not widely studied. In animals, mutations in the equivalent gene had been linked to impaired eye development in frogs.
The researchers who made the new discovery were not trying to study fertility at all. Rather, they were using genetic techniques to find genes involved with eye development in the early embryos of fruit flies.
We blocked some gene expression in fruit flies but found that their eyes were fine, said senior author Helen McNeill, PhD, the Larry J. Shapiro and Carol-Ann Uetake-Shapiro Professor and a BJC Investigator at the School of Medicine. So, we started trying to figure out what other problems these animals might have. They appeared healthy, but to our surprise, it turned out they were completely sterile. We found they had substantially defective reproductive organs.
Though it varied a bit by species, males and females both had fertility problems when missing this gene. And in females, the researchers found that the envelope that contains the eggs nucleus the vital compartment that holds half of an organisms chromosomes looked like a floppy balloon.
This gene is expressed throughout the body, but we didnt see this floppy balloon structure in the nuclei of any other cells, said McNeill, also a professor of developmental biology. That was a hint wed stumbled across a gene that has a specific role in fertility. We saw the impact first in flies, but we knew the proteins are shared across species. With a group of wonderful collaborators, we also knocked this gene out in worms, zebrafish and mice. Its so exciting to see that this protein that is present in many cells throughout the body has such a specific role in fertility. Its not a huge leap to suspect it has a role in people as well.
To study this floppy balloon-like nuclear envelope, the researchers used a technique called atomic force microscopy to poke a needle into the cells, first penetrating the outer membrane and then the nucleuss membrane. The amount of force required to penetrate the membranes gives scientists a measure of their stiffness. While the outer membrane was of normal stiffness, the nucleuss membrane was much softer.
Its interesting to ask whether stiffness of the nuclear envelope of the egg is also important for fertility in people, McNeill said. We know there are variants in this gene associated with early menopause. And when we studied this defect in mice, we see that their ovaries have lost the pool of egg cells that theyre born with, which determines fertility over the lifespan. So, this finding provides a potential explanation for why women with mutations in this gene might have early menopause. When you lose your stock of eggs, you go into menopause.
On the left is a normal fruit fly ovary with hundreds of developing eggs. On the right is a fruit fly ovary that is totally missing the NEMP gene. It is poorly developed and no eggs are visible.
McNeill and her colleagues suspect that the nuclear envelope has to find a balance between being pliant enough to allow the chromosomes to align as they should for reproductive purposes but stiff enough to protect them from the ovarys stressful environment. With age, ovaries develop strands of collagen with potential to create mechanical stress not present in embryonic ovaries.
If you have a softer nucleus, maybe it cant handle that environment, McNeill said. This could be the cue that triggers the death of eggs. We dont know yet, but were planning studies to address this question.
Over the course of these studies, McNeill said they found only one other problem with the mice missing this specific gene: They were anemic, meaning they lacked red blood cells.
Normal adult red blood cells lack a nucleus, McNeill said. Theres a stage when the nuclear envelope has to condense and get expelled from the young red blood cell as it develops in the bone marrow. The red blood cells in these mice arent doing this properly and die at this stage. With a floppy nuclear envelope, we think young red blood cells are not surviving in another mechanically stressful situation.
The researchers would like to investigate whether women with fertility problems have mutations in NEMP1. To help establish whether such a link is causal, they have developed human embryonic stem cells that, using CRISPR gene-editing technology, were given specific mutations in NEMP1 listed in genetic databases as associated with infertility.
We can direct these stem cells to become eggs and see what effect these mutations have on the nuclear envelope, McNeill said. Its possible there are perfectly healthy women walking around who lack the NEMP protein. If this proves to cause infertility, at the very least this knowledge could offer an explanation. If it turns out that women who lack NEMP are infertile, more research must be done before we could start asking if there are ways to fix these mutations restore NEMP, for example, or find some other way to support nuclear envelope stiffness.
This work was supported by the Canadian Institutes of Health, research grant numbers 143319, MOP-42462, PJT-148658, 153128, 156081, MOP-102546, MOP-130437, 143301, and 167279. This work also was supported, in part, by the Krembil Foundation; the Canada Research Chair program; the National Institutes of Health (NIH), grant number R01 GM100756; and NSERC Discovery grant; and the Medical Research Council, unit programme MC_UU_12015/2. Financial support also was provided by the Wellcome Senior Research Fellowship, number 095209; Core funding 092076 to the Wellcome Centre for Cell Biology; a Wellcome studentship; the Ontario Research FundsResearch Excellence Program. Proteomics work was performed at the Network Biology Collaborative Centre at the Lunenfeld-Tanenbaum Research Institute, a facility supported by Canada Foundation for Innovation funding, by the Ontarian Government, and by the Genome Canada and Ontario Genomics, grant numbers OGI-097 and OGI-139.
Tsatskis Y, et al. The NEMP family supports metazoan fertility and nuclear envelope stiffness. Science Advances. Aug. 28, 2020.
Washington University School of Medicines 1,500 faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Childrens hospitals. The School of Medicine is a leader in medical research, teaching and patient care, ranking among the top 10 medical schools in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Childrens hospitals, the School of Medicine is linked to BJC HealthCare.
Original post:
Genetic mutations may be linked to infertility, early menopause - Washington University School of Medicine in St. Louis
Global Hematopoietic Stem Cell Transplantation (HSCT) Industry 2020 Market Research With Size, Growth, Manufacturers, Segments And 2026 Forecasts…
By daniellenierenberg
IndustryGrowthInsights (IGI), a prominent market research firm in its own industry, has published a detailed report on Global Hematopoietic Stem Cell Transplantation (HSCT) Market. This market research report provides comprehensive and in-depth analysis on the market which can possibly help an enterprise to identify lucrative opportunities and assist them with fabricating creative business strategies. The market report provides information about the current market scenario regarding the global supply and demand, key market trends and opportunities in the market, and challenges and threats faced by the industry players.
The Hematopoietic Stem Cell Transplantation (HSCT) market report talks about the competitive scenario among the industry players and imparts aspiring and emerging industry players with the future market insights in a detailed manner. This market report includes crucial data and figures which are structured out in a concise yet understandable manner. The research report covers the updates on the government regulations and policies which illustrates key opportunities and challenges of the market. IndustryGrowthInsights (IGI) has been monitoring the market since few years and collaborated with eminent players of the industry to give better insights on the market. It has conducted vigorous research and implied robust methodology to provide accurate predictions about the market.
You can buy the complete report on @ https://industrygrowthinsights.com/checkout/?reportId=194325
Impacts of Advancements and COVID-19 on the market.
Amidst the COVID-19, few segments of the market have witnessed a disruption due to the gap in supply and demand which has impacted the growth of the Hematopoietic Stem Cell Transplantation (HSCT) market. Along with this, the latest advancements have changed the market dynamics of the market. This research report covers the wide-range analysis of the COVID-19 impact to the industry and gives out insights on the change in the market scenario due to the advancements.
Request a Sample report before buying the report @ https://industrygrowthinsights.com/request-sample/?reportId=194325
Market Segmentation
Some of the major companies that are covered in the report.
Regen Biopharma IncChina Cord Blood CorpCBR Systems IncEscape Therapeutics IncCryo-Save AGLonza Group LtdPluristem Therapeutics IncViaCord Inc
Note: Additional companies
Based on the type, the market is segmented into
AllogeneicAutologous
Based on the application, the market is segregated into
Peripheral Blood Stem Cells Transplant (PBSCT)Bone Marrow Transplant (BMT)Cord Blood Transplant (CBT)
Based on the geographical location, the market is segregated into
Asia Pacific: China, Japan, India, and Rest of Asia PacificEurope: Germany, the UK, France, and Rest of EuropeNorth America: The US, Mexico, and CanadaLatin America: Brazil and Rest of Latin AmericaMiddle East & Africa: GCC Countries and Rest of Middle East & Africa
IndustryGrowthInsights (IGI) provides yearly updates on the Hematopoietic Stem Cell Transplantation (HSCT) market that assist the clients to stay ahead in the competitive space.
Why one should buy this Hematopoietic Stem Cell Transplantation (HSCT) Report?
The market research report provides all valuable constituents of the market such as revenue growth, product pricing & analysis, growth potential, and guidelines to tackle the challenges in the market. The report covers all the crucial mergers & acquisitions, partnerships, and collaborations that created further created opportunities or in some cases, challenges for the industry players.
This report includes latest product news, advancements, and updates from the prominent player of the industry that has leveraged their position in the market. It also provides business strategies implemented by the key players and yardstick to arrive on informed business decisions. Moreover, it gives insights on the consumer behavior patterns that can help the enterprise to curate the business strategies accordingly.
IndustryGrowthInsights (IGI) bestows the clients with the specialized customized options related to the regional analysis, company analysis, and product analysis, among others.
Complete Table Content of the Market
Executive Summary
Assumptions and Acronyms Used
Research Methodology
Hematopoietic Stem Cell Transplantation (HSCT) Market Overview
Global Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast by Type
Global Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast by Application
Global Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast by Sales Channel
Global Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast by Region
North America Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast
Latin America Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast
Europe Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast
Asia Pacific Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast
Asia Pacific Hematopoietic Stem Cell Transplantation (HSCT) Market Size and Volume Forecast by Application
Middle East & Africa Hematopoietic Stem Cell Transplantation (HSCT) Market Analysis and Forecast
Competition Landscape
If you have any questions on this report, please reach out to us @ https://industrygrowthinsights.com/enquiry-before-buying/?reportId=194325
About the Company
IndustryGrowthInsights (IGI) is the largest aggregator of the market research report in the industry with more than 800 global clients. The company has extensively invested in the research analysts training and programs to keep the analyst tapped with the best industry standards and provide the clients with the&utmost experience. Our dedicated team has been collaborating with the industry experts to give out the precise data and figures related to the industry. It conducts primary research, secondary research, and consumer surveys to provide an in-depth analysis of the market. The market research firm has worked in several business verticals and has been successful to earn high credentials over the time.
Contact Info: Name: Alex MathewsAddress: 500 East E Street, Ontario,CA 91764, United States.Phone No: USA: +1 909 545 6473 | IND: +91-7000061386Email: [emailprotected]Website: https://industrygrowthinsights.com
Go here to see the original:
Global Hematopoietic Stem Cell Transplantation (HSCT) Industry 2020 Market Research With Size, Growth, Manufacturers, Segments And 2026 Forecasts...
‘We got the match’: Happy news for family fighting four-year-old’s Darcy Keeley’s leukaemia – 7NEWS.com.au
By daniellenierenberg
A familys wishes have come true after an inspirational search for a bone marrow donor for Darcy Keeley, four, uncovered a match.
The young Perth boy was diagnosed in June with acute myeloid leukaemia, needing a bone marrow transplant.
Finding a match proved difficult and sparked the campaign Do it for Darcy.
His family took to social media, relentless in their pursuit to help their little boy.
When the story of the boy dubbed the little lion started to spread, thousands of people came forward to try to lend a hand.
Recently one of our most loyal, passionate and enthusiastic supporters, Darcy Keeley, was diagnosed with Leukaemia, requiring 6 months of intensive chemotherapy followed by a bone marrow transplant, Hamersley Carine Footy Club posted on GoFundMe in July.
On their campaign Do it for Darcy, the family explained he was in isolation in Perth Childrens Hospital.
He needs a bone marrow donation and currently the national and international bone marrow registry is yet to find one, they wrote.
Thousands of people rallied around Darcy and his family, signing up to see if they were a potential match to be a donor.
On Thursday, his mum Casey announced in a heartfelt social media post they finally had a match.
IT HAPPENED... guys it actually happened!!! We got the match weve been waiting for! she said.
Darcys transplant doctor confirmed yesterday we have stem cells from some cord blood!
This is a huge relief and allows us to focus on the next step to recovery.
She said an employee at Lifeblood said literally thousands of people registered to try to help Darcy.
Casey also added that the campaign had subsequently led to many new donors.
There have been literally THOUSANDS of ABMDR [Australian Bone Marrow Donor Registry] registrations and new donors as a result of our Do it for Darcy campaign, she said.
The mum said this would help people all around the world, adding they were proud of the awareness the campaign had created.
It is impossible to express our gratitude for all of you who have rallied behind us and registered to be bone marrow donors, donated blood products and spread the word, she said.
As parents, there is nothing more heartwarming than people supporting your child, especially in a time of need.
And the love we have felt wrapped around us [has] helped us as a family immensely.
The loving mother conceded that while they are only at the beginning of fighting this illness, this win will help them move forward.
She also encouraged people to keep spreading awareness.
This is not the end of the fight, Casey said.
Its really just the beginning.
The transplant process will be challenging, but for right now lets focus on this win.
Continued here:
'We got the match': Happy news for family fighting four-year-old's Darcy Keeley's leukaemia - 7NEWS.com.au
Keio University gets OK for iPS-based heart cell transplant plan – The Japan Times
By daniellenierenberg
A health ministry panel on Thursday approved a Keio University clinical research project to transplant heart muscle cells made from induced pluripotent stem (iPS) cells into heart disease patients.
The research will be carried out by a team led by Prof. Keiichi Fukuda for three people between 20 and 74 suffering from dilated cardiomyopathy, which lowers the hearts power to pump blood. The first transplant will be conducted by the end of this year at the earliest.
The team will use iPS cells made by Kyoto University from the blood of a person who has a special immunological type with less risk of rejection.
The team will transform the iPS cells into heart muscle cells and inject about 50 million of them into the heart using a special syringe. Immunosuppressive drugs will be used for about half a year, and the team will spend a year checking to see whether the treatment leads to the development of tumors and irregular heartbeat or whether it restores heart function.
In January, Osaka University conducted the worlds first transplant of heart muscle cells made from iPS cells. The heart muscle cells were made into sheets and pasted on the surface of the patients heart so that a substance they emit can help regenerate the heart muscles. The cells themselves, however, disappear quickly.
Meanwhile, Keio University has confirmed in an experiment on monkeys that cells colonize after a transplant and heart function improves.
The university expects that transplanted cells will colonize over a long period also in the upcoming clinical research project.
According to the team, there are about 25,000 dilated cardiomyopathy patients in Japan.
A startup led by Fukuda is planning a clinical trial aimed at commercializing the iPS-derived cells, hoping they will also be used for the treatment of other cardiac diseases.
More:
Keio University gets OK for iPS-based heart cell transplant plan - The Japan Times
Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) – Galus Australis
By daniellenierenberg
Global Stem Cell Reconstructive Marketwas valued US$ XX Mn in 2019 and is expected to reach US$ XX Mn by 2027, at a CAGR of 24.5% during a forecast period.
Market Dynamics
The Research Report gives an in-depth account of the drivers and restraints in the stem cell reconstructive market. Stem cell reconstructive surgery includes the treatment of injured or dented part of body. Stem cells are undifferentiated biological cells, which divide to produce more stem cells. Growing reconstructive surgeries led by the rising number of limbs elimination and implants and accidents are boosting the growth in the stem cell reconstructive market. Additionally, rising number of aged population, number of patients suffering from chronic diseases, and unceasing development in the technology, these are factors which promoting the growth of the stem cell reconstructive market. Stem cell reconstructive is a procedure containing the use of a patients own adipose tissue to rise the fat volume in the area of reconstruction and therefore helping 3Dimentional reconstruction in patients who have experienced a trauma or in a post-surgical event such as a mastectomy or lumpectomy, brain surgery, or reconstructive surgery as a result of an accident or injury. Stem cell reconstructive surgeries are also used in plastic or cosmetic surgeries as well. Stem cell and regenerative therapies gives many opportunities for development in the practice of medicine and the possibility of an array of novel treatment options for patients experiencing a variety of symptoms and conditions. Stem cell therapy, also recognised as regenerative medicine, promotes the repair response of diseased, dysfunctional or injured tissue using stem cells or their derivatives.
The common guarantee of all the undifferentiated embryonic stem cells (ESCs), foetal, amniotic, UCB, and adult stem cell types is their indefinite self-renewal capacity and high multilineage differentiation potential that confer them a primitive and dynamic role throughout the developmental process and the lifespan in adult mammal.However, the high expenditure of stem cell reconstructive surgeries and strict regulatory approvals are restraining the market growth.
The report study has analyzed revenue impact of covid-19 pandemic on the sales revenue of market leaders, market followers and disrupters in the report and same is reflected in our analysis.
Global Stem Cell Reconstructive Market Segment analysis
Based on Cell Type, the embryonic stem cells segment is expected to grow at a CAGR of XX% during the forecast period. Embryonic stem cells (ESCs), derived from the blastocyst stage of early mammalian embryos, are distinguished by their capability to distinguish into any embryonic cell type and by their ability to self-renew. Owing to their plasticity and potentially limitless capacity for self-renewal, embryonic stem cell therapies have been suggested for regenerative medicine and tissue replacement after injury or disease. Additionally, their potential in regenerative medicine, embryonic stem cells provide a possible another source of tissue/organs which serves as a possible solution to the donor shortage dilemma. Researchers have differentiated ESCs into dopamine-producing cells with the hope that these neurons could be used in the treatment of Parkinsons disease. Upsurge occurrence of cardiac and malignant diseases is promoting the segment growth. Rapid developments in this vertical contain protocols for directed differentiation, defined culture systems, demonstration of applications in drug screening, establishment of several disease models, and evaluation of therapeutic potential in treating incurable diseases.
Global Stem Cell Reconstructive Market Regional analysis
The North American region has dominated the market with US$ XX Mn. America accounts for the largest and fastest-growing market of stem cell reconstructive because of the huge patient population and well-built healthcare sector. Americas stem cell reconstructive market is segmented into two major regions such as North America and South America. More than 80% of the market is shared by North America due to the presence of the US and Canada.
Europe accounts for the second-largest market which is followed by the Asia Pacific. Germany and UK account for the major share in the European market due to government support for research and development, well-developed technology and high healthcare expenditure have fuelled the growth of the market. This growing occurrence of cancer and diabetes in America is the main boosting factor for the growth of this market.
The objective of the report is to present a comprehensive analysis of the Global Stem Cell Reconstructive Market including all the stakeholders of the industry. The past and current status of the industry with forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers all the aspects of the industry with a dedicated study of key players that includes market leaders, followers and new entrants. PORTER, SVOR, PESTEL analysis with the potential impact of micro-economic factors of the market has been presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analysed, which will give a clear futuristic view of the industry to the decision-makers.
The report also helps in understanding Global Stem Cell Reconstructive Market dynamics, structure by analysing the market segments and projects the Global Stem Cell Reconstructive Market size. Clear representation of competitive analysis of key players by Application, price, financial position, Product portfolio, growth strategies, and regional presence in the Global Stem Cell Reconstructive Market make the report investors guide.Scope of the Global Stem Cell Reconstructive Market
Global Stem Cell Reconstructive Market, By Sources
Allogeneic Autologouso Bone Marrowo Adipose Tissueo Blood Syngeneic OtherGlobal Stem Cell Reconstructive Market, By Cell Type
Embryonic Stem Cell Adult Stem CellGlobal Stem Cell Reconstructive Market, By Application
Cancer Diabetes Traumatic Skin Defect Severe Burn OtherGlobal Stem Cell Reconstructive Market, By End-User
Hospitals Research Institute OthersGlobal Stem Cell Reconstructive Market, By Regions
North America Europe Asia-Pacific South America Middle East and Africa (MEA)Key Players operating the Global Stem Cell Reconstructive Market
Osiris Therapeutics NuVasives Cytori Therapeutics Takeda (TiGenix) Cynata Celyad Medi-post Anterogen Molmed Baxter Eleveflow Mesoblast Ltd. Micronit Microfluidics TAKARA BIO INC. Tigenix Capricor Therapeutics Astellas Pharma US, Inc. Pfizer Inc. STEMCELL Technologies Inc.
Global Stem Cell Reconstructive Market Request For View Sample Report Page : @https://www.maximizemarketresearch.com/request-sample/54688
About Us:
Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.
Contact info:Name: Vikas GodageOrganization: MAXIMIZE MARKET RESEARCH PVT. LTD.Email: [emailprotected]Website:www.maximizemarketresearch.com
Read the original:
Global Stem Cell Reconstructive Market- Industry Analysis and Forecast (2020-2027) - Galus Australis
Method regrows cartilage to cushion bones – Futurity: Research News
By daniellenierenberg
Share this Article
You are free to share this article under the Attribution 4.0 International license.
Researchers have found a way, in mice and human tissue, to regenerate the cartilage that eases movement between bones.
Loss of this slippery and shock-absorbing tissue layer, called articular cartilage, is responsible for many cases of joint pain and arthritis, which afflicts more than 55 million Americans.
The researchers can envision a time when people are able to avoid getting arthritis in the first place by rejuvenating their cartilage before it is badly degraded.
Nearly 1 in 4 adult Americans suffer from arthritis, and far more are burdened by joint pain and inflammation generally.
The researchers figured out how to regrow articular cartilage by first causing slight injury to the joint tissue, then using chemical signals to steer the growth of skeletal stem cells as the injuries heal.
Cartilage has practically zero regenerative potential in adulthood, so once its injured or gone, what we can do for patients has been very limited, says co-senior author Charles K.F. Chan, assistant professor of surgery at Stanford Universitys School of Medicine.
Its extremely gratifying to find a way to help the body regrow this important tissue, Chan says.
The work builds on previous research that resulted in isolation of the skeletal stem cell, a self-renewing cell that is also responsible for the production of bone, cartilage and a special type of cell that helps blood cells develop in bone marrow.
Articular cartilage is a complex and specialized tissue that provides a slick and bouncy cushion between bones at the joints. When this cartilage is damaged by trauma, disease, or simply thins with age, bones can rub directly against each other, causing pain and inflammation, which can eventually result in arthritis.
Damaged cartilage can be treated through a technique called microfracture, in which tiny holes are drilled in the surface of a joint. The microfracture technique prompts the body to create new tissue in the joint, but the new tissue is not much like cartilage.
I realized the only way to understand the process was to look at what stem cells are doing after microfracture.
Microfracture results in what is called fibrocartilage, which is really more like scar tissue than natural cartilage, says Chan. It covers the bone and is better than nothing, but it doesnt have the bounce and elasticity of natural cartilage, and it tends to degrade relatively quickly.
The most recent research arose, in part, through the work of surgeon and lead author Matthew Murphy, a visiting researcher at Stanford who is now at the University of Manchester.
I never felt anyone really understood how microfracture really worked, Murphy says. I realized the only way to understand the process was to look at what stem cells are doing after microfracture.
For a long time, Chan says, people assumed that adult cartilage did not regenerate after injury because the tissue did not have many skeletal stem cells that could be activated. Working in a mouse model, the team documented that microfracture did activate skeletal stem cells. Left to their own devices, however, those activated skeletal stem cells regenerated fibrocartilage in the joint.
But what if the healing process after microfracture could be steered toward development of cartilage and away from fibrocartilage?
The researchers knew that as bone develops, cells must first go through a cartilage stage before turning into bone. They had the idea that they might encourage the skeletal stem cells in the joint to start along a path toward becoming bone, but stop the process at the cartilage stage.
The researchers used a powerful molecule called bone morphogenetic protein 2 (BMP2) to initiate bone formation after microfracture, but then stopped the process midway with a molecule that blocked another signaling molecule important in bone formation, called vascular endothelial growth factor (VEGF).
What we ended up with was cartilage that is made of the same sort of cells as natural cartilage with comparable mechanical properties, unlike the fibrocartilage that we usually get, Chan says. It also restored mobility to osteoarthritic mice and significantly reduced their pain.
As a proof of principle that this might also work in humans, the researchers transferred human tissue into mice that were bred to not reject the tissue, and were able to show that human skeletal stem cells could be steered toward bone development but stopped at the cartilage stage.
The next stage of research is to conduct similar experiments in larger animals before starting human clinical trials. Murphy points out that because of the difficulty in working with very small mouse joints, there might be some improvements to the system they could make as they move into relatively larger joints.
The first human clinical trials might be for people who have arthritis in their fingers and toes. We might start with small joints, and if that works we would move up to larger joints like knees, Murphy says.
Right now, one of the most common surgeries for arthritis in the fingers is to have the bone at the base of the thumb taken out. In such cases we might try this to save the joint, and if it doesnt work we just take out the bone as we would have anyway. Theres a big potential for improvement, and the downside is that we would be back to where we were before.
One advantage of their discovery is that the main components of a potential therapy are approved as safe and effective by the FDA, says co-senior author Michael Longaker, professor of surgery.
BMP2 has already been approved for helping bone heal, and VEGF inhibitors are already used as anti-cancer therapies, he says. This would help speed the approval of any therapy we develop.
Joint replacement surgery has revolutionized how doctors treat arthritis and is very common: By age 80, 1 in 10 people will have a hip replacement and 1 in 20 will have a knee replaced. But such joint replacement is extremely invasive, has a limited lifespan and is performed only after arthritis hits and patients endure lasting pain.
The researchers say they can envision a time when people are able to avoid getting arthritis in the first place by rejuvenating their cartilage in their joints before it is badly degraded.
One idea is to follow a Jiffy Lube model of cartilage replenishment, Longaker says. You dont wait for damage to accumulateyou go in periodically and use this technique to boost your articular cartilage before you have a problem.
The work appears in the journal Nature Medicine.
Support for the research came from the National Institutes of Health, the California Institute for Regenerative Medicine, the Oak Foundation, the Pitch Johnson Fund, the Gunn/Olivier Research Fund, the Stinehart/Reed Foundation, The Siebel Foundation, the Howard Hughes Medical Institute, the German Research Foundation, the PSRF National Endowment, National Center for Research Resources, the Prostate Cancer Research Foundation, the American Federation of Aging Research, and the Arthritis National Research Foundation.
Source: Stanford University
Read the rest here:
Method regrows cartilage to cushion bones - Futurity: Research News
YOUR HEALTH: When the body turns to crystals – WQAD.com
By daniellenierenberg
SAN DIEGO Cystinosis is a disease that slowly and aggressively attacks your organs, tissues, muscles, bones, eyes, even your brain.
It's a genetic disorder with no cure.
And right now, the only option for treatment is an army of pills to slow it down but missing even one dose can be devastating.
Now one man is "patient one", the first to try a new treatment that may save thousands of lives.
21-year old Jordan Janz is living with the rare, unrelenting disorder.
"I was diagnosed at eight months old and basically have been living with it my whole life."
In Jordan, cystine, an amino acid, gets trapped in his cells.
When cystine levels rise, crystals build up all over the body leaving a trail of damage... even causing him to vomit up to 13 times a day.
"It's not how strong you are physically," he said.
"I think it's how strong you are mentally when you come into this."
Traditional cystinosis treatments aim to slow the build up of cystine inside cells.
In order to do that Jordan takes 56 pills each day, but now he hopes to change that, Jordan is the first patient to test a unique gene therapy.
UC San Diego professor Stephanie Cherquie's took stem cells from Jordan's bone marrow, re-engineered the cells, introduced genes that will produce cystinosin, then reinfused Jordan with his own cystinosin-producing cells.
"So, then these cells become a source of healthy stem cells for the rest of the life of the patient," said Stephanie.
Jordan had to take chemo twice a day, but he hasn't let that scare him away.
"I'm doing this obviously for other cystinosis families, right?," said Jordan.
Hoping that many others after him will now get the chance at a better, longer life.
For those born with cystinosis who make it into adulthood, the average lifespan is around 28 years old.
We're told Jordan Janz is making a good recovery. though it is still too soon to tell his long-term prognosis.
If this story has impacted your life or prompted you or someone you know to seek or change treatments, please let us know by contacting Jim Mertens atjim.mertens@wqad.comor Marjorie Bekaert Thomas atmthomas@ivanhoe.com.
Continue reading here:
YOUR HEALTH: When the body turns to crystals - WQAD.com
Global Hematopoietic Stem Cell Transplantation (HSCT) Market Size, Analytical Overview, Growth Factors, Demand, Trends And Forecast To 2026 -…
By daniellenierenberg
DataIntelo has published a latest market research report on Global Hematopoietic Stem Cell Transplantation (HSCT) Market. The global report is prepared in collaboration with the leading industry experts and dedicated research analyst team to provide an enterprise with in-depth market insights and help them to take crucial business decisions. This report covers current market trends, opportunities, challenges, and detailed competitive analysis of the industry players in the market.
The published report explains about the current supply and demand scenario and presents the future outlook of the market in a detailed manner. DataIntelo has applied a robust market research methodology to bestow the new entrants and emerging players with 360 wide-view analysis on the latest advancements and their impacts on the market. It has congregated massive amount of data on the key segments of the market in an easy to understand format. The research report has laid out the numbers and figures in a comprehensive manner with the help of graphical and pictorial representation which embodies more clarity on the market.
You can buy this complete report @ https://dataintelo.com/checkout/?reportId=127246
Report Covers Impacts of COVID-19 to the market.
The on-going pandemic has overhauled various facets of the market. This research report provides the financial impacts and market disturbance on the Hematopoietic Stem Cell Transplantation (HSCT) market. It also includes analysis on the potential lucrative opportunities and challenges in the foreseeable future. DataIntelo has interviewed various delegates of the industry and got involved in the primary and secondary research to confer the clients with information and strategies to fight against the market challenges amidst and after COVID-19 pandemic.
Market Segmentation:
Few of the companies that are covered in the report.
Regen Biopharma IncChina Cord Blood CorpCBR Systems IncEscape Therapeutics IncCryo-Save AGLonza Group LtdPluristem Therapeutics IncViaCord Inc
Note: Additional companies can be included in the list upon the request.
By Product Type:
AllogeneicAutologous
By Applications:
Peripheral Blood Stem Cells Transplant (PBSCT)Bone Marrow Transplant (BMT)Cord Blood Transplant (CBT)
By Geographical Location:Asia Pacific: China, Japan, India, and Rest of Asia PacificEurope: Germany, the UK, France, and Rest of EuropeNorth America: The US, Mexico, and CanadaLatin America: Brazil and Rest of Latin AmericaMiddle East & Africa: GCC Countries and Rest of Middle East & Africa
Get A Free Sample Report @ https://dataintelo.com/request-sample/?reportId=127246
The research report provides a detailed analysis of the prominent player in the market, products, applications, and regional analysis which also include impacts of government policies in the market. Moreover, you can sign up for the yearly updates on the Hematopoietic Stem Cell Transplantation (HSCT) market.
7 Reasons for Buying Hematopoietic Stem Cell Transplantation (HSCT) Market Report
If you have any query regarding the report, ask our experts: @ https://dataintelo.com/enquiry-before-buying/?reportId=127246
Below is the TOC of the report:
Hematopoietic Stem Cell Transplantation (HSCT) Supply Chain Analysis
Hematopoietic Stem Cell Transplantation (HSCT) Pricing Analysis
About DataIntelo:DATAINTELO has set its benchmark in the market research industry by providing syndicated and customized research report to the clients. The database of the company is updated on a daily basis to prompt the clients with the latest trends and in-depth analysis of the industry. Our pool of database contains various industry verticals that include: IT & Telecom, Food Beverage, Automotive, Healthcare, Chemicals and Energy, Consumer foods, Food and beverages, and many more. Each and every report goes through the proper research methodology, validated from the professionals and analysts to ensure the eminent quality reports.
Contact Info: Name: Alex MathewsAddress: 500 East E Street, Ontario, CA 91764, United States.Phone No: USA: +1 909 545 6473Email: [emailprotected]Website: https://dataintelo.com
Read more from the original source:
Global Hematopoietic Stem Cell Transplantation (HSCT) Market Size, Analytical Overview, Growth Factors, Demand, Trends And Forecast To 2026 -...
Demand for Medical Skin Care Products Market Driven by Shifting Consumer Perceptions and Growing Awareness – Scientect
By daniellenierenberg
Medical skin care products are used for beautifying or to address some other skin care problems. The cosmetic industry is booming and skin care forms a very huge part of this industry. The aesthetic appearance is so important that people spend a lot on skin care products and treatment. People being more technologically aware of the various new skin care products trending in the market. In addition to the aesthetic application, the medical skin care products are also used to address issues such as acne, pimples or scars.
Medical Skin Care Products Market: Drivers and Restraints
The medical skin care products is primarily driven by the need of natural based active ingredients products which are now trending in the market. Consumers demand medical skin care products which favor health and environment. Moreover, the consumers are updated with the trends so that various companies end up providing such products to satisfy the customers. For instance, a single product face mask has thousands of different variants. This offers consumers different options to select the product depending on the skin type. Moreover, the market players catering to the medical skin care products are offering products with advanced technologies. For instance, Santinov launched the CICABEL mask using stem cell material based on advanced technologies. The stem cells used in the skin care product helps to to protect and activate the cells and promote the proliferation of skin epidermal cells and the anagenesis of skin fibrosis.
To remain ahead of your competitors, request for a sample[emailprotected]https://www.persistencemarketresearch.com/samples/18469
Medical Skin Care Products Market: Segmentation
On the basis of product type the medical skin care products market can be segmented as:
On the basis of application, the medical skin care products market can be segment as:
On the basis of distribution channel, the medical skin care products market can be segment as:
To receive Methodology request here @https://www.persistencemarketresearch.com/methodology/18469
Medical Skin Care Products Market: Overview
Medical skin care products are used to address basic skin problems ranging from acne to scars. There are various advancements in the ingredients used to offer skin care products to the consumers. For instance, the use of hyaluronic acid and retinoids is the latest development in the industry. The anti-aging creams are at the forefront as the help treating issues such as wrinkles, scars, acne, and sun damage. Another, product in demand is the probiotic skincare which include lactobacillus and bifidobacterium.
Medical Skin Care Products Market: Region-wise Outlook
In terms of geography, medical skin care products market has been divided into five regions including North- America, Asia- Pacific, Middle-East & Africa, Latin America and Europe. North America dominated the global medical skin care products market as international players are acquiring domestic companies to make their hold strong in the U.S. LOral is accelerating its U.S. market by signing a definitive agreement with Valeant Pharmaceuticals International Inc. to acquire CeraVe, AcneFree and Ambi skin-care brands for US$ 1.3 billion. The acquisition is expected LOreal to get hold of the brands in the price-accessible segment. Asia Pacific is expected to be the fastest growing region owing to the increasing disposable income and rising awareness towards the skin care products.
To receive extensive list of important regions, Request TOC here @https://www.persistencemarketresearch.com/toc/18469
Medical Skin Care Products Market: Key Market Participants
Some of the medical skin care products market participants are Avon Products Inc., Beiersdorf AG, Colgate-Palmolive Company, Kao Corporation, LOral S.A., Procter & Gamble, Shiseido Company, The Estee Lauder Companies Inc., Unilever PLC, Revlon, Clinique Laboratories, llc., Murad, LLC., SkinCeuticals, RMS Beauty, J.R. Watkins and 100% PURE.
Explore Extensive Coverage of PMR`sLife Sciences & Transformational HealthLandscape
Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.
To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.
Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.
Contact us:
Tanvi BirajdarPersistence Market ResearchAddress 305 Broadway, 7th Floor New York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com
Go here to read the rest:
Demand for Medical Skin Care Products Market Driven by Shifting Consumer Perceptions and Growing Awareness - Scientect
Foetal cells are used to make the Oxford coronavirus vaccine. But they came from a foetus in 1973 – ABC News
By daniellenierenberg
Religious leaders have raised ethical doubts over one of Australia's primary coronavirus vaccine hopes because scientists have used foetal cells in its development.
Developers at Oxford University and pharmaceutical firm AstraZeneca are using cell lines from an electively aborted foetus in the vaccine candidate, with Anglican, Catholic and Greek Orthodox leaders questioning the practice.
But using foetal cells in vaccine development isn't new and the Catholic Church has previously expressed qualified support for the use of vaccines derived from these cells under certain circumstances.
We spoke to Bill Lott, a virologist at QUT's Institute of Health and biomedical innovation, to understand the role of foetal cells in vaccine development.
The foetal cells used in vaccine development are derived from a small number of foetuses which were legally terminated decades ago.
The Oxford vaccine uses HEK (human embryonic kidney) 293 cell lines, obtained from a female foetus in the Netherlands in 1973.
"We're using tissues that were from foetuses that were aborted 40, 50, 60 years ago," Dr Lott said.
"It doesn't require newly aborted foetuses."
While living human cells can only divide around 50 times, those foetal cells have been genetically modified so they can divide an infinite number of times.
"That's why we can use the cells that we harvested [decades ago] today," Dr Lott said.
"They're not the actual original cells, they've been immortalised and then propagated over the decades."
This means we'll never need to replace specimens used in development.
"Just by analogy, buying ivory is illegal [because] if you create a market for ivory, then it creates the demand to kill more elephants," Dr Lott said.
"In this case, that's not happening because these foetuses were aborted 60 years ago, 50 years ago, and using these immortalised tissues now is not going to create a need to go and get new ones."
In fact, scientists would prefer to keep using HEK 293 cell lines because they have been repeatedly tried and tested in a laboratory setting and found to be safe.
"When you're making a vaccine you require safety testing," Dr Lott said.
"If we went back and used a different cell type, you're throwing an unknown into the consideration.
"So that will severely slow down your ability to make these things.
"Using HEK 293, we've used it for decades and we know that it's safe."
This week, Australia's Deputy Chief Medical Officer Nick Coatsworth pointed out the use of foetal cells had been a "reality" in past vaccine development.
"The reality for vaccines is that they need cell cultures in order for us to grow them," he said.
"The human cell is a really important part of their development.
"There are strong ethical regulations surrounding the use of any type of human cell, particularly foetal human cells.
"This is a very professional, highly powered research unit at Oxford University.
"I think we can have every faith that the way they have manufactured the vaccine has been against the highest of ethical standards internationally."
Breaking down the latest news and research to understand how the world is living through an epidemic, this is the ABC's Coronacast podcast.
So, how do foetal cells help with vaccine development? Dr Lott explained they operate like a "vaccine factory".
First, scientists need to develop the vaccine candidate and then combine it with an adenovirus vector.
An adenovirus is a particular type of common virus that causes illnesses like bronchitis, pneumonia and a sore throat.
For instance, when you get a cold, you may be infected with an adenovirus, a coronavirus or a rhinovirus.
A vector is an organism that spreads infection by moving pathogens from one host to another.
So an adenovirus vector? "That's an adenovirus that has been sort of emptied out and then you put a different kind of genome in there to make protein," Dr Lott said.
The next step is to put the vaccine/adenovirus vector combination into a big vat of foetal cells.
"The viral vector infects these HEK 293 cells really, really efficiently," Dr Lott said.
"One reason why you use the HEK 293 is because you get essentially 100 per cent infection with the adenoviral vector.
"And what it does is it turns the HEK 293 cells into a vaccine factory."
What do we mean by "vaccine factory"? Dr Lott explains foetal cells begin producing "tons and tons of that modified adenovirus" which they then "spit out into the liquid bit of the cells" called the cell culture media.
"[The foetal cells] start cranking out this massive amount of modified adenovirus, and then you purify those things away from the cell tissue," he said.
"You pull the [cell] media off, and it's just going to be full of the vaccine and essentially no tissue.
"And that's what your vaccine is."
The foetal cells will operate as this "vaccine factory" regardless of whether the vaccine is effective or not so the next step generally involves animal and then human trials of varying scale.
Inherent in the whole process is stripping away the conditioned cell media, where the foetal cells are contained.
The head of the World Health Organization has warned we may never get a silver bullet for COVID-19. What could that future look like in Australia?
That means a successful vaccine developed using foetal cells will have no remnants of those cells in the final product.
"You purify the vaccine away from the cells that they were grown in, and then you destroy all the cells," Dr Lott said.
"So then you're going to take that liquid and you'll purify it some more, but there are not going to be any [foetal] cells in there.
"There's nothing left when it becomes the vaccine that gets delivered."
Foetal tissue has been used with innovative effect in various strands of medical research.
The difference is some of those processes require fresh foetal cells not the "immortalised" cells vaccine developers can use.
"The vaccine work is pretty straightforward," Dr Lott said.
"But cancer research, the research into the mechanisms of various things cystic fibrosis, haemophilia, rheumatoid arthritis that all required fresh foetal tissue."
Scientists studying Zika virus used foetal cells to discover that the virus crossed the placental membrane and caused brain damage in unborn foetuses.
"[That research] brought out a whole raft of therapies and protections for unborn foetuses [and] "saved a lot of lives, including [the lives of] unborn foetuses," Dr Lott said.
Foetal cell lines have been used in the development of various vaccines, including for chicken pox, Ebola, polio, rubella, shingles, Hepatitis A, and rabies.
Foetal tissue has also facilitated breakthroughs in the treatment of various medical issues including cystic fibrosis, haemophilia, IVF, Parkinson's and Alzheimer's diseases, AIDS, and spinal cord injuries.
Scientists have many different methodologies for developing vaccines and there are a variety of reasons why foetal cells aren't always used.
Billions are being poured into the race to find a coronavirus vaccine, with the winner owning a powerful political tool. During the last pandemic an Australian company got there first.
"Some of them don't use it because of ethical issues," Dr Lott said.
"Some of them don't use it because they're not using an adenovirus [vector], so they don't really need the HEK 293.
"And there are other [development] strategies.
"There's an mRNA strategy that's very popular.
"So some of them don't require it."
The development of a coronavirus vaccine was time critical because of the virus' devastating public health and economic impacts, Dr Lott said.
Therefore, it was important for scientists to diversify their methodologies in order to develop a vaccine as quickly as possible.
Both stem cells and foetal cells are critical to innovations in medical research but what's the difference between the two?
Dr Lott explains stem cells are basically the earliest iteration of a foetal cell before the cell differentiates itself into, for example, a hair cell, liver cell, eye cell or skin cells.
"A stem cell is simply a cell that can turn into a different cell types," Dr Lott said.
"That first embryonic stem cell can eventually turn into any kind of cell in your body.
"So you've got embryonic stem cells, and then you've got adult stem cells, and in between are the foetal stem cells [which] are partially differentiated.
"So foetal cells contain not only stem cells some of the foetal cells have already differentiated into their final cell type."
In 2005 and again in 2017, the Catholic Church expressed qualified support for the use of foetal-cell-derived vaccines but only if there was no available alternative.
A 2005 "moral reflection" issued by Pope Benedict XVI specifically addressed the issue.
"As regards the diseases against which there are no alternative vaccines which are available and ethically acceptable, it is right to abstain from using these vaccines if it can be done without causing children, and indirectly the population as a whole, to undergo significant risks to their health," the Pope wrote.
"However, if the latter are exposed to considerable dangers to their health, vaccines with moral problems pertaining to them may also be used on a temporary basis.
"We find a proportional reason, in order to accept the use of these vaccines in the presence of the danger of favouring the spread of the pathological agent."
In 2017, the life ethics arm of the Catholic Church issued a statement that: Catholic parents could vaccinate their children with a "clear conscience" that "the use of such vaccines does not signify some sort of cooperation in voluntary abortion".
Earlier this year and in the context of the coronavirus vaccine race, John Di Camillo, an ethicist with the National Catholic Bioethics Center, confirmed: "One is allowed to make use of [vaccine derived from foetal tissue] where there's a serious threat to the health or life of the individual, or of the greater population.
"This does not amount to a strictobligationto use it, but it certainly can be a legitimate choice in conscience if theres that serious reason, and there's no other reasonable alternative."
Nurse working on Covid-19 frontline had ‘virus symptoms’ that turned out to be leukaemia – iNews
By daniellenierenberg
When nurse Neri Pucci suddenly felt ill during a hospital shift his first thought was that hed picked up Covid-19.
Working long shifts on an A&E ward, the 28-year-oldpresumed being exposed to patients with the virus was the reason he was suffering a fever, night sweats, a cough, a sore throat, breathlessness and a headache.
But several tests for coronavirus were negative and blood analysis showed his white blood cells had sky rocketed.
Medics quickly determined he had acute lymphoblastic leukaemia, a cancer that progresses quickly and aggressively and requires immediate treatment.
And so instead of finishing the shift he was due to work, the Italian, who has worked for the NHS for five years, was kept in hospital as an in-patient.
Hes been undergoing gruelling chemotherapy over the last 12 weeks and remains isolated in a room with restricted visitors.
Because Neri took a career break and returned as temporary staff, he is not entitled to NHS sick pay. His colleague has set up a GoFundMe appeal to support him which has so far raised more than 9,400.
Ive had a lot of love and support from family, friends, colleagues and people around the world, its fantastic, said Neri.
Neri has worked at Londons The Royal Free Hospital A&E since 2014 and last year, for a change of scene, took a post as a nurse on a cruise ship. He returned to the hospital in June and took ill after just six weeks.
I knew my colleagues were struggling during the pandemic and I felt I should come back and help, he said. Wearing full PPE for a 12-hour shift is quite exhausting, it makes you hot and sweaty. I had seen patients who had Covid, and of course took all precautions. So when I got ill I thought it must be the virus. I felt dizzy, short of breath and my heart was racing and then my knees went purple.
It was a lot to take in when they said it was leukaemia and I needed to stay in hospital.
Acute lymphoblastic leukaemia is rare, with around 790 people diagnosed with the condition each year in the UK, according to the NHS. Most cases develop in children, teenagers and young adults.
The disease is caused by a genetic mutation in the stem cells, although why this happens is not yet fully understood but there are certain risk factors.
Symptoms of acute lymphoblastic leukaemia
The disease usually starts slowly before rapidly becoming severe. Symptoms listed by the NHS are pale skin, feeling tired and breathless, repeated infections over a short time, unusual and frequent bleeding, such as bleeding gums or nosebleeds, high temperature and night sweats.
Sufferers can also get bone and joint pain, easily bruised skin, swollen lymph nodes, tummy pain) caused by a swollen liver or spleen, unintentional weight loss and a purple skin rash.
In some cases, the affected cells can spread from your bloodstream into your central nervous system. This can cause neurological symptoms, including headaches, seizures or fits, being sick, blurred vision and dizziness.
Neri was transferred to University College Hospital and his parents left their home town of Florence to stay in London to support their only child.
He has suffered side effects from the chemotherapy including nausea, fatigue, numb fingers and headaches and says hes found isolation difficult.
Im extremely vulnerable to infections and even more so with Covid around, he said. Im in a side room and there is strict visitation.Im allowed one visitor a week for just two hours, so that means only my mum can come one week and then my dad the next. Its very hard. The nurses have been so kind and I feel very well looked after.
Neri is now waiting on a bone marrow transplant, which will leave him immunocompromised for months. He will likely need at least a year off work, depending on how soon he has the procedure.
His friend who set up the fundraising appeal, Miguel Montenegro, wrote: The funds we raise will be used to support his accommodations costs and bills so that he can carry on focusing on his recovery and can remain in the country to obtain the best care possible.
He is looking forward to getting better as soon as possible as he wishes to return to work promptly and continue providing people with the best care he is capable of.
Do you have a real life story? Email claudia.tanner@inews.co.uk.
Go here to read the rest:
Nurse working on Covid-19 frontline had 'virus symptoms' that turned out to be leukaemia - iNews
BrainStorm to present data linking MR measures to functional improvement in progressive multiple sclerosis – DOTmed HealthCare Business News
By daniellenierenberg
NEW YORK, Aug. 25, 2020 /PRNewswire/ -- BrainStorm Cell Therapeutics Inc. (NASDAQ: BCLI), a leading developer of adult stem cell therapies for neurodegenerative diseases, announced today the acceptance of a clinical abstract documenting an association between magnetic resonance imaging (MRI) measures and functional improvement in patients with progressive multiple sclerosis (MS). The data, to be presented as a poster on September 11-13 at the forthcoming MSVirtual2020 meeting the eighth joint meeting of the Americas Committee for Treatment and Research in Multiple Sclerosis (ACTRIMS) and the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) will inform analysis of clinical outcomes in the Company's ongoing Phase 2 trial of NurOwn (MSC-NTF cells) in patients with progressive MS.
"Although disability improvement is an important measure of function in individuals with progressive MS, the MRI features that correlate with disability improvement had not previously been explored," noted Tanuja Chitnis, M.D., FAAN, Professor of Neurology at Harvard Medical School, Senior Neurologist at Brigham and Women's Hospital, and Director of the Comprehensive Longitudinal Investigations in MS at the Brigham (CLIMB Study). "In this analysis, we have demonstrated a correlation between specific brain and spinal cord MRI measures and observed functional improvements in progressive MS patients. We are grateful to the joint ACTRIMS/ECTRIMS abstract committee for allowing us to present these data, which we hope will facilitate analysis of clinical trial outcomes that specifically evaluate functional improvements in progressive MS."
Dr. Chitnis and colleagues evaluated MRI features of 48 participants in the SysteMS substudy of the CLIMB study, a nested cohort selected to match the inclusion criteria of the Phase 2 NurOwn trial in progressive MS (NCT03799718). The participants underwent brain and lesion volumetric analysis, as well as mean upper cervical cord (MUCCA) analysis, 12-24 months following baseline 3 Tesla MRI. These analyses generated 34 MRI data measures performed by ICOMETRIX, which the investigators compared in patients with improved function versus those with worsening or stable function, as measured by 9-hole peg test (9HPT) or timed-25-foot-walk (T25FW) scores, two well-established measures of function in progressive MS.
Ad StatisticsTimes Displayed: 126798Times Visited: 1477
The Truth About Cosmetic Treatments was a startling and sad documentary – iNews
By daniellenierenberg
According to a young Mancunian woman festooned with eyeliner, tattoos and pumped-up lips, a major motivation for having cosmetic treatments is to make yourself look more like Kylie Jenner and the Kardashians. Big lips, square jaw, tiny waist, big bum, big boobs now its become commercial enough that we can get it, she explained.
This may not be an aspiration shared by everyone but you might expect that the people who provide these appearance-altering procedures would be subject to strict regulation. Not so, as medical journalist Michael Mosley was horrified to discover in the startling documentary, The Truth about Cosmetic Treatments. You dont need a licence or even any training to start injecting somebodys face with fillers, despite the risks of disfiguring infections or blindness.
The rush for self-renovation has been accelerated by social media and the way that established treatments, such as face-lifts and nose jobs, requiring full-scale surgery, are being replaced by less invasive techniques.
Teaming up with blogger Mehreen Baig, Mosley explored the freaky world of lip and nose fillers, microneedling and botox, and bravely volunteered to have his own crows feet blitzed by a gadget which, as its operator enthused, melts the skin instantaneously. Once the rawness and swelling on his face had subsided, Mosley was disgruntled to find that it hadnt made much difference.
Other customers were left similarly deflated. Julie, whose fractionated CO2 laser treatment left her face covered in tatters of dead skin, enjoyed some improved skin elasticity, but tests revealed no noticeable dermatological changes. The only treatment that seemed to have a significant effect was the stem-cell facelift undergone by Kim, who paid 6,000 for the privilege of having the cells injected into her cheekbones. She was delighted with her smoother, younger-looking face.
Mosley had assembled a panel of punters to look at before and after photos and assess whether the treatments had made the contestants look more attractive. They lost their personality, one man said. As dermatologist Tamara Griffiths warned, then, its a case of buyer beware.
THEARTSDESK.COM
Read the original post:
The Truth About Cosmetic Treatments was a startling and sad documentary - iNews
Demand for Myelofibrosis Treatment Market to Witness Rapid Surge During the Period 2016 2022 – Scientect
By daniellenierenberg
Myelofibrosis or osteomyelofibrosis is a myeloproliferative disorder which is characterized by proliferation of abnormal clone of hematopoietic stem cells. Myelofibrosis is a rare type of chronic leukemia which affects the blood forming function of the bone marrow tissue. National Institute of Health (NIH) has listed it as a rare disease as the prevalence of myelofibrosis in UK is as low as 0.5 cases per 100,000 population. The cause of myelofibrosis is the genetic mutation in bone marrow stem cells. The disorder is found to occur mainly in the people of age 50 or more and shows no symptoms at an early stage. The common symptoms associated with myelofibrosis include weakness, fatigue, anemia, splenomegaly (spleen enlargement) and gout. However, the disease progresses very slowly and 10% of the patients eventually develop acute myeloid leukemia. Treatment options for myelofibrosis are mainly to prevent the complications associated with low blood count and splenomegaly.
The global market for myelofibrosis treatment is expected to grow moderately due to low incidence of a disease. However, increasing incidence of genetic disorders, lifestyle up-gradation and rise in smoking population are the factors which can boost the growth of global myelofibrosis treatment market. The high cost of therapy will the growth of global myelofibrosis treatment market.
To remain ahead of your competitors, request for a sample [emailprotected]
https://www.persistencemarketresearch.com/samples/11341
The global market for myelofibrosis treatment is segmented on basis of treatment type, end user and geography:
To receive extensive list of important regions, Request Methodology here @
https://www.persistencemarketresearch.com/methodology/11341
As myelofibrosis is considered as non-curable disease treatment options mainly depend on visible symptoms of a disease. Primary stages of the myelofibrosis are treated with supportive therapies such as chemotherapy and radiation therapy. However, there are serious unmet needs in myelofibrosis treatment market due to lack of disease modifying agents. Approval of JAK1/JAK2 inhibitor Ruxolitinib in 2011 is considered as a breakthrough in myelofibrosis treatment. Stem cell transplantation for the treatment of myelofibrosis also holds tremendous potential for market growth but high cost of therapy is foreseen to limits the growth of the segment.
On the basis of treatment type, the global myelofibrosis treatment market has been segmented into blood transfusion, chemotherapy, androgen therapy and stem cell or bone marrow transplantation. Chemotherapy segment is expected to contribute major share due to easy availability of chemotherapeutic agents. Ruxolitinib is the only chemotherapeutic agent approved by the USFDA specifically for the treatment of myelofibrosis, which will drive the global myelofibrosis treatment market over the forecast period.
Geographically, global myelofibrosis treatment market is segmented into five regions viz. North America, Latin America, Europe, Asia Pacific and Middle East & Africa. Northe America is anticipated to lead the global myelofibrosis treatment market due to comparatively high prevalence of the disease in the region.
Some of the key market players in the global myelofibrosis treatment market are Incyte Corporation, Novartis AG, Celgene Corporation, Mylan Pharmaceuticals Ulc., Bristol-Myers Squibb Company, Eli Lilly and Company, Taro Pharmaceuticals Inc., AllCells LLC, Lonza Group Ltd., ATCC Inc. and others.
You Can Request for TOC Here @
https://www.persistencemarketresearch.com/toc/11341
Explore Extensive Coverage of PMR`s
Life Sciences & Transformational HealthLandscape
About us:
Persistence Market Research (PMR) is a third-platform research firm. Our research model is a unique collaboration of data analytics andmarket research methodologyto help businesses achieve optimal performance.
To support companies in overcoming complex business challenges, we follow a multi-disciplinary approach. At PMR, we unite various data streams from multi-dimensional sources. By deploying real-time data collection, big data, and customer experience analytics, we deliver business intelligence for organizations of all sizes.
Our client success stories feature a range of clients from Fortune 500 companies to fast-growing startups. PMRs collaborative environment is committed to building industry-specific solutions by transforming data from multiple streams into a strategic asset.
Contact us:
Naved BegPersistence Market ResearchAddress 305 Broadway, 7th FloorNew York City,NY 10007 United StatesU.S. Ph. +1-646-568-7751USA-Canada Toll-free +1 800-961-0353Sales[emailprotected]Websitehttps://www.persistencemarketresearch.com
Go here to read the rest:
Demand for Myelofibrosis Treatment Market to Witness Rapid Surge During the Period 2016 2022 - Scientect
The effect of distance between holes on the structural stability of subchondral bone in microfracture surgery: a finite element model study – DocWire…
By daniellenierenberg
Background:Microfracture is a surgical technique that involves creating multiple holes of 3-4 mm depth in the subchondral bone to recruit stem cells in the bone marrow to the lesion, inducing fibrocartilage repair and knee cartilage regeneration. Recently, it has been reported that increasing the exposed area of the lower cartilaginous bone (drilling a lot of holes) increases the outflow of stem cells, which is expected to affect the physical properties of the subchondral bone when the exposed area is large. The purpose of this study was to analyse the effect of the distance between the holes in the microfracture procedure on the structural stability of the osteochondral bone using a finite element method.
Methods:In this study, lateral aspects of the femoral knee, which were removed during total knee arthroplasty were photographed using microtomography. The model was implemented using a solitary walks program, which is a three-dimensional simplified geometric representation based on the basic microtomography data. A microfracture model was created by drilling 4 mm-deep holes at 1, 1.5, 2, 2.5, 3, 4, and 5 mm intervals in a simplified three-dimensional (3D) geometric femoral model. The structural stability of these models was analysed with the ABAQUS program. We compared the finite element model (FEM) based on the microtomography image and the simplified geometric finite element model.
Results:Von Mises stress of the subchondral bone plate barely increased, even when the distance between holes was set to 1 mm. Altering the distance between the holes had little impact on the structural stability of the subchondral bone plate. Safety factors were all below 1.
Conclusions:Although we did not confirm an optimal distance between holes, this study does provide reference data and an epidemiological basis for determining the optimal distance between the holes used in the microfracture procedure.
Go here to read the rest:
The effect of distance between holes on the structural stability of subchondral bone in microfracture surgery: a finite element model study - DocWire...
Researchers Get First-Ever Look at a Rare but Vital Stem Cell in Humans – Technology Networks
By daniellenierenberg
Neutrophils are the warriors of the immune system. They are always ready to spring to action to help heal injuries or fight off disease. Unless, that is, something goes wrong in their developmental process.Immature neutrophils arent all warriors they can be dangerous turncoats. High levels of immature neutrophils in the bloodstream can be a tell-tale sign of cancer and may even be a biomarker for COVID-19.
Now scientists at La Jolla Institute for Immunology (LJI) have tracked down the rare stem cells that generate neutrophils in human bone marrow. This research, published in Immunity, gives researchers a potential path for intervening in diseases where neutrophil development goes awry.
We have identified the stem cells that are the early origins of neutrophils, the most abundant blood cell type in humans, says Huy Dinh, Ph.D., a former LJI postdoctoral associate who recently moved to a faculty position at The University of WisconsinMadison. Dinh led the study with LJI Professor Catherine C. Hedrick, Ph.D. Knowing how human neutrophils develop is especially relevant today because immature neutrophils have been found to be elevated in both the blood and lungs of severe COVID-19 patients.
Despite their importance, neutrophils have proven very hard to study. They dont hold up well outside the body, and the stem cells that make them are even harder to investigate because they only live in bone marrow.
In 2018, the Hedrick Lab reported the discovery of a group of progenitor stem cells that give rise to mature neutrophils. These progenitors sole job was to generate neutrophils, yet they appeared to also promote tumor growth. The researchers believed that detecting these progenitors could give doctors a better way to catch early cancer cases. But first, the team needed to know a lot more about neutrophil development.
The new research revealed a progenitor cell type that exists even earlier in human neutrophil development. Dinh, a past SPARK Award recipient, together with Tobias Eggert, Ph.D., a LJI visiting scientist and Melissa Meyer, Ph.D., a LJI postdoc, who served as the co-first authors in the study, spearheaded the effort to use a tool called cytometry by time-of-flight (CyTOF) to distinguish these rare cells from other types of immune progenitor cells. This work also made it possible for the researchers to identify more specific protein markers on this early progenitor cell surface.
The discovery of these protein markers was important because until now, scientists have used only a few of markers to track neutrophils over time. The new study gives scientists specific markers for tracking neutrophil development from day one.
The researchers also found that cases of skin and lung cancers are often accompanied by a flood of immature neutrophils including the early progenitor cells into the bloodstream. These immature neutrophils change as they interact with tumor cells, though the researchers arent sure yet how these changes affect cancer progression.
Dinh likens the stages of neutrophil development to the cars on a train. The early progenitors are like the train engine, keeping everything going smoothly along the track to maturity. Cancer shakes everything up, and immature neutrophils jump off the track before they reach maturity. Its like the train is falling apart, Dinh says.
Neutrophil development has been in the news recently due to the COVID-19 pandemic, as studies have shown immature neutrophils are also more abundant in some patients with COVID-19. Dinh and Hedrick think perhaps the threat of the virus prompts the body to churn out neutrophils too quickly, again forcing immature cells off the track to maturity.
We need to study this phenomenon further to see if these neutrophils can be tied to case prognosis or if they can be a drug target for COVID-19, says Dinh.
The researchers hope to continue their work to discover the exact mechanisms that stop neutrophils from reaching maturity. Knowing the earliest cell that gives rise to neutrophils is really critical for trying to target and control these cells, says Hedrick. But we dont know exactly how to do that yet.
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.
View original post here:
Researchers Get First-Ever Look at a Rare but Vital Stem Cell in Humans - Technology Networks
AST-OPC1 Stem Cell Therapy Offers Hope for Spinal Cord Injury
By daniellenierenberg
An investigational treatment called AST-OPC1 (oligodendrocyte progenitor cells) may give new hope to people with a recent spinal cord injury. Researchers are examining whether AST-OPCI injected directly into the spinal cord helps repair damage in people with cervical (neck) spinal cord injury.
Researchers are examining whether AST-OPCI injected directly into the spinal cord helps repair damage in people with cervical (neck) spinal cord injury. Photo Source: 123RF.com.Until now, there have been no new treatment options for the 17,000 new spinal cord injuries that happen each year, said primary investigator Richard G. Fessler, MD, PhD, Professor of Neurological Surgery at Rush University Medical Center, Chicago, Illinois. We may be on the verge of making a major breakthrough after decades of attempts.
AST-OPC1 is developed from stem cells and is believed to work by supporting the proper functioning of nerve cells. After a spinal cord injury, many nerve cells are severed and beyond repair; however, many nerve cells have the potential to work again but have lost their protective coating (known as myelin) that helps nerves transfer messages to the arms and legs.
What AST-OPC1 does is recoat those potentially functional cells and allows them to work more normally, Dr. Fessler told SpineUniverse.
Left: Normal myelin sheath Right: Damaged myelin sheath. Photo Source: 123RF.com.
Dr. Fessler and colleagues are part of a larger multicenter trial designed to assess the safety and effectiveness of three doses of AST-OPC1 (2-, 10-, or 20-million cells) injected into the injured area of the spinal cord between 14 and 30 days following a cervical spinal cord injury. These individuals have essentially lost all sensation and movement below their injury site with severe paralysis of the arms and legs.
Thus far, Dr. Fessler and colleagues have injected three patients at the first dose level and five patients at the intermediate dose level.
Our preliminary results show that we may, in fact, be getting some regeneration. Some of those who have lost use of their hands are starting to get function back. That is the first time in history that has ever been done, Dr. Fessler said. The improvements are seen within the 30 to 60 days, he noted.
I have been doing this kind of research for more than 20 years, and Ive never seen anything as encouraging as AST-OPC1, Dr. Fessler said. Just as a journey of a thousand miles is done one step at a time, repairing spinal cord injuries is being done one step at a time. And, now, we can say that weve taken that first step.
The injections are safe, as determined by an earlier study of AST-OPC1 that involved patients with thoracic (mid-back) spinal cord injury. Dr. Fessler said it important for the spinal cord injury to be recent in order for the therapy to work. In addition, the spinal cord needs to be in continuity and not severed. The injections are unlikely to be effective in people who have had spinal cord injuries for years, although future trials are needed to know for sure.
More here:
AST-OPC1 Stem Cell Therapy Offers Hope for Spinal Cord Injury
Stem Cells for Spinal Disorders – A Nonsurgical, Minimally …
By daniellenierenberg
The spinal column consists of 33 individual vertebrae with dozens of joints between them. Strong enough to withstand the rigors of daily wear and tear, but doing so decade after decade may be asking a lot. Deterioration can happen for a number of reasons - accidents, sports, hard labor, osteoarthritis, immune disorders, etc. Regardless of cause, sudden or gradual, the common denominator is usually severe pain.
There are 7 vertebrae in the cervical region which is your neck area, then 12 in the thoracic region which is your back, followed by 5 going down in the lumbar region or lower back, and another 5 in the sacral region and 4 in the coccygeal region which is technically your tail bone area. Any inflammation within these areas can potentially result in a domino-effect of radiating pain.
Any injury or disease involving the spine quickly affects mobility.Individuals unfortunate enough to be affected live in a world of perpetual hurt. The simple acts of sitting, walking, gripping, voiding, etc. can become cumbersome and daily reminders of injury.
The last ray of hope - surgery - has been shown to be ineffective in providing effective reprieve from symptoms in a significant proportion of patients.Whats more is that such invasive measures can prove to be a bigger setback than the pathology itself.
For the right patient, in the right context, minimally invasive stem cell therapies can change the course of many lives for the better.
What is Chronic Back and Neck pain?
Chronic back painis a broad term that pertains to inflammation, nerve impingement, degenerative disc damage and tissue breakdown in the spine. Such pain typically lasts 12 weeks or longer.
Neck pain is one of the most pervasive problems in the world today. Repetitive strain associated with most modern jobs is truly not kind to our necks. We spend a great deal of time viewing our screens at uncomfortable angles.Its no surprise that signs of osteoarthritis can be seen in 50% of the population of people over 50.
Spinal injuries of all types have the potential to make life a struggle for those living in its clutches. Depression is not uncommon as the stark reality of a completely altered quality of life sets in.
Relieving back and neck pain without surgery is now possible with new avenues in regenerative medicine - includingPlatelet-Rich Plasma (PRP), stem cell, and exosome therapies.
Advantages of these biological therapies over standard surgical options include their relative simplicity, the fact that they can be performed on an outpatient basis, are minimally invasive, can be done much faster, with fewer complications and a higher success rate in the right patient population. Biological therapies are ideal for patients between 20 and 70 years of age with mild to moderate disease burden.
Overview of Biological Therapies
Biological therapies (e.g. PRP, stem cell, exosome therapies) mark a new dawn in the field of healthcare.
The actual procedures involving such therapies are all pretty straightforward.With respect to PRP and stem cells, thecells are extracted from the patient, processed, and then administered back into the same patient at the intended target site. PRP is derived from peripheral blood, whereas stem cells can be obtained from bone marrow or one's own fat tissue.Stem cells may also be derived from a separate donor (e.g. umbilical cord).Exosomes are microscopic packets of instructions from one cell to another.In this instance, the exosomes are derived from donated stem cells and the message they're conveying is induction of tissue repair and regeneration at the target site.
Words of Caution
Important caveats include the following.When PRP science was in its infancy, providers would draw a patient's blood into a test tube similar to what you may be used to seeing at a commercial lab today.They would then isolate the PRP from that sample.It's important to note that regenerative medicine has progressed tremendously since those bygone days.A significant majority of clinics unfortunately continue to cling to the dated method of PRP processing despite much superior methods being available.
The main drivers for this inability to adapt has been that the newer methods are more skill intensive and costlier.To fully harness the benefits of PRP therapy, take the time research your provider and their methods.If blood collection tubes are used at any point in the procedure, it's a cheaper outdated method.If you're being offered "rock bottom prices," the quality of the procedure probably matches that price.
One of the biggest caveats regarding stem cells involves donated cells.Make sure the cells originate within the United States.Stateside labs are regulated by the Food and Drug Administration (FDA).As such, they have to abide by fairly strict standards of cleanliness and protocol.Clinics import cells from abroad easily and cheaply.However, you're truly rolling the dice when it comes to your health when you subject yourself to procedures at such clinics.
While on the topic of offshore stem cell therapy, prospective patients are often marketed a familiar line - "we can do special procedures at offshore sites that are disallowed by the FDA here in the states."Indeed clinics have garnered a supernatural aura about their methods through these marketing campaigns.As a consumer, you should understand that its generally a bad idea to trade world class health for third world health.More specifically, no credible data has been published to vouch for the effectiveness of these "too good to be legal" methods.
Such offshore arrangements protect the clinic in the event of gross negligence.The FDA is certainly stringent, but they also allow for legitimate avenues for pursuing investigational therapies.These clinics have opted to not pursue those processes as it's easier to find havens abroad where anything goes without repercussions.That's not to say success is impossible to get reasonable care at such sites, but if you lament a crosstown doctor's appointment, you might want to reconsider flying to a different country on short notice in the event of an unexpected post-procedural complication.
Finally, it needs to be stressed that Regenerative Medicine is a field of medicine.If a clinic chooses to perform just PRP therapy or commit to one form of stem cell therapy, it is not a Regenerative Medicine practice despite glossy marketing that suggests otherwise.One mode of therapy cannot possibly treat all ailments any more than one tool can fix all mechanical problems with one tool.It would behoove you as a patient to interview your provider and get a sense of their depth and breadth of understanding of this field of Medicine.
Make Neck and Spinal Pain Relief Happen
That's right...take a proactive role.Initial steps start before the injury even happens.Maintain a healthy weight by being mindful of a healthy diet.This may entail testing to ensure you're not mounting a low-grade inflammatory response to certain foods as well as checking to see if your calcium and vitamin levels are supportive of appropriate bone density.Exercise your neck and back.This will help with mobility, and musculoskeletal strength.Adopt practices in your daily activities that avoids injury rather than react to it once it happens.
If you do injure your neck or back, take an adequate amount of time off to recover fully.Don't cut corners as you risk significantly prolonging recovery - the opposite of the desired effect.
Finally, despite the pain being acute or chronic, learn to act early."Toughing it out" can be detrimental as over months and years, at the microscopic level, the injury can not only progress but lead to further damage that becomes unresponsive to conservative measures including to biological therapies.
Do your homework, research and meet with Regenerative Medicine specialists early.Share your goals and expectations with them and get a sense for what's realistic.Don't settle for cheap or lofty promises.Once the disease has advanced beyond the point of no return and surgery is the only option, repeat this process with more than one spine surgeon.Surgery is a major endeavor and being at your health optimum is paramount.Regenerative Medicine specialists can still offer vital help here - for example with a supportive post surgical injection to help shorten recovery time.
By Vasilly Eliopoulos and Khoshal Latifazai, Founders of Rocky Mountain Regenerative Medicine, is the only full-service integrative and regenerative medicine clinic of its kind in the nation specializing in Stem Cells for Spinal Disorders.
More:
Stem Cells for Spinal Disorders - A Nonsurgical, Minimally ...