Arthritic hip, knee, and thumbs 9 months after stem cell therapy by Dr Harry Adelson – Video
By LizaAVILA
Arthritic hip, knee, and thumbs 9 months after stem cell therapy by Dr Harry Adelson
Raymond and Nina describe their outcomes from stem cell therapy by Dr Harry Adelson for their various arthritic pains http://www.docereclinics.com.
By: Harry Adelson, N.D.
Read the original:
Arthritic hip, knee, and thumbs 9 months after stem cell therapy by Dr Harry Adelson - Video
Neurobiologist Thomas Jessell to Receive $500,000 Gruber Neuroscience Prize for Groundbreaking Work on the Neural …
By LizaAVILA
Contact Information
Available for logged-in reporters only
Newswise June 3, 2014, New Haven, CT Thomas Jessell, PhD, the Claire Tow Professor of Motor Neuron Disorders in the Departments of Neuroscience and of Biochemistry and Molecular Biophysics at Columbia University, is the recipient of the 2014 Neuroscience Prize of The Gruber Foundation. Jessell is being honored with this prestigious international award for his seminal work on the development and wiring of spinal cord neurons involved in the control of movement. He is also co-director of the Mortimer B. Zuckerman Mind Brain Behavior Institute, co-director of the Kavli Institute for Brain Science, and a Howard Hughes Medical Institute investigator, all at Columbia.
The award will be presented to Jessell, in Washington, D.C., on Nov. 16 at the 44th annual meeting of the Society for Neuroscience.
Tom Jessell is one of the worlds leaders in the field of developmental neuroscience, says Ben Barres, a member of the Neuroscience Selection Advisory Board. His research has completely changed our understanding of the mechanisms of neural circuit assembly and function, which, in turn, has helped create a blueprint for the development of potential treatments for a variety of neurodegenerative diseases.
When Jessell began his research more than three decades ago, very little was known about the movement-controlling neural circuitry of the spinal cord, one of the most evolutionarily conserved regions of the central nervous system (CNS). Through a groundbreaking series of studies, Jessell revealed how nave neural cells develop into hundreds of distinct subtypes of motor neurons to form that remarkable circuitry. He was the first scientist to show, for example, that a specific signaling protein known as Sonic hedgehog (Shh) determines the fate (subtype identify and role in movement) of many of these cells.
Jessell has also described the precise way in which the distinct subtypes of spinal neurons are connected with each other and how they control the patterned activity of their muscle targets. In addition, he has led the way in demonstrating that Shh and other signaling pathways can be manipulated to influence the process by which stem cells mature into motor neurons. As a result, scientists now have a deeper understanding of how stem cells might be used to treat degenerative spinal cord diseases, including amyotrophic lateral sclerosis (ALS).
Because of Jessells research, the spinal cord is now considered a model system for studying neural development and is widely used by scientists to better understand the neural circuitry of other, more complex areas of the CNS.
His more recent studies have focused on the mechanisms that wire circuits for limb movement, with the premise that genetic manipulation of individual neuronal classes can begin to uncover principles of circuit function as well as organization. Through the application of molecular information about neuronal identity to monitor, manipulate, and model the activity of specific classes of neurons, his work has also provided systems- and circuit-level insights into the neural control of limb movement.
Jessells discoveries have had a profound effect on all areas of neuroscience, which is why its so fitting that he is being acknowledged and honored with this award, says Carol Barnes, chair of the Selection Advisory Board to the Neuroscience Prize.
Follow this link:
Neurobiologist Thomas Jessell to Receive $500,000 Gruber Neuroscience Prize for Groundbreaking Work on the Neural ...
Prof. Thomas Jessell Wins Gruber Prize for Spinal Cord Neuron Research
By LizaAVILA
Thomas Jessell, PhD, the Claire Tow Professor of Motor Neuron Disorders in the Departments of Neuroscience and of Biochemistry and Molecular Biophysics at Columbia University, is the recipient of the 2014 Neuroscience Prize of The Gruber Foundation. Jessell is being honored with this prestigious international award for his seminal work on the development and wiring of spinal cord neurons involved in the control of movement. He is also co-director of the Mortimer B. Zuckerman Mind Brain Behavior Institute, co-director of the Kavli Institute for Brain Science, and a Howard Hughes Medical Institute investigator, all at Columbia.
The award will be presented to Jessell, in Washington, D.C., on Nov. 16 at the 44th annual meeting of the Society for Neuroscience. Tom Jessell is one of the worlds leaders in the field of developmental neuroscience, says Ben Barres, a member of the Neuroscience Selection Advisory Board. His research has completely changed our understanding of the mechanisms of neural circuit assembly and function, which, in turn, has helped create a blueprint for the development of potential treatments for a variety of neurodegenerative diseases.
When Jessell began his research more than three decades ago, very little was known about the movement-controlling neural circuitry of the spinal cord, one of the most evolutionarily conserved regions of the central nervous system (CNS). Through a groundbreaking series of studies, Jessell revealed how nave neural cells develop into hundreds of distinct subtypes of motor neurons to form that remarkable circuitry. He was the first scientist to show, for example, that a specific signaling protein known as Sonic hedgehog (Shh) determines the fate (subtype identify and role in movement) of many of these cells.
Jessell has also described the precise way in which the distinct subtypes of spinal neurons are connected with each other and how they control the patterned activity of their muscle targets. In addition, he has led the way in demonstrating that Shh and other signaling pathways can be manipulated to influence the process by which stem cells mature into motor neurons. As a result, scientists now have a deeper understanding of how stem cells might be used to treat degenerative spinal cord diseases, including amyotrophic lateral sclerosis (ALS).
Because of Jessells research, the spinal cord is now considered a model system for studying neural development and is widely used by scientists to better understand the neural circuitry of other, more complex areas of the CNS.
His more recent studies have focused on the mechanisms that wire circuits for limb movement, with the premise that genetic manipulation of individual neuronal classes can begin to uncover principles of circuit function as well as organization. Through the application of molecular information about neuronal identity to monitor, manipulate, and model the activity of specific classes of neurons, his work has also provided systems- and circuit-level insights into the neural control of limb movement.
Jessells discoveries have had a profound effect on all areas of neuroscience, which is why its so fitting that he is being acknowledged and honored with this award, says Carol Barnes, chair of the Selection Advisory Board to the Neuroscience Prize.
Read the original here:
Prof. Thomas Jessell Wins Gruber Prize for Spinal Cord Neuron Research
For the first time in the lab, researchers see stem cells take key step toward development
By LizaAVILA
PUBLIC RELEASE DATE:
30-May-2014
Contact: Liz Ahlberg eahlberg@illinois.edu 217-244-1073 University of Illinois at Urbana-Champaign
CHAMPAIGN, Ill. The gap between stem cell research and regenerative medicine just became a lot narrower, thanks to a new technique that coaxes stem cells, with potential to become any tissue type, to take the first step to specialization. It is the first time this critical step has been demonstrated in a laboratory.
University of Illinois researchers, in collaboration with scientists at Notre Dame University and the Huazhong University of Science and Technology in China, published their results in the journal Nature Communications.
"Everybody knows that for an embryo to form, somehow a single cell has a way to self-organize into multiple cells, but the in vivo microenvironment is not well understood," said study leader Ning Wang, a professor of mechanical science and engineering at the U. of I. "We want to know how they develop into organized structures and organs. It doesn't happen by random chance. There are biological rules that we don't yet understand."
During fetal development, all the specialized tissues and organs of the body form out of a small ball of stem cells. First, the ball of generalized cells separates into three different cell lines, called germ layers, which will become different systems of the body. This crucial first step has eluded researchers in the lab. No one has yet been able to induce the cells to form the three distinct germ layers, in the correct order endoderm on the inside, mesoderm in the middle and ectoderm on the outside. This represents a major hurdle in the application of stem cells to regenerative medicine, since researchers need to understand how tissues develop before they can reliably recreate the process.
"It's very hard to generate tissues or organs, and the reason is that we don't know how they form in vivo," Wang said. "The problem, fundamentally, is that the biological process is not clear. What is the biological environment that controls this, so they can become more organized and specialized?"
Wang's team demonstrated that not only is it possible for mouse embryonic stem cells to form three distinct germ layers in the lab, but also that achieving the separation requires a careful combination of correct timing, chemical factors and mechanical environment. The team uses cell lines that fluoresce in different colors when they become part of a germ layer, which allows the researchers to monitor the process dynamically.
The researchers deposited the stem cells in a very soft gel matrix, attempting to recreate the properties of the womb. They found that several mechanical forces played a role in how the cells organized and differentiated the stiffness of the gel, the forces each cell exerts on its neighbors, and the matrix of proteins that the cells themselves deposit as a scaffolding to give the developing embryo structure.
Read more from the original source:
For the first time in the lab, researchers see stem cells take key step toward development
Researchers Use Light To Coax Stem Cells To Repair Teeth
By LizaAVILA
A Harvard-led team is the first to demonstrate the ability to use low-power light to trigger stem cells inside the body to regenerate tissue, an advance they reported in Science Translational Medicine. The research, led by Wyss Institute Core Faculty member David Mooney, Ph.D., lays the foundation for a host of clinical applications in restorative dentistry and regenerative medicine more broadly, such as wound healing, bone regeneration, and more.
The team used a low-power laser to trigger human dental stem cells to form dentin, the hard tissue that is similar to bone and makes up the bulk of teeth. What's more, they outlined the precise molecular mechanism involved, and demonstrated its prowess using multiple laboratory and animal models.
A number of biologically active molecules, such as regulatory proteins called growth factors, can trigger stem cells to differentiate into different cell types. Current regeneration efforts require scientists to isolate stem cells from the body, manipulate them in a laboratory, and return them to the bodyefforts that face a host of regulatory and technical hurdles to their clinical translation. But Mooney's approach is different and, he hopes, easier to get into the hands of practicing clinicians.
"Our treatment modality does not introduce anything new to the body, and lasers are routinely used in medicine and dentistry, so the barriers to clinical translation are low," said Mooney, who is also the Robert P. Pinkas Family Professor of Bioengineering at Harvard's School of Engineering and Applied Sciences (SEAS). "It would be a substantial advance in the field if we can regenerate teeth rather than replace them."
The team first turned to lead author and dentist Praveen Arany, D.D.S., Ph.D., who is now an Assistant Clinical Investigator at the National Institutes of Health (NIH). At the time of the research, he was a Harvard graduate student and then postdoctoral fellow affiliated with SEAS and the Wyss Institute.
Arany took rodents to the laboratory version of a dentist's office to drill holes in their molars, treat the tooth pulp that contains adult dental stem cells with low-dose laser treatments, applied temporary caps, and kept the animals comfortable and healthy. After about 12 weeks, high-resolution x-ray imaging and microscopy confirmed that the laser treatments triggered the enhanced dentin formation.
"It was definitely my first time doing rodent dentistry," said Arany, who faced several technical challenges in performing oral surgery on such a small scale. The dentin was strikingly similar in composition to normal dentin, but did have slightly different morphological organization. Moreover, the typical reparative dentin bridge seen in human teeth was not as readily apparent in the minute rodent teeth, owing to the technical challenges with the procedure.
"This is one of those rare cases where it would be easier to do this work on a human," Mooney said.
Next the team performed a series of culture-based experiments to unveil the precise molecular mechanism responsible for the regenerative effects of the laser treatment. It turns out that a ubiquitous regulatory cell protein called transforming growth factor beta-1 (TGF-1) played a pivotal role in triggering the dental stem cells to grow into dentin. TGF-1 exists in latent form until activated by any number of molecules.
Here is the chemical domino effect the team confirmed: In a dose-dependent manner, the laser first induced reactive oxygen species (ROS), which are chemically active molecules containing oxygen that play an important role in cellular function. The ROS activated the latent TGF-1complex which, in turn, differentiated the stem cells into dentin.
View original post here:
Researchers Use Light To Coax Stem Cells To Repair Teeth
Block GmbH Centre for Living Cell Therapy – Video
By LizaAVILA
Block GmbH Centre for Living Cell Therapy
The fresh cell therapy/stem cell therapy is always a full body treatment. The improvement of the function of individual organs also affects all other organs positively.
By: VIPiChannel
Asterias Biotherapeutics, Inc. to Present Phase I Clinical Data at the 17th Annual Meeting of the American Society of …
By LizaAVILA
ALAMEDA, Calif.--(BUSINESS WIRE)--BioTime, Inc. (NYSE MKT: BTX) and its subsidiary Asterias Biotherapeutics, Inc. today announced that Jane S. Lebkowski, PhD, President, Research & Development of Asterias, will present at the 17th Annual Meeting of the American Society of Gene & Cell Therapy taking place May 20-24, 2014 in Washington, DC.
Dr. Lebkowskis presentation will take place in the session titled The Next Generation in Stem Cell Therapies on Thursday May 22, 2014 at 10:15 AM EDT at the Marriot Wardman Park, Washington, DC. Dr. Lebkowskis presentation is titled Phase I Clinical Trial of Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors in Patients with Neurologically Complete Thoracic Spinal Cord Injury: Results and Next Steps. In her presentation, Dr. Lebkowski will disclose for the first time certain Phase I clinical trial results of OPC1. The presentation will be made available on BioTimes and Asterias websites at http://www.biotimeinc.com and http://www.biotimeinc.com/asterias-biotherapeutics/.
About Asterias
Asterias is a biotechnology company focused on the emerging field of regenerative medicine. Our core technologies center on stem cells capable of becoming all of the cell types in the human body, a property called pluripotency. We plan to develop therapies based on pluripotent stem cells to treat diseases or injuries in a variety of medical fields, with an initial focus on the therapeutic applications of oligodendrocyte progenitor cells (OPC1) and antigen-presenting dendritic cells (VAC1 and VAC2) for the fields of neurology and oncology respectively. OPC1 was tested for treatment of spinal cord injury in the worlds first Phase 1 clinical trial using human embryonic stem cell-derived cells. We plan to reinitiate clinical testing of OPC1 in spinal cord injury this year, and are also evaluating its function in nonclinical models of multiple sclerosis and stroke. VAC1 and VAC2 are dendritic cell-based vaccines designed to immunize cancer patients against the telomerase, a protein abnormally expressed in over 95% of human cancer types. VAC2 differs from VAC1 in that the dendritic cells presenting telomerase to the immune system are produced from human embryonic stem cells instead of being derived from human blood.
In October of 2013, Asterias acquired the cell therapy assets of Geron Corporation. These assets included INDs for the clinical stage OPC1 and VAC1 programs, banks of cGMP-manufactured OPC1 drug product, cGMP master and working cell banks of human embryonic stem cells, over 400 patents and patent applications filed worldwide, research cell banks, customized reagents and equipment, and various assets relating to preclinical programs in cardiology, orthopedics, and diabetes.
Asterias is a member of the BioTime family of companies.
About BioTime
BioTime is a biotechnology company engaged in research and product development in the field of regenerative medicine. Regenerative medicine refers to therapies based on stem cell technology that are designed to rebuild cell and tissue function lost due to degenerative disease or injury. BioTimes focus is on pluripotent stem cell technology based on human embryonic stem (hES) cells and induced pluripotent stem (iPS) cells. hES and iPS cells provide a means of manufacturing every cell type in the human body and therefore show considerable promise for the development of a number of new therapeutic products. BioTimes therapeutic and research products include a wide array of proprietary PureStem progenitors, HyStem hydrogels, culture media, and differentiation kits. BioTime is developing Renevia (a HyStem product) as a biocompatible, implantable hyaluronan and collagen-based matrix for cell delivery in human clinical applications. In addition, BioTime has developed Hextend, a blood plasma volume expander for use in surgery, emergency trauma treatment and other applications. Hextend is manufactured and distributed in the U.S. by Hospira, Inc. and in South Korea by CJ HealthCare Corporation under exclusive licensing agreements.
BioTime is also developing stem cell and other products for research, therapeutic, and diagnostic use through its subsidiaries:
Additional information about BioTime can be found on the web at http://www.biotimeinc.com.
First test of pluripotent stem cell therapy in monkeys is successful
By LizaAVILA
Researchers have shown for the first time in an animal that is more closely related to humans that it is possible to make new bone from stem-cell-like induced pluripotent stem cells (iPSCs) made from an individual animal's own skin cells. The study in monkeys reported in the Cell Press journal Cell Reports on May 15th also shows that there is some risk that those iPSCs could seed tumors, but that unfortunate outcome appears to be less likely than studies in immune-compromised mice would suggest.
"We have been able to design an animal model for testing of pluripotent stem cell therapies using the rhesus macaque, a small monkey that is readily available and has been validated as being closely related physiologically to humans," said Cynthia Dunbar of the National Heart, Lung, and Blood Institute. "We have used this model to demonstrate that tumor formation of a type called a 'teratoma' from undifferentiated autologous iPSCs does occur; however, tumor formation is very slow and requires large numbers of iPSCs given under very hospitable conditions. We have also shown that new bone can be produced from autologous iPSCs, as a model for their possible clinical application."
Autologous refers to the fact that the iPSCs capable of producing any tissue typein this case bonewere derived from the very individual that later received them. That means that use of these cells in tissue repair would not require long-term or possibly toxic immune suppression drugs to prevent rejection.
The researchers first used a standard recipe to reprogram skin cells taken from rhesus macaques. They then coaxed those cells to form first pluripotent stem cells and then cells that have the potential to act more specifically as bone progenitors. Those progenitor cells were then seeded onto ceramic scaffolds that are already in use by reconstructive surgeons attempting to fill in or rebuild bone. And, it worked; the monkeys grew new bone.
Importantly, the researchers report that no teratoma structures developed in monkeys that had received the bone "stem cells." In other experiments, undifferentiated iPSCs did form teratomas in a dose-dependent manner.
The researchers say that therapies based on this approach could be particularly beneficial for people with large congenital bone defects or other traumatic injuries. Although bone replacement is an unlikely "first in human" use for stem cell therapies given that the condition it treats is not life threatening, the findings in a primate are an essential step on the path toward regenerative clinical medicine.
"A large animal preclinical model for the development of pluripotent or other high-risk/high-reward generative cell therapies is absolutely required to address issues of tissue integration or homing, risk of tumor formation, and immunogenicity," Dunbar said. "The testing of human-derived cells in vitro or in profoundly immunodeficient mice simply cannot model these crucial preclinical safety and efficiency issues."
The NIH team is now working with collaborators on differentiation of the macaque iPSCs into liver, heart, and white blood cells for eventual clinical trials in hepatitis C, heart failure, and chronic granulomatous disease, respectively.
Story Source:
The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.
Go here to read the rest:
First test of pluripotent stem cell therapy in monkeys is successful
Genetic tracking identifies cancer stem cells in human patients
By LizaAVILA
PUBLIC RELEASE DATE:
15-May-2014
Contact: University of Oxford news.office@admin.ox.ac.uk 44-186-528-0530 University of Oxford
The gene mutations driving cancer have been tracked for the first time in patients back to a distinct set of cells at the root of cancer cancer stem cells.
The international research team, led by scientists at the University of Oxford and the Karolinska Institutet in Sweden, studied a group of patients with myelodysplastic syndromes a malignant blood condition which frequently develops into acute myeloid leukaemia.
The researchers say their findings, reported in the journal Cancer Cell, offer conclusive evidence for the existence of cancer stem cells.
The concept of cancer stem cells has been a compelling but controversial idea for many years. It suggests that at the root of any cancer there is a small subset of cancer cells that are solely responsible for driving the growth and evolution of a patient's cancer. These cancer stem cells replenish themselves and produce the other types of cancer cells, as normal stem cells produce other normal tissues.
The concept is important, because it suggests that only by developing treatments that get rid of the cancer stem cells will you be able to eradicate the cancer. Likewise, if you could selectively eliminate these cancer stem cells, the other remaining cancer cells would not be able to sustain the cancer.
'It's like having dandelions in your lawn. You can pull out as many as you want, but if you don't get the roots they'll come back,' explains first author Dr Petter Woll of the MRC Weatherall Institute for Molecular Medicine at the University of Oxford.
The researchers, led by Professor Sten Eirik W Jacobsen at the MRC Molecular Haematology Unit and the Weatherall Institute for Molecular Medicine at the University of Oxford, investigated malignant cells in the bone marrow of patients with myelodysplastic syndrome (MDS) and followed them over time.
Read more here:
Genetic tracking identifies cancer stem cells in human patients
Regeneus’ stem cell therapy a treatment option for …
By LizaAVILA
Regeneus Limited regeneus.com.au Full Regeneus Limited profile here
Regeneus Limited (ASX:RGS) is a regenerative medicine company that develops and commercialises proprietary technologies for the preparation of point-of-care and off-the-shelf cell therapies.
Regeneus' stem cell therapy a treatment option for neuropathic pain
Regeneus (ASX: RGS) is investigating the use of its HiQCell stem cell therapy for treating neuropathic pain, extending its use beyond treating musculoskeletal conditions, such as osteoarthritis.
This is after the publication of a paper in the Journal of Pain Research describing safety and early efficacy data for the use of HiQCell in patients suffering from persistent, severe and intolerable pain in the face and dental region.
Neuropathic pain affects up to 6% of the population.
This new study confirms that the therapy appears to offer a viable new treatment option. Regeneus Clinical Development Director Dr Richard Lilischkis said that to date the pioneering work of HiQCell has focused on the treatment of musculoskeletal conditions, such as osteoarthritis.
Following extensive research and development, we are working with our medical specialist partners to offer a therapeutic treatment option for patients suffering with neuropathic pain, he added.
We look forward to continuing offering stem cell clinical treatment options with North Shore Specialist Day Hospital to deliver high quality outcomes for patients.
Regeneus will continue to explore pain more generally and how HiQCell could be applied to other indications.
Read the original here:
Regeneus' stem cell therapy a treatment option for ...
Cancer Stem Cells Under the Microscope at Albert Einstein College of Medicine Symposium
By LizaAVILA
Contact Information
Available for logged-in reporters only
Newswise May 13, 2014 (BRONX, NY) Healthy stem cells work to restore or repair the bodys tissues, but cancer stem cells have a more nefarious mission: to spawn malignant tumors. Cancer stem cells were discovered a decade ago, but their origins and identity remain largely unknown.
Today, the Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research at Albert Einstein College of Medicine of Yeshiva University hosted its second Stem Cell Symposium, focusing on cancer stem cells. Leading scientists from the U.S., Canada and Belgium discussed the latest advances in the field and highlighted the challenges of translating this knowledge into targeted cancer treatments.
These exceptional scientists are pioneers in the field and have made enormous contributions to our understanding of the biology of stem cells and cancer, said Paul Frenette, M.D., director and chair of Einsteins Stem Cell Institute and professor of medicine and of cell biology. Hopefully this symposium will spark productive dialogues and collaborations among the researchers who attend.
The presenters were:
Cancer Stem Cells and Malignant Progression, Robert A. Weinberg, Ph.D., Daniel K. Daniel K. Ludwig Professor for Cancer Research Director, Ludwig Center of the Massachusetts Institute of Technology; Member, Whitehead Institute for Biomedical Research Towards Unification of Cancer Stem Cell and Clonal Evolution Models of Intratumoral Heterogeneity, John Dick, Ph.D., Canada Research Chair in Stem Cell Biology and senior scientist, Princess Margaret Cancer Center, University Health Network; professor of molecular genetics, University of Toronto Normal and Neoplastic Stem Cells, Irving L. Weissman, M.D., Director, Institute for Stem Cell Biology and Regenerative Medicine and Director, Stanford Ludwig Center for Cancer Stem Cell Research and Medicine; Professor of Pathology and Developmental Biology, Stanford University School of Medicine Cell Fate Decisions During Tumor Formation, Leonard I. Zon, M.D., Grousbeck Professor of Pediatric Medicine, Director, Stem Cell Research Program, Howard Hughes Medical Institute/Boston Children's Hospital, Harvard Medical School Skin Stem Cells in Silence, Action and Cancer, Elaine Fuchs, Ph.D., Rebecca C. Lancefield Professor, Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute/The Rockefeller University Mechanism Regulating Stemness in Skin Cancer, Cdric Blanpain, M.D., Ph.D., professor of stem cell and developmental biology, WELBIO, Interdisciplinary Research Institute, Universit Libre de Bruxelles Mouse Models of Malignant GBM: Cancer Stem Cells and Beyond, Luis F. Parada, Ph.D., professor and chairman, Diana K and Richard C. Strauss Distinguished Chair in Developmental Biology; Director, Kent Waldrep Foundation Center for Basic Neuroscience Research; Southwestern Ball Distinguished Chair in Nerve Regeneration Research, University of Texas Southwestern Medical Center
***
About Albert Einstein College of Medicine of Yeshiva University
Albert Einstein College of Medicine of Yeshiva University is one of the nations premier centers for research, medical education and clinical investigation. During the 2013-2014 academic year, Einstein is home to 734 M.D., 236 Ph.D. students, 106 students in the combined M.D./Ph.D. program, and 353 postdoctoral research fellows. The College of Medicine has more than 2,000 full-time faculty members located on the main campus and at its clinical affiliates. In 2013, Einstein received more than $155 million in awards from the National Institutes of Health (NIH). This includes the funding of major research centers at Einstein in diabetes, cancer, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical CenterEinsteins founding hospital, and five other hospital systems in the Bronx, Manhattan, Long Island and Brooklyn, Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit http://www.einstein.yu.edu, read our blog, follow us on Twitter, like us on Facebook, and view us on YouTube.
See the rest here:
Cancer Stem Cells Under the Microscope at Albert Einstein College of Medicine Symposium
Stem cell treatments reaching patients
By LizaAVILA
Neurosurgeon and stem cell researcher, Joseph Ciacci M.D. will soon start a clinical trial of stem cells to treat paralysis from spinal cord injury.
After many years of waiting, a flood of new regenerative-cell therapies is finally reaching patients. Hundreds of clinical trials for these experimental treatments are under way across the world.
In the United States, 774 trials with stem or other regenerative cells are open to patients or soon will be, according to clinicaltrials.gov, which lists government-approved clinical testing in this country and abroad. Of that total, 147 are taking place in California.
One of the most difficult tests involving stem cells repairing spinal-cord damage that has caused complete loss of movement and sensation below the injury site is set to begin soon at UC San Diego.
Patients in that study will get injections of fetal-derived neural stem cells in and around the injury site, along with physical therapy and immune-system drugs in case theres a reaction to the stem cells. The trial will use a device that delivers precisely targeted micro-injections of cells to the targeted areas.
The clinical trial will test safety and look for early signs of efficacy, said Dr. Joseph Ciacci, a UC San Diego neurosurgeon leading the testing.
A study published a year ago found that in rats with spinal-cord injuries, the neural stem cells significantly improved movement in the hind paws. Ciacci, who co-authored that study, saw the cells proliferate and fill in a spinal-cord cavity that had resulted from the injuries. Such results supported testing the therapy in people, he said, but he declined to say whether he expected to see any improvement in those patients.
I really dont know, because its not been done, Ciacci said.
The clinical trial is expected to start in June. Its intended for adults 18 to 65 years old who suffered their injury at least one year ago but no more than two years ago. For more information, visit utsandiego.com/ucsdspinal or call Amber Faulise at (858) 657-5175.
Another type of stem cells, mesenchymal stromal, might be described as the duct tape of regenerative cells. Generally derived from bone marrow, they are being tested for treatment of pulmonary fibrosis, multiple sclerosis, kidney transplants, liver cirrhosis, osteoarthritis of the knee, stroke and many other conditions. Worldwide, 226 trials are being conducted with these cells, including 45 in the U.S. and 12 in California, according to clinicaltrials.gov.
Read more here:
Stem cell treatments reaching patients
Production of synthetic SIRT1 as a dietary supplement may help prolong life, states Chemist Direct
By LizaAVILA
(PRWEB UK) 9 May 2014
Over the course of the human life span the body ages and becomes less able to repair itself, allowing it to become more prone to disease and illness. In the ever developing field of scientific discovery researchers have become intrigued with the concept of finding a way to slow down age-related diseases and prolonging life through the use of medicine. Since the Japanese scientist Shinya Yamanaka (http://bit.ly/1kWb20u) first discovered iPS cells in adult tissue and pioneered mature cell regeneration, this field in medicine has become one of the most rapidly developing fields in biomedicine.
A research team at the National Institute on Ageing at the National Institutes of Health in the US has discovered a promising strategy to arrest ageing by looking at a chemical called SRT1720 which activates a particular protein called Sirtuin 1 (SIRT1). Previous research has demonstrated that activating SIRT1 can have health benefits in various organisms, and it has been proposed as an anti-ageing protein. This study, published in the March edition of Research Journal: Cell (http://bit.ly/1od2gS5) focused on comparing the lifespan, health and diseases of mice fed the same diet, but with or without the addition of a SRT1720.
Overall they found mice fed a normal diet but with the supplement had a longer natural lifespan on average (about five weeks longer). During their lifetime, additional tests also suggested they had improved muscle function and coordination, improved metabolism, improved glucose tolerance, decreased body fat and cholesterol. All in all this suggests that giving the mice this supplement could protect them from the equivalent of metabolic syndrome, a series of risk factors associated with conditions such as heart disease and type 2 diabetes.
A study published today in the journal Stem Cell Reports (http://bit.ly/1hBSDF6) and carried out by the Spanish National Cancer Research Centre's Telomeres and Telomerase Group, reveals that the SIRT1 protein is needed to lengthen and maintain telomeres during cell reprogramming. SIRT1 also guarantees the integrity of the genome of stem cells that come out of the cell reprogramming process; these cells are known as iPS cells (induced Pluripotent Stem cells).
The nature of iPS cells, however, is causing intense debate. The latest research shows that chromosome aberrations and DNA damage can accumulate in these cells. "The problem is that we don't know if these cells are really safe," says Mara Luigia De Bonis, a postdoctoral researcher who has done a large part of the work. http://bit.ly/1m5gRgb
Researchers did not look at whether SIRT1 may cause side effects or complications so it is currently unclear whether SIRT1 would be safe in humans, let alone effective, but this interesting research has opened doors to pharmaceutical companies to develop dietary supplements that can help provide anti-aging pills, especially those who suffer hereditary degenerative diseases. These ongoing scientific studies will help shed light on how cell reprogramming guarantees the healthy functioning of stem cells. This knowledge will help to overcome barriers that come out of the use of iPS cells so they may be used in regenerative medicine.
Continued here:
Production of synthetic SIRT1 as a dietary supplement may help prolong life, states Chemist Direct
Xcelthera Inc Secures First U.S. Patent for Large-Scale Production of High Quality Human Embryonic Stem Cells and …
By LizaAVILA
San Diego, CA (PRWEB) May 08, 2014
Xcelthera Inc, a major innovator in the stem cell research market and one of the first U.S. companies formed for clinical applications of human embryonic stem cell (human ES cell) therapeutic utility for unmet medical needs, and its joint research partner San Diego Regenerative Medicine Institute announced today that the U.S. Patent and Trademark Office (USPTO) has granted Patent No. 8,716,017 entitled, Technologies, Methods, and Products of Small Molecule-Directed Tissue and Organ Regeneration from Human Pluripotent Stem Cells. This newly-issued patent is the first among a portfolio of intellectual property of Xcelthera Inc covering PluriXcel human stem cell technology platform for large-scale production of high quality clinical-grade pluripotent human ES cell lines and their functional human neuronal and heart muscle cell therapy products.
Neurodegenerative and heart diseases are major health problems and cost the worldwide healthcare system more than $500 billion annually. The limited capacity of these two cell systems -- neurons and cardiomyocytes -- for self-repair makes them suitable for stem cell-based neuronal and heart therapies. Nevertheless, to date, the existing markets lack a clinically-suitable human neuronal cell source or cardiomyocyte source with adequate regenerative potential, which has been the major setback in developing safe and effective cell-based therapies for neurodegenerative and heart diseases. Xcelthera proprietary PluriXcel technology allows efficient derivation of clinical-grade human ES cell lines and direct conversion of such pluripotent human ES cells by small molecule induction into a large commercial scale of high quality human neuronal or heart muscle cells, which constitutes clinically representative progress in both human neuronal and cardiac therapeutic products for treating neurodegenerative and heart diseases.
PluriXcel technology of Xcelthera Inc is milestone advancement in stem cell research, offering currently the only available human cell therapy products with the pharmacological capacity to regenerate human neurons and contractile heart muscles that allow restitution of function of the central nervous system (CNS) and heart in the clinic. Through technology license agreement with San Diego Regenerative Medicine Institute, Xcelthera Inc has become the first in the world to hold the proprietary breakthrough technology for large-scale production of high quality clinical-grade pluripotent human ES cell lines and their functional human neuronal and heart cell therapy products for commercial and therapeutic uses.
As neurodegenerative and heart diseases incur exorbitant costs on the healthcare system worldwide, there is a strong focus on providing newer and more efficient solutions for these therapeutic needs. Millions of people are pinning their hopes on stem cell research. PluriXcel technology platform of Xcelthera Inc is incomparable, providing life scientists and clinicians with novel and effective resources to address major health concerns. Such breakthrough stem cell technology has presented human ES cell therapy derivatives as a powerful pharmacologic agent of cellular entity for a wide range of incurable or hitherto untreatable neurodegenerative and heart diseases. Introduction of medical innovations and new business opportunities based on PluriXcel technology will shape the future of medicine by providing pluripotent human ES cell-based technology for human tissue and function restoration, and bringing new therapeutics into the market.
About Xcelthera Inc.
Xcelthera INC (http://www.xcelthera.com) is a new biopharmaceutical company moving towards clinical development stage of novel and most advanced stem cell therapy for a wide range of neurological and cardiovascular diseases with leading technology and ground-breaking medical innovation in cell-based regenerative medicine. The Company was recently incorporated in the state of California to commercialize the technologies and products developed, in part, with supports by government grants to the founder, by San Diego Regenerative Medicine Institute (SDRMI), an non-profit 501C3 tax-exempt status independent biomedical research institute that is interested in licensing its PATENT RIGHTS in a manner that will benefit the public by facilitating the distribution of useful products and the utilization of new processes, but is without capacity to commercially develop, manufacture, and distribute any such products or processes. Xcelthera is a major innovator in the stem cell research market and one of the first companies formed for clinical applications of human embryonic stem cell (human ES cell) therapeutic utility for unmet medical needs. The Company is the first to hold the proprietary breakthrough technology for large-scale production of high quality clinical-grade pluripotent human ES cell lines and their functional human neuronal and heart muscle cell therapy products for commercial and therapeutic uses. The Company owns or has exclusive rights in a portfolio of intellectual property or license rights related to its novel PluriXcel human stem cell technology platforms and Xcel prototypes of human stem cell therapy products. The inception of Xcelthera is driven by the urgent need for clinical translation of human ES cell research discoveries and innovations to address unmet medical challenges in major health problems. Xcelthera breakthrough developments in human ES cell research dramatically increase the overall turnover of investments in biomedical sciences to optimal treatment options for a wide range of human diseases. The overall strategy of the Company is to use cutting-edge human stem cell technology to develop clinical-grade functional human neural and cardiac cell therapy products from pluripotent human ES cells as cellular medicine or cellular drugs to provide the next generation of cell-based therapeutic solutions for unmet medical needs in world-wide major health problems. The Company is currently offering Series A Convertible Preferred Stock to accredited investors through equity crowdfunding to raise fund for its pre-IPO business operation and filing confidential IPO as an emerging growth company according to the JOBS Act to create a public market for its common stock and to facilitate its future access to the public equity market and growth of the Company.
Visit Xcelthera Inc. at http://www.xcelthera.com.
For more information or investment opportunity about Xcelthera series A round, please contact: Xuejun H Parsons, PhD, Chief Executive Officer Xcelthera Inc. http://www.xcelthera.com 888-706-5396 or 858-243-2046 investors(at)xcelthera.com or parsons(at)xcelthera.com
About San Diego Regenerative Medicine Institute
Read the original:
Xcelthera Inc Secures First U.S. Patent for Large-Scale Production of High Quality Human Embryonic Stem Cells and ...
What Are Bone Marrow Stem Cells? (with pictures)
By LizaAVILA
Bone marrow stem cells are special cells within the bone marrow that can form into any type of blood cell when triggered. This allows the bone marrow to supply blood cells to the body as they are needed. The bone marrow acts as a sort of factory or manufacturing station for blood cells, using these undifferentiated stem cells as raw material for white blood cells, red blood cells, and platelets.
Doctors and scientists have known that bone marrow stem cells can grow into any type of blood cell. Research has shown, however, that these cells also can develop into other types of cells such as cardiac cells, skin cells, and even muscle cells. This research indicates that bone marrow stem cells might be able to be used to treat a number of diseases that are not necessarily related to blood.
Bone marrow stem cells are used to treat several blood-based diseases. Perhaps the best known of these treatments is the bone marrow transplant, commonly used to treat leukemia and lymphoma. In these forms of cancer, intense radiation therapy or chemotherapy destroys the bone marrow cells, which in this case have begun to malfunction. The malfunctioning bone marrow is then replaced with cells from a bone marrow donor. In some cases, a patient may donate blood cells but the cells must be cancer-free for the treatment to be effective; this process is referred to as autologous bone marrow.
For a bone marrow donation to be effective, the blood type of the donor and other factors typically must be evaluated and matched to that of the patient. The more similar characteristics that exist between patient and donor, the more likely the transplant is to be successful. Because of this, close relatives of the patient are more likely to be able to provide a compatible donation. Donations also can come from non-related people, as well.
It is possible to be tested for these important factors ahead of time and be placed on a list of possible donors. In cases where bone marrow stem cells are needed for a transplant, individuals on the list will be evaluated to look for a match with the patient. Like blood banks, bone marrow donations lists are a vital tool to help those afflicted with certain types of devastating diseases. As scientific research continues, more uses for bone marrow stem cells are likely to surface, some of which could revolutionize modern medicine.
Read the rest here:
What Are Bone Marrow Stem Cells? (with pictures)
Scientists turn tissue from infertile men into sperm cells
By LizaAVILA
Scientists have turned skin tissue from infertile men into early-stage sperm cells in a groundbreaking study that raises hopes for new therapies for the condition.
The unexpected success of the procedure has stunned some scientists, because it was thought to be impossible for the men to make any sperm.
The men who took part in the study had major genetic defects on their Y sex chromosomes, which meant they could not produce healthy adult sperm on their own.
About 1% of men cannot make any sperm, a condition known as azoospermia, while a fifth of men have low sperm counts. Male fertility is a concern for roughly half of couples who seek IVF treatment.
In the latest study, researchers took skin cells from three infertile men and converted them into stem cells, which can grow into almost any tissue in the body. When these cells were transplanted into the testes of mice, they developed into early-stage human sperm cells.
What we found was that cells from men who did not possess sperm at the time of clinical observation were able to produce the precursors for sperm, said Cyril Ramathal, of Stanford University.
Skin cells from infertile men grew into fewer early-stage sperm cells than cells taken from normally fertile men, the study found.
The research is at an early stage, but scientists suspect that the converted skin cells might have grown into mature sperm cells if they had been transplanted into the infertile mens testes.
If further work confirms the suspicion, it may be possible to restore male fertility by taking mens skin cells, turning them into stem cells, and injecting these into their testes. The same might be done for men who are left infertile after having chemotherapy for cancer.
Being able to efficiently convert skin cells into sperm would allow this group to become biologic fathers, said Michael Eisenberg, director of male reproduction and surgery at Stanford, who was not involved in the study. Infertility is one of the most common and devastating complications of cancer treatments, especially for young boys and men.
Read more:
Scientists turn tissue from infertile men into sperm cells
From the dust — mixing stem cells with clay to regenerate human tissue
By LizaAVILA
PUBLIC RELEASE DATE:
2-May-2014
Contact: Becky Attwood r.attwood@soton.ac.uk 44-023-805-92116 University of Southampton
Gels made from clay could provide an environment that would stimulate stem cells to regenerate damaged tissues such as bone, skin, heart, spinal cord, liver, pancreas and cornea.
Researchers at the University of Southampton believe that clay particles' ability to bind to biological molecules could be used to stimulate the stem cell regeneration process.
Dr Jon Dawson, who is leading the research, explains: "Clay particles encourage molecules to bind to them. This interaction is now routinely harnessed in the design of tablets to carefully control the release and action of a drug. We will use this mechanism to see if we can encourage stem cells to grow new tissue."
The project, funded by a 1.4m grant from the Engineering and Physical Sciences Research Council (EPSRC), aims to create tailormade micro-environments to foster stem cell regeneration. The team will use clay gels both to explore the biological signals necessary to successfully control stem cell behaviour for regeneration and also to provide stem cells with signals to stimulate regeneration in the body.
The approach will first be applied to regenerate bone lost to cancer or hip replacement failure. If successful the same technology may be applied to harness stem cells for the treatment of a whole host of different scenarios, from burn victims to those suffering with diabetes or Parkinson's.
Dr Dawson will be working with Professor Richard Oreffo of the Bone and Joint Research Group at the University of Southampton to explore the application of this technology in orthopaedics. "Fractures and bone loss due to trauma or disease are a significant clinical and socioeconomic problem," Dr Dawson comments. "Clay particles could offer an improved way of stimulating stem cells at the point of injury, which will be better for the patient's recovery."
Dr Dawson believes that the rich electrostatic properties of nano scale clay particles, which are one millionth of a millimetre, could overcome two challenges in the development of stem-cell based regenerative therapies.
The rest is here:
From the dust -- mixing stem cells with clay to regenerate human tissue
Scientists Produce Personalized Stem Cells For Specific Diseases
By LizaAVILA
By Estel Grace Masangkay
An independent group of scientists led by experts at the New York Stem Cell Foundation Research Institute (NYSCF) reported that they have manufactured the first disease-specific line of embryonic stem cells made with a patients DNA. The achievement is heralded as a major breakthrough in the regenerative medicine field.
This is also the first time cloning technologies have been utilized to generate genetically matched stem cells. The team used somatic cell nuclear transfer to successfully clone a skin cell from a 32 year old female patient with Type 1 diabetes. The cells were transformed into insulin-producing cells similar to lost beta cells in diabetes, which could provide better treatment or even a cure for T1D.
Susan Solomon, CEO and co-founder of NYSCF, says she is excited about the successful production of patient-specific stem cells using somatic cell nuclear transfer (SCNT). CEO Solomon said she became involved with medical research when her son was diagnosed with T1D.
Dr. Egli, scientist from the New York Stem Cell Foundation Research Institute and who led the research, said, From the start, the goal of this work has been to make patient-specific stem cells from an adult human subject with type-1 diabetes that can give rise to the cells lost in the disease. By reprograming cells to a pluripotent state and making beta cells, we are now one step closer to being able to treat diabetic patients with their own insulin-producing cells.
The scientists analyzed factors that affect stem-cell derivation after SCNT. They added histone deacetylase inhibitors and protocol for human oocyte activation, which were crucial in delivering them to the stage at which embryonic stem cells can be properly derived. The beta cells produced from the patients own skin cells are autologous and match the patients DNA. Further research is underway at NYSCF and other institutions for the development of strategies to protect existing and therapeutic beta cells from attacks of the immune system.
The research teams work appeared in the journal Nature.
Go here to read the rest:
Scientists Produce Personalized Stem Cells For Specific Diseases
Spinal Cord Injury Stem Cells | StemcellsHealthCare.com
By LizaAVILA
Spinal cord injury refers the injury to the soft tissues of the spinal cord which is protected by the vertebrae when they are broken or dislocated. The injuries can occur at any level of the spinal cord. The injured segment of the cord and the severity of the damage will determine which body functions are compromised or lost. There has been no cure for it currently. But the symptoms can be treated and some complications can be controlled.
Scientists and doctors turn to stem cells. Stem cells are a class of undifferentiated cells that can differentiate into specialized cell types. Stem cells can repair the damaged cells by the spinal cord injury and also produce some cells to replace the dead cells. A number of published papers and case studies support the feasibility of treating spinal cord injury with allogeneic human stem cells derived from umbilical cord and autologous bone marrow-derived stem cells.
In severe injury, axons are cut or damaged beyond repair, and neural cell membranes are broken. Blood vessels may rupture and cause bleeding into the spinal cords central tissue, or bleeding can occur outside the cord, causing pressure by the blood clot on the cord.
Within minutes, the spinal cord near the site of severe injury swells within the spinal canal. This may increase pressure on the cord and cut blood flow to spinal cord tissue. Blood pressure can drop, sometimes dramatically, as the body loses its ability to self-regulate. All these changes can cause a condition known as spinal shock that can last from several hours to several days.
Some people experienced spinal cord injury may have hemiplegia, loss of many feelings such as touch and hot, and dysfunctions of movement.
After stem cells are transplanted into the damaged segment of the spinal cord, the cells would repair the damaged cells and help them to recover. Also some cells will be produced by stem cells to help improve the damaged functions by spinal cord injury.
See original here:
Spinal Cord Injury Stem Cells | StemcellsHealthCare.com
Damage Control: Recovering From Radiation and Chemotherapy
By LizaAVILA
Contact Information
Available for logged-in reporters only
Newswise Researchers at the University of California, San Diego School of Medicine report that a protein called beta-catenin plays a critical, and previously unappreciated, role in promoting recovery of stricken hematopoietic stem cells after radiation exposure.
The findings, published in the May 1 issue of Genes and Development, provide a new understanding of how radiation impacts cellular and molecular processes, but perhaps more importantly, they suggest new possibilities for improving hematopoietic stem cell regeneration in the bone marrow following cancer radiation treatment.
Ionizing radiation exposure accidental or deliberate can be fatal due to widespread destruction of hematopoietic stem cells, the cells in the bone marrow that give rise to all blood cells. A number of cancer treatments involve irradiating malignancies, essentially destroying all exposed blood cells, followed by transplantation of replacement stem cells to rebuild blood stores. The effectiveness of these treatments depends upon how well the replacement hematopoietic stem cells do their job.
In their new paper, principal investigator Tannishtha Reya, PhD, professor in the department of pharmacology, and colleagues used mouse models to show that radiation exposure triggers activation of a fundamental cellular signaling pathway called Wnt in hematopoietic stem and progenitor cells.
The Wnt pathway and its key mediator, beta catenin, are critical for embryonic development and establishment of the body plan, said Reya. In addition, the Wnt pathway is activated in stem cells from many tissues and is needed for their continued maintenance.
The researchers found that mice deficient in beta-catenin lacked the ability to activate canonical Wnt signaling and suffered from impaired hematopoietic stem cell regeneration and bone marrow recovery after radiation. Specifically, mouse hematopoietic stem cells without beta-catenin could not suppress the production of oxidative stress molecules that damage cell structures. As a result, they could not recover effectively after radiation or chemotherapy.
Our work shows that Wnt signaling is important in the mammalian hematopoietic system, and is critical for recovery from chemotherapy and radiation, Reya said. While these therapies can be life-saving, they take a heavy toll on the hematopoietic system from which the patient may not always recover.
The findings have significant clinical implications.
Excerpt from:
Damage Control: Recovering From Radiation and Chemotherapy