Page 15«..10..14151617..2030..»

Research and Markets: U.S. Orthopedic Biomaterials Market – 2015 Executive Summary

By LizaAVILA

DUBLIN--(BUSINESS WIRE)--Research and Markets (http://www.researchandmarkets.com/research/kn8svz/u_s_orthopedic) has announced the addition of the "U.S. Orthopedic Biomaterials Market - 2015 (Executive Summary)" report to their offering.

The fastest growing segments involve stem cells, namely the segments for stem cell bone grafts and concentrated bone marrow. The products within these markets offer the greatest regenerative potential for healing bone.

Orthopedic biomaterial products compete with products that are more established and less expensive. Thus, clinical evidence is often an important deciding factor for orthopedic biomaterials over conventional forms of therapy especially in regards to reimbursement. However, the promise seen in some products such as bone marrow concentrate generates growth despite a lack of clinical evidence and reimbursement.

Key Topics Covered:

For more information visit http://www.researchandmarkets.com/research/kn8svz/u_s_orthopedic

See the original post:
Research and Markets: U.S. Orthopedic Biomaterials Market - 2015 Executive Summary

To Read More: Research and Markets: U.S. Orthopedic Biomaterials Market – 2015 Executive Summary
categoriaBone Marrow Stem Cells commentoComments Off on Research and Markets: U.S. Orthopedic Biomaterials Market – 2015 Executive Summary | dataJanuary 13th, 2015
Read All

Is stem cell therapy less effective in older patients with chronic diseases?

By LizaAVILA

IMAGE:BioResearch Open Access is a bimonthly peer-reviewed open access journal led by Editor-in-Chief Robert Lanza, MD, Chief Scientific Officer, Advanced Cell Technology, Inc. and Editor Jane Taylor, PhD. The Journal... view more

Credit: Mary Ann Liebert, Inc., publishers

New Rochelle, NY, January 12, 2014--A promising new therapeutic approach to treat a variety of diseases involves taking a patient's own cells, turning them into stem cells, and then deriving targeted cell types such as muscle or nerve cells to return to the patient to repair damaged tissues and organs. But the clinical effectiveness of these stem cells has only been modest, which may be due to the advanced age of the patients or the effects of chronic diseases such as diabetes and cardiovascular disease, according to a probing Review article published in BioResearch Open Access, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers . The article is available on the BioResearch Open Access website.

Anastasia Yu. Efimenko, TN Kochegura, ZA Akopyan, and YV Parfyonova, Moscow State University (Russia), analyze how aging and chronic diseases might affect the regenerative potential of autologous stem cells and explain the differences between the promising results reported in preclinical studies using stem cells derived from healthy young donors and the more modest success of clinical studies in aged patients. The authors propose strategies to test for and enhance to regenerative properties and therapeutic potential of stem cells in the article "Autologous Stem Cell Therapy: How Aging and Chronic Diseases Affect Stem and Progenitor Cells".

"This review discusses a very important issue in regenerative medicine, how aging and chronic pathologies such as cardiovascular diseases and metabolic disorders affect adult stem/progenitor cells," says BioResearch Open Access Editor Jane Taylor, PhD, MRC Centre for Regenerative Medicine, University of Edinburgh, Scotland. "Future therapies are discussed by the authors in terms of overcoming or correcting the limitations of these cells in order to enhance their therapeutic potential."

###

About the Journal

BioResearch Open Access is a bimonthly peer-reviewed open access journal led by Editor-in-Chief Robert Lanza, MD, Chief Scientific Officer, Advanced Cell Technology, Inc. and Editor Jane Taylor, PhD. The Journal provides a new rapid-publication forum for a broad range of scientific topics including molecular and cellular biology, tissue engineering and biomaterials, bioengineering, regenerative medicine, stem cells, gene therapy, systems biology, genetics, biochemistry, virology, microbiology, and neuroscience. All articles are published within 4 weeks of acceptance and are fully open access and posted on PubMed Central. All journal content is available on the BioResearch Open Access website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many areas of science and biomedical research, including DNA and Cell Biology, Tissue Engineering, Stem Cells and Development, Human Gene Therapy, HGT Methods, and HGT Clinical Development, and AIDS Research and Human Retroviruses. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

See the original post:
Is stem cell therapy less effective in older patients with chronic diseases?

To Read More: Is stem cell therapy less effective in older patients with chronic diseases?
categoriaUncategorized commentoComments Off on Is stem cell therapy less effective in older patients with chronic diseases? | dataJanuary 13th, 2015
Read All

Scientists Develop Pioneering Method to Define Stages of Stem Cell Reprogramming

By LizaAVILA

Contact Information

Available for logged-in reporters only

Newswise In a groundbreaking study that provides scientists with a critical new understanding of stem cell development and its role in disease, UCLA researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research led by Dr. Kathrin Plath, professor of biological chemistry, have established a first-of-its-kind methodology that defines the unique stages by which specialized cells are reprogrammed into stem cells that resemble those found in the embryo.

The study was published online ahead of print in the journal Cell.

Induced pluripotent stem cells (known as iPSCs) are similar to human embryonic stem cells in that both cell types have the unique ability to self-renew and have the flexibility to become any cell in the human body. iPSC cells, however, are generated by reprogramming skin or blood cells and do not require an embryo.

Reprogramming is a long process (about one to two weeks) and largely inefficient, with typically less than one percent of the primary skin or blood cells successfully completing the journey to becoming an iPSC. The exact stages a cell goes through during the reprogramming process are also not well understood. This knowledge is important, as iPSCs hold great promise in the field of regenerative medicine, as they can provide a single source of patient-specific cells to replace those lost to injury or disease. They can also be used to create novel disease models from which new drugs and therapies can be developed.

This research has broad impact, because by deepening our understanding of cell reprogramming we have the potential to improve disease modeling and the generation of better sources of patient-specific specialized cells suitable for replacement therapy, said Plath. This can ultimately benefit patients with new and better treatments for a wide range of diseases.

Drs. Vincent Pasque and Jason Tchieu, postdoctoral fellows in the lab of Dr. Plath and co-first authors of the study, developed a roadmap of the reprogramming process using detailed time-course analyses. They induced the reprogramming of skin cells into iPSC, then observed and analyzed on a daily basis or every other day the process of transformation at the single-cell level. The data were collected and recorded over a period of up to two weeks.

Plaths team found that the changes that happen in cells during reprogramming occur in a sequential stage-by-stage manner, and that importantly, the stages were the same across all the different reprogramming systems and different cell types analyzed.

The exact stage of reprogramming of any cell can now be determined, said Pasque. This study signals a big change in thinking, because it provides simple and efficient tools for scientists to study stem cell creation in a stage-by-stage manner. Most studies to date ignore the stages of reprogramming, but we can now seek to better understand the entire process on both a macro and micro level.

Link:
Scientists Develop Pioneering Method to Define Stages of Stem Cell Reprogramming

To Read More: Scientists Develop Pioneering Method to Define Stages of Stem Cell Reprogramming
categoriaUncategorized commentoComments Off on Scientists Develop Pioneering Method to Define Stages of Stem Cell Reprogramming | dataJanuary 6th, 2015
Read All

Research looks to build organ stockpiles

By LizaAVILA

TUCSON Dr. Zain Khalpey stands next to a ghostly white lung pumping rhythmically on the table next to him. Thats pretty damn good, actually, Khalpey says as he gazes at the data recorded by the lungs ventilator.

The ventilator indicates that the pig lung is inflating and deflating like a normal lung. Experiments such as this bring research a step closer to the operating room.

Khalpey, an associate professor of surgery at the University of Arizona, focuses his research on making more organs available to patients who need a transplant. Every day, 18 people on organ transplant lists die, according to the U.S. Department of Health and Human Services.

In Arizona patients have to wait two to three years for a lung transplant, according to the U.S. National Library of Medicine. This waiting period is emotionally and financially draining for patients.

Khalpey is trying to shrink the wait time. He is taking damaged organs and refurbishing them so they end up in a needy patients body. Other organs too damaged to be refurbished are stripped of their cells and used to grow new organs with the patients stem cells.

In the future, donor organs may not even be needed. Khalpey is working on hybrid organs that are 3-D printed and then seeded with the patients stem cells.

From London

to Tucson

Khalpeys passion for transplant surgery started on a rainy day in 1990s London. A 16-year-old boy lay on the operating table about to undergo a heart-and-lung transplant. Cystic fibrosis caused his lungs to become a breeding ground for infection that whittled away his ability to breathe.

A team of surgeons replaced the boys lungs as well as his heart because he was more likely to survive with donor organs. The medical team rushed the boys viable heart to a second operating room, where it gave new life to another patient.

Excerpt from:
Research looks to build organ stockpiles

To Read More: Research looks to build organ stockpiles
categoriaCardiac Stem Cells commentoComments Off on Research looks to build organ stockpiles | dataJanuary 4th, 2015
Read All

Bone marrow and stem cell transplants for chronic myeloid …

By LizaAVILA

Stem cells are very early blood cells. They are normally found in the bone marrow. Doctors use growth factor injections to make some of them move into the bloodstream. This makes it easier to collect them. You have growth factors as an injection just under the skin, usually in your tummy (abdomen), or into an arm or a leg. You have these once a day, for up to 10 days at a time and can learn to give them yourself at home.

Growth factor injections can cause itching around the injection site. You may have some aching in your bones after you have had a few injections. This is because there are a lot of blood cells being made inside the bones. The aching is usually easy to control with a mild painkiller, such as paracetamol. The pain will go away after a day or so.

After your course of injections, you will have regular blood tests to see how many stem cells are in your blood. When there are enough, you will have them collected. Collecting stem cells takes 3 or 4 hours. You sit in a chair or lie down on a couch and have a fine tube put into a vein in each of your arms. The nurse attaches these to a machine called a stem cell separator. Your blood passes out of one drip, through the machine and back into your body through the other drip. The machine filters the stem cells out of your blood but gives you the rest of the cells and the plasma back. The donor stem cells are frozen and stored. Most donors need to have another collection the following day, to make sure there are enough cells.

Read more:
Bone marrow and stem cell transplants for chronic myeloid ...

To Read More: Bone marrow and stem cell transplants for chronic myeloid …
categoriaBone Marrow Stem Cells commentoComments Off on Bone marrow and stem cell transplants for chronic myeloid … | dataJanuary 3rd, 2015
Read All

Stem Cell Therapy Fixes Post-Surgical Airway Abnormality

By LizaAVILA

By Steven Reinberg HealthDay Reporter

WEDNESDAY, Dec. 31, 2014 (HealthDay News) -- Using stem cells derived from a patient's own bone marrow, researchers have repaired a fistula -- a potentially fatal tissue abnormality -- in the man's lower airway.

"This is another interesting new therapeutic approach for stem cells," said lead researcher Dr. Francesco Petrella, deputy director of thoracic surgery at the European Institute of Oncology in Milan, Italy.

The patient, a 42-year-old firefighter, developed the fistula after surgeons removed a lung as part of treatment for mesothelioma cancer. A fistula is abnormal tissue connecting an organ, blood vessel or intestine to another structure. In this case, the fistula developed between the lower airway and the tissue that surrounds the lungs.

"Our clinical experience supports the idea that stem cells could be effectively used to close some tissue defects developing after very complex surgical procedures, thus restoring a functioning airway," Petrella said.

A fistula that develops after chest surgery is serious and even deadly, Petrella said. Current treatments involve removing ribs and taking medications for months or years, he explained.

"Less invasive approaches like endoscopic glue injections have only poor results, so our proposed techniques could improve quality of life in these patients," Petrella said.

Sixty days after stem cell therapy, the firefighter's fistula was healed, the researchers said. The hole seen before stem cell therapy was no longer visible, having been replaced by new tissue created by the stem cell implant, they explained.

Some people are born with a fistula. Other causes of fistulas include complications from surgery, injury, infection and diseases, such as Crohn's disease or ulcerative colitis.

Petrella believes that this same stem cell technique could be used to treat fistulas that develop elsewhere in the body.

Read more here:
Stem Cell Therapy Fixes Post-Surgical Airway Abnormality

To Read More: Stem Cell Therapy Fixes Post-Surgical Airway Abnormality
categoriaUncategorized commentoComments Off on Stem Cell Therapy Fixes Post-Surgical Airway Abnormality | dataJanuary 3rd, 2015
Read All

The good role fat cells play in protecting us from disease

By LizaAVILA

When it comes to skin infections, a healthy and robust immune response may depend greatly upon what lies beneath. In a new paper published in the January 2, 2015 issue ofScience, researchers at the University of California, San Diego School of Medicine report the surprising discovery that fat cells below the skin help protect us from bacteria.

Richard Gallo, MD, PhD, professor and chief of dermatology at UC San Diego School of Medicine, and colleagues have uncovered a previously unknown role for dermal fat cells, known as adipocytes: They produce antimicrobial peptides that help fend off invading bacteria and other pathogens.

"It was thought that once the skin barrier was broken, it was entirely the responsibility of circulating (white) blood cells like neutrophils and macrophages to protect us from getting sepsis," said Gallo, the study's principal investigator.

"But it takes time to recruit these cells (to the wound site). We now show that the fat stem cells are responsible for protecting us. That was totally unexpected. It was not known that adipocytes could produce antimicrobials, let alone that they make almost as much as a neutrophil."

The human body's defense against microbial infection is complex, multi-tiered and involves numerous cell types, culminating in the arrival of neutrophils and monocytes - specialized cells that literally devour targeted pathogens.

Skin graphic image via Shutterstock.

Read more at EurekAlert.

Go here to read the rest:
The good role fat cells play in protecting us from disease

To Read More: The good role fat cells play in protecting us from disease
categoriaSkin Stem Cells commentoComments Off on The good role fat cells play in protecting us from disease | dataJanuary 2nd, 2015
Read All

Teenager celebrating New Year after being given the gift of life

By LizaAVILA

IT was a wish that most teenagers take for granted.

Under-going gruelling treatment for a rare form of leukaemia in a hospital isolation chamber, Kitty Aplin-Haynes longed for the freedom to live life to the full like most girls her age.

But the cancer, which had spread to her brain and central nervous system, was so aggressive, her only hope of that freedom was a life-saving bone marrow transplant.

However, today the 18-year-old is at home and her wish has come true.

She can now look forward to laughing with friends and starting college after being told she is in remission thanks to the ultimate gift from a stranger, the gift of life.

Kitty is recovering after the bone marrow transplant plus a second procedure to boost her immune system from the same anonymous donor and she has another reason to smile.

Campaign Her family and friends desperate campaign to raise awareness of her plight will also save other lives as more than 130 people have signed up to the bone marrow register.

Kitty said: Many young people die waiting for a donor because only half of those who need a bone marrow transplant every year in the UK are lucky enough to find a match so I feel incredibly lucky.

Im overwhelmed my donor has donated his stem cells to me, not once, but twice.

Read the original post:
Teenager celebrating New Year after being given the gift of life

To Read More: Teenager celebrating New Year after being given the gift of life
categoriaBone Marrow Stem Cells commentoComments Off on Teenager celebrating New Year after being given the gift of life | dataJanuary 2nd, 2015
Read All

Fat isn't all bad: Skin adipocytes help protect against infections

By LizaAVILA

When it comes to skin infections, a healthy and robust immune response may depend greatly upon what lies beneath. In a new paper published in the January 2, 2015 issue of Science, researchers at the University of California, San Diego School of Medicine report the surprising discovery that fat cells below the skin help protect us from bacteria.

Richard Gallo, MD, PhD, professor and chief of dermatology at UC San Diego School of Medicine, and colleagues have uncovered a previously unknown role for dermal fat cells, known as adipocytes: They produce antimicrobial peptides that help fend off invading bacteria and other pathogens.

"It was thought that once the skin barrier was broken, it was entirely the responsibility of circulating (white) blood cells like neutrophils and macrophages to protect us from getting sepsis," said Gallo, the study's principal investigator.

"But it takes time to recruit these cells (to the wound site). We now show that the fat stem cells are responsible for protecting us. That was totally unexpected. It was not known that adipocytes could produce antimicrobials, let alone that they make almost as much as a neutrophil."

The human body's defense against microbial infection is complex, multi-tiered and involves numerous cell types, culminating in the arrival of neutrophils and monocytes - specialized cells that literally devour targeted pathogens.

But before these circulating white blood cells arrive at the scene, the body requires a more immediate response to counter the ability of many microbes to rapidly increase in number. That work is typically done by epithelial cells, mast cells and leukocytes residing in the area of infection.

Staphylococcus aureus is a common bacterium and major cause of skin and soft tissue infections in humans. The emergence of antibiotic-resistant forms of S. aureus is a significant problem worldwide in clinical medicine.

Prior published work out of the Gallo lab had observed S. aureus in the fat layer of the skin, so researchers looked to see if the subcutaneous fat played a role in preventing skin infections.

Ling Zhang, PhD, the first author of the paper, exposed mice to S. aureus and within hours detected a major increase in both the number and size of fat cells at the site of infection. More importantly, these fat cells produced high levels of an antimicrobial peptide (AMP) called cathelicidin antimicrobial peptide or CAMP. AMPs are molecules used by the innate immune response to directly kill invasive bacteria, viruses, fungi and other pathogens.

"AMPs are our natural first line defense against infection. They are evolutionarily ancient and used by all living organisms to protect themselves," said Gallo.

Follow this link:
Fat isn't all bad: Skin adipocytes help protect against infections

To Read More: Fat isn't all bad: Skin adipocytes help protect against infections
categoriaSkin Stem Cells commentoComments Off on Fat isn't all bad: Skin adipocytes help protect against infections | dataJanuary 2nd, 2015
Read All

Two-thirds of cancer cases are "bad luck," study says

By LizaAVILA

Chuck Bednar for redOrbit.com Your Universe Online

Two-thirds of all adult cancer cases are primarily the result of bad luck, according to the authors of a new study appearing in Fridays edition of the journal Science.

Dr. Bert Vogelstein, the Clayton Professor of Oncology at the Johns Hopkins University School of Medicine, and Dr. Cristian Tomasetti, an assistant professor of oncology at the Johns Hopkins University School of Medicine and Bloomberg School of Public Health, developed a statistical model that measured the proportion of cancer incidence across many different tissue types.

They found that two-thirds of adult cancer incidence across tissues occur when the random mutations that take place during stem cell division drive cancer through, while the remaining one-third of cases are the result of environmental factors and inherited genes.

All cancers are caused by a combination of bad luck, the environment and heredity, and weve created a model that may help quantify how much of these three factors contribute to cancer development, explained Dr. Vogelstein, who is also co-director of the Ludwig Center at Johns Hopkins and an investigator at the Howard Hughes Medical Institute.

Cancer-free longevity in people exposed to cancer-causing agents, such as tobacco, is often attributed to their good genes, but the truth is that most of them simply had good luck, he said, adding that that poor lifestyle choices can also contribute to this so-called bad luck factor.

The authors said that the implications of their model could alter the public perception about cancer risk factors, as well as impact the funding of research related to the disease.

If most cancer cases can be explained by random DNA mutations that occur as stem cells divide, explained Dr. Tomasetti, it means that lifestyle changes will be a tremendous help when it comes to preventing some forms of the disease, but will be less effective against other types.

As a result, the medical community should should focus more resources on finding ways to detect such cancers at early, curable stages, he added. He and Vogelstein said that they reached their conclusion by searching scientific literature for data on the cumulative number of total stem cell divisions among 31 tissue types that take place during a persons lifetime.

Stem cells renew themselves, repopulating cells that die off in specific organs, the researchers said. Cancer arises when tissue-specific stem cells experience mutations in which one chemical letter in DNA is erroneously swapped for another during the replication process.

Here is the original post:
Two-thirds of cancer cases are "bad luck," study says

To Read More: Two-thirds of cancer cases are "bad luck," study says
categoriaUncategorized commentoComments Off on Two-thirds of cancer cases are "bad luck," study says | dataJanuary 2nd, 2015
Read All

Stopping Multiple Sclerosis with Stem Cell Transplants

By LizaAVILA

Washington, DC - infoZine - Three-year outcomes from an ongoing clinical trial suggest that high-dose immunosuppressive therapy followed by transplantation of a person's own blood-forming stem cells may induce sustained remission in some people with relapsing-remitting multiple sclerosis (RRMS). RRMS is the most common form of MS, a progressive autoimmune disease in which the immune system attacks the brain and spinal cord.

Three years after the treatment, called high-dose immunosuppressive therapy and autologous hematopoietic cell transplant or HDIT/HCT, nearly 80 percent of trial participants had survived without experiencing an increase in disability, a relapse of MS symptoms or new brain lesions. Investigators observed few serious early complications or unexpected side effects, although many participants experienced expected side effects of high-dose immunosuppression, including infections and gastrointestinal problems.

Scientists estimate that MS affects more than 2.3 million people worldwide. Symptoms can vary widely and may include disturbances in speech, vision and movement. Most people with MS are diagnosed with RRMS, which is characterized by periods of relapse or flare up of symptoms followed by periods of recovery or remission. Over years, the disease can worsen and shift to a more progressive form.

In the study, researchers tested the effectiveness of HDIT/HCT in 25 volunteers with RRMS who had relapsed and experienced worsened neurological disability while taking standard medications. Doctors collected blood-forming stem cells from participants and then gave them high-dose chemotherapy to destroy their immune systems. The doctors returned the stem cells to the participants to rebuild and reset their immune systems.

"Notably, participants did not receive any MS drugs after transplant, yet most remained in remission after three years," said Daniel Rotrosen, M.D., director of NIAID's Division of Allergy, Immunology and Transplantation. "In contrast, other studies have shown that the best alternative MS treatments induce much shorter remissions and require long-term use of immunosuppressive drugs that can cause serious side effects."

The study researchers plan to follow participants for a total of five years, recording all side effects associated with the treatment. Final results from this and similar studies promise to help inform the design of larger trials to further evaluate HDIT/HCT in people with MS.

The trial is funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and conducted by the NIAID-funded Immune Tolerance Network (ITN).

The three-year findings are published in the Dec. 29, 2014, online issue of JAMA Neurology.

Related Link Immune Tolerance Network (ITN)

The rest is here:
Stopping Multiple Sclerosis with Stem Cell Transplants

To Read More: Stopping Multiple Sclerosis with Stem Cell Transplants
categoriaSpinal Cord Stem Cells commentoComments Off on Stopping Multiple Sclerosis with Stem Cell Transplants | dataDecember 31st, 2014
Read All

Reprogramming stem cells may prevent cancer after radiation

By LizaAVILA

The body has evolved ways to get rid of faulty stem cells. A University of Colorado Cancer Center study published in the journal Stem Cells shows that one of these ways is a "program" that makes stem cells damaged by radiation differentiate into other cells that can no longer survive forever. Radiation makes a stem cell lose its "stemness." That makes sense: you don't want damaged stem cells sticking around to crank out damaged cells.

The study also shows that this same safeguard of "programmed mediocrity" that weeds out stem cells damaged by radiation allows blood cancers to grow in cases when the full body is irradiated. And by reprogramming this safeguard, we may be able to prevent cancer in the aftermath of full body radiation.

"The body didn't evolve to deal with leaking nuclear reactors and CT scans. It evolved to deal with only a few cells at a time receiving dangerous doses of radiation or other insults to their DNA," says James DeGregori, PhD, investigator at the CU Cancer Center, professor of Biochemistry and Molecular Genetics at the CU School of Medicine, and the paper's senior author.

DeGregori, doctoral student Courtney Fleenor, and colleagues explored the effects of full body radiation on the blood stem cells of mice. In this case, radiation increased the probability that cells in the hematopoietic stem cell system would differentiate. Only, while most followed this instruction, a few did not. Stem cells with a very specific mutation were able to disobey the instruction to differentiate and retain their "stemness." Genetic inhibition of the gene C/EBPA allowed a few stem cells to keep the ability to act as stem cells. With competition from other, healthy stem cells removed, the stem cells with reduced C/EBPA were able to dominate the blood cell production system. In this way, the blood system transitioned from C/EBPA+ cells to primarily C/EBPA- cells.

Mutations and other genetic alterations resulting in inhibition of the C/EBPA gene are associated with acute myeloid leukemia in humans. Thus, it's not mutations caused by radiation but a blood system reengineered by faulty stem cells that creates cancer risk in people who have experienced radiation.

"It's about evolution driven by natural selection," DeGregori says. "In a healthy blood system, healthy stem cells out-compete stem cells that happen to have the C/EBPA mutation. But when radiation reduces the heath and robustness (what we call 'fitness') of the stem cell population, the mutated cells that have been there all along are suddenly given the opportunity to take over."

Think about it in terms of chipmunks and squirrels: reducing an ecosystem's population of chipmunks may allow squirrels to flourish -- especially if the way in which chipmunks are reduced changes the ecosystem to favor squirrels, similar to how radiation changes the body in a way that favors C/EBPA-mutant stem cells).

These studies don't just tell us why radiation makes hematopoietic stem cells (HSCs) differentiate; they also show that by activating a stem cell maintenance pathway, we can keep it from happening. Even months after irradiation, artificially activating the NOTCH signaling pathway of irradiated HSCs lets them act "stemmy" again -- restarting the blood cell assembly line in these HSCs that would have otherwise differentiated in response to radiation.

When DeGregori, Fleenor and colleagues activated NOTCH in previously irradiated HSCs, it kept the population of dangerous, C/EBPA cells at bay. Competition from non-C/EBPA-mutant stem cells, with their fitness restored by NOTCH activation, meant that there was no evolutionary space for C/EBPA-mutant stem cells.

"If I were working in a situation in which I was likely to experience full-body radiation, I would freeze a bunch of my HSCs," DeGregori says, explaining that an infusion of healthy HSCs after radiation exposure would likely allow the healthy blood system to out-compete the radiation-exposed HSC with their "programmed mediocrity" (increased differentiation) and even HSC with cancer-causing mutations. "But there's also hope that in the future, we could offer drugs that would restore the fitness of stem cells left over after radiation."

The rest is here:
Reprogramming stem cells may prevent cancer after radiation

To Read More: Reprogramming stem cells may prevent cancer after radiation
categoriaUncategorized commentoComments Off on Reprogramming stem cells may prevent cancer after radiation | dataDecember 30th, 2014
Read All

Brother's transplant holds the gift of life for Densley family

By LizaAVILA

Hard road: Cooper Densley gets a kiss from mother Olivia as brothers Jackson (left), and Fletcher play around him with father Andrew (right). Photo: Simon O'Dwyer

Santa Claus delivered some wonderful gifts to Cooper Densley this year, but none of them compare to one he received from his brother Jackson in October.

In a potentially life-saving exchange, Jackson Densley, 2, donated stem cells found in his bone marrow to his older brother Cooper, 4, three months ago.

Their parents,Oliviaand AndrewDensley, are hoping the transplant will help cure Cooper of a rare genetic condition he was diagnosed with last year: Wiskott-Aldrich Syndrome.

The disorder weakens the immune system, leaving sufferers vulnerable to infections, and it reduces the production of platelets - blood cells that keep bleeding under control.

Advertisement

It means children suchasCooper can get extremely sick from common coughs and colds and a knock to the head while playing sport could trigger fatal bleeding in the brain.

The only known treatment is a stem cell transplant which can be derived from bone marrow or umbilical cord blood from a healthy donor whose tissue matches that of the recipient. When those cells are put in to the recipient's bloodstream, they can develop into normal immune cells and platelets.

Without a donation, the average life expectancy for people with the condition is 15 to 20 years.

Shortly after Mr and MrsDensleywere told about Cooper's diagnosis in 2013, MrsDensleyfell pregnant with their fifth baby, prompting hope blood from their newborn's umbilical cord could provide stem cells for Cooper.

Continue reading here:
Brother's transplant holds the gift of life for Densley family

To Read More: Brother's transplant holds the gift of life for Densley family
categoriaBone Marrow Stem Cells commentoComments Off on Brother's transplant holds the gift of life for Densley family | dataDecember 26th, 2014
Read All

Did stem cells really help Gordie Howe?

By LizaAVILA

Dr. Murray Howe and his hockey great father, Gordie Howe, on a fishing trip in Saskatchewan in 2013.

Hockey legend Gordie Howe is making a dramatic recovery from a serious stroke thanks to stem cell therapy developed by San Diego-based Stemedica, his family says. Some medical scientists aren't so sure, however.

Howe, 86, suffered the stroke in late October, leaving him unable to walk and disoriented. He began improving within hours after receiving the stem cells in early December, said Dr. Murray Howe, a radiologist and one of Howes sons. For example, Howe insisted on walking to the bathroom, which he previously could not do.

"If I did not witness my father's astonishing response, I would not have believed it myself," Murray Howe said by email Thursday. "Our father had one foot in the grave on December 1. He could not walk, and was barely able to talk or eat."

"Our father's progress continues," the email continued. "Today, Christmas, I spoke with him on FaceTime. I asked him what Santa brought him. He said 'A headache.' I told him I was flying down to see him in a week. He said, 'Thanks for the warning.'"

Howe is receiving speech and physical therapy at his home in Lubbock, Texas, and his therapists say he is much better than before receiving the stem cells.

Howe received the treatment from Novastem, a Mexican stem cell company that has licensed the use of Stemedica's cells for clinical trials approved by the Mexican government. Howe was given neural stem cells to help his brain repair damage, and stem cells derived from bone marrow to improve blood circulation in the brain. The procedure took place at Novastem's Clinica Santa Clarita in Tijuana.

Such use of unproven stem cell therapies outside the U.S. clinical trial system draws objections from some American health care professionals. They warn of the potential for abuse, say there's a lack of rigorous scientific standards, and call for tighter federal regulation of the proliferation of stem cell treatments.

Nevertheless, patients with ailments that don't response to approved treatments continue to seek such care. These patients and families say they have the right to make their own judgments. And they may not have time to wait for proof, so they're willing to take a chance.

Stemedica says it follows U.S. government law, and requires those licensing its stem cells in foreign countries to obey the laws of those countries.

See the original post here:
Did stem cells really help Gordie Howe?

To Read More: Did stem cells really help Gordie Howe?
categoriaBone Marrow Stem Cells commentoComments Off on Did stem cells really help Gordie Howe? | dataDecember 26th, 2014
Read All

FAT STEM CELL COMBINED/ Stem Cell Therapy – Video

By LizaAVILA


FAT STEM CELL COMBINED/ Stem Cell Therapy
Adipose-Derived Stem Cells derived from the patients own fat provides a rich source of adult mesenchymal stem cells as demonstrated by Dr. Hong in this sessi...

By: Kab S. Hong M.D.

Go here to see the original:
FAT STEM CELL COMBINED/ Stem Cell Therapy - Video

To Read More: FAT STEM CELL COMBINED/ Stem Cell Therapy – Video
categoriaUncategorized commentoComments Off on FAT STEM CELL COMBINED/ Stem Cell Therapy – Video | dataDecember 26th, 2014
Read All

Torn Knee Meniscus – Video

By LizaAVILA


Torn Knee Meniscus
http://www.kneestemcells.com Dennis Lox, M.D. is definitely an expert in Leg Stem Cell Treatments by providing Joint Stem Cell Therapy for those who seek an alternative for that in the past #39;s...

By: Powetis Ivanov

See original here:
Torn Knee Meniscus - Video

To Read More: Torn Knee Meniscus – Video
categoriaUncategorized commentoComments Off on Torn Knee Meniscus – Video | dataDecember 25th, 2014
Read All

Neural stem cell transplantation for chronic cervical …

By LizaAVILA

Public Abstract:

1.3 million Americans suffer chronically from spinal cord injuries (SCI); each year ~15,000 individuals sustain a new injury. For California, this means nearly 147,000 individuals are living with a SCI which can leave otherwise healthy individuals with severe deficits in movement, sensation, and autonomic function. Recovery after SCI is often limited, even after aggressive emergency treatment with steroids and surgery, followed by rehabilitation. The need to develop new treatments for SCI is pressing. We believe that stem cell therapies could provide significant functional recovery, improve quality of life, and reduce the cost of care for SCI patients. The goal of this Disease Team is to evaluate a novel cell therapy approach to SCI involving transplantation of human neural stem cells. In 2005, the FDA authorized the worlds first clinical testing of human neural stem cell transplantation into the CNS. Since then, our research team has successfully generated clinical grade human neural stem cells for use in three clinical trials, established a favorable safety profile that now approaches five years in some subjects and includes evidence of long-term donor-cell survival. Relevant to this Disease Team, the most recent study began testing human neural stem cells in thoracic spinal cord injury. The initial group of three patients with complete injury has been successfully transplanted. The Disease Team seeks to extend the research into cervical SCI. Neural cell transplantation holds tremendous promise for achieving spinal cord repair. In preliminary experiments, the investigators on this Disease Team showed that transplantation of both murine and human neural stem cells into animal models of SCI restore motor function. The human neural stem cells migrate extensively within the spinal cord from the injection site, promoting new myelin and synapse formation that lead to axonal repair and synaptic integrity. Given these promising proof-of-concept studies, we propose to manufacture clinical-grade human neural stem cells and execute the preclinical studies required to submit an IND application to the FDA that will support the first-in-human neural stem cell transplantation trial for cervical SCI. Our unmatched history of three successful regulatory submissions, extensive experience in manufacturing, preclinical and clinical studies of human neural stem cells for neurologic disorders, combined with an outstanding team of basic and clinical investigators with expertise in SCI, stem cell biology, and familiarity with all the steps of clinical translation, make us an extremely competitive applicant for CIRMs Disease Team awards. This award could ultimately lead to a successful FDA submission that will permit human testing of a new treatment approach for SCI; one that could potentially reverse paralysis and improve the patients quality of life.

Statement of Benefit to California:

Spinal cord injuries affect more than 147,000 Californians; the majority are injuries to the cervical level (neck region) of the spinal cord. SCI exacts a devastating toll not only on patients and families, but also results in a heavy economic impact on the state: the lifetime medical costs for an individual with a SCI can exceed $3.3 million, not including the loss of wages and productivity. In California this translates to roughly $86 billion in healthcare costs. Currently there are no approved therapies for chronic thoracic or cervical SCI. We hope to advance our innovative cell therapy approach to treat patients who suffer cervical SCI. For the past 9 years, the assembled team (encompassing academic experts in pre-clinical SCI models, complications due to SCI, rehabilitation and industry experts in manufacturing and delivery of purified neural stem cells), has developed the appropriate SCI models and assays to elucidate the therapeutic potential of human neural stem cells for SCI repair. Human neural stem cell transplantation holds the promise of creating a new treatment paradigm. These cells restored motor function in spinal cord injured animal models. Our therapeutic approach is based on the hypothesis that transplanted human neural stem cells mature into oligodendrocytes to remyelinate demyelinated axons, and/or form neurons to repair local spinal circuitry. Any therapy that can partially reverse some of the sequelae of SCI could substantially change the quality-of-life for patients by altering their dependence on assisted living, medical care and possibly restoring productive employment. Through CIRM, California has emerged as a worldwide leader in stem cell research and development. If successful, this project would further CIRMs mission and increase Californias prominence while providing SCI therapy to injured Californians. This Team already has an established track record in stem cell clinical translation. The success of this Disease Team application would also facilitate new job creation in highly specialized areas including cell manufacturing making California a unique training ground. In summary, the potential benefit to the state of California brought by a cervical spinal cord Disease Team project would be myriad. First, a novel therapy could improve the quality of life for SCI patients, restore some function, or reverse paralysis, providing an unmet medical need to SCI patients and reducing the high cost of health care. Moreover, this Disease Team would maintain Californias prominence in the stem cell field and in clinical translation of stem cell therapies, and finally, would create new jobs in stem cell technology and manufacturing areas to complement the states prominence in the biotech field.

More:
Neural stem cell transplantation for chronic cervical ...

To Read More: Neural stem cell transplantation for chronic cervical …
categoriaSpinal Cord Stem Cells commentoComments Off on Neural stem cell transplantation for chronic cervical … | dataDecember 24th, 2014
Read All

Cutting Out the Cellular Middleman: New Technology Directly Reprograms Skin Fibroblasts For a New Role

By LizaAVILA

PHILADELPHIA As the main component of connective tissue in the body, fibroblasts are the most common type of cell. Taking advantage of that ready availability, scientists from the Perelman School of Medicine at the University of Pennsylvania, the Wistar Institute, Boston University School of Medicine, and New Jersey Institute of Technology have discovered a way to repurpose fibroblasts into functional melanocytes, the body's pigment-producing cells. The technique has immediate and important implications for developing new cell-based treatments for skin diseases such as vitiligo, as well as new screening strategies for melanoma. The work was published this week in Nature Communications.

The new technique cuts out a cellular middleman. Study senior author Xiaowei George Xu, MD, PhD, an associate professor of Pathology and Laboratory Medicine, explains, "Through direct reprogramming, we do not have to go through the pluripotent stem cell stage, but directly convert fibroblasts to melanocytes. So these cells do not have tumorigenicity."

Changing a cell from one type to another is hardly unusual. Nature does it all the time, most notably as cells divide and differentiate themselves into various types as an organism grows from an embryo into a fully-functional being. With stem cell therapies, medicine is learning how to tap into such cell specialization for new clinical treatments. But controlling and directing the process is challenging. It is difficult to identify the specific transcription factors needed to create a desired cell type. Also, the necessary process of first changing a cell into an induced pluripotent stem cell (iPSC) capable of differentiation, and then into the desired type, can inadvertently create tumors.

Xu and his colleagues began by conducting an extensive literature search to identify 10 specific cell transcription factors important for melanocyte development. They then performed a transcription factor screening assay and found three transcription factors out of those 10 that are required for melanocytes: SOX10, MITF, and PAX3, a combination dubbed SMP3.

"We did a huge amount of work," says Xu. "We eliminated all the combinations of the other transcription factors and found that these three are essential."

The researchers first tested the SMP3 combination in mouse embryonic fibroblasts, which then quickly displayed melanocytic markers. Their next step used a human-derived SMP3 combination in human fetal dermal cells, and again melanocytes (human-induced melanocytes, or hiMels) rapidly appeared. Further testing confirmed that these hiMels indeed functioned as normal melanocytes, not only in cell culture but also in whole animals, using a hair-patch assay, in which the hiMels generated melanin pigment. The hiMels proved to be functionally identical in every respect to normal melanocytes.

Xu and his colleagues anticipate using their new technique in the treatment of a wide variety of skin diseases, particularly those such as vitiligo for which cell-based therapies are the best and most efficient approach.

The method could also provide a new way to study melanoma. By generating melanocytes from the fibroblasts of melanoma patients, Xu explains, "we can screen not only to find why these patients easily develop melanoma, but possibly use their cells to screen for small compounds that can prevent melanoma from happening."

Perhaps most significantly, say the researchers, is the far greater number of fibroblasts available in the body for reprogramming compared to tissue-specific adult stem cells, which makes this new technique well-suited for other cell-based treatments.

The research was supported by the National Institutes of Health (R01-AR054593, P30-AR057217)

See the rest here:
Cutting Out the Cellular Middleman: New Technology Directly Reprograms Skin Fibroblasts For a New Role

To Read More: Cutting Out the Cellular Middleman: New Technology Directly Reprograms Skin Fibroblasts For a New Role
categoriaUncategorized commentoComments Off on Cutting Out the Cellular Middleman: New Technology Directly Reprograms Skin Fibroblasts For a New Role | dataDecember 17th, 2014
Read All

Defining the epithelial stem cell niche in skin.

By LizaAVILA

System for marking slow-cycling SCs in vivo and monitoring their fate. (A) Strategy. (B to D) Skin sections of mice before and after 4-week chase. Shown are epifluorescence of H2B-GFP (green) and 4,6-diamidino-2-phenylindole (DAPI) (blue), and indirect immunofluorescence with antibodies (Abs) indicated (Texas Red). The hair cycle stage is indicated on each set of after chase frames (see also fig. S1, B to D, and fig. S2). Arrows (B) denote Ki67+ sebaceous gland cells in telogen. Arrowheads [(B) and (C)] denote transition zone between bulge and newly generated follicle downgrowth. Late anagen (Ki67 in red): GFP-bright cells are retained in the bulge; their progeny rapidly divide, diluting H2B-GFP. (D) Early anagen II bulb overexposed for GFP and double-labeled (small arrowheads) with Abs against each differentiation cell type. (E) Mice after chase were scratch-wounded and analyzed by immunofluorescence. Arrows denote likely directions of movements of GFP-positive LRCs and progeny. Abbreviations: Bu, bulge; DP, dermal papilla; Mx, matrix; hg, hair germ; Ep, epidermis; asterisk, hair shaft (autofluorescent); hf, hair follicle; Cx, cortex; ORS/IRS, outer/inner root sheaths; BM, basement membrane; In, infundibulum; W, wound. Scale bars, 50 m.

Excerpt from:
Defining the epithelial stem cell niche in skin.

To Read More: Defining the epithelial stem cell niche in skin.
categoriaSkin Stem Cells commentoComments Off on Defining the epithelial stem cell niche in skin. | dataDecember 14th, 2014
Read All

Pioneering Toronto scientists latest research to demystify stem cells

By LizaAVILA

When Mount Sinai Hospital researcher Dr. Andras Nagy initiated a huge project to demystify the process by which specialized cells become stem cells, he wasnt expecting to discover a whole new type of stem cell.

Its a big finding, because identifying a new class of stem cells means a 100 per cent increase in possible sources of cells for therapeutic use.

He describes a stem cell as a blank tablet. They hold great potential to treat diseases that result from damaged tissue or loss of cells, such as Alzheimers, spinal cord injuries and blindness.

His latest research, dubbed Project Grandiose because of its sheer scale, has involved employing a team of nearly 50 researchers across four continents to document the process of creating stem cells. These cells called induced pluripotent stem cells, or iPS cells can be used to form any type of cell in the body as an alternative to using the more controversial stem cells derived from embryos.

The findings will be published Thursday in a package of papers in Nature and Nature Communications .

The oldest example of a therapy based on stem calls is bone marrow transplants, which have been performed for more than 40 years.

One of the newest applications of stem cells is treating and preventing the loss of vision using iPS cells. Japan has permitted the use of these cells to regenerate eye tissue this year. A woman in her 70s was the first to receive retinal tissue created from iPS cells to combat a degenerative condition that can lead to blindness.

Nagy characterizes this procedure as an icebreaker, hoping it will lead to further treatment and perhaps even cures in other diseases.

But understanding these cells first is key to safer use.

If we understand this process better and deeper, we will be in a better position to create safer and (more therapeutically useful) cell types in the future, said Nagy.

The rest is here:
Pioneering Toronto scientists latest research to demystify stem cells

To Read More: Pioneering Toronto scientists latest research to demystify stem cells
categoriaSpinal Cord Stem Cells commentoComments Off on Pioneering Toronto scientists latest research to demystify stem cells | dataDecember 11th, 2014
Read All

Page 15«..10..14151617..2030..»


Copyright :: 2025