Stem Cell Quick Reference – Learn Genetics
By JoanneRUSSELL25
Somatic stem cells (also called adult stem cells) exist naturally in the body. They are important for growth, healing, and replacing cells that are lost through daily wear and tear.
Potential as therapy Stem cells from the blood and bone marrow are routinely used as a treatment for blood-related diseases. However, under natural circumstances somatic stem cells can become only a subset of related cell types. Bone marrow stem cells, for example, differentiate primarily into blood cells. This partial differentiation can be an advantage when you want to produce blood cells; but it is a disadvantage if you're interested in producing an unrelated cell type.
Special considerations Most types of somatic stem cells are present in low abundance and are difficult to isolate and grow in culture. Isolation of some types could cause considerable tissue or organ damage, as in the heart or brain. Somatic stem cells can be transplanted from donor to patient, but without drugs that suppress the immune system, a patient's immune system will recognize transplanted cells as foreign and attack them.
Ethical considerations Therapy involving somatic stem cells is not controversial; however, it is subject to the same ethical considerations that apply to all medical procedures.
View post:
Stem Cell Quick Reference - Learn Genetics
Americans seek stem cell treatments in China – Health …
By JoanneRUSSELL25
BEIJING Theyre paralyzed from diving accidents and car crashes, disabled by Parkinsons, or blind. With few options available at home in America, they search the Internet for experimental treatments and often land on Web sites promoting stem cell treatments in China.
They mortgage their houses and their hometowns hold fundraisers as they scrape together the tens of thousands of dollars needed for travel and the hope for a miracle cure.
A number of these medical tourists claim some success when they return home.
Jim Savage, a Houston quadriplegic, says he can move his right arm. Penny Thomas of Hawaii says her Parkinsons tremors are mostly gone. The parents of 6-year-old Rylea Barlett of Missouri, born with an optical defect, say she can see.
But documentation is mostly lacking, and Western doctors warn that patients are serving as guinea pigs in a country that isnt doing the rigorous lab and human tests that are needed to prove a treatment is safe and effective.
Effectiveness questioned Noting the lack of evidence, three Western doctors undertook their own limited study. It involved seven patients with spinal cord injuries who chose to get fetal brain tissue injections at one hospital in China. The study reported no clinically useful improvements even though most patients believed they were better. Five developed complications such as meningitis.
Experts in the West have theories about why some people think theyve improved when the evidence is thin. Some are often getting intensive physical therapy, along with the mysterious injections; the placebo effect may also be a factor.
John Steeves, a professor at the University of British Columbia who heads an international group that monitors spinal cord treatments, has another theory. Some patients may be influenced by the amount of money they paid and the help they got from those who donated or helped raise money.
Needless to say, when they come back, what are they going to report to their friends and neighbors? That it didnt work? said Steeves. Nobody wants to hear that.
He and other experts have written a booklet advising patients who are considering such treatments.
The rest is here:
Americans seek stem cell treatments in China - Health ...
Spinal Cord Injuries – Regenocyte
By JoanneRUSSELL25
Spinal Cord Injury Patient Walks After 26 Years in Wheel Chair Thanks To Stem Cells
Chicago, Illinois; August 22, 2012
After 26 years in a wheel chair William Orr is walking. Granted it is with the assistance of a walker, but he is walking. Orr is walking to get his mail, he is walking to rehab from his parked car and he is planning on walking into his 35th high school reunion.
The 52-year-old Aurora man has been a quadriplegic for half his life, since a car hit him while he was riding his bike back in 1986. He suffered a C6-C7 incomplete spinal cord injury and has used a wheel chair since.
In August of 2010, Orr underwent what many believe is a first of its kind stem cell procedure in Naples, Florida, using bone marrow from his hip that doctors believe has regenerated damaged cells in his spinal cord. He had such a good response that a second treatment was performed in July 2012. Subsequently, Orr has gained both motor and sensory improvement, as well as having the majority of his muscle spasms dissipate.
There is a remarkable difference. The results for Mr. Orr and others in the treatment group are truly remarkable and have exceeded our expetations said Michael Calcaterra for Intercellular Sciences. Frankly, this is an area that regeneration was thought not to be possible.
I feel like a new person, said Orr. And its only going to get better. He hopes to someday be walking without the walker. Doctors believe that if his quadriceps strength continues to improve as well as his foot lift, then its a real possibility. In the meantime, hes relishing every new sensation, big or small. Its this amazing work ethic and attitude along with the stem cells, his doctor insists, that will help get this man back on his feet again.
UPDATE:
Follow this link:
Spinal Cord Injuries - Regenocyte
Cardiac regeneration: current therapies—future concepts
By JoanneRUSSELL25
Abstract
Cardiovascular disease (CVD) continues to be one of the main causes of death in the western world. A high burden of disease and the high costs for the healthcare systems claim for novel therapeutic strategies besides current conventional medical care. One decade ago first clinical trials addressed stem cell based therapies as a potential alternative therapeutic strategy for myocardial regeneration and repair. Besides bone marrow derived stem cells (BMCs), adult stem cells from adipose or cardiac tissue have been used in current clinical studies with inconsistent results. Although outcomes in terms of safety and feasibility are generally encouraging, functional improvements were mostly disappointingly low and have failed to reach expectations. In the future, new concepts for myocardial regeneration, especially concerning recovery of cardiomyocyte loss, have to be developed. Transplantation of novel stem or progenitor cell populations with true regenerative potential, direct reprogramming of scar tissue into functional myocardium, tissue engineering or stimulation of endogenous cardiac repair by pharmacological agents are conceivable. This review summarizes current evidence of stem cell based regenerative therapies and discusses future strategies to improve functional outcomes.
KEYWORDS : Myocardial infarction, regenerative medicine, stem cells, tissue engineering, reprogramming
In 2009 cardiovascular disease (CVD) still accounted for 32.3% of all deaths in the United States and therefore continues to be one of the main causes of death (1). From 1999 to 2009, the rate of death due to CVD has declined, but nevertheless the burden of disease remains high. Although improved medical care and acute management of myocardial infarction have led to a considerable reduction of early mortality rate survivors are susceptible to an increased prevalence of chronic heart failure as they develop scarring followed by ventricular remodeling despite optimum medical care (2,3).
Interestingly, cardiovascular operations and interventional procedures increased by 28% from 2000 to 2010 implicating an enormous cost factor for the healthcare system (1). For 2009, it was estimated that the direct and indirect costs of CVD and stroke add up to about $312.6 billion in the United States, which was more than for any other diagnostic group (1).
The main issue of current pharmacological, interventional or operative therapies is their disability to compensate the irreversible loss of functional cardiomyocytes (4). Hence, the future challenge of cardiovascular therapies will be the functional regeneration of myocardial contractility by novel concepts, like cell based therapy, tissue engineering or reprogramming of scar fibroblasts (5,6).
After promising preclinical results using adult stem and precursor cells for cardiac regeneration a rapid clinical translation using autologous bone marrow cells (BMCs) in patients was initiated (7,8). In the last few years numerous clinical trials addressing the transplantation of various adult stem cell populations for cardiac regeneration have been performed. Essential characteristics for the selected adult stem cell populations are the potential to proliferate, migrate and the ability to transdifferentiate into various mature cell types (9). Today, different adult stem cell sources like BMCs, myocardium or adipose tissue derived cells were already used in clinical trials. Beside direct intracoronary or intramyocardial transplantation of adult stem cells into the heart mobilization of autologous progenitor cells by administration of different cytokines [i.e., erythropoietin (EPO) or granulocyte colony stimulating factor (G-CSF)] were also evaluated in first clinical trials (summarized in and ,).
Regenerative therapies and cell sources currently administered in clinical trials. Current clinical trials use BMCs, ADRCs or CPCs to regenerate impaired myocardium after ischemic events. Alternatively cytokines like EPO or G-CSF are employed to mobilize ...
Transplantation of adult stem cells-clinical trials mentioned in the text.
Mobilization of adult stem cells-clinical trials mentioned in the text.
Excerpt from:
Cardiac regeneration: current therapies—future concepts
Artificial skin created using stem cells from umbilical cord …
By JoanneRUSSELL25
In computer-based text processing and digital typesetting, a non-breaking space, no-break space or non-breakable space (NBSP) is a variant of the space character that prevents an automatic line break (line wrap) at its position. In certain formats (such as HTML), it also prevents the collapsing of multiple consecutive whitespace characters into a single space. The non-breaking space is also known as a hard space or fixed space. In Unicode, it is encoded at U+00A0 no-break space (HTML: ).
Text-processing software typically assumes that an automatic line break may be inserted anywhere a space character occurs; a non-breaking space prevents this from happening (provided the software recognizes the character). For example, if the text 100 km will not quite fit at the end of a line, the software may insert a line break between 100 and km. To avoid this undesirable behaviour, the editor may choose to use a non-breaking space between 100 and km. This guarantees that the text 100km will not be broken: if it does not fit at the end of a line it is moved in its entirety to the next line.
A second common application of non-breaking spaces is in plain text file formats such as SGML, HTML, TeX, and LaTeX, which sometimes treat sequences of whitespace characters (space, newline, tab, form feed, etc.) as if they were a single white-space character. Such collapsing of white-space allows the author to neatly arrange the source text using line breaks, indentation and other forms of spacing without affecting the final typeset result.[1][2]
In contrast, non-breaking spaces are not merged with neighboring whitespace characters, and can therefore be used by an author to insert additional visible space in the formatted text. For example, in HTML, non-breaking spaces may be used in conjunction with a fixed-width font to create tabular alignment (courier new font family used):
Column 1Column 2 ---------------- 1.22.3
(note that the use of the pre tag, the whitespace:pre CSS rule, or a table are alternative, if not necessarily better, ways to achieve the same result in HTML)
If ordinary spaces are used instead then the spaces are collapsed when the HTML is rendered and the layout is broken:
Column 1 Column 2 -------- -------- 1.2 2.3
Non-breaking space can also be used to automatically change formatting in a document. This is useful for things like class plans and recipe files where the description of a cell or line may be different from the actual text or title.
Unicode defines several other non-break space characters[3] that differ from the regular space in width:
Read more from the original source:
Artificial skin created using stem cells from umbilical cord ...
Cardiac Stem Cells (CSCs) | University of Maryland Medical Center
By JoanneRUSSELL25
For immediate release: September 10, 2012
Baltimore, MD --Researchers at the University of Maryland School of Medicine, who are exploring novel ways to treat serious heart problems in children, have conducted the first direct comparison of the regenerative abilities of neonatal and adult-derived human cardiac stem cells. Among their findings: cardiac stem cells (CSCs) from newborns have a three-fold ability to restore heart function to nearly normal levels compared with adult CSCs. Further, in animal models of heart attack, hearts treated with neonatal stem cells pumped stronger than those given adult cells. The study is published in the September 11, 2012, issue of Circulation.
The surprising finding is that the cells from neonates are extremely regenerative and perform better than adult stem cells, says the study's senor author, Sunjay Kaushal, M.D., Ph.D., associate professor of surgery at the University of Maryland School of Medicine and director, pediatric cardiac surgery at the University of Maryland Medical Center. We are extremely excited and hopeful that this new cell-based therapy can play an important role in the treatment of children with congenital heart disease, many of whom don't have other options.
Dr. Kaushal envisions cellular therapy as either a stand-alone therapy for children with heart failure or an adjunct to medical and surgical treatments. While surgery can provide structural relief for some patients with congenital heart disease and medicine can boost heart function up to two percent, he says cellular therapy may improve heart function even more dramatically. We're looking at this type of therapy to improve heart function in children by 10, 12, or 15 percent. This will be a quantum leap in heart function improvement.
Heart failure in children, as in adults, has been on the rise in the past decade and the prognosis for patients hospitalized with heart failure remains poor. In contrast to adults, Dr. Kaushal says heart failure in children is typically the result of a constellation of problems: reduced cardiac blood flow; weakening and enlargement of the heart; and various congenital malformations. Recent research has shown that several types of cardiac stem cells can help the heart repair itself, essentially reversing the theory that a broken heart cannot be mended.
Stem cells are unspecialized cells that can become tissue- or organ-specific cells with a particular function. In a process called differentiation, cardiac stem cells may develop into rhythmically contracting muscle cells, smooth muscle cells or endothelial cells. Stem cells in the heart may also secrete growth factors conducive to forming heart muscle and keeping the muscle from dying.
To conduct the study, researchers obtained a small amount of heart tissue during normal cardiac surgery from 43 neonates and 13 adults. The cells were expanded in a growth medium yielding millions of cells. The researchers developed a consistent way to isolate and grow neonatal stem cells from as little as 20 milligrams of heart tissue. Adult and neonate stem cell activity was observed both in the laboratory and in animal models. In addition, the animal models were compared to controls that were not given the stem cells.
Dr. Kaushal says it is not clear why the neonatal stem cells performed so well. One explanation hinges on sheer numbers: there are many more stem cells in a baby's heart than in the adult heart. Another explanation: neonate-derived cells release more growth factors that trigger blood vessel development and/or preservation than adult cells.
This research provides an important link in our quest to understand how stem cells function and how they can best be applied to cure disease and correct medical deficiencies, says E. Albert Reece, M.D., Ph.D., M.B.A., vice president for medical affairs, University of Maryland; the John Z. and Akiko K. Bowers Distinguished Professor; and dean, University of Maryland School of Medicine. Sometimes simple science is the best science. In this case, a basic, comparative study has revealed in stark terms the powerful regenerative qualities of neonatal cardiac stem cells, heretofore unknown.
Insights gained through this research may provide new treatment options for a life-threatening congenital heart syndrome called hypoplastic left heart syndrome (HLHS). Dr. Kaushal and his team will soon begin the first clinical trial in the United States to determine whether the damage to hearts of babies with HLHS can be reversed with stem cell therapy. HLHS limits the heart's ability to pump blood from the left side of the heart to the body. Current treatment options include either a heart transplant or a series of reconstructive surgical procedures. Nevertheless, only 50-60 percent of children who have had those procedures survive to age five.
See the original post:
Cardiac Stem Cells (CSCs) | University of Maryland Medical Center
Stem Cell Transplants and Bone Marrow Transplant to Treat Lymphoma
By JoanneRUSSELL25
Surgeon performs bone marrow harvest
The terms "Hodgkin's Disease," "Hodgkin's Lymphoma," and "Hodgkin Lymphoma" are used interchangeably throughout this site.
Bone Marrow Transplants (BMT) and Peripheral Blood Stem Cell Transplants (PBSCT) are emerging as mainstream treatment for many cancers, including Hodgkin's Disease and Medium/High grade aggressive)Non-Hodgkin's lymphoma.
BMTs have been used to treat lymphoma for more than 10 years, but until recently they were used mostly within clinical trials. Now BMTs are being used in conjunction with high doses of chemotherapy as a mainstream treatment.
When high doses of chemotherapy are planned, which can destroy the patients bone marrow, physicians will typically remove marrow from the patients bone before treatment and freeze it. After chemotherapy, the marrow is thawed and injected into a vein to replace destroyed marrow. This type of transplant is called an autologous transplant. If the transplanted marrow is from another person, it is called an allogeneic transplant.
In PBSCTs, another type of autologous transplant, the patient's blood is passed through a machine that removes the stem cells the immature cells from which all blood cells develop. This procedure is called apheresis and usually takes three or four hours over one or more days. After treatment to kill any cancer cells, the stem cells are frozen until they are transplanted back to the patient. Studies have shown that PBSCTs result in shorter hospital stays and are safer and more cost effective than BMTs.
Read this article:
Stem Cell Transplants and Bone Marrow Transplant to Treat Lymphoma
Sources of stem cells for transplant – American Cancer Society
By JoanneRUSSELL25
There are 3 possible sources of stem cells to use for transplants: bone marrow, the bloodstream (peripheral blood), and umbilical cord blood from newborns. Although bone marrow was the first source used in stem cell transplant, peripheral blood is used most often today.
Bone marrow is the spongy tissue in the center of bones. Its main job is to make blood cells that circulate in your body and immune cells that fight infection.
Bone marrow was the first source used for stem cell transplants because it has a rich supply of stem cells. The bones of the pelvis (hip) contain the most marrow and have large numbers of stem cells in them. For this reason, cells from the pelvic bone are used most often for a bone marrow transplant. Enough marrow must be removed to collect a large number of healthy stem cells.
For a bone marrow transplant, the donor gets general anesthesia (drugs are used to put the patient into a deep sleep so they dont feel pain). A large needle is put through the skin and into the back of the hip bone. The thick, liquid marrow is pulled out through the needle. This is repeated several times until enough marrow has been taken out (harvested). (For more on this, see the section called Whats it like to donate stem cells?)
The harvested marrow is filtered, stored in a special solution in bags, and then frozen. When the marrow is to be used, its thawed and then given just like a blood transfusion. The stem cells travel to the recipients bone marrow. There over time, they engraft or take and begin to make blood cells. Signs of the new blood cells usually can be measured in the patients blood tests in about 2 to 4 weeks.
Normally, few stem cells are found in the blood. But giving hormone-like substances called growth factors to stem cell donors a few days before the harvest causes their stem cells to grow faster and move from the bone marrow into the blood.
For a peripheral blood stem cell transplant, the stem cells are taken from blood. A very thin flexible tube (called a catheter) is put into one of the donors veins and attached to tubing that carries the blood to a special machine. The machine separates the blood, and keeps only the stem cells. The rest of the blood goes back to the donor. This takes several hours, and may need to be repeated for a few days to get enough stem cells. The stem cells are filtered, stored in bags, and frozen until the patient is ready for them. (For more on this, see the section called Whats it like to donate stem cells?)
After the patient is treated with chemo and/or radiation, the stem cells are given in an infusion much like a blood transfusion. The stem cells travel to the bone marrow, engraft, and then grow and make new, normal blood cells. The new cells are usually found in the patients blood a few days sooner than when bone marrow stem cells are used, usually in about 10 to 20 days.
Not everyone who needs an allogeneic stem cell transplant can find a well-matched donor among family members or among the people who have signed up to donate. For these patients, umbilical cord blood may be a source of stem cells. Around 30% of unrelated hematopoietic stem cell transplants are done with cord blood.
A large number of stem cells are normally found in the blood of newborn babies. After birth, the blood that is left behind in the placenta and umbilical cord (known as cord blood) can be taken and stored for later use in a stem cell transplant. The cord blood is frozen until needed.
More:
Sources of stem cells for transplant - American Cancer Society
Stem Cells In Use – Learn Genetics
By JoanneRUSSELL25
Leukemia is a cancer of white blood cells, or leukocytes. Like other blood cells, leukocytes develop from somatic stem cells. Mature leukocytes are released into the bloodstream, where they work to fight off infections in our bodies.
Leukemia results when leukocytes begin to grow and function abnormally, becoming cancerous. These abnormal cells cannot fight off infection, and they interfere with the functions of other organs.
Successful treatment for leukemia depends on getting rid of all the abnormal leukocytes in the patient, allowing healthy ones to grow in their place. One way to do this is through chemotherapy, which uses potent drugs to target and kill the abnormal cells. When chemotherapy alone can't eliminate them all, physicians sometimes turn to bone marrow transplants.
In a bone marrow transplant, the patient's bone marrow stem cells are replaced with those from a healthy, matching donor. To do this, all of the patient's existing bone marrow and abnormal leukocytes are first killed using a combination of chemotherapy and radiation. Next, a sample of donor bone marrow containing healthy stem cells is introduced into the patient's bloodstream.
If the transplant is successful, the stem cells will migrate into the patient's bone marrow and begin producing new, healthy leukocytes to replace the abnormal cells.
New evidence suggests that bone marrow stem cells may be able to differentiate into cell types that make up tissues outside of the blood, such as liver and muscle. Scientists are exploring new uses for these stem cells that go beyond diseases of the blood.
See the original post here:
Stem Cells In Use - Learn Genetics
Stem cell therapy: When will it help the heart? | The Why Files
By JoanneRUSSELL25
Stem cells: When will they heal the heart?
Its been 15 years since a University of Wisconsin-Madison researcher isolated embryonic stem cells the do-anything cells that appear in early development. Its been six years since adult human cells were transformed into the related induced pluripotent stem cells.
ENLARGE
Some day, stem cell therapy could restore cells, save hearts, and avoid the need for some heart transplants, such as this one. This heart is ready for its new home.
And yet the early hope to grow spare parts turning stem cells into specialized cells for repairing a failing brain, pancreas or heart, remains mostly promise rather than reality.
Researchers have since found how to transform stem cells into a wide variety of body cells, including heart muscle cells, or cardiomyocytes. But the holy Grail tissue supplementation or replacement remains tantalizingly out of reach.
Last week, Why Files attended a symposium on treating cardiovascular disease with stem cells, at the BioPharmaceutical Technology Center Institute near Madison, Wis. We found the picture unexpectedly complicated: as multiple kinds of stem cells are grown and delivered in a bewildering variety of ways to treat a catalog of conditions.
So far, stem cells have not been approved to treat any heart disease in the United States.
Still, the need remains clear. Disorders of the heart and blood vessels, which deliver oxygen and nutrients to the body, continue to kill. Today, one of every 2.6 Americans will die of some cause related to their heart, writes Columbia University Medical Center.
See the original post:
Stem cell therapy: When will it help the heart? | The Why Files
MedRebels: KXAN News Release on Adult Stem Cell Therapy – Video
By JoanneRUSSELL25
MedRebels: KXAN News Release on Adult Stem Cell Therapy
http://medrebels.org/
By: Med Rebels
Originally posted here:
MedRebels: KXAN News Release on Adult Stem Cell Therapy - Video
News Release: Spinal Fusion with Adult Stem Cell Therapy – Video
By JoanneRUSSELL25
News Release: Spinal Fusion with Adult Stem Cell Therapy
http://medrebels.org/
By: Med Rebels
Continued here:
News Release: Spinal Fusion with Adult Stem Cell Therapy - Video
Bone Marrow Cells, Bone Marrow Stem Cells – AllCells.com
By JoanneRUSSELL25
Bone Marrow Cells & Tissue
AllCells is able to provide whole bone marrow aspirate and
collected from healthy individuals. These bone marrow products are available in fresh or frozen format.
The following bone marrow cells and tissue product types are available from AllCells:
Please view all of our Bone Marrow Products below.
Bone Marrow (BM) contains hematopoietic stem/progenitor cells, which are self-renewing, proliferating, and differentiating into multi-lineage blood cells. Multipotent, non-hematopoietic stem cells, such as bone marrow mesenchymal stem cells, can be isolated from human bone marrow as well. These non-hematopoietic, bone marrow stromal cells are capable of both self-renewal and differentiation into bone, cartilage, muscle, tendons, and fat. 100 mL of bone marrow cells and tissue is drawn into a 60cc syringe containing heparin (80 U/mL of BM) from the posterior iliac crest, at a maximum of eight separate sites. Whole bone marrow products are diluted with PBS. Please see our entire Bone Marrow Product inventory below.
Read the rest here:
Bone Marrow Cells, Bone Marrow Stem Cells - AllCells.com
Spinal Cord Injury Fact Sheet | California’s Stem Cell Agency
By JoanneRUSSELL25
CIRM funds a variety of research projects focused on finding a treatment for people with spinal cord injury. These projects range from basic work understanding how nerve cells are damaged in these injuries to projects trying move therapies into clinical trials.
If you want to learn more about CIRM funding decisions or make a comment directly to our board, join us at a public meeting. You can find agendas for upcoming public meetings on our meetings page.
Learn more about stem cell research: Stem Cell Basics Primer | Stem Cell Videos | What We Fund
Find clinical trials: CIRM does not track stem cell clinical trials. If you or a family member is interested in participating in a clinical trial, please see the national trial database to find a trial near you: clinicaltrials.gov
About 250,000 people in the U.S. live with spinal cord injuries. Half of those are quadriplegic, with the paralysis impacting all four limbs to some extent. For those individuals the lifetime cost of managing their condition is estimated to be between $2 million and $3 million.
Spinal cord injury became the first condition targeted in a human clinical trial using cells made from embryonic stem cells. That trial, begun by Geron in 2010 and based on the findings of a team CIRM currently funds, was later cancelled by Geron for financial reasons. By the time of the cancellation five patients around the country had been enrolled in the study, including two at Stanford, who entered the trial during a period when CIRM funded Geron. Those patients continue to be followed to learn as much as possible about this approach.
Californias stem cell agency retains many grants for research to move potential spinal cord injury therapies forward (the full list is below). Much of this work focuses on trying to determine which type of nerve cell is the best one to transplant, and deciding which type of stem cell is the best starting point for making those cells. Other research is trying to see if these transplanted cells become part of the existing nerve system, helping create new pathways that can transmit nerve signals to muscles. The researchers are also looking at ways to try and improve the ability of these transplanted cells to become part of the nerve system.
One obstacle that some teams are trying to overcome is the tendency of the scar at the site of injury to block the growth of these transplanted cells. One group is trying to overcome that by combining stem cells with synthetic scaffolds that can be placed at the site of injury, to help the cells bridge the scar and restore signals. In animal models this combination has resulted in an increase in mobility compared to stem cell grafts alone.
Progress and Promise toward a stem cell-based therapy for spinal cord injury
Total:
See more here:
Spinal Cord Injury Fact Sheet | California's Stem Cell Agency
Stem cell therapy – Wikipedia, the free encyclopedia
By JoanneRUSSELL25
This article is about the medical therapy. For the cell type, see Stem cell.
Stem cell therapy is an intervention strategy that introduces new adult stem cells into damaged tissue in order to treat disease or injury. Many medical researchers believe that stem cell treatments have the potential to change the face of human disease and alleviate suffering.[1] The ability of stem cells to self-renew and give rise to subsequent generations with variable degrees of differentiation capacities,[2] offers significant potential for generation of tissues that can potentially replace diseased and damaged areas in the body, with minimal risk of rejection and side effects.
A number of stem cell therapies exist, but most are at experimental stages, costly or controversial,[3] with the notable exception of bone-marrow transplantation.[citation needed] Medical researchers anticipate that adult and embryonic stem cells will soon be able to treat cancer, Type 1 diabetes mellitus, Parkinson's disease, Huntington's disease, Celiac disease, cardiac failure, muscle damage and neurological disorders, and many others.[4] Nevertheless, before stem cell therapeutics can be applied in the clinical setting, more research is necessary to understand stem cell behavior upon transplantation as well as the mechanisms of stem cell interaction with the diseased/injured microenvironment.[4]
For over 30 years, bone-marrow, and more recently, umbilical-cord blood stem cells, have been used to treat cancer patients with conditions such as leukemia and lymphoma.[5][6] During chemotherapy, most growing cells are killed by the cytotoxic agents. These agents, however, cannot discriminate between the leukaemia or neoplastic cells, and the hematopoietic stem cells within the bone marrow. It is this side effect of conventional chemotherapy strategies that the stem cell transplant attempts to reverse; a donor's healthy bone marrow reintroduces functional stem cells to replace the cells lost in the host's body during treatment.
Stroke and traumatic brain injury lead to cell death, characterized by a loss of neurons and oligodendrocytes within the brain. Healthy adult brains contain neural stem cells which divide to maintain general stem cell numbers, or become progenitor cells. In healthy adult animals, progenitor cells migrate within the brain and function primarily to maintain neuron populations for olfaction (the sense of smell). In pregnancy and after injury, this system appears to be regulated by growth factors and can increase the rate at which new brain matter is formed.[citation needed] Although the reparative process appears to initiate following trauma to the brain, substantial recovery is rarely observed in adults, suggesting a lack of robustness.[7]
Stem cells may also be used to treat brain degeneration, such as in Parkinson's and Alzheimer's disease.[8][9]
Pharmacological activation of an endogenous population of neural stem cells / neural precursor cells by soluble factors has been reported to induce powerful neuroprotection and behavioral recovery in adult rat models of neurological disorder through a signal transduction pathway involving the phosphorylation of STAT3 on the serine residue and subsequent Hes3 expression increase (STAT3-Ser/Hes3 Signaling Axis).[10][11][12]
Stem cell technology gives hope of effective treatment for a variety of malignant and non-malignant diseases through the rapid developing field that combines the efforts of cell biologists, geneticists and clinicians. Stem cells are defined as totipotent progenitor cells capable of self-renewal and multi-lineage differentiation. Stem cells survive well and show steady division in culture which then causes them the ideal targets for vitro manipulation. Research into solid tissue stem cells has not made the same progress as haematopoietic stem cells because of the difficulty of reproducing the necessary and precise 3D arrangements and tight cell-cell and cell-extracellular matrix interactions that exist in solid organs. Yet, the ability of tissue stem cells to assimilate into the tissue cytoarchitecture under the control of the host microenvironment and developmental cues, makes them ideal for cell replacement therapy. [3] [13]
The development of gene therapy strategies for treatment of intra-cranial tumours offers much promise, and has shown to be successful in the treatment of some dogs;[14] although research in this area is still at an early stage. Using conventional techniques, brain cancer is difficult to treat because it spreads so rapidly. Researchers at the Harvard Medical School transplanted human neural stem cells into the brain of rodents that received intracranial tumours. Within days, the cells migrated into the cancerous area and produced cytosine deaminase, an enzyme that converts a non-toxic pro-drug into a chemotheraputic agent. As a result, the injected substance was able to reduce the tumor mass by 81 percent. The stem cells neither differentiated nor turned tumorigenic.[15]
Some researchers believe that the key to finding a cure for cancer is to inhibit proliferation of cancer stem cells. Accordingly, current cancer treatments are designed to kill cancer cells. However, conventional chemotherapy treatments cannot discriminate between cancerous cells and others. Stem cell therapies may serve as potential treatments for cancer.[16] Research on treating lymphoma using adult stem cells is underway and has had human trials. Essentially, chemotherapy is used to completely destroy the patients own lymphocytes, and stem cells injected, eventually replacing the immune system of the patient with that of the healthy donor.
Read more here:
Stem cell therapy - Wikipedia, the free encyclopedia
Hematopoietic stem cell transplantation – Wikipedia, the free …
By JoanneRUSSELL25
Hematopoietic stem cell transplantation (HSCT) is the transplantation of multipotent hematopoietic stem cells, usually derived from bone marrow, peripheral blood, or umbilical cord blood. It is a medical procedure in the fields of hematology and oncology, most often performed for patients with certain cancers of the blood or bone marrow, such as multiple myeloma or leukemia. In these cases, the recipient's immune system is usually destroyed with radiation or chemotherapy before the transplantation. Infection and graft-versus-host disease is a major complication of allogenic HSCT.
Hematopoietic stem cell transplantation remains a dangerous procedure with many possible complications; it is reserved for patients with life-threatening diseases. As the survival of the procedure increases, its use has expanded beyond cancer, such as autoimmune diseases.[1][2]
Many recipients of HSCTs are multiple myeloma[3] or leukemia patients[4] who would not benefit from prolonged treatment with, or are already resistant to, chemotherapy. Candidates for HSCTs include pediatric cases where the patient has an inborn defect such as severe combined immunodeficiency or congenital neutropenia with defective stem cells, and also children or adults with aplastic anemia[5] who have lost their stem cells after birth. Other conditions[6] treated with stem cell transplants include sickle-cell disease, myelodysplastic syndrome, neuroblastoma, lymphoma, Ewing's sarcoma, desmoplastic small round cell tumor, chronic granulomatous disease and Hodgkin's disease. More recently non-myeloablative, or so-called "mini transplant," procedures have been developed that require smaller doses of preparative chemo and radiation. This has allowed HSCT to be conducted in the elderly and other patients who would otherwise be considered too weak to withstand a conventional treatment regimen.
A total of 50,417 first hematopoietic stem cell transplants were reported as taking place worldwide in 2006, according to a global survey of 1327 centers in 71 countries conducted by the Worldwide Network for Blood and Marrow Transplantation. Of these, 28,901 (57%) were autologous and 21,516 (43%) were allogenetic (11,928 from family donors and 9,588 from unrelated donors). The main indications for transplant were lymphoproliferative disorders (54.5%) and leukemias (33.8%), and the majority took place in either Europe (48%) or the Americas (36%).[7] In 2009, according to the world marrow donor association, stem cell products provided for unrelated transplantation worldwide had increased to 15,399 (3,445 bone marrow donations, 8,162 peripheral blood stem cell donations, and 3,792 cord blood units).[8]
Autologous HSCT requires the extraction (apheresis) of haematopoietic stem cells (HSC) from the patient and storage of the harvested cells in a freezer. The patient is then treated with high-dose chemotherapy with or without radiotherapy with the intention of eradicating the patient's malignant cell population at the cost of partial or complete bone marrow ablation (destruction of patient's bone marrow function to grow new blood cells). The patient's own stored stem cells are then transfused into his/her bloodstream, where they replace destroyed tissue and resume the patient's normal blood cell production. Autologous transplants have the advantage of lower risk of infection during the immune-compromised portion of the treatment since the recovery of immune function is rapid. Also, the incidence of patients experiencing rejection (graft-versus-host disease) is very rare due to the donor and recipient being the same individual. These advantages have established autologous HSCT as one of the standard second-line treatments for such diseases as lymphoma.[9] However, for others such as Acute Myeloid Leukemia, the reduced mortality of the autogenous relative to allogeneic HSCT may be outweighed by an increased likelihood of cancer relapse and related mortality, and therefore the allogeneic treatment may be preferred for those conditions.[10] Researchers have conducted small studies using non-myeloablative hematopoietic stem cell transplantation as a possible treatment for type I (insulin dependent) diabetes in children and adults. Results have been promising; however, as of 2009[update] it was premature to speculate whether these experiments will lead to effective treatments for diabetes.[11]
Allogeneic HSCT involves two people: the (healthy) donor and the (patient) recipient. Allogeneic HSC donors must have a tissue (HLA) type that matches the recipient. Matching is performed on the basis of variability at three or more loci of the HLA gene, and a perfect match at these loci is preferred. Even if there is a good match at these critical alleles, the recipient will require immunosuppressive medications to mitigate graft-versus-host disease. Allogeneic transplant donors may be related (usually a closely HLA matched sibling), syngeneic (a monozygotic or 'identical' twin of the patient - necessarily extremely rare since few patients have an identical twin, but offering a source of perfectly HLA matched stem cells) or unrelated (donor who is not related and found to have very close degree of HLA matching). Unrelated donors may be found through a registry of bone marrow donors such as the National Marrow Donor Program. People who would like to be tested for a specific family member or friend without joining any of the bone marrow registry data banks may contact a private HLA testing laboratory and be tested with a mouth swab to see if they are a potential match.[12] A "savior sibling" may be intentionally selected by preimplantation genetic diagnosis in order to match a child both regarding HLA type and being free of any obvious inheritable disorder. Allogeneic transplants are also performed using umbilical cord blood as the source of stem cells. In general, by transfusing healthy stem cells to the recipient's bloodstream to reform a healthy immune system, allogeneic HSCTs appear to improve chances for cure or long-term remission once the immediate transplant-related complications are resolved.[13][14][15]
A compatible donor is found by doing additional HLA-testing from the blood of potential donors. The HLA genes fall in two categories (Type I and Type II). In general, mismatches of the Type-I genes (i.e. HLA-A, HLA-B, or HLA-C) increase the risk of graft rejection. A mismatch of an HLA Type II gene (i.e. HLA-DR, or HLA-DQB1) increases the risk of graft-versus-host disease. In addition a genetic mismatch as small as a single DNA base pair is significant so perfect matches require knowledge of the exact DNA sequence of these genes for both donor and recipient. Leading transplant centers currently perform testing for all five of these HLA genes before declaring that a donor and recipient are HLA-identical.
Race and ethnicity are known to play a major role in donor recruitment drives, as members of the same ethnic group are more likely to have matching genes, including the genes for HLA.[1]
To limit the risks of transplanted stem cell rejection or of severe graft-versus-host disease in allogeneic HSCT, the donor should preferably have the same human leukocyte antigens (HLA) as the recipient. About 25 to 30 percent of allogeneic HSCT recipients have an HLA-identical sibling. Even so-called "perfect matches" may have mismatched minor alleles that contribute to graft-versus-host disease.
In the case of a bone marrow transplant, the HSC are removed from a large bone of the donor, typically the pelvis, through a large needle that reaches the center of the bone. The technique is referred to as a bone marrow harvest and is performed under general anesthesia.
Follow this link:
Hematopoietic stem cell transplantation - Wikipedia, the free ...
Stem Cell Definitions | California’s Stem Cell Agency
By JoanneRUSSELL25
En Espaol
The term stem cell by itself can be misleading. There are many different types of stem cells, each with very different potential to treat disease. The so-called adult stem cells come from any organ, from the fetus through the adult. These are also called tissue stem cells. The so-called pluripotent cells, which have the ability to form all cells in the body, can be either embryonic or induced pluripotent stem (iPS) cells.
All stem cells, whether they are tissue stem cells or pluripotent cells, have the ability to divide and create an identical copy of themselves. This process is called self-renewal. The cells can also divide to form cells that go on to develop into mature tissue types such as liver, lungs, brain, or skin.
Embryonic stem cells exist only at the earliest stages of embryonic development and go on to form all the cells of the adult body. In humans, these cells no longer exist after about five days of development.
When removed and grown in a lab dish these stem cells can continue dividing indefinitely, retaining the ability to form the more than 200 adult cell types. Because the cells have the potential to form so many different adult tissues they are also called pluripotent ("pluri" = many, "potent" = potentials) stem cells.
James Thomson, a professor of Anatomy at the University of Wisconsin, isolated the first human embryonic stem cells in 1998. He now shares a joint appointment at the University of California, Santa Barbara.
Irv Weissman talks about the difference between adult and embryonic stem cells (3:29)
Pluripotent means many (pluri) potentials (potent). In other words, these cells have the potential of taking on many fates in the body, including all of the more than 200 different cell types. Embryonic stem cells are pluripotent, as are iPS cells that are reprogrammed from adult tissues. When scientists talk about pluripotent stem cells they mostly mean either embryonic or iPS cells.
What people commonly call adult stem cells are more accurately called tissue-specific stem cells. These are specialized cells found in tissues of adults, children and fetuses. They are thought to exist in most of the bodys tissues such as the blood, brain, liver, intestine or skin. These cells are committed to becoming a cell from their tissue of origin, but they still have the broad ability to become any one of these cells. Stem cells of the bone marrow, for example, can give rise to any of the red or white cells of the blood system. Stem cells in the brain can form all the neurons and support cells of the brain, but cant form non-brain tissues. Unlike embryonic stem cells, researchers have not been able to grow adult stem cells indefinitely in the lab.
In recent years, scientists have found stem cells in the placenta and in the umbilical cord of newborn infants. Although these cells come from a newborn they are like adult stem cells in that they are already committed to becoming a particular type of cell and cant go on to form all tissues of the body. The cord blood cells that some people bank after the birth of a child are a form of adult blood-forming stem cells.
See the original post here:
Stem Cell Definitions | California's Stem Cell Agency
D’AGE Sheep Placenta Extract / Stem Cell Therapy – Video
By JoanneRUSSELL25
D #39;AGE Sheep Placenta Extract / Stem Cell Therapy
D #39;AGE is one of our most precious project, we created the environment and incorporated sand glass into the visual, all the sand effects details was crafted with a lot of TLC.
By: ExpressoFX
Originally posted here:
D'AGE Sheep Placenta Extract / Stem Cell Therapy - Video
Stem cell therapy used in Sikeston in dogs
By JoanneRUSSELL25
SIKESTON, MO (KFVS) -
Stem cell therapycan bea very controversial issue, but now some veterinarians are using new techniques to harvest those cells.
The cutting edge procedure helps fight degenerative diseases and has only been performed a few times in Missouri.
Experts say regenerative medicine using stem cells is a less invasive and more cost effective alternative for dogs suffering from osteoarthritis and cartilage injuries.
Googus is an 8 year old Boxer mix diagnosed with degenerative myelopathy.
This terminal disease affects the spinal cord causing loss of control in the hind legs.
"Even though they're unable to use their back legs they're still normal in their brain and they just don't understand why they can't walk," said Dr. Stephen Williams, Animal Health Center. "There's just not a good connection and transmission from the nerves to the back legs."
But new technology could slow, if not stop, its progression. Dr. Williams is using stem cell therapy to counteract this and other degenerative diseases in dogs.
"The stem cells from the patient are the ones that are going to benefit that same patient versus trying to take stem cells from a different dog and putting them in this dog," said Dr. Williams. "By harvesting the stem cells from the fat versus people have heard of stem cells from umbilical cords and stuff like that we're taking it from the fat tissue and harvesting those and actually activating with a fluorescent light."
Once the fat is extracted it's a two hour process to prepare the new stem cells. Those are then injected back into the patient along with platelets that work with the immune system to fight the disorder.
Excerpt from:
Stem cell therapy used in Sikeston in dogs
Physician First Choice Now Offering IV Stem Cell Therapy for Numerous Medical Conditions with US Board Certified Stem …
By JoanneRUSSELL25
Orange County, CA (PRWEB) October 21, 2013
The premier stem cell therapy clinic on the West Coast, Physician First Choice, is now offering IV stem cell treatment for numerous medical conditions. This includes stem cell treatment for Alzheimer's disease, Diabetes, Parkinson's, Liver Disease, Cardiac Disease, COPD and much more. The treatments are provided by US Board Certified Stem Cell Doctors and for more information call (888) 988-0515.
Stem cell therapy has become available for numerous medical conditions and can dramatically improve the patient's baseline. Increasing amounts of research are showing the benefits of IV stem cell therapy for conditions such as diabetes and COPD. Prior to stem cell therapy, these conditions could be managed with traditional medications, but the disease itself could not be altered. With stem cell therapy, that possibility exists.
The Board Certified stem cell doctors at Physician First Choice have over 20 combined years of experience working with patients for both stem cell injection treatment and IV therapy. The clinic treats patients at multiple Southern California locations along with an international location in Mexico. Patient treatment is performed by the same US Board Certified doctors before, during and after therapy to ensure continuity of care.
The program in Mexico involves four days worth of treatment at a first rate clinic, and patients stay at a beautiful hotel with transportation included. IV stem cell therapy is performed along with growth factor treatments to enhance the effect of the bone marrow stem cells.
For conditions such as multiple sclerosis, Alzheimer's or Parkinson's, watching a loved one deteriorate can be disheartening even when the best care is received. Physician First Choice has been having excellent results with IV stem cell treatment for diabetes and these conditions, and the program has been growing exponentially as a result.
The 4 Day Stem Cell Therapy IV Program is offered as a package. Transportation to and from San Diego is included along with the Hotel Stay, All Medical Treatment, Breakfast Each Day, and Transportation between the Gorgeous Hotel and the Stem Cell Treatment Facility. Patients must be approved for program inclusion with a full medical record review and evaluation by the Southern California doctors.
To inquire about program inclusion for IV stem cell therapy, call Physician First Choice at (888) 988-0515.