Page 24«..1020..23242526..3040..»

Stem Cell Therapy for Chronic Pain – Video

By LizaAVILA


Stem Cell Therapy for Chronic Pain

By: Latest Pain Relief Solutions

See more here:
Stem Cell Therapy for Chronic Pain - Video

To Read More: Stem Cell Therapy for Chronic Pain – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy for Chronic Pain – Video | dataApril 9th, 2014
Read All

Paralysed men regain movement after spinal implant, study finds

By LizaAVILA

Kent Stephenson lies down during voluntary training while Katelyn Gurley (not seen) tracks his level of muscle activity and force at the Human Locomotion Research Center laboratory, Frazier Rehab Institute, as part of the University of Louisvilles Kentucky Spinal Cord Injury Research Center in Louisville, Kentucky. Photograph: University of Louisville/Handout via Reuters

Four men who had each been paralysed from the chest down for more than two years and had been told their situation was hopeless regained the ability to voluntarily move their legs and feet - though not to walk - after an electrical device was implanted in their spines, researchers reported today.

The success, albeit in a small number of patients, offers hope that a fundamentally new treatment can help many of the millions of paralysed people.Even those whose cases are deemed so hopeless they are not offered further rehabilitation might benefit, scientists say.

The results also cast doubt on a key assumption about spinal cord injury: that treatment requires damaged neurons to regrow or be replaced with, for instance, stem cells. Both approaches have proved fiendishly difficult and, in the case of stem cells, controversial.

The big message here is that people with spinal cord injury of the type these men had no longer need to think they have a lifelong sentence of paralysis, Dr Roderic Pettigrew, director of the National Institute of Biomedical Imaging and Bioengineering, part of the National Institutes of Health, said in an interview.

They can achieve some level of voluntary function, which he called a milestone in spinal cord injury research. His institute partly funded the study, which was published in the journal Brain.

The partial recovery achieved by hopeless patients suggests that physicians and rehabilitation therapists may be giving up on millions of paralysed people. Thats because physical therapy can mimic some aspects of the electrical stimulation that the device provided, said Susan Harkema, a specialist in neurological rehab at the University of Louisvilles Kentucky Spinal Cord Injury Research Center (KSCIRC), who led the new study.

One of the things this research shows is that there is more potential for spinal cord injury patients to recover even without this electrical stimulation, she said in an interview. Today, patients are not given rehab because they are not considered good investments. We should rethink what theyre offered, because rehabilitation can drive recovery for many more than are receiving it.

The research built on the case of a single paralysed patient that Ms Harkemas team reported in 2011. College baseball star Rob Summers had been injured in a hit-and-run accident in 2006, paralysing him below the neck.

In late 2009, Summers received the epidural implant just below the damaged area. The 72-gramme device began emitting electrical current at varying frequencies and intensities, stimulating dense bundles of neurons in the spinal cord. Three days later he stood on his own. In 2010 he took his first tentative steps.

See the original post:
Paralysed men regain movement after spinal implant, study finds

To Read More: Paralysed men regain movement after spinal implant, study finds
categoriaSpinal Cord Stem Cells commentoComments Off on Paralysed men regain movement after spinal implant, study finds | dataApril 8th, 2014
Read All

Stem Cell Therapy for Dogs and Cats – Video

By LizaAVILA


Stem Cell Therapy for Dogs and Cats
Stem Cells are extracted from your pet #39;s fatty tissue, and processed with Platelet Rich Plasma (PRP) into an injectable solution, which is then activated usi...

By: Vet4bulldog

Go here to read the rest:
Stem Cell Therapy for Dogs and Cats - Video

To Read More: Stem Cell Therapy for Dogs and Cats – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy for Dogs and Cats – Video | dataApril 7th, 2014
Read All

FDA Approves CardioCell's Phase 2A Trial For CHF Stem Cell Therapy

By LizaAVILA

By Estel Grace Masangkay

CardioCell LLC announced that it has received FDA approval for its investigational new drug (IND) application for a U.S.-based Phase IIA clinical study evaluating its allogeneic stem-cell therapy for patients with chronic heart failure (CHF).

Dr. Sergey Sikora, CardioCells president and CEO, said, With the FDAs IND approval, CardioCell is pleased to proceed with a Phase 2a CHF clinical trial based on the safety data reported in previous clinical trials using our unique, hypoxically grown stem cells. At the studys conclusion we will understand if our therapy produces signs of improvement in a population of patients with dilated CHF, a condition largely unaddressed by current therapies. Dilated CHF is characterized by a viable but non-functioning myocardium in which cardiomyocytes are alive but are not contracting as they should. We hope that unique properties of our itMSCs will transition patients cardiomyocytes from viable to functioning, eventually improving or restoring heart function.

The company has developed an ischemic tolerant mesenchymal stem cells (itMSC) treatment for the type of dilated CHF that is not related to coronary artery disease. The treatment could potentially apply to about 35 percent of CHF patients. Only CardioCells CHF therapies feature itMSCs, exclusively licensed from CardioCells parent company Stemedica Cell Technologies Inc. The company said Stemedicas bone marrow-derived, allogeneic MSCs are different from other MSCs because they are grown under hypoxic conditions that closely resemble the environment in which they thrive on in the body.

Dr. Stephen Epstein, CardioCells Scientific Advisory Board Chair, said Although past trials have tested the efficacy of different stem cells in patients with DCM, CardioCells itMSCs, grown under chronic hypoxic conditions, are unique. As compared to stem cells grown under normoxic conditions, they express higher levels of factors that could exert beneficial effects on the mechanisms contributing to myocardial dysfunction and disease progression. This study, therefore, provides an exciting opportunity to test the potential of these itMSCs to attenuate or eliminate these mechanisms and, in so doing, improve patient outcomes.

The trial entitled A Phase 2a, Single-Blind, Placebo-Controlled, Crossover, Multi-Center, Randomized Study to Assess the Safety, Tolerability, and Preliminary Efficacy of a Single Intravenous Dose of Ischemia-Tolerant Allogeneic Mesenchymal Bone Marrow Cells to Subjects With Heart Failure of Non-Ischemic Etiology, will be conducted at Emory University, Northwestern University, and the University of Pennsylvania in May this year.

Read the original:
FDA Approves CardioCell's Phase 2A Trial For CHF Stem Cell Therapy

To Read More: FDA Approves CardioCell's Phase 2A Trial For CHF Stem Cell Therapy
categoriaBone Marrow Stem Cells commentoComments Off on FDA Approves CardioCell's Phase 2A Trial For CHF Stem Cell Therapy | dataApril 4th, 2014
Read All

Umbilical Cord Stem Cell Therapy Clinical Trial for Multiple Sclerosis Gets Green Light

By LizaAVILA

Dallas, TX (PRWEB) April 03, 2014

Translational Biosciences, a subsidiary of Medistem Panama, has received the green light for a phase I/II clinical trial using human umbilical cord-derived mesenchymal stem cells (UC-MSC) for multiple sclerosis from the Comit Nacional de Biotica de la Investigacin (CNEI) Institutional Review Board (IRB) in Panama.

According to the US National Multiple Sclerosis Society, in Multiple Sclerosis (MS), an abnormal immune-mediated T cell response attacks the myelin coating around nerve fibers in the central nervous system, as well as the nerve fibers themselves. This causes nerve impulses to slow or even halt, thus producing symptoms of MS that include fatigue; bladder and bowel problems; vision problems; and difficulty walking. The Cleveland Clinic reports that MS affects more than 350,000 people in the United States and 2.5 million worldwide.

Mesenchymal stem cells harvested from donated human umbilical cords after normal, healthy births possess anti-inflammatory and immune modulatory properties that may relieve MS symptoms. Because these cells are immune privileged, the recipients immune system does not reject them. These properties make UC-MSC interesting candidates for the treatment of multiple sclerosis and other autoimmune disorders.

Each patient will receive seven intravenous injections of UC-MSC over the course of 10 days. They will be assessed at 3 months and 12 months primarily for safety and secondarily for indications of efficacy.

The stem cell technology being utilized in this trial was developed by Neil Riordan, PhD, founder of Medistem Panama. The stem cells will be harvested and processed at Medistem Panamas 8000 sq. ft. ISO-9001 certified laboratory in the prestigious City of Knowledge. They will be administered at the Stem Cell Institute in Panama City, Panama.

From his research laboratory in Dallas, Texas, Dr. Riordan commented, Umbilical cord tissue provides an abundant, non-controversial supply of immune modulating mesenchymal stem cells. Preclinical and clinical research has demonstrated the anti-inflammatory and immune modulating effects of these cells. We look forward to the safety and efficacy data that will be generated by this clinical trial; the first in the western hemisphere testing the effects of umbilical cord mesenchymal stem cells on patients with multiple sclerosis.

The Principle Investigator is Jorge Paz-Rodriguez, MD. Dr. Paz-Rodriguez also serves as the Medical Director at the Stem Cell Institute.

For detailed information about this clinical trial visit http://www.clinicaltrials.gov . If you are a multiple sclerosis patient between the ages of 18 and 55, you may qualify for this trial. Please email trials (at) translationalbiosciences (dot) com for more information about how to apply.

About Translational Biosciences

See original here:
Umbilical Cord Stem Cell Therapy Clinical Trial for Multiple Sclerosis Gets Green Light

To Read More: Umbilical Cord Stem Cell Therapy Clinical Trial for Multiple Sclerosis Gets Green Light
categoriaSpinal Cord Stem Cells commentoComments Off on Umbilical Cord Stem Cell Therapy Clinical Trial for Multiple Sclerosis Gets Green Light | dataApril 4th, 2014
Read All

'Fabricated' stem cell paper technique may yet be proven valid

By LizaAVILA

Just weeks after invalidating a groundbreaking paper describing a simple technique for generating pluripotent stem cells, professor Kenneth Ka Ho Lee now believes he has identified the correct approach.

Lee, chief of stem cell research at the Chinese University of Hong, spoke to Wired.co.uk in March about his tentative excitement when he read the Nature study in question, published at the start of the year. The proposed Stap cells (stimulus-triggered acquisition of pluripotency) in it were a revelation, because they suggested there was a simple way to generate embryonic-like stem cells that could potentially be used in the treatment of diseases such as Parkinson's. The method involved reprogramming a donor's own adult blood and skin cells (in this case, mice) by exposing them to extreme trauma, such as an acid bath.

Lee could see its potential, but like the rest of the community he had his doubts. While reports circulated that the images published in the Nature study also featured in older papers penned by lead researcher Haruko Obokata of Japan's Riken Centre, Lee set about trying to replicate the experiment himself.

It didn't work.

Since then the Riken Centre has launched an investigation into the legitimacy of the trial, and that investigation today revealed Obokata had indeed falsified information, including results and images of DNA fragments used.

"Actions like this completely destroy data credibility," commented Shunsuke Ishii, head of the investigative committee and a Riken molecular geneticist, at a press conference. "There is no doubt that she was fully aware of this danger. We've therefore concluded this was an act of research misconduct involving fabrication." Obokata has denied the allegations, but Riken says its own research team will be the one to verify the results and carry out the experiment again.

In the interim however, a coauthor on the paper at the centre of the debacle,Charles Vacanti published yet another protocol for the Stap technique, fairly different from the original. Vacanti, of ear-on-a-mouse fame, is a professor at Harvard Medical School and published online what he said was found to be "an effective protocol for generating Stap cells in our lab, regardless of the cell type being studied". It was a combination of the two approaches mentioned in the Naturepaper -- the acid bath, and the trituration process (the application of pressure on the cells using pipettes to induce stress). He describes the latter process as being exerted with force, more so than in the original paper, and over a lengthy period -- twice a day for the first week.

Nature had already rejected Lee's version of experiments for publication last month. Undeterred, he set about applying Vacanti's technique. Liveblogging the experiments on ResearchGate, the open source platform where Lee had published his first set of experiments, the Hong Kong researcher immediately saw the excess stress was leading to rapid cell death among the lung fibroblast cells used.

"The Vacanti protocol put a deal of emphasis on mechanically passing the cells through narrow bore glass pipettes for 30 minutes before acid treatment and then growing the cells on non-adhesive culture plates," Lee told Wired.co.uk. "We conducted these experiments, but it did not induce expression of the pluripotent stem cell markers (Oct4, Sox2 and Nanog)."

Nevertheless, things appeared to turn around. In his preliminary studies Lee has concluded that it could be the extreme stress through trituration, and not the acid bath, that was responsible for creating the Stap cells.

Read the original:
'Fabricated' stem cell paper technique may yet be proven valid

To Read More: 'Fabricated' stem cell paper technique may yet be proven valid
categoriaSkin Stem Cells commentoComments Off on 'Fabricated' stem cell paper technique may yet be proven valid | dataApril 2nd, 2014
Read All

'Fabricated' stem cell paper may have just been proven valid

By LizaAVILA

Just weeks after invalidating a groundbreaking paper describing a simple technique for generating pluripotent stem cells, professor Kenneth Ka Ho Lee now believes he has identified the correct approach.

Lee, chief of stem cell research at the Chinese University of Hong, spoke to Wired.co.uk in March about his tentative excitement when he read the Nature study in question, published at the start of the year. The proposed Stap cells (stimulus-triggered acquisition of pluripotency) in it were a revelation, because they suggested there was a simple way to generate embryonic-like stem cells that could potentially be used in the treatment of diseases such as Parkinson's. The method involved reprogramming a donor's own adult blood and skin cells (in this case, mice) by exposing them to extreme trauma, such as an acid bath.

Lee could see its potential, but like the rest of the community he had his doubts. While reports circulated that the images published in the Nature study also featured in older papers penned by lead researcher Haruko Obokata of Japan's Riken Centre, Lee set about trying to replicate the experiment himself.

It didn't work.

Since then the Riken Centre has launched an investigation into the legitimacy of the trial, and that investigation today revealed Obokata had indeed falsified information, including results and images of DNA fragments used.

"Actions like this completely destroy data credibility," commented Shunsuke Ishii, head of the investigative committee and a Riken molecular geneticist, at a press conference. "There is no doubt that she was fully aware of this danger. We've therefore concluded this was an act of research misconduct involving fabrication." Obokata has denied the allegations, but Riken says its own research team will be the one to verify the results and carry out the experiment again.

In the interim however, a coauthor on the paper at the centre of the debacle,Charles Vacanti published yet another protocol for the Stap technique. Vacanti, of ear-on-a-mouse fame, is a professor at Harvard Medical School and published online what he said was found to be "an effective protocol for generating Stap cells in our lab, regardless of the cell type being studied". It was a combination of the two approaches mentioned in the Naturepaper -- the acid bath, and the trituration process (the application of pressure on the cells using pipettes to induce stress). He describes the latter process as being exerted with force, more so than in the original paper, and over a lengthy period -- twice a day for the first week.

Nature had already rejected Lee's version of experiments for publication last month. Undeterred, he set about applying Vacanti's technique. Liveblogging the experiments on ResearchGate, the open source platform where Lee had published his first set of experiments, the Hong Kong researcher immediately saw the excess stress was leading to rapid cell death among the lung fibroblast cells used.

"We estimated that there was a 50 percent decrease in cell number," Lee wrote four days ago on the blog. "In the original paper reported in Nature, such decrease in cell count was reported for day two, which is inline with our current experiment. Day three will be critical as this was the time Oct4-GFP expression [an indication that stem cells are generating] was reported for Stap cells. If we find that the cell number decreased even more drastically in our cultures, we will harvest some of the cultures and use them directly for qPCR analysis [quantitative polymerase chain reaction,a screening technique for stem cells]."

Nevertheless, things appeared to turn around. In his preliminary studies Lee has concluded that it could be the extreme stress through trituration, and not the acid bath, that was responsible for creating the Stap cells. "I am shocked and amazed by the qPCR results for the three-day-old control and Stap cultures," he wrote on ResearchGate, alongside a graph of the results. "Totally speechless!"

Link:
'Fabricated' stem cell paper may have just been proven valid

To Read More: 'Fabricated' stem cell paper may have just been proven valid
categoriaSkin Stem Cells commentoComments Off on 'Fabricated' stem cell paper may have just been proven valid | dataApril 1st, 2014
Read All

Heather Burke – Stem Cell Therapy for treating her Multiple Sclerosis – Video

By LizaAVILA


Heather Burke - Stem Cell Therapy for treating her Multiple Sclerosis
Heather Burke, a 26-year-old mother of two is about to embark on a medical journey that could stop her multiple sclerosis in its tracks. The disease, which a...

By: DIAD0NU

Original post:
Heather Burke - Stem Cell Therapy for treating her Multiple Sclerosis - Video

To Read More: Heather Burke – Stem Cell Therapy for treating her Multiple Sclerosis – Video
categoriaUncategorized commentoComments Off on Heather Burke – Stem Cell Therapy for treating her Multiple Sclerosis – Video | dataApril 1st, 2014
Read All

Big Breakthrough In Stem Cell Manufacturing Technology

By LizaAVILA

April 1, 2014

University of Nottingham

Scientists at The University of Nottingham have developed a new substance which could simplify the manufacture of cell therapy in the pioneering world of regenerative medicine.

Cell therapy is an exciting and rapidly developing area of medicine in which stem cells have the potential to repair human tissue and maintain organ function in chronic disease and age-related illnesses. But a major problem with translating current successful research into actual products and treatments is how to mass-produce such a complex living material.

There are two distinct phases in the production of stem cell products; proliferation (making enough cells to form large tissue) and differentiation (turning the basic stem cells into functional cells). The material environment required for these two phases are different and up to now a single substance that does both jobs has not been available.

Now a multi-disciplinary team of researchers at Nottingham has created a new stem cell micro-environment which they have found has allowed both the self-renewal of cells and then their evolution into cardiomyocyte (heart) cells. The material is a hydrogel containing two polymers an alginate-rich environment which allows proliferation of cells with a simple chemical switch to render the environment collagen-rich when the cell population is large enough. This change triggers the next stage of cell growth when cells develop a specific purpose.

Major priority

Professor of Advanced Drug Delivery and Tissue Engineering, Kevin Shakesheff, said:

Our new combination of hydrogels is a first. It allows dense tissue structures to be produced from human pluripotent stem cells (HPSC) in a single step process never achieved before. The discovery has important implications for the future of manufacturing in regenerative medicine. This field of healthcare is a major priority for the UK and we are seeing increasing investment in future manufacturing processes to ensure we are ready to deliver real treatments to patients when HPSC products and treatments go to trial and become standard.

The research, Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation, is published in the Proceedings of the National Academy of Sciences (PNAS).

More here:
Big Breakthrough In Stem Cell Manufacturing Technology

To Read More: Big Breakthrough In Stem Cell Manufacturing Technology
categoriaUncategorized commentoComments Off on Big Breakthrough In Stem Cell Manufacturing Technology | dataApril 1st, 2014
Read All

Major breakthrough in stem cell manufacturing technology

By LizaAVILA

PUBLIC RELEASE DATE:

31-Mar-2014

Contact: Emma Rayner emma.rayner@nottingham.ac.uk 44-011-595-15793 University of Nottingham

Scientists at The University of Nottingham have developed a new substance which could simplify the manufacture of cell therapy in the pioneering world of regenerative medicine.

Cell therapy is an exciting and rapidly developing area of medicine in which stem cells have the potential to repair human tissue and maintain organ function in chronic disease and age-related illnesses. But a major problem with translating current successful research into actual products and treatments is how to mass-produce such a complex living material.

There are two distinct phases in the production of stem cell products; proliferation (making enough cells to form large tissue) and differentiation (turning the basic stem cells into functional cells). The material environment required for these two phases are different and up to now a single substance that does both jobs has not been available.

Now a multi-disciplinary team of researchers at Nottingham has created a new stem cell micro-environment which they have found has allowed both the self-renewal of cells and then their evolution into cardiomyocyte (heart) cells. The material is a hydrogel containing two polymers an alginate-rich environment which allows proliferation of cells with a simple chemical switch to render the environment collagen-rich when the cell population is large enough. This change triggers the next stage of cell growth when cells develop a specific purpose.

Professor of Advanced Drug Delivery and Tissue Engineering, Kevin Shakesheff, said:

"Our new combination of hydrogels is a first. It allows dense tissue structures to be produced from human pluripotent stem cells (HPSC) in a single step process never achieved before. The discovery has important implications for the future of manufacturing in regenerative medicine. This field of healthcare is a major priority for the UK and we are seeing increasing investment in future manufacturing processes to ensure we are ready to deliver real treatments to patients when HPSC products and treatments go to trial and become standard."

The research, Combined hydrogels that switch human pluripotent stem cells from self-renewal to differentiation, is published in the Proceedings of the National Academy of Sciences (PNAS).

See the original post here:
Major breakthrough in stem cell manufacturing technology

To Read More: Major breakthrough in stem cell manufacturing technology
categoriaUncategorized commentoComments Off on Major breakthrough in stem cell manufacturing technology | dataMarch 31st, 2014
Read All

GW researcher invents 'mini heart' to help return venous blood

By LizaAVILA

PUBLIC RELEASE DATE:

27-Mar-2014

Contact: Lisa Anderson lisama2@gwu.edu 202-994-3121 George Washington University

WASHINGTON (March 27, 2014) George Washington University (GW) researcher Narine Sarvazyan, Ph.D., has invented a new organ to help return blood flow from veins lacking functional valves. A rhythmically contracting cuff made of cardiac muscle cells surrounds the vein acting as a 'mini heart' to aid blood flow through venous segments. The cuff can be made of a patient's own adult stem cells, eliminating the chance of implant rejection.

"We are suggesting, for the first time, to use stem cells to create, rather than just repair damaged organs," said Sarvazyan, professor of pharmacology and physiology at the GW School of Medicine and Health Sciences. "We can make a new heart outside of one's own heart, and by placing it in the lower extremities, significantly improve venous blood flow."

The novel approach of creating 'mini hearts' may help to solve a chronic widespread disease. Chronic venous insufficiency is one of the most pervasive diseases, particularly in developed countries. Its incidence can reach 20 to 30 percent in people over 50 years of age. It is also responsible for about 2 percent of health care costs in the United States. Additionally, sluggish venous blood flow is an issue for those with diseases such as diabetes, and for those with paralysis or recovering from surgery.

This potential new treatment option, outlined in a recently published paper in the Journal of Cardiovascular Pharmacology and Therapeutics, represents a leap for the tissue engineering field, advancing from organ repair to organ creation. Sarvazyan, together with members of her team, has demonstrated the feasibility of this novel approach in vitro and is currently working toward testing these devices in vivo.

###

The study, titled "Thinking Outside the Heart: Use of Engineered Cardiac Tissue for the Treatment of Chronic Deep Venous Insufficiency," is available at http://cpt.sagepub.com/content/early/2014/01/20/1074248413520343.full.

Media: To interview Dr. Sarvazyan about her research, please contact Lisa Anderson at lisama2@gwu.edu or 202-994-3121.

See more here:
GW researcher invents 'mini heart' to help return venous blood

To Read More: GW researcher invents 'mini heart' to help return venous blood
categoriaCardiac Stem Cells commentoComments Off on GW researcher invents 'mini heart' to help return venous blood | dataMarch 27th, 2014
Read All

Researcher Invents 'Mini Heart' to Help Return Venous Blood

By LizaAVILA

Contact Information

Available for logged-in reporters only

Newswise WASHINGTON (March 27, 2014) George Washington University (GW) researcher Narine Sarvazyan, Ph.D., has invented a new organ to help return blood flow from veins lacking functional valves. A rhythmically contracting cuff made of cardiac muscle cells surrounds the vein acting as a 'mini heart' to aid blood flow through venous segments. The cuff can be made of a patients own adult stem cells, eliminating the chance of implant rejection.

We are suggesting, for the first time, to use stem cells to create, rather than just repair damaged organs, said Sarvazyan, professor of pharmacology and physiology at the GW School of Medicine and Health Sciences. We can make a new heart outside of ones own heart, and by placing it in the lower extremities, significantly improve venous blood flow.

The novel approach of creating mini hearts' may help to solve a chronic widespread disease. Chronic venous insufficiency is one of the most pervasive diseases, particularly in developed countries. Its incidence can reach 20 to 30 percent in people over 50 years of age. It is also responsible for about 2 percent of health care costs in the United States. Additionally, sluggish venous blood flow is an issue for those with diseases such as diabetes, and for those with paralysis or recovering from surgery.

This potential new treatment option, outlined in a recently published paper in the Journal of Cardiovascular Pharmacology and Therapeutics, represents a leap for the tissue engineering field, advancing from organ repair to organ creation. Sarvazyan, together with members of her team, has demonstrated the feasibility of this novel approach in vitro and is currently working toward testing these devices in vivo.

The study, titled Thinking Outside the Heart: Use of Engineered Cardiac Tissue for the Treatment of Chronic Deep Venous Insufficiency, is available at http://cpt.sagepub.com/content/early/2014/01/20/1074248413520343.full.

Media: To interview Dr. Sarvazyan about her research, please contact Lisa Anderson at lisama2@gwu.edu or 202-994-3121.

###

About the GW School of Medicine and Health Sciences:

Originally posted here:
Researcher Invents 'Mini Heart' to Help Return Venous Blood

To Read More: Researcher Invents 'Mini Heart' to Help Return Venous Blood
categoriaCardiac Stem Cells commentoComments Off on Researcher Invents 'Mini Heart' to Help Return Venous Blood | dataMarch 27th, 2014
Read All

Ontario student's search for bone marrow donor brings her to Surrey

By LizaAVILA

Ontario student Moneet Mann is coming to Surrey in her search for a bone marrow donor. Submitted/Vancouver Desi

MANPREET GREWAL VANCOUVER DESI

Will you marrow me?

A 24-year-old Brampton, Ont. girl is bringing her desperate search for a bone marrow match to Surrey this weekend.

Moneet Mann was studying to be a teacher at Thunder Bays Lakehead University when she was diagnosed with acute myeloid leukemia in October last year.

Although the news has been devastating for her and her family, she has chosen to see the blessing in her early diagnoses. With a stem cell transplant she can get back to her life, her school, her friends and passion to teach children.

But her challenge is that a perfect bone marrow match isnt always available in extreme cases, the odds of a match may be as little as one in 750,000.

Since her diagnosis shes started up her Will You Marrow Me? campaign to hunt for a donor, which will be holding a swabbing event alongside Canadian Blood Services at Surreys Dukh Nivaran Gurdwara on Sunday. Mann is particularly putting the call out to South Asian donors between the ages of 17 to 35.

According to Canadian Blood Services, matching between donor and patient happens on a genetic level. What this means is that if a patient is from a certain ethnic background, their donor is most likely going to be from the same ethnic group.

Doctors consider young men to be optimal donors because stem cells from young men can produce fewer chances of complications post-transplant. Also, men are typically physically bigger than women, so they can produce a greater volume of stem cells for the patient.

Link:
Ontario student's search for bone marrow donor brings her to Surrey

To Read More: Ontario student's search for bone marrow donor brings her to Surrey
categoriaBone Marrow Stem Cells commentoComments Off on Ontario student's search for bone marrow donor brings her to Surrey | dataMarch 27th, 2014
Read All

The Repair Stem Cells Institute Announces Its Special …

By LizaAVILA

03:00 EDT 26 Mar 2014 | PR Web

RSCIs one-day treatment program in Florida, USA, is priced to bring stem cell treatment benefits to the greatest possible number of SCI patients.

Dallas, TX (PRWEB) March 26, 2014

The Repair Stem Cells Institute (RSCI http://www.repairstemcells.org) announces its new Double Benefits for SCI stem cell treatment program specifically to benefit sufferers of Spinal Cord Injuries (SCI). The Regenerative Center, headed by Dr. Melvin M. Propis, a well-known practitioner of stem cells science, is located in Ft. Lauderdale, Florida, U.S.A. RSCIs program is by far the least expensive SCI treatment program available using real stem cells treatments within FDA regulations.

A Spinal Cord Injury (SCI) refers to any injury to the spinal cord caused by trauma rather than disease. Depending on where the spinal cord and nerve roots are damaged, the symptoms can vary widely, from pain to paralysis to incontinence. SCIs are described as "incomplete," which normally means a partial but significant paralysis, to a "complete" injury, which means a total loss of function. The number of people in the United States in 2014 who have SCI has been estimated at over a quarter million, with approximately 12,000 new cases each year.

The Repair Stem Cells Institute is the worlds only stem cell patients advocacy group whose mission is to Educate, Advocate, and Empower people to make educated choices about their medical conditions and treatments in order to lead longer and more fulfilling lives. The Double Benefits for SCI program marks a milestone in RSCIs seven years of educating thousands and guiding hundreds to adult stem cell therapies by the worlds most competent stem cells doctors at 14 affiliated international stem cell treatment centers.

Highlights of RSCIs stem cell treatment for Spinal Cord Injury include:

An RSCI Spinal Cord Injury patient, Graham Faught, who received treatment in 2013 at the Florida treatment clinic, said, This treatment literally got me back on my feet. In April, I was confined to a wheelchair with little hope. By December, I was upright again, making some progress on the treadmill and hopeful for the future. Late Flash: March 20, Graham walked 20 feet with a walker. We expect to have videos soon.

Don Margolis, founder and chairman of the Repair Stem Cells Institute (http://www.repairstemcells.org), stated, We at RSCI are very proud to offer this incredible program for SCI patients. We are confident that it will be in the forefront of many more such treatment breakthroughs. Our next target for the summer of 2014 is a double for Multiple Sclerosis, hopefully at the same price!

Currently, adult stem cell treatments are being used to help patients recover from over 150 debilitating chronic conditions previously thought to be untreatable, including the Big Three Heart Disease, Diabetes, and Cancer -- as well as Alzheimers, Parkinsons, Spinal Cord Injury, Liver Disease, Cerebral Palsy, Renal Failure, Arthritis, Autism, and Diabetes. A full list of diseases stem cells can help can be found on the RSCI website (http://www.repairstemcells.org). To date, commercial stem cell treatments have been used by over 30,000 patients with a 65% success rate.

Here is the original post:
The Repair Stem Cells Institute Announces Its Special ...

To Read More: The Repair Stem Cells Institute Announces Its Special …
categoriaSpinal Cord Stem Cells commentoComments Off on The Repair Stem Cells Institute Announces Its Special … | dataMarch 26th, 2014
Read All

The Repair Stem Cells Institute Announces Its Special Double Benefits for SCI Stem Cells Treatment Program to …

By LizaAVILA

Dallas, TX (PRWEB) March 26, 2014

The Repair Stem Cells Institute (RSCI http://www.repairstemcells.org) announces its new Double Benefits for SCI stem cell treatment program specifically to benefit sufferers of Spinal Cord Injuries (SCI). The Regenerative Center, headed by Dr. Melvin M. Propis, a well-known practitioner of stem cells science, is located in Ft. Lauderdale, Florida, U.S.A. RSCIs program is by far the least expensive SCI treatment program available using real stem cells treatments within FDA regulations.

A Spinal Cord Injury (SCI) refers to any injury to the spinal cord caused by trauma rather than disease. Depending on where the spinal cord and nerve roots are damaged, the symptoms can vary widely, from pain to paralysis to incontinence. SCIs are described as "incomplete," which normally means a partial but significant paralysis, to a "complete" injury, which means a total loss of function. The number of people in the United States in 2014 who have SCI has been estimated at over a quarter million, with approximately 12,000 new cases each year.

The Repair Stem Cells Institute is the worlds only stem cell patients advocacy group whose mission is to Educate, Advocate, and Empower people to make educated choices about their medical conditions and treatments in order to lead longer and more fulfilling lives. The Double Benefits for SCI program marks a milestone in RSCIs seven years of educating thousands and guiding hundreds to adult stem cell therapies by the worlds most competent stem cells doctors at 14 affiliated international stem cell treatment centers.

Highlights of RSCIs stem cell treatment for Spinal Cord Injury include:

An RSCI Spinal Cord Injury patient, Graham Faught, who received treatment in 2013 at the Florida treatment clinic, said, This treatment literally got me back on my feet. In April, I was confined to a wheelchair with little hope. By December, I was upright again, making some progress on the treadmill and hopeful for the future. Late Flash: March 20, Graham walked 20 feet with a walker. We expect to have videos soon.

Don Margolis, founder and chairman of the Repair Stem Cells Institute (http://www.repairstemcells.org), stated, We at RSCI are very proud to offer this incredible program for SCI patients. We are confident that it will be in the forefront of many more such treatment breakthroughs. Our next target for the summer of 2014 is a double for Multiple Sclerosis, hopefully at the same price!

Currently, adult stem cell treatments are being used to help patients recover from over 150 debilitating chronic conditions previously thought to be untreatable, including the Big Three Heart Disease, Diabetes, and Cancer -- as well as Alzheimers, Parkinsons, Spinal Cord Injury, Liver Disease, Cerebral Palsy, Renal Failure, Arthritis, Autism, and Diabetes. A full list of diseases stem cells can help can be found on the RSCI website (http://www.repairstemcells.org). To date, commercial stem cell treatments have been used by over 30,000 patients with a 65% success rate.

For more information about adult stem cells, stem cell treatment, diseases stem cells can help, and the top international stem cell treatment centers, the the Repair Stem Cells Institute website offers a wealth of straightforward and unbiased information and solutions.

Contact: Don Margolis Repair Stem Cells Institute 3010 LBJ Freeway, Suite 1200 Dallas, TX 75234 Tel: (214) 556-6377 Email: info(at)repairstemcells(dot)org Website: http://www.repairstemcells.org Facebook: http://www.facebook.com/repairstemcells Twitter: http://www.twitter.com/repairstem

Read the original post:
The Repair Stem Cells Institute Announces Its Special Double Benefits for SCI Stem Cells Treatment Program to ...

To Read More: The Repair Stem Cells Institute Announces Its Special Double Benefits for SCI Stem Cells Treatment Program to …
categoriaSpinal Cord Stem Cells commentoComments Off on The Repair Stem Cells Institute Announces Its Special Double Benefits for SCI Stem Cells Treatment Program to … | dataMarch 26th, 2014
Read All

CardioWise and the National Institutes of Health, National Heart, Lung and Blood Institute Complete Beta Site …

By LizaAVILA

Fayetteville, Arkansas (PRWEB) March 26, 2014

CardioWise, Inc. and the National Institutes of Health (NIH), National Heart, Lung, and Blood Institute (NHLBI) have signed a Beta Site Agreement to serve as a clinical test site for CardioWise Multiparametric Strain Analysis (MPSA) Software. The CardioWise software will be used in clinical research protocol number 12-H-0078, sponsored by the NHLBI entitled, Preliminary Assessment of Direct Intra-Myocardial Injection of Autologous Bone Marrow-derived Stromal Cells on Patients Undergoing Revascularization for Coronary Artery Disease (CAD) with Depressed Left Ventricular Function. The Principle Investigator is Pamela G. Robey, Ph.D., and Dr. Keith A. Horvath is the Cardiothoracic Surgeon on the clinical trial. Details of the study are available here: http://clinicalstudies.info.nih.gov/cgi/wais/bold032001.pl?A_12-H-0078.html@mesenchymal@@@@.

Bone marrow stromal stem cells (also known as mesenchymal stem cells) have been isolated and are found to make large amounts of growth factors. Because they make growth factors, these cells can help regrow tissue and encourage repair of damaged tissue. Tests on damaged heart muscle suggest that injecting these cells directly into damaged heart muscle can improve heart function. Researchers want to give stem cells to people who are having open-heart surgery to see if they can help to repair heart muscle damage. The objectives of the study are to test the safety and effectiveness of bone marrow stromal stem cell injections given during heart surgery to treat heart muscle damage. The CardioWise MPSA software will be used to help to determine the efficacy of the stem cell treatment.

The patients who enroll in the protocol will receive one baseline cardiac MRI (CMR) scan and 3 additional follow up CMR scans. Those CMR scans will be analyzed by CardioWise analysis software and the analyses will be compared to determine whether the stem cell injections can improve the contractile function of the heart muscle. Dr. Andrew E. Arai, Chief of the Advanced Cardiovascular Imaging Research Group in the NHLBIs Division of Intramural Research will be leading the analysis of the CMR images using the CardioWise MPSA software. Dr. Arai is Past President of the Society of Cardiovascular Magnetic Resonance (SCMR), the leading international professional organization focused on CMR.

The CardioWise analysis software is uniquely capable of analyzing the three-dimensional motion of the heart that is acquired from cardiac MRI images and then comparing the analysis at 15,300 points to the motion of a normal heart model. The analysis detects portions of the heart that are moving abnormally and demonstrates to what degree the heart muscle has been affected. Since MRI uses no ionizing radiation or contrast, it is completely non-invasive and poses minimal risk to the patient. This allows the patient to be followed through the course of treatment and to measure outcomes of interventions such as the stem cell therapy. In the near future, CardioWise MPSA may aid doctors to determine what intervention, such as surgery, stent insertion, or drug is most appropriate for the patient who presents with cardiovascular disease symptoms.

CardioWise is commercializing patent-pending, non-invasive Cardiac Magnetic Resonance Imaging (CMR) analysis software that produces a quantified 4D image model of the human heart, called Multiparametric Strain Analysis (MPSA). CardioWise heart analysis software combined with cardiac MRI is a single diagnostic test that is able to provide quantitative analysis of the myocardium, arteries and valves with an unprecedented level of detail. It has the opportunity to become the new gold standard of care for heart health analysis. CardioWise is a VIC Technology Venture Development portfolio company.

Continue reading here:
CardioWise and the National Institutes of Health, National Heart, Lung and Blood Institute Complete Beta Site ...

To Read More: CardioWise and the National Institutes of Health, National Heart, Lung and Blood Institute Complete Beta Site …
categoriaBone Marrow Stem Cells commentoComments Off on CardioWise and the National Institutes of Health, National Heart, Lung and Blood Institute Complete Beta Site … | dataMarch 26th, 2014
Read All

Stem Cell-Derived Beta Cells Under Skin Replace Insulin

By LizaAVILA

Contact Information

Available for logged-in reporters only

Newswise Scientists at University of California, San Diego School of Medicine and Sanford-Burnham Medical Research Institute have shown that by encapsulating immature pancreatic cells derived from human embryonic stem cells (hESC), and implanting them under the skin of diabetic mouse models, sufficient insulin is produced to maintain glucose levels without unwanted potential trade-offs of the technology.

The research, published online in Stem Cell Research, suggests that encapsulated hESC-derived insulin-producing cells may be an effective and safe cell replacement therapy for insulin dependent-diabetes.

Our study critically evaluates some of the potential pitfalls of using stem cells to treat insulin dependent-diabetes, said Pamela Itkin-Ansari, PhD, assistant project scientist in the UC San Diego Department of Pediatrics and adjunct assistant professor in Development, Aging and Regenerative program at Sanford-Burnham.

We have shown that encapsulated hESC-derived insulin-producing cells are able to produce insulin in response to elevated glucose without an increase in the mass or their escape from the capsule, said Itkin-Ansari. These results are important because it means that the encapsulated cells are both fully functional and retrievable.

Previous attempts to replace insulin producing cells, called beta cells, have met with significant challenges. For example, researchers have tried treating diabetics with mature beta cells, but because these cells are fragile and scarce, the method is fraught with problems. Moreover, since the cells come from organ donors, they may be recognized as foreign by the recipients immune system requiring patients to take immunosuppressive drugs to prevent their immune system from attacking the donors cells, ultimately leaving patients vulnerable to infections, tumors and other adverse events.

Encapsulation technology was developed to protect donor cells from exposure to the immune system and has proven extremely successful in preclinical studies.

Itkin-Ansari and her research team previously made an important contribution to the encapsulation approach by showing that pancreatic islet progenitor cells are an optimal cell type for encapsulation. They found that progenitor cells were more robust than mature beta cells to encapsulate, and while encapsulated, they matured into insulin-producing cells that secreted insulin only when needed.

In the study, Itkin-Ansari and her team used bioluminescent imaging to determine if encapsulated cells stay in the capsule after implantation.

Continue reading here:
Stem Cell-Derived Beta Cells Under Skin Replace Insulin

To Read More: Stem Cell-Derived Beta Cells Under Skin Replace Insulin
categoriaSkin Stem Cells commentoComments Off on Stem Cell-Derived Beta Cells Under Skin Replace Insulin | dataMarch 26th, 2014
Read All

Stem Cell Therapy and Hair Transplantation Methods – Video

By LizaAVILA


Stem Cell Therapy and Hair Transplantation Methods
Subscribe to Tv5 News Channel: http://goo.gl/NHJD9 Like us on Facebook: http://www.facebook.com/tv5newschannel Follow us on Twitter: https://twitter.co...

By: TV5 News

Here is the original post:
Stem Cell Therapy and Hair Transplantation Methods - Video

To Read More: Stem Cell Therapy and Hair Transplantation Methods – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy and Hair Transplantation Methods – Video | dataMarch 25th, 2014
Read All

Wounded Pa. soldier seeks Chinese stem cell cure

By LizaAVILA

YORK, Pa. (AP) - A York County soldier left partially paralyzed when he was shot in Afghanistan nearly two years ago is banking on stem cells to help him regain movement.

Matthew Hanes, 22, of Manchester Township will head to China in April to undergo surgery to repair part of his damaged spinal cord.

Doctors essentially will use minor surgery and stem cell therapy to build a bridge over two vertebrae that were shattered when Hanes was shot.

At the minimum Ill get at least some feeling back where I dont have it in certain places, but I could get everything back if it goes well, Hanes said.

U.S. Army Cpl. Hanes was shot while on patrol in Afghanistan in June 2012. He was left with limited use of his upper body and no use of his lower extremities.

RESEARCH: Soon after he returned to the U.S., Hanes began researching stem cell therapy as possible treatment.

Thats how he found Puhua International Hospital in Beijing, where he will fly on April 1 for the treatment. Hes slated to return stateside later that month.

Its coming up slowly now that I know its on, Hanes said.

During his research, Hanes said he found the U.S. is so far behind on stem cell research compared to some countries in Asia, such as China, and Europe.

For years, the federal government imposed tight restrictions on stem cell research until it was loosened in 2009 by President Barrack Obama.

Here is the original post:
Wounded Pa. soldier seeks Chinese stem cell cure

To Read More: Wounded Pa. soldier seeks Chinese stem cell cure
categoriaSpinal Cord Stem Cells commentoComments Off on Wounded Pa. soldier seeks Chinese stem cell cure | dataMarch 24th, 2014
Read All

The furor over fresh-cell therapy (which is NOT stem cell therapy)

By LizaAVILA

The Philippines is the biggest market for the popular, if highly controversial, alternative treatment in Germany called fresh-cell therapy (FCT). Fresh cells derived from the fetus of an unborn lamb are injected into patients, and are said to cure a large number of illnesses.

Despite the high cost of the treatment, wealthy Filipinos are undeterred, and typically arrive in droves in a sleepy town outside Frankfurt, their hopes of being cured or rejuvenated pinned on the life of every donor sheep.

Given its renown, its no surprise that questions about the efficacy and safety of FCT has been the subject of discussions among health professionals. There have also been rumors of deaths after FCT.

The proponents of FCT in Germany, however, claim that all talk about patient deaths and questionable safety standards are unfounded, and an uncouth effort to discredit FCT so that the same medical professionals here could promote stem-cell therapy, which is allowed in the country. They deny the rumors of deaths and challenge their accusers to show proof. They also maintain that FCT is a decades-old, legitimate and safe naturopathic treatment.

Theres also a rivalry in Edenkoben between the famous clinic Villa Medica and the breakaway practice of Dr. Robert Janson-Mller, who used to work at the same clinic.

Dr. Mller now administers FCT in a hotel, which doubles as his clinic. This gave rise to talks questioning the standards of a practice that is done in a hotel, not a hospital. Some accounts also say that there have been Filipino patients fooled into believing they were bound for Villa Medica, only to find themselves in Dr. Mullers hotel.

Inquirer Lifestyle visits the two rival clinics in Germany, and we experience firsthand what FCT is all about.

Follow Us

Recent Stories:

Tags: Dr. Robert Janson-Mller , Frankfurt , fresh cell therapy , Stem Cell Therapy , Villa Medica

View post:
The furor over fresh-cell therapy (which is NOT stem cell therapy)

To Read More: The furor over fresh-cell therapy (which is NOT stem cell therapy)
categoriaUncategorized commentoComments Off on The furor over fresh-cell therapy (which is NOT stem cell therapy) | dataMarch 22nd, 2014
Read All

Page 24«..1020..23242526..3040..»


Copyright :: 2024