Page 12«..11121314..2030..»

Stem Cell Treatment Speeds Up Recovery after Spinal Cord …

By LizaAVILA

DURHAM N.C. May. 27 2015 /PRNewswire-iReach/ A new study appearing today inSTEM CELLS Translational Medicinedesigned to test how stem cell injections affect primates with spinal cord injury (SCI) showed the treatments significantly improved the animals motor function recovery and promoted faster healing too. The researchers call their findings a step forward toward the goal of improving outcomes for humans with chronic SCI.

Previous research conducted by various groups had indicated stem cell treatments helped rats with SCI. But because there are distinct differences in the nervous system and immunological responses between rodents and primates it is critical to determine how effective and safe the injections might be in a non-human primate SCI model as part of the translational research required for clinical trials explained Hideyuki Okano M.D. Ph.D. of Keio University School of Medicines physiology department and a co-author of the new study.

In this study the researchers grafted neural stem/progenitor cells (NS/PCs)derived from marmoset (a type of monkey) embryonic stem cells into adult marmosets suffering from a moderately bruised spinal cord. The advantage of using common marmosets is the similarity between their nervous system and immunological responses and those of humans Dr. Okano said.

The injections were given 14 days after the SCI occurred which research shows is an optimal time window for SCI therapy as inflammation has generally subsided by then and scar tissue has not yet had time to form.(Doctors believe that an incomplete spinal cord injury such as those of the study animals offers better chance for recovery than a complete SCI injury.) The results were promising.

Eventually motor function recovery significantly improved in the transplantation group compared to a control group that did not receive stem cells reported co-author Masaya Nakamura M.D. Ph.D. of Keios Department of Orthopedic Surgery. An animal in the control group for example could not raise her hands up to head height at 12 weeks after injury when motor function almost plateaus. On the other hand at the same point in time a transplanted animalwas able to jump successfully and run so fast it was difficult for us to catch her. She could also grip a pen at 3 cm. above head-height.

In addition he added there were no signs of immune rejection or tumors which have been a side effect of some stem cell therapies.

The researchers say this study is a step forward in their goal is to improve patients with complete SCI at the chronic phase. But we believe it will require a combination of stem cell transplantation rehabilitation and pharmacological therapy with the stem cells a key part of the treatment Dr. Okano added.

This translational research using a nonhuman primate model is a critical step in eventually applying these cells to injured spinal cord in human patients said Anthony Atala M.D. Editor-in-Chief ofSTEM CELLS Translational Medicineand director of the Wake Forest Institute for Regenerative Medicine.

Continued here:
Stem Cell Treatment Speeds Up Recovery after Spinal Cord ...

To Read More: Stem Cell Treatment Speeds Up Recovery after Spinal Cord …
categoriaSpinal Cord Stem Cells commentoComments Off on Stem Cell Treatment Speeds Up Recovery after Spinal Cord … | dataJune 2nd, 2015
Read All

Mesenchymal stem cell – Wikipedia, the free encyclopedia

By LizaAVILA

Mesenchymal stem cells, or MSCs, are multipotent stromal cells that can differentiate into a variety of cell types,[1] including: osteoblasts (bone cells),[2]chondrocytes (cartilage cells),[3]myocytes (muscle cells)[4] and adipocytes (fat cells). This phenomenon has been documented in specific cells and tissues in living animals and their counterparts growing in tissue culture.

While the terms mesenchymal stem cell and marrow stromal cell have been used interchangeably, neither term is sufficiently descriptive:

The youngest, most primitive MSCs can be obtained from the umbilical cord tissue, namely Wharton's jelly and the umbilical cord blood. However the MSCs are found in much higher concentration in the Whartons jelly compared to the umbilical cord blood, which is a rich source of hematopoietic stem cells. The umbilical cord is easily obtained after the birth of the newborn, is normally thrown away, and poses no risk for collection. The umbilical cord MSCs have more primitive properties than other adult MSCs obtained later in life, which might make them a useful source of MSCs for clinical applications.

An extremely rich source for mesenchymal stem cells is the developing tooth bud of the mandibular third molar. While considered multipotent, they may prove to be pluripotent. The stem cells eventually form enamel, dentin, blood vessels, dental pulp, and nervous tissues, including a minimum of 29 different unique end organs. Because of extreme ease in collection at 810 years of age before calcification, and minimal to no morbidity, they will probably constitute a major source for personal banking, research, and multiple therapies. These stem cells have been shown capable of producing hepatocytes.

Additionally, amniotic fluid has been shown to be a rich source of stem cells. As many as 1 in 100 cells collected during amniocentesis has been shown to be a pluripotent mesenchymal stem cell.[9]

Adipose tissue is one of the richest sources of MSCs. There are more than 500 times more stem cells in 1 gram of fat than in 1 gram of aspirated bone marrow. Adipose stem cells are actively being researched in clinical trials for treatment of a variety of diseases.

The presence of MSCs in peripheral blood has been controversial. However, a few groups have successfully isolated MSCs from human peripheral blood and been able to expand them in culture.[10] Australian company Cynata also claims the ability to mass-produce MSCs from induced pluripotent stem cells obtained from blood cells using the method of K. Hu et al.[11][12]

Mesenchymal stem cells are characterized morphologically by a small cell body with a few cell processes that are long and thin. The cell body contains a large, round nucleus with a prominent nucleolus, which is surrounded by finely dispersed chromatin particles, giving the nucleus a clear appearance. The remainder of the cell body contains a small amount of Golgi apparatus, rough endoplasmic reticulum, mitochondria, and polyribosomes. The cells, which are long and thin, are widely dispersed and the adjacent extracellular matrix is populated by a few reticular fibrils but is devoid of the other types of collagen fibrils.[13][14]

The International Society for Cellular Therapy (ISCT) has proposed a set of standards to define MSCs. A cell can be classified as an MSC if it shows plastic adherent properties under normal culture conditions and has a fibroblast-like morphology. In fact, some argue that MSCs and fibroblasts are functionally identical.[15] Furthermore, MSCs can undergo osteogenic, adipogenic and chondrogenic differentiation ex-vivo. The cultured MSCs also express on their surface CD73, CD90 and CD105, while lacking the expression of CD11b, CD14, CD19, CD34, CD45, CD79a and HLA-DR surface markers.[16]

MSCs have a great capacity for self-renewal while maintaining their multipotency. Beyond that, there is little that can be definitively said. The standard test to confirm multipotency is differentiation of the cells into osteoblasts, adipocytes, and chondrocytes as well as myocytes and neurons. MSCs have been seen to even differentiate into neuron-like cells,[17][18] but there is lingering doubt whether the MSC-derived neurons are functional.[19] The degree to which the culture will differentiate varies among individuals and how differentiation is induced, e.g., chemical vs. mechanical;[20] and it is not clear whether this variation is due to a different amount of "true" progenitor cells in the culture or variable differentiation capacities of individuals' progenitors. The capacity of cells to proliferate and differentiate is known to decrease with the age of the donor, as well as the time in culture. Likewise, whether this is due to a decrease in the number of MSCs or a change to the existing MSCs is not known.[citation needed]

Follow this link:
Mesenchymal stem cell - Wikipedia, the free encyclopedia

To Read More: Mesenchymal stem cell – Wikipedia, the free encyclopedia
categoriaUncategorized commentoComments Off on Mesenchymal stem cell – Wikipedia, the free encyclopedia | dataMay 5th, 2015
Read All

Blood and Bone Marrow Stem Cell Transplantation – The …

By LizaAVILA

Stem cell transplant (also known as bone marrow transplant or BMT) is an established treatment for many cancers and blood diseases once considered incurable. For some types of blood diseases, transplantation is the standard of care. For others, it is only considered if other treatments have not been successful. Ongoing advances in stem cell transplant are expanding its availability and improving outcomes for patients, young and old.

Here at the University of Chicago Medicine, the brightest minds in medicine are ready to meet the needs of all patients considering a stem cell transplant. We offer the latest promising approaches in blood and bone marrow stem cell transplant. Our team is known -- and recognized -- for our experience and expertise in:

We provide outstanding and compassionate care in a patient-centered environment. The Stem Cell Transplant Unit, located on the top floor of the Center for Care and Discovery, offers the newest technology as well as many thoughtful patient and family amenities. The unit integrates both inpatient and outpatient stem cell transplant care services in one convenient location.

As part of the internationally recognized University of Chicago Comprehensive Cancer Center (UCCCC), we participate in national clinical trials testing new and emerging therapies. A primary site for early-phase clinical trials, we offer our patients access to more new treatment protocols than any other hospital in the region.

As a leading center for advanced care, the University of Chicago Medicine attracts patients from throughout the region, the country and around the world. We provide customized services for patients who travel from other countries. For more information, contact the Center for International Patients.

In the late 1940s, University of Chicago researcher Dr. Leon Jacobson discovered that he could save a mouse, whose bone marrow and spleen had been destroyed with radiation, by transplanting healthy spleen tissue from another mouse. The donated tissue repopulated the marrow and restored production of the blood cells. This groundbreaking work influenced many scientists investigating bone marrow transplant for humans, including the winner of the 1990 Nobel Prize in Physiology or Medicine.

For information about stem cell transplant for children and teens, visit the Pediatric Stem Cell Transplant page on the University of Chicago Comer Childrens Hospital website.

UCH_008151 (19)

Read the original here:
Blood and Bone Marrow Stem Cell Transplantation - The ...

To Read More: Blood and Bone Marrow Stem Cell Transplantation – The …
categoriaBone Marrow Stem Cells commentoComments Off on Blood and Bone Marrow Stem Cell Transplantation – The … | dataApril 27th, 2015
Read All

Arthritic knees; 7 months after stem cell therapy by Harry Adelson, N.D. – Video

By LizaAVILA


Arthritic knees; 7 months after stem cell therapy by Harry Adelson, N.D.
Barbara describes her outcome seven months after her stem cell injections for her arthritic knees by Harry Adelson, N.D. http://www.docereclinics.com.

By: Harry Adelson, N.D.

Excerpt from:
Arthritic knees; 7 months after stem cell therapy by Harry Adelson, N.D. - Video

To Read More: Arthritic knees; 7 months after stem cell therapy by Harry Adelson, N.D. – Video
categoriaUncategorized commentoComments Off on Arthritic knees; 7 months after stem cell therapy by Harry Adelson, N.D. – Video | dataApril 25th, 2015
Read All

Stem Cell Treatment for COPD | StemRx Bioscience Solutions – Video

By LizaAVILA


Stem Cell Treatment for COPD | StemRx Bioscience Solutions
Dr.P V Mahajan expertise in Stem Cell Therapy | For More details please visit http://www.stemrx.in.

By: StemRx BioScience

Read more from the original source:
Stem Cell Treatment for COPD | StemRx Bioscience Solutions - Video

To Read More: Stem Cell Treatment for COPD | StemRx Bioscience Solutions – Video
categoriaUncategorized commentoComments Off on Stem Cell Treatment for COPD | StemRx Bioscience Solutions – Video | dataApril 25th, 2015
Read All

Iaso Sol (Swiss Apple Stem Cells – Video

By LizaAVILA


Iaso Sol (Swiss Apple Stem Cells
IASO SOL Iaso Sol Day Antioxidant Cream With Apple Stem Cells and Ganoderma. The newest anti-aging technology in skin care. Iaso Sol Daytime Repair Anti-Aging Formula will cast shadows on...

By: Mona Leggett

Read more:
Iaso Sol (Swiss Apple Stem Cells - Video

To Read More: Iaso Sol (Swiss Apple Stem Cells – Video
categoriaSkin Stem Cells commentoComments Off on Iaso Sol (Swiss Apple Stem Cells – Video | dataApril 17th, 2015
Read All

Phytoscience Philipine celebrity Share good effect of stem cell Therapy – Video

By LizaAVILA


Phytoscience Philipine celebrity Share good effect of stem cell Therapy
for more infor about the products visit http://www.phytosciencestemcellphils.com reach us: 0927-2329074 / 0923-6062834 / (02) 463-9400 like us: https://www.facebook.com/phytosciencestemcellreviews...

By: Shoppers Estore

Read the original post:
Phytoscience Philipine celebrity Share good effect of stem cell Therapy - Video

To Read More: Phytoscience Philipine celebrity Share good effect of stem cell Therapy – Video
categoriaUncategorized commentoComments Off on Phytoscience Philipine celebrity Share good effect of stem cell Therapy – Video | dataApril 17th, 2015
Read All

U.S. Stem Cell Clinic: What Conditions Can Be Treated? – Video

By LizaAVILA


U.S. Stem Cell Clinic: What Conditions Can Be Treated?
tem cells have the unique attribute to form many different types of tissue including bone, cartilage, and muscle. They are naturally anti-inflammatory and can therefore help in the body #39;s...

By: U.S. Stem Cell Clinic

Follow this link:
U.S. Stem Cell Clinic: What Conditions Can Be Treated? - Video

To Read More: U.S. Stem Cell Clinic: What Conditions Can Be Treated? – Video
categoriaUncategorized commentoComments Off on U.S. Stem Cell Clinic: What Conditions Can Be Treated? – Video | dataApril 13th, 2015
Read All

U.S. Stem Cell Clinic: Patient Based Webinar – Video

By LizaAVILA


U.S. Stem Cell Clinic: Patient Based Webinar
The U.S. Stem Cell Clinic is founded on the principle belief that the quality of life for our patients can be improved through stem cell therapy. We are dedicated to providing safe and effective...

By: U.S. Stem Cell Clinic

Go here to read the rest:
U.S. Stem Cell Clinic: Patient Based Webinar - Video

To Read More: U.S. Stem Cell Clinic: Patient Based Webinar – Video
categoriaUncategorized commentoComments Off on U.S. Stem Cell Clinic: Patient Based Webinar – Video | dataApril 13th, 2015
Read All

U.S. Stem Cell Clinic: Stem Cell Banking – Video

By LizaAVILA


U.S. Stem Cell Clinic: Stem Cell Banking
The U.S. Stem Cell Clinic is founded on the principle belief that the quality of life for our patients can be improved through stem cell therapy. We are dedicated to providing safe and effective...

By: U.S. Stem Cell Clinic

Visit link:
U.S. Stem Cell Clinic: Stem Cell Banking - Video

To Read More: U.S. Stem Cell Clinic: Stem Cell Banking – Video
categoriaUncategorized commentoComments Off on U.S. Stem Cell Clinic: Stem Cell Banking – Video | dataApril 11th, 2015
Read All

Stem Cell Research in Cardiology – Video

By LizaAVILA


Stem Cell Research in Cardiology
Bharat Book Bureau provides the report, on Stem Cell Research in Cardiology. The study is segmented by Source (Allogenic and Autogenic) and by Type (Bone Marrow Stem Cells, Embryonic...

By: Bharat Book

See the article here:
Stem Cell Research in Cardiology - Video

To Read More: Stem Cell Research in Cardiology – Video
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Research in Cardiology – Video | dataApril 10th, 2015
Read All

U.S. Stem Cell Clinic: What is Stem Cell Therapy? – Video

By LizaAVILA


U.S. Stem Cell Clinic: What is Stem Cell Therapy?
What is Stem Cell Therapy? Stem cell therapy attempts to harness the body #39;s own healing potential by isolating stem cells from one location of the body (fat tissue or bone marrow) and relocating...

By: U.S. Stem Cell Clinic

See the article here:
U.S. Stem Cell Clinic: What is Stem Cell Therapy? - Video

To Read More: U.S. Stem Cell Clinic: What is Stem Cell Therapy? – Video
categoriaUncategorized commentoComments Off on U.S. Stem Cell Clinic: What is Stem Cell Therapy? – Video | dataApril 10th, 2015
Read All

iPSC model helps to better understand genetic lung/liver disease

By LizaAVILA

Using patient-derived stem cells known as induced pluripotent stem cells (iPSC) to study the genetic lung/liver disease called alpha-1 antitrypsin (AAT) deficiency, researchers have for the first time created a disease signature that may help explain how abnormal protein leads to liver disease.

The study, which appears in Stem Cell Reports, also found that liver cells derived from AAT deficient iPSCs are more sensitive to drugs that cause liver toxicity than liver cells derived from normal iPSCs. This finding may ultimately lead to new treatments for the condition.

IPSC's are derived from the donated skin or blood cells of adults and, with the reactivation of four genes, are reprogrammed back to an embryonic stem cell-like state. Like embryonic stem cells, iPSC can be differentiated toward any cell type in the body, but they do not require the use of embryos. Alpha-1 antitrypsin deficiency is a common genetic cause of both liver and lung disease affecting an estimated 3.4 million people worldwide.

Researchers from the Center for Regenerative Medicine (CReM) at Boston University and Boston Medical Center (BMC) worked for several years in collaboration with Dr. Paul Gadue and his group from Children's Hospital of Philadelphia to create iPSC from patients with and without AAT deficiency. They then exposed these cells to certain growth factors in-vitro to cause them to turn into liver-like cells, in a process that mimics embryonic development. Then the researchers studied these "iPSC-hepatic cells" and found the diseased cells secrete AAT protein more slowly than normal cells. This finding demonstrated that the iPSC model recapitulates a critical aspect of the disease as it occurs in patients. AAT deficiency is caused by a mutation of a single DNA base. Correcting this single base back to the normal sequence fixed the abnormal secretion.

"We found that these corrected cells had a normal secretion kinetic when compared with their diseased, parental cells that are otherwise genetically identical except for this single DNA base," explained lead author Andrew A. Wilson, MD, assistant professor of medicine at Boston University School of Medicine and Director of the Alpha-1 Center at Bu and BMC.

They also found the diseased (AAT deficient) iPSC-liver cells were more sensitive to certain drugs (experience increased toxicity) than those from normal individuals. "This is important because it suggests that the livers of actual patients with this disease might be more sensitive in the same way," said Wilson, who is also a physician in pulmonary, critical care and allergy medicine at BMC.

According to Wilson, while some patients are often advised by their physicians to avoid these types of drugs, these recommendations are not based on solid scientific evidence. "This approach might now be used to generate that sort of evidence to guide clinical decisions," he added.

The researchers believe that studies using patient-derived stem cells will allow them to better understand how patients with AAT deficiency develop liver disease. "We hope that the insights we gain from these studies will result in the discovery of new potential treatments for affected patients in the near future," said Wilson.

Story Source:

The above story is based on materials provided by Boston University Medical Center. Note: Materials may be edited for content and length.

Continued here:
iPSC model helps to better understand genetic lung/liver disease

To Read More: iPSC model helps to better understand genetic lung/liver disease
categoriaSkin Stem Cells commentoComments Off on iPSC model helps to better understand genetic lung/liver disease | dataApril 2nd, 2015
Read All

'Open' stem cell chromosomes reveal new possibilities for diabetes

By LizaAVILA

Researchers map chromosomal changes that must take place before stem cells can be used to produce pancreatic and liver cells

IMAGE:These are pancreatic cells derived from embryonic stem cells. view more

Credit: UC San Diego School of Medicine

Stem cells hold great promise for treating a number of diseases, in part because they have the unique ability to differentiate, specializing into any one of the hundreds of cell types that comprise the human body. Harnessing this potential, though, is difficult. In some cases, it takes up to seven carefully orchestrated steps of adding certain growth factors at specific times to coax stem cells into the desired cell type. Even then, cells of the intestine, liver and pancreas are notoriously difficult to produce from stem cells. Writing in Cell Stem Cell April 2, researchers at University of California, San Diego School of Medicine have discovered why.

It turns out that the chromosomes in laboratory stem cells open slowly over time, in the same sequence that occurs during embryonic development. It isn't until certain chromosomal regions have acquired the "open" state that they are able to respond to added growth factors and become liver or pancreatic cells. This new understanding, say researchers, will help spur advancements in stem cell research and the development of new cell therapies for diseases of the liver and pancreas, such as type 1 diabetes.

"Our ability to generate liver and pancreatic cells from stem cells has fallen behind the advances we've made for other cell types," said Maike Sander, MD, professor of pediatrics and cellular and molecular medicine and director of the Pediatric Diabetes Research Center at UC San Diego. "So we haven't yet been able to do things like test new drugs on stem cell-derived liver and pancreatic cells. What we have learned is that if we want to make specific cells from stem cells, we need ways to predict how those cells and their chromosomes will respond to the growth factors."

Sander led the study, together with co-senior author Bing Ren, PhD, professor of cellular and molecular medicine at UC San Diego and Ludwig Cancer Research member.

Chromosomes are the structures formed by tightly wound and packed DNA. Humans have 46 chromosomes - 23 inherited from each parent. Sander, Ren and their teams first made maps of chromosomal modifications over time, as embryonic stem cells differentiated through several different developmental intermediates on their way to becoming pancreatic and liver cells. Then, in analyzing these maps, they discovered links between the accessibility (openness) of certain regions of the chromosome and what they call developmental competence - the ability of the cell to respond to triggers like added growth factors.

"We're also finding that these chromosomal regions that need to open before a stem cell can fully differentiate are linked to regions where there are variations in certain disease states," Sander says.

In other words, if a person were to inherit a genetic variation in one of these chromosomal regions and his or her chromosome didn't open up at exactly the right time, he or she could hypothetically be more susceptible to a disease affecting that cell type. Sander's team is now working to further investigate what role, if any, these chromosomal regions and their variations play in diabetes.

Read more:
'Open' stem cell chromosomes reveal new possibilities for diabetes

To Read More: 'Open' stem cell chromosomes reveal new possibilities for diabetes
categoriaUncategorized commentoComments Off on 'Open' stem cell chromosomes reveal new possibilities for diabetes | dataApril 2nd, 2015
Read All

Stem-cell therapy for dogs draws support, detractors

By LizaAVILA

Deltona retiree Paul Jaynes was heartbroken when his 9-year-old Labrador, Cookie, suddenly stopped walking last year. The once-athletic dog struggled to stand and, if she moved at all, collapsed after a few steps.

He carried his 90-pound companion to his truck, drove her to the vet and braced himself for the bad news. Surely she couldn't live like this.

Instead, his veterinarian told him about a newly available procedure involving stem cells. In a single day, the vet said, they could remove the cells from Cookie's fatty tissues, process them and re-inject them into her joints. She could go home immediately.

"It was very dramatic," Jaynes says. "The day after surgery, she was standing. She was hesitant, but she was standing and walking a little. I thought: 'Are you kidding me?' Within a week, she was almost back to her old self."

That was last September, and six months later Cookie is still going strong, Jaynes says. While he has no doubts about the treatment, though, some veterinarians worry that marketing of stem-cell therapy for animals has gotten ahead of the scientific research needed to validate its use.

The results, while sometimes promising, are not universal.

"Most of what you hear is anecdotal 'Oh, I tried this, and it helped my dog,'" says Dr. Jeffrey Peck, a veterinary surgeon at Affiliated Veterinary Specialists, based in Maitland. "This has grown in its marketing exponentially greater than it has grown in evidence."

Much of his practice is in orthopedics typically, dogs with hip dysplasia or arthritis. He tried using stem-cell therapy with his patients in 2008 but dropped it after a dozen cases in which he saw no improvement.

"I don't refuse to do it if a client really wants to try, but I give them my disclaimer," he says. "I tell them: 'I don't think I'm going to hurt anything. But I doubt I'm going to help anything either.'"

At $1,400 to $3,000 for the procedure, most pet owners opt out, he says.

See the rest here:
Stem-cell therapy for dogs draws support, detractors

To Read More: Stem-cell therapy for dogs draws support, detractors
categoriaUncategorized commentoComments Off on Stem-cell therapy for dogs draws support, detractors | dataMarch 29th, 2015
Read All

Researchers discover genetic origins of myelodysplastic syndrome using stem cells

By LizaAVILA

(New York - March 25, 2015) Induced pluripotent stem cells (iPSCs) -- adult cells reprogrammed back to an embryonic stem cell-like state--may better model the genetic contributions to each patient's particular disease. In a process called cellular reprogramming, researchers at Icahn School of Medicine at Mount Sinai have taken mature blood cells from patients with myelodysplastic syndrome (MDS) and reprogrammed them back into iPSCs to study the genetic origins of this rare blood cancer. The results appear in an upcoming issue of Nature Biotechnology.

In MDS, genetic mutations in the bone marrow stem cell cause the number and quality of blood-forming cells to decline irreversibly, further impairing blood production. Patients with MDS can develop severe anemia and in some cases leukemia also known as AML. But which genetic mutations are the critical ones causing this disease?

In this study, researchers took cells from patients with blood cancer MDS and turned them into stem cells to study the deletions of human chromosome 7 often associated with this disease.

"With this approach, we were able to pinpoint a region on chromosome 7 that is critical and were able to identify candidate genes residing there that may cause this disease," said lead researcher Eirini Papapetrou, MD, PhD, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai.

Chromosomal deletions are difficult to study with existing tools because they contain a large number of genes, making it hard to pinpoint the critical ones causing cancer. Chromosome 7 deletion is a characteristic cellular abnormality in MDS and is well-recognized for decades as a marker of unfavorable prognosis. However, the role of this deletion in the development of the disease remained unclear going into this study.

Understanding the role of specific chromosomal deletions in cancers requires determining if a deletion has observable consequences as well as identifying which specific genetic elements are critically lost. Researchers used cellular reprogramming and genome engineering to dissect the loss of chromosome 7. The methods used in this study for engineering deletions can enable studies of the consequences of alterations in genes in human cells.

"Genetic engineering of human stem cells has not been used for disease-associated genomic deletions," said Dr. Papapetrou. "This work sheds new light on how blood cancer develops and also provides a new approach that can be used to study chromosomal deletions associated with a variety of human cancers, neurological and developmental diseases."

Reprogramming MDS cells could provide a powerful tool to dissect the architecture and evolution of this disease and to link the genetic make-up of MDS cells to characteristics and traits of these cells. Further dissecting the MDS stem cells at the molecular level could provide insights into the origins and development of MDS and other blood cancers. Moreover, this work could provide a platform to test and discover new treatments for these diseases.

###

This study was supported by grants from the National Institutes of Health, the American Society of Hematology, the Sidney Kimmel Foundation for Cancer Research, the Aplastic Anemia & MDS International Foundation, the Ellison Medical Foundation, the Damon Runyon Cancer Research Foundation, the University of Washington Royalty Research Fund, and a John H. Tietze Stem Cell Scientist Award.

View post:
Researchers discover genetic origins of myelodysplastic syndrome using stem cells

To Read More: Researchers discover genetic origins of myelodysplastic syndrome using stem cells
categoriaBone Marrow Stem Cells commentoComments Off on Researchers discover genetic origins of myelodysplastic syndrome using stem cells | dataMarch 25th, 2015
Read All

Julie Gramyk 3 21 2015 Youtube – Video

By LizaAVILA


Julie Gramyk 3 21 2015 Youtube
Julie Gramyk, Medical Esthetic, explains how Momentis #39; new skincare system is the first in the world to penetrate beyond the skin #39;s barrier and target the skin #39;s stem cells resulting in rebuilding...

By: judyrstak

Read the rest here:
Julie Gramyk 3 21 2015 Youtube - Video

To Read More: Julie Gramyk 3 21 2015 Youtube – Video
categoriaSkin Stem Cells commentoComments Off on Julie Gramyk 3 21 2015 Youtube – Video | dataMarch 25th, 2015
Read All

Scientists create functioning "mini-lungs" to study cystic fibrosis

By LizaAVILA

Researchers at the University of Cambridge have grown functional "mini-lungs" using stems cells derived from the skin cells of patients with a debilitating lung disease. Not only can the development help them in coming up with effective treatments for specific lung diseases like cystic fibrosis, but the process has the potential to be scaled up to screen thousands of new compounds to identify potential new drugs.

Creating miniature organoids has been the focus of many a research group, as it allows scientists to better understand the processes that take place inside an organ, figure out how specific diseases occur and develop or even work towards creating bioengineered lungs.

The research team from the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute studied a lung disease called cystic fibrosis, which is caused by genetic mutation and shortens a patient's average lifespan. Patients have great difficulty breathing as the lungs are overwhelmed by thickened mucus.

To create working mini-lungs, the researchers took skin cells from patients with the most common form of cystic fibrosis and reprogrammed them to an induced pluripotent state (iPS), which allows the cells to grow into a different type of cell inside the body.

They then activated a process called gastrulation which pushes the cells to form distinct layers such as the endoderm and foregut. The cells were then pushed further to form distal airway tissue, the part of the lung that deals with exchange of gases.

In a sense, what weve created are mini-lungs," says Dr Nick Hannan, the lead researcher. While they only represent the distal part of lung tissue, they are grown from human cells and so can be more reliable than using traditional animal models, such as mice."

To find out whether the mini lungs could actually be used to screen drugs, the team tested them out with the aid of chloride-sensitive fluorescent dye. Cells from cystic fibrosis patients typically malfunction and don't allow the chloride to pass through, so there's no change in fluorescence levels.

The team added a molecule that's currently undergoing clinical trials and noted a change in fluorescence, signaling that it was effective in getting the diseased lung cells to function properly and that the mini lungs could, in principle, be used to test potential new drugs.

"Were confident this process could be scaled up to enable us to screen tens of thousands of compounds and develop mini-lungs with other diseases such as lung cancer and idiopathic pulmonary fibrosis," says Dr Hannan. "This is far more practical, should provide more reliable data and is also more ethical than using large numbers of mice for such research."

The research was published in the journal Stem Cells and Development.

Read more:
Scientists create functioning "mini-lungs" to study cystic fibrosis

To Read More: Scientists create functioning "mini-lungs" to study cystic fibrosis
categoriaSkin Stem Cells commentoComments Off on Scientists create functioning "mini-lungs" to study cystic fibrosis | dataMarch 25th, 2015
Read All

Stem cell therapy could reverse Type 2 diabetes, UBC study finds

By LizaAVILA

VANCOUVER -- University of B.C. scientists appear to be one step closer to reversing diabetes using stem cell therapy.

The latest study, published last week in the journal Stem Cell Reports, found that Type 2 diabetes can be eliminated in mice using a combination of conventional diabetes drugs and specially cultured stem cells. Similar methods have already been used to reverse Type 1 diabetes, which usually begins in childhood.

The team simulated Type 2 diabetes in mice by feeding them a high-fat, high-calorie diet for several weeks. In humans, Type 2 usually begins in adulthood and can be a result of obesity, poor diet and lack of exercise.

Like diabetic humans, the diabetic mice treated only with drugs experienced spikes in their blood sugar levels after eating sugary meals.

But the mice that were surgically implanted with pancreatic-like cells grown from human stem cells didnt have those drastic swings and were able to regulate their blood sugar like healthy animals.

Being able to reduce spikes in blood sugar levels is important because evidence suggests its those spikes that do a lot of the damage increasing risks for blindness, heart attack, and kidney failure, said Timothy Kieffer, a professor in UBCs department of cellular and physiological sciences.

So far, the researchers have followed the mice for up to seven months, and theyve remained healthy.

When we removed the transplanted devices and analyzed the cells within, they still appear very healthy so we believe they will function much longer. Ultimately the duration of cell function will need to be assessed in humans, Kieffer said in an email.

Human trials are already underway for stem cell therapy on Type 1 diabetes; the first patient was implanted with cells in October.

The treatment also had a surprising side-effect: weight loss. The mice all returned to the same, healthy weight as the animals in the control group.

The rest is here:
Stem cell therapy could reverse Type 2 diabetes, UBC study finds

To Read More: Stem cell therapy could reverse Type 2 diabetes, UBC study finds
categoriaUncategorized commentoComments Off on Stem cell therapy could reverse Type 2 diabetes, UBC study finds | dataMarch 24th, 2015
Read All

stem cell medicine Jakarta tangerang serpong bsd bintaro – Video

By LizaAVILA


stem cell medicine Jakarta tangerang serpong bsd bintaro
http://youtu.be/e8ihj9O6b-4 http://youtu.be/kbpkTtpqBBw.

By: Layar Baru DKI

Visit link:
stem cell medicine Jakarta tangerang serpong bsd bintaro - Video

To Read More: stem cell medicine Jakarta tangerang serpong bsd bintaro – Video
categoriaUncategorized commentoComments Off on stem cell medicine Jakarta tangerang serpong bsd bintaro – Video | dataMarch 22nd, 2015
Read All

Page 12«..11121314..2030..»


Copyright :: 2024