Repairing the heart with stem cells – Harvard Health …
By JoanneRUSSELL25
Could this experimental treatment reverse damage caused by a heart attack?
The heart muscle relies on a steady flow of oxygen-rich blood to nourish it and keep it pumping. During a heart attack, that blood flow is interrupted by a blockage in an artery. Without blood, the area of heart fed by the affected artery begins to die and scar tissue forms in the area. Over time, this damage can lead to heart failure, especially when one heart attack comes after another.
Though the heart is a tough organ, the damaged portions become unable to pump blood as efficiently as they once could. People who have had a heart attack therefore may face a lifetime of maintenance therapymedications and other treatments aimed at preventing another heart attack and helping the heart work more efficiently.
A new treatment using stem cellswhich have the potential to grow into a variety of heart cell typescould potentially repair and regenerate damaged heart tissue. In a study published last February in The Lancet, researchers treated 17 heart attack patients with an infusion of stem cells taken from their own hearts. A year after the procedure, the amount of scar tissue had shrunk by about 50%.
These results sound dramatic, but are they an indication that we're getting close to perfecting this therapy? "This is a field where, depending on which investigator you ask, you can get incredibly different answers," says Dr. Richard Lee, professor of medicine at Harvard Medical School and a leading expert on stem cell therapy.
"The field is young. Some studies show only modest or no improvement in heart function, but others have shown dramatically improved function," he says. "We're waiting to see if other doctors can also achieve really good results in other patients."
Studies are producing such varied outcomes in part because researchers are taking different approaches to harvesting and using stem cells. Some stem cells are taken from the bone marrow of donors, others from the patient's own heart. It's not clear which approach is the most promising.
Several different types of approaches are being used to repair damaged heart muscle with stem cells. The stem cells, which are often taken from bone marrow, may be inserted into the heart using a catheter. Once in place, stem cells help regenerate damaged heart tissue.
Like any other therapy, injecting stem cells into the heart can fail or cause side effects. If the stem cells are taken from an unrelated donor, the body's immune system may reject them. And if the injected cells can't communicate with the heart's finely tuned electrical system, they may produce dangerous heart rhythms (arrhythmias). So far, side effects haven't been a major issue, though, and that has encouraged investigators to push onward.
Read more:
Repairing the heart with stem cells - Harvard Health ...
Coronary arteries hold heart-regenerating cells
By JoanneRUSSELL25
Endothelial cells residing in the coronary arteries can function as cardiac stem cells to produce new heart muscle tissue, Vanderbilt University investigators have discovered.
The findings, published recently in Cell Reports, offer insights into how the heart maintains itself and could lead to new strategies for repairing the heart when it fails after a heart attack.
The heart has long been considered to be an organ without regenerative potential, said Antonis Hatzopoulos, Ph.D., associate professor of Medicine and Cell and Developmental Biology.
"People thought that the same heart you had as a young child, you had as an old man or woman as well," he said.
Recent findings, however, have demonstrated that new heart muscle cells are generated at a low rate, suggesting the presence of cardiac stem cells. The source of these cells was unknown.
Hatzopoulos and colleagues postulated that the endothelial cells that line blood vessels might have the potential to generate new heart cells. They knew that endothelial cells give rise to other cell types, including blood cells, during development.
Now, using sophisticated technologies to "track" cells in a mouse model, they have demonstrated that endothelial cells in the coronary arteries generate new cardiac muscle cells in healthy hearts. They found two populations of cardiac stem cells in the coronary arteries -- a quiescent population in the media layer and a proliferative population in the adventitia (outer) layer.
The finding that coronary arteries house a cardiac stem cell "niche" has interesting implications, Hatzopoulos said. Coronary artery disease -- the No. 1 killer in the United States -- would impact this niche.
"Our study suggests that coronary artery disease could lead to heart failure not only by blocking the arteries and causing heart attacks, but also by affecting the way the heart is maintained and regenerated," he said.
The current research follows a previous study in which Hatzopoulos and colleagues demonstrated that after a heart attack, endothelial cells give rise to the fibroblasts that generate scar tissue.
Read the original:
Coronary arteries hold heart-regenerating cells
Nationally Recognized Beverly Hills Orthopedic Surgeon, Dr. Raj, Now Offering Stem Cell Procedures to Help Patients …
By JoanneRUSSELL25
Beverly Hills, California (PRWEB) August 11, 2014
Nationally recognized Beverly Hills orthopedic surgeon, Dr. Raj, is now offering stem cell procedures to help patients avoid the need for surgery. This may include joint replacement along with tendon or ligament surgery. For more information on stem cell therapy and scheduling at the Beverly Hills Orthopedic Institute, call (310) 247-0466.
As the benefit of stem cells for repair and regeneration of human tissue has evolved, the opportunity to avoid surgery has too. This includes those with cartilage degeneration, tendonitis and ligament injury. Dr. Raj has been a pioneer in bringing stem cell therapies to the forefront, and is now offering the procedures to all patients.
According to Celebrity Fitness Expert Dr. Raj, a nationally recognized Double Board Certified Orthopedic Surgeon at the Beverly Hills Orthopedic Institute, stem cell injections are being used to heal conditions that used to require surgery. Dr. Raj has been featured on The Doctors, SPIKE TV, NBC, CBS, Martha Stewart Living Radio, Beverly Hills Times and has been named Best of LA by KCAL 9 as well we making Americas Top Orthopedics List in 2007, 2009, 2010, and 2011.
Dr. Raj explains that stem cells have started a medical revolution and have altered the way doctors approach treatment. Stem cells help to regenerate the damaged cartilage within a joint and allow patients to take a more conservative route, adds Dr. Raj. Surgery should be a last case scenario after all other options have been exhausted.
For those individuals suffering from joint arthritis of the hip, knee, shoulder or ankle, surgery is an elective decision with nonsurgical options that traditionally did not alter the course of arthritis. They have merely acted as a "band aid" for pain relief, but not effective at long term relief due to healing arthritis.
Stem cell therapy offers the opportunity for relief and increased activity, while staying out of the operating room. The procedures are outpatient and safe, with minimal risks involved.
For more information on the stem cell procedures provided with the top orthopedic doctor in Los Angeles and Beverly Hills, call (310) 247-0466.
Originally posted here:
Nationally Recognized Beverly Hills Orthopedic Surgeon, Dr. Raj, Now Offering Stem Cell Procedures to Help Patients ...
Stem Cell Therapy – Am I A Candidate – Video
By JoanneRUSSELL25
Stem Cell Therapy - Am I A Candidate
Farhan Saddiqi, MD discusses the process of determining whether you are a candidate for Stem Cell Therapy at the Trinity Stem Cell Institute.
By: SMU Productions - Tampa Video Production
Read more:
Stem Cell Therapy - Am I A Candidate - Video
Single-cell analysis holds promise for stem cell and cancer research
By JoanneRUSSELL25
UC San Francisco researchers have identified cells' unique features within the developing human brain, using the latest technologies for analyzing gene activity in individual cells, and have demonstrated that large-scale cell surveys can be done much more efficiently and cheaply than was previously thought possible.
"We have identified novel molecular features in diverse cell types using a new strategy of analyzing hundreds of cells individually," said Arnold Kriegstein, MD, PhD, director of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF. "We expect to use this approach to help us better understand how the complexity of the human cortex arises from cells that are spun off through cell division from stem cells in the germinal region of the brain."
The research team used technology focused on a "microfluidic" device in which individual cells are captured and flow into nano-scale chambers, where they efficiently and accurately undergo the chemical reactions needed for DNA sequencing. The research showed that the number of reading steps needed to identify and spell out unique sequences and to successfully identify cell types is 100 times fewer than had previously been assumed. The technology, developed by Fluidigm Corporation, can be used to individually process 96 cells simultaneously.
"The routine capture of single cells and accurate sampling of their molecular features now is possible," said Alex Pollen, PhD, who along with fellow Kriegstein-lab postdoctoral fellow Tomasz Nowakowski, PhD, conducted the key experiments, in which they analyzed the activation of genes in 301 cells from across the developing human brain. Their results were published online August 3 in Nature Biotechnology.
Kriegstein said the identification of hundreds of novel biomarkers for diverse cell types will improve scientists' understanding of the emergence of specialized neuronal subtypes. Ultimately, the combination of this new method of focusing on gene activity in single cells with other single-cell techniques involving microscopic imaging is likely to reveal the origins of developmental disorders of the brain, he added.
The process could shed light on several brain disorders, including lissencephaly, in which the folds in the brain's cortex fail to develop, as well as maladies diagnosed later in development, such as autism and schizophrenia, Kriegstein said.
According to the Nature Biotechnology study co-authors, this strategy of analyzing molecules in single cells is likely to find favor not only among researchers who explore how specialized cells arise at specific times and locations within the developing organism, but also among those who monitor cell characteristics in stem cells engineered for tissue replacement, and those who probe the diversity of cells within tumors to identify those responsible for survival and spread of cancerous cells.
No matter how pure, in any unprocessed biological sample there are a variety of cells representing various tissue types. Researchers have been sequencing the combined genetic material within these samples. To study which genes are active and which are dormant, they use the brute repetition of sequencing steps to capture an adequate number of messenger RNA sequences, which are transcribed from switched-on genes. However, it is difficult to conclude from mixed tissue samples which genes are expressed by particular cell types.
Pollen and Nowakowski showed that fewer steps -- and less time and money -- are needed to distinguish different cell types through single-cell analysis than had previously been thought.
"We are studying an ecosystem of different, but related, cell types in the brain," Pollen said. "We are breaking that community down into the different populations of cells with the goal of understanding their functional parts and components so we can accurately predict how they will develop."
Read the rest here:
Single-cell analysis holds promise for stem cell and cancer research
"Stem Cell Therapy for Spinal Cord Injuries" by Priya …
By JoanneRUSSELL25
Working Paper
4-2014
Stem cell-based therapies are an emerging branch of medicine with the purpose of restoring tissue function for patients with serious injuries, such as a spinal cord injury. As a result, scientists and engineers are increasing research efforts in the field of regenerative medicine. Due to the delicate nature of stem cells, producing the large quantity required for a successful therapy has proved challenging. In recent years, research has shown the potential of stem cell-based therapies, and thus there is a need for the commercialization of these treatments. The proposed facility targets the demand for spinal cord injury treatments and can support production for both clinical trials and a commercial release. Bioreactors designed specifically for the culture and growth of stem cells have flexibility in their ability to support different stem cell lines for various therapies. Small reactors in parallel can easily adapt to changes in production size. This process also takes advantage of the best options currently available for purification and preservation to maximize the product yield.
Due to the strict regulations set in place by the FDA and lack of adequate funding, there is an untapped market for stem cell therapies for spinal cord injuries. Approximately 250,000 people in the United States suffer from spinal cord injuries, varying in severity, and this patient base increases at a rate of 12,000 new injuries every year (Spinal Cord Injury Facts and Figures, 2009). Future markets include expansion into Europe and Asia.
There are two steps to this proposal: the upstream process and the downstream process. The upstream process includes the scale-up, differentiation, and purification of human embryonic stem cells; the downstream process consists of the scale-up of neurons for injection. The upstream process will be built initially and yield enough cells for clinical trials, without incurring the capital costs of building the entire plant. Upon success of the clinical trials, the downstream process will be built for maximum production. The profitability of this proposal is based on running 26 batches a year at 1.02x1010 cells per batch or 2.66x1011 cells per year. By targeting 5,000 patients, two percent of the current market, and charging $45,000 per dose, a profitable profile can be created. Assuming 50% production capacity the first year and a ten-year plant life, the ROI, NPV, and IRR of the proposal are 226.09%, $961,892,600, and 242.81% respectively. Using a 50% production capacity allows for higher profit margins upon expansion. The proposed plan will meet the need of this growing market.
Date Posted: 25 July 2014
Read more:
"Stem Cell Therapy for Spinal Cord Injuries" by Priya ...
Osiris Stem Cells To Compliment Mannkind's Afrezza In Disrupting Diabetes Market
By JoanneRUSSELL25
Published at Retail Investor 360: Monday, 28 July 2014 20:02 by Doctor Hung V. Tran, MD, MS
Disclosure: I am long on MNKD.
Due to its capacity to self-renew and give rise to cells of various lineage, mesenchymal stem cells (MSCs) have generated a great amount of enthusiasm over the past decade as a novel therapeutic paradigm for a variety of diseases. The leading, integrated stem cell company Osiris Therapeutics (NASDAQ:OSIR) thus indeed has captured and gained a significant impact in this unique market since infancy with its capabilities in groundbreaking research, development, manufacturing, marketing and distribution of stem cell products to treat unmet medical conditions in orthopedic, sport medicine and specifically wound care markets.
Source: Stem Cell
Giving the diabetes mellitus market is growing at a rapid rate globally; roughly 25 million or 8.3% of the U.S. population suffer from this condition. With its FDA approved super rapid acting insulin, Afrezza, that could mimic the actions of healthy pancreas, Mannkind Corporation (NASDAQ: MNKD) is already positioned it self to become the new leader in this huge insulin market. Diabetic complications such as diabetic foot ulceration, infection, and gangrene are significant complications and the leading causes of hospitalization in patients with diabetes mellitus. We believed that Afrezza's disruptive technology to deliver Technosphere insulin via a small whistle-like device Dreamboat enabling patient's with convenience, ease of use, hence, removing barriers leading to the aforementioned complication. Regardless of Afrezza's superiority or any other potential drugs, a sizeable number of patients, not having access to care due to poverty, transportation, or rural setting would not be able to optimally control their blood sugar, thus, succumb to diabetes complications. These complications often precede lower-extremity amputation. Prompt and aggressive treatments of diabetic foot ulcers are essential to prevent exacerbation of the problem and eliminate the potential for amputation. Osiris, thus, successfully tapped into this market and established a new standard in diabetic wound care, as well as proven the tremendous impact of stem cell can have in medicine.
Key Factors Involved in the Development of Diabetic Foot Problems
Diabetic foot ulcer is among the most common complications of diabetes, accounting for as many as 20% of all hospitalizations in diabetic patients at an annual cost of $200 to $350 million. According to the American Diabetes Association (ADA), 15% of diabetic patients experience significant foot ulcer during their lifetime.
Approximately 71,000 lower-extremity amputations, often sequelae of uncontrolled infection, are performed each year on diabetic patients; this represents up to 70% of all nontraumatic amputations in the United States. Also, approximately 20% of diabetics will undergo additional surgery or amputation of a second limb within 12 months of the initial amputation.
Original post:
Osiris Stem Cells To Compliment Mannkind's Afrezza In Disrupting Diabetes Market
Heal Interstitial Cystitis with Stem Cell Therapy – Video
By JoanneRUSSELL25
Heal Interstitial Cystitis with Stem Cell Therapy
via YouTube Capture.
By: Minecraft madness and mayhem
Read more from the original source:
Heal Interstitial Cystitis with Stem Cell Therapy - Video
Cell therapy for multiple sclerosis patients: Closer than ever?
By JoanneRUSSELL25
Scientists at The New York Stem Cell Foundation (NYSCF) Research Institute are one step closer to creating a viable cell replacement therapy for multiple sclerosis from a patient's own cells.
For the first time, NYSCF scientists generated induced pluripotent stem (iPS) cells lines from skin samples of patients with primary progressive multiple sclerosis and further, they developed an accelerated protocol to induce these stem cells into becoming oligodendrocytes, the myelin-forming cells of the central nervous system implicated in multiple sclerosis and many other diseases.
Existing protocols for producing oligodendrocytes had taken almost half a year to produce, limiting the ability of researchers to conduct their research. This study has cut that time approximately in half, making the ability to utilize these cells in research much more feasible.
Stem cell lines and oligodendrocytes allow researchers to "turn back the clock" and observe how multiple sclerosis develops and progresses, potentially revealing the onset of the disease at a cellular level long before any symptoms are displayed. The improved protocol for deriving oligodendrocyte cells will also provide a platform for disease modeling, drug screening, and for replacing the damaged cells in the brain with healthy cells generated using this method.
"We are so close to finding new treatments and even cures for MS. The enhanced ability to derive the cells implicated in the disease will undoubtedly accelerate research for MS and many other diseases," said Susan L. Solomon, NYSCF Chief Executive Officer.
"We believe that this protocol will help the MS field and the larger scientific community to better understand human oligodendrocyte biology and the process of myelination. This is the first step towards very exciting studies: the ability to generate human oligodendrocytes in large amounts will serve as an unprecedented tool for developing remyelinating strategies and the study of patient-specific cells may shed light on intrinsic pathogenic mechanisms that lead to progressive MS." said Dr. Valentina Fossati, NYSCF -- Helmsley Investigator and senior author on the paper.
In multiple sclerosis, the protective covering of axons, called myelin, becomes damaged and lost. In this study, the scientists not only improved the protocol for making the myelin-forming cells but they showed that the oligodendrocytes derived from the skin of primary progressive patients are functional, and therefore able to form their own myelin when put into a mouse model. This is an initial step towards developing future autologous cell transplantation therapies in multiple sclerosis patients
This important advance opens up critical new avenues of research to study multiple sclerosis and other diseases. Oligodendrocytes are implicated in many different disorders, therefore this research not only moves multiple sclerosis research forward, it allows NYSCF and other scientists the ability to study all demyelinating and central nervous system disorders.
"Oligodendrocytes are increasingly recognized as having an absolutely essential role in the function of the normal nervous system, as well as in the setting of neurodegenerative diseases,such as multiple sclerosis. The new work from the NYSCF Research Institute will help to improve our understanding of these important cells. In addition, being able to generate large numbers of patient-specific oligodendrocytes will support both cell transplantation therapeutics for demyelinating diseases and the identification of new classes of drugs to treat such disorders," said Dr. Lee Rubin, NYSCF Scientific Advisor and Director of Translational Medicine at the Harvard Stem Cell Institute.
Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system, distinguished by recurrent episodes of demyelination and the consequent neurological symptoms. Primary progressive multiple sclerosis is the most severe form of multiple sclerosis, characterized by a steady neurological decline from the onset of the disease. Currently, there are no effective treatments or cures for primary progressive multiple sclerosis and treatments relies merely on symptom management.
Here is the original post:
Cell therapy for multiple sclerosis patients: Closer than ever?
Joslin Scientists Create the First IPS Cells to Offer Human Model of Insulin Resistance
By JoanneRUSSELL25
Contact Information
Available for logged-in reporters only
Newswise BOSTON July 24, 2014 Japanese biologist Shinya Yamanaka won a Nobel Prize in 2012 for discovering how to create induced pluripotent stem cells (iPSCs), cells derived from normal adult cells that have the ability to differentiate into almost any other kind of cells. Scientists at Joslin Diabetes Center now have created the first iPSCs that offer a human model of insulin resistance, a key driver of type 2 diabetes.
This is one of the very first studies of human iPSC models for type 2 diabetes, and it points out the power of this technology to look at the nature of diabetes, which is complex and may be different in different individuals, says C. Ronald Kahn, MD, Joslins Chief Academic Officer and the Mary K. Iacocca Professor of Medicine at Harvard Medical School.
Until now, scientists examining the causes and effects of insulin resistance have struggled with a general lack of human cell lines from tissues such as muscle, fat and liver that respond significantly to insulin, Kahn says. Studying insulin resistance as it progresses through pre-clinical stages of type 2 diabetes has been particularly challenging.
There have been no good human cell models to study insulin resistance, but such cells can now be made with iPSCs, says Kahn, co-senior author on a paper about the study published in the journal Diabetes.
Generation of iPSCs typically starts with fibroblasts (connective tissue cells) from skin samples. Kahn and his colleagues used fibroblasts from three patients with severe insulin resistance brought on by mutations in the gene for the insulin receptor (IR)a molecule that crosses the cell membrane and plays a key role in insulin signaling and glucose metabolism.
The Joslin researchers reprogrammed the fibroblasts into iPSCs by using viral procedures that activated four genes that together maintain cells in the iPSC state. The scientists then looked at gene activation in insulin signaling pathways for iPSCs and fibroblasts with IR mutations, and for corresponding cells derived from people without those mutations.
Among the study findings, IR mutations alter expression of many genes both in fibroblasts and iPSCs compared to normal cells, but the impact is very much dependent on the cell type, says Kahn. You see one type of expression pattern in the fibroblasts and a different type of pattern in the iPSCs.
Insulin is a key ingredient for the growth and proliferation of normal stem cells, and the study demonstrated that insulin resistance also reduces the ability of the iPSCs to grow and proliferate. That defect may represent a previously unrecognized mechanism that aids in developing diabetes, Kahn says, as well as helping to explain the problems in wound healing, tissue repair and even beta-cell growth that are common among people with diabetes.
See the rest here:
Joslin Scientists Create the First IPS Cells to Offer Human Model of Insulin Resistance
Alex Salmond says Yes to the Teles bone marrow campaign
By JoanneRUSSELL25
The First Minister has given his support to the Teles campaign for bone marrow donors.
Alex Salmond urged people to consider joining the national bone marrow registers after he heard about Menzieshill baby Faith Cushnies cancer battle.
Mr Salmond said: Faiths story highlights the need for more bone marrow donors, and I commend the Evening Telegraph for their excellent campaign.
It is vital that those willing to donate their blood stem cells or bone marrow sign up to the Anthony Nolan Trust and British Bone Marrow Registers, to help people who desperately need lifesaving transplants.
I would encourage everyone eligible to consider saving lives by joining the register.
More than 180 people from Tayside have registered to be donors with the bone marrow and stem cell charity Anthony Nolan since the Tele published Faiths story on Tuesday.
The nine-month-old, needed a bone marrow donation to beat leukaemia, but after her donor backed out she relapsed before a replacement could be found.
Doctors have told Faiths devastated parents there is now nothing they can do for her.
Every year around 1,800 people in the UK need a bone marrow or stem cell transplant to treat cancers such as leukaemia, lymphoma and myeloma and blood disorders like sickle cell disease.
Bone marrow, the spongy tissue found inside some bones, contains stem cells that produce blood cells to carry oxygen around the body, fight infection and stop bleeding.
Read the original:
Alex Salmond says Yes to the Teles bone marrow campaign
Human blood created from human stem cells in lab
By JoanneRUSSELL25
Scientists have discovered two genetic programs that are responsible for taking blank-slate stem cells to turn them into both red and white cells that make up human blood.
Igor Slukvin, the lead researcher from University of Wisconsin-Madison explained that this was the first demonstration of the production of different kinds of cells from human pluripotent stem cells, using transcription factors.
Slukvin said that by over-expressing just two transcription factors, they could reproduce the sequence of events they see in the "embryo" where blood was made, in the laboratory dish.
The method developed by Slukvin's group was shown to produce blood cells in abundance. For every million stem cells, the researchers were able to produce 30 million blood cells.
According to Slukvin, an unfulfilled aspiration is to produce hematopoietic stem cells, multipotent stem cells found in bone marrow that are used to treat some cancers, including leukemia and multiple myeloma, in the lab.
The study is published in the journal Nature Communications.
(Posted on 20-07-2014)
See the rest here:
Human blood created from human stem cells in lab
Conflicts of interest pervasive on California stem cell board
By JoanneRUSSELL25
There's no good time for a public agency to be embroiled in a conflict-of-interest scandal, but this is an especially delicate time for California's stem cell agency.
The California Institute for Regenerative Medicine, as the program is known formally, is on track to finish doling out its $3 billion in funding from the state's voters as soon as 2017. Its original sponsor, Northern California real estate developer Robert Klein II, has been quoted talking about another $5-billion infusion, perhaps via the 2016 ballot.
Any such effort will refocus attention on the program board's inherent conflicts of interest, which were baked in by the terms of Proposition 71, Klein's 2004 ballot initiative that created CIRM and funded it through a bond issue. The prestigious Institute of Medicine in a 2012 report found these conflicts to lead to questions about "the integrity and independence of some of CIRM's decisions."
And now here comes another case. This one involves CIRM former President Alan Trounson, an Australian biologist who left the agency on June 30 and joined the board of one of its highest-profile financial partners a mere seven days later. Trounson's new employer, Stem Cells Inc., is the recipient of a nearly $20-million loan for Alzheimer's research.
CIRM says Trounson's quick move to Stem Cells Inc., where he'll receive a stipend of at least $90,000 a year, is legally "permissible." But officials there acknowledge they were blindsided; the agency learned about Trounson's new position from the company's press release.
Afterward, CIRM rushed out a statement acknowledging that Trounson's appointment to the board of a CIRM loan recipient "creates a serious risk of a conflict of interest." The agency says it will place the relationship between CIRM and the company under "a full review." Administrators reminded Trounson, board members and agency staff that state law bars him from communicating with them on any administrative matter involving Stem Cells Inc. The company declined to comment.
The relationship already reeked of cronyism. As we reported in 2012, the Newark, Calif.-based firm's co-founder, Irving Weissman, director of Stanford University's Institute for Stem Cell Biology and Regenerative Medicine, had been one of the most prominent and outspoken supporters of Proposition 71.
He's also a leading recipient of CIRM funding, listed as the principal investigator on four Stanford grants totaling nearly $35 million. CIRM contributed $43.6 million toward the construction of his institute's $200-million research building at the Stanford campus. Weissman and his wife, Ann Tsukamoto, owned nearly 380,000 shares of the firm as of last April, according to a corporate disclosure. Tsukamoto is one of the company's top executives; Weissman is a board member.
Trounson's move comes as CIRM must begin looking to the future, but any discussions about extending the agency's life span will have to address the flaws created by Proposition 71. Among them is the program's very structure, and even its scientific goals.
Klein's ballot proposition exempts CIRM from virtually any oversight or accountability. Each of the 29 governing board members has to be associated with a California public or private research institution or company, or an advocacy group for patients of one disease or another. The qualifications for board chairman are so specific they initially yielded a single credible candidate: Bob Klein.
Link:
Conflicts of interest pervasive on California stem cell board
DR ANDREW J ROCHMAN: ON STEM CELL THERAPY – Video
By JoanneRUSSELL25
DR ANDREW J ROCHMAN: ON STEM CELL THERAPY
By: Len Promoter
The rest is here:
DR ANDREW J ROCHMAN: ON STEM CELL THERAPY - Video
The possible alternatives to bone marrow transplant
By JoanneRUSSELL25
;
AP Photo/Agapito Sanchez, Baylor College of Medicine
MONTREAL Finding a donor for a stem cell transplant is perhaps one of the most difficult things for a cancer patient.
This is because stem cells are one of the few things that patients cannot rely on their immediate family to donate, according to to Doctor Silvy Lachance, Director of the stem cell transplant program at Hpital Maisonneuve-Rosemont.
Of course, we first look within the family, she said.
But there is only 25 per cent chance of identifying a donor. If we dont find a donor within the family, we try the international donor registry.
According to the National Cancer Institute, bone marrow and peripheral blood stem cell transplantations are most commonly used to treat leukemia, lymphoma, neuroblastoma (a cancer that affects mostly infants and children) and multiple myeloma.
While they wait for a compatible donor, patients will be assigned a conditioning regiment, which may include radiation.
This conditioning regiment will be followed by the infusion of stem cells that are compatible with the recipient, said Lachance.
Yet, for most ethnic minorities or anyone of mixed-birth, the chances of finding an anonymous donor remain very difficult.
Read more here:
The possible alternatives to bone marrow transplant
Saved from amputation – how a stem cell gel rebuilt my shattered leg
By JoanneRUSSELL25
Clive Randell, 57, injured his leg in a motorcycle accident in 2011 Thanks to a new stem cell procedure, he can now ride his bike again Stem cells taken from the pelvis are blended with gel to 'glue' the bone
By David Gerrie
Published: 16:01 EST, 12 July 2014 | Updated: 19:59 EST, 12 July 2014
A pioneering stem cell procedure to repair fractured bones could provide a lifeline for accident victims facing the amputation of a limb.
The development involves harvesting stem cells master cells that are able to transform into any kind of body tissue from the patients pelvis, blending them with a specially created gel and injecting the solution into the damaged bone.
One patient already benefiting is lifelong motorcycle enthusiast Clive Randell who suffered horrific injuries to his left leg when his Harley-Davidson was rammed by a car in 2011.
On yer bike: Clive Randell, 57, pictured with his 'saviour' Professor Anan Shetty at Kents Canterbury Christ Church University, can now ride his bike again after undergoing the new stem cell procedure
He suffered multiple open fractures, leaving bone protruding through the skin, and extensive skin loss. Doctors repeatedly told him his leg would have to be amputated.
Today, though, Clive, 57, is back on his feet and, astonishingly, also his bike thanks to the ground-breaking stem-cell treatment.
Continue reading here:
Saved from amputation - how a stem cell gel rebuilt my shattered leg
Citalopram increases the differentiation efficacy of BMSCs into neuronal-like cells
By JoanneRUSSELL25
PUBLIC RELEASE DATE:
10-Jul-2014
Contact: Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research
There is evidence that selective serotonin reuptake inhibitor antidepressants can promote neuronal cell proliferation and enhance neuroplasticity both in vitro and in vivo. Dr. Javad Verdi and his team, Tehran University of Medical Sciences, Iran proposed that citalopram, a selective serotonin reuptake inhibitor, can increase the efficacy of bone marrow mesenchymal stem cells (BMSCs) differentiating into neuronal-like cells. Experimental results confirmed that citalopram can improve the neuronal-like cell differentiation of BMSCs by increasing cell proliferation and survival while maintaining their neuronal characteristics. These results were published in Neural Regeneration Research (Vol. 9, No. 8, 2014).
###
Article: "Citalopram increases the differentiation efficacy of bone marrow mesenchymal stem cells into neuronal-like cells" by Javad Verdi1, 2, Seyed Abdolreza Mortazavi-Tabatabaei1, 2, Shiva Sharif 2, 3, Hadi Verdi2, Alireza Shoae-Hassani1, 2 (1 Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; 2 Department of Stem Cells and Tissue Engineering, Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; 3 Department of Tissue Engineering, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran)
Contact:
Meng Zhao eic@nrren.org 86-138-049-98773 Neural Regeneration Research http://www.nrronline.org/
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
View original post here:
Citalopram increases the differentiation efficacy of BMSCs into neuronal-like cells
Patient-specific stem cells and personalized gene therapy
By JoanneRUSSELL25
Columbia University Medical Center (CUMC) researchers have created a way to develop personalized gene therapies for patients with retinitis pigmentosa (RP), a leading cause of vision loss. The approach, the first of its kind, takes advantage of induced pluripotent stem (iPS) cell technology to transform skin cells into retinal cells, which are then used as a patient-specific model for disease study and preclinical testing.
Using this approach, researchers led by Stephen H. Tsang, MD, PhD, showed that a form of RP caused by mutations to the gene MFRP (membrane frizzled-related protein) disrupts the protein that gives retinal cells their structural integrity. They also showed that the effects of these mutations can be reversed with gene therapy. The approach could potentially be used to create personalized therapies for other forms of RP, as well as other genetic diseases. The paper was published recently in the online edition of Molecular Therapy, the official journal of the American Society for Gene & Cell Therapy.
"The use of patient-specific cell lines for testing the efficacy of gene therapy to precisely correct a patient's genetic deficiency provides yet another tool for advancing the field of personalized medicine," said Dr. Tsang, the Laszlo Z. Bito Associate Professor of Ophthalmology and associate professor of pathology and cell biology.
While RP can begin during infancy, the first symptoms typically emerge in early adulthood, starting with night blindness. As the disease progresses, affected individuals lose peripheral vision. In later stages, RP destroys photoreceptors in the macula, which is responsible for fine central vision. RP is estimated to affect at least 75,000 people in the United States and 1.5 million worldwide.
More than 60 different genes have been linked to RP, making it difficult to develop models to study the disease. Animal models, though useful, have significant limitations because of interspecies differences. Researchers also use human retinal cells from eye banks to study RP. As these cells reflect the end stage of the disease process, however, they reveal little about how the disease develops. There are no human tissue culture models of RP, as it would dangerous to harvest retinal cells from patients. Finally, human embryonic stem cells could be useful in RP research, but they are fraught with ethical, legal, and technical issues.
The use of iPS technology offers a way around these limitations and concerns. Researchers can induce the patient's own skin cells to revert to a more basic, embryonic stem cell-like state. Such cells are "pluripotent," meaning that they can be transformed into specialized cells of various types.
In the current study, the CUMC team used iPS technology to transform skin cells taken from two RP patients -- each with a different MFRP mutation -- into retinal cells, creating patient-specific models for studying the disease and testing potential therapies.
By analyzing these cells, the researchers found that the primary effect of MFRP mutations is to disrupt the regulation of actin, the protein that makes up the cytoskeleton, the scaffolding that gives the cell its structural integrity. "Normally, the cytoskeleton looks like a series of connected hexagons," said Dr. Tsang. "If a cell loses this structure, it loses its ability to function."
The researchers also found that MFRP works in tandem with another gene, CTRP5, and that a balance between the two genes is required for normal actin regulation.
In the next phase of the study, the CUMC team used adeno-associated viruses (AAVs) to introduce normal copies of MFRP into the iPS-derived retinal cells, successfully restoring the cells' function. The researchers also used gene therapy to "rescue" mice with RP due to MFRP mutations. According to Dr. Tsang, the mice showed long-term improvement in visual function and restoration of photoreceptor numbers.
Go here to see the original:
Patient-specific stem cells and personalized gene therapy
Keck Medicine pushing into O.C. with oncology network acquisition
By JoanneRUSSELL25
Keck Medicine of USC has acquired a small oncology network, Orange Coast Oncology Hematology, to expand its growing presence in Orange County.
Keck intends to change the name of the newly acquired network to USC Oncology/Hematology, which will operate out of offices in Newport Beach and Irvine.
Orange County cancer patients will now have access to university-based treatment, including clinical trials and genetic stem cell research, without having to drive to Los Angeles, said Thomas Jackiewicz, chief of Keck Medicine of USC.
The acquisition is part of Keck Medicines ongoing expansion into Orange County, Jackiewicz said. Keck Medicine has previously affiliated with Hoag Memorial Hospital Presbyterian in Newport Beach as part of its Orange County outreach.
We realized a lot of people were leaving Orange County for their cancer care, Jackiewicz said. We really wanted to make it about the patient and try to bring cancer care closer to home.
Under the acquisition, which was announced Wednesday, physicians with the former Orange Coast Oncology Hematology will become faculty at Keck School of Medicine. The physicians joining Keck include Greg Richard Angstreich, Minh D. Nguyen, George B. Semeniuk III, Dilruba Haque and Louis VanderMolen.
Read the rest here:
Keck Medicine pushing into O.C. with oncology network acquisition
Scientific journal Nature retracts controversial stem cell papers
By JoanneRUSSELL25
Last week, the scientific journal Nature retracted two papers which claimed that skin cells could be turned into stem cells. PBS NewsHour interviewed lead author Dr. Charles Vacanti of Brigham and Womens Hospital about the studies in January.
Vacanti and scientists from the RIKEN Institute in Japan claimed that bathing adult mouse cells in a mild acid made the cells behave like embryonic stem cells. It appeared to be an inexpensive way to create stem cells without destroying an embryo.
Controversy surrounding embryonic stem cells has slowed research progress. While it is possible to make stem cells from other sources, doing so is costly and takes time. If true, the finding would have opened new avenues for stem cell-related research and therapies.
But other scientists could not recreate stimulus-triggered acquisition of pluripotency (STAP) cells. An investigation in April found that RIKEN Institute junior scientist Haruko Obokata had falsely identified some of the images in the study, and plagiarized some of the descriptions in the paper. The studies authors pointed to five more errors when the journal printed its retraction last week, including images that claimed to show two different things, but actually showed the same thing.
We apologize for the mistakes included in the Article and Letter, the authors wrote in a statement. These multiple errors impair the credibility of the study as a whole and we are unable to say without doubt whether the STAP-SC phenomenon is real.
Read more:
Scientific journal Nature retracts controversial stem cell papers