Page 25«..1020..24252627..3040..»

UC Davis Stem-Cell Researchers Findings May Offer Answers for Some Bladder Defects and Disease

By LizaAVILA

Sacramento, CA (PRWEB) March 21, 2014

For the first time, scientists have succeeded in coaxing laboratory cultures of human stem cells to develop into the specialized, unique cells needed to repair a patients defective or diseased bladder.

The breakthrough, developed at the UC Davis Institute for Regenerative Cures and published today in the scientific journal Stem Cells Translational Medicine, is significant because it provides a pathway to regenerate replacement bladder tissue for patients whose bladders are too small or do not function properly, such as children with spina bifida and adults with spinal cord injuries or bladder cancer.

Our goal is to use human stem cells to regenerate tissue in the lab that can be transplanted into patients to augment or replace their malfunctioning bladders, said Eric Kurzrock, professor and chief of the division of pediatric urologic surgery at UC Davis Children's Hospital and lead scientist of the study, which is titled Induction of Human Embryonic and Induced Pluripotent Stem Cells into Urothelium.

To develop the bladder cells, Kurzrock and his UC Davis colleagues investigated two categories of human stem cells. In their key experiments, they used induced pluripotent stem cells (iPS cells), which were derived from lab cultures of human skin cells and umbilical blood cells that had been genetically reprogrammed to convert to an embryonic stem cell-like state.

If additional research demonstrates that grafts of bladder tissue grown from human stem cells will be safe and effective for patient care, Kurzrock said that the source of the grafts would be iPS cells derived from a patients own skin or umbilical cord blood cells. This type of tissue would be optimal, he said, because it lowers the risk of immunological rejection that typifies most transplants.

In their investigation, Kurzrock and his colleagues developed a protocol to prod the pluripotent cells into becoming bladder cells. Their procedure was efficient and, most importantly, the cells proliferated over a long period of time a critical element in any tissue engineering application.

Whats exciting about this discovery is that it also opens up an array of opportunities using pluripotent cells, said Jan Nolta, professor and director of the UC Davis Stem Cell program and a co-author on the new study. When we can reliably direct and differentiate pluripotent stem cells, we have more options to develop new and effective regenerative medicine therapies. The protocols we used to create bladder tissue also provide insight into other types of tissue regeneration.

UC Davis researchers first used human embryonic stem cells obtained from the National Institutes of Healths repository of human stem cells. Embryonic stem cells can become any cell type in the body (i.e., they are pluripotent), and the team successfully coaxed these embryonic stem cells into bladder cells. They then used the same protocol to coax iPS cells made from skin and umbilical cord blood into bladder cells, called urothelium, that line the inside of the bladder. The cells expressed a very unique protein and marker of bladder cells called uroplakin, which makes the bladder impermeable to toxins in the urine.

The UC Davis researchers adjusted the culture system in which the stem cells were developing to encourage the cells to proliferate, differentiate and express the bladder protein without depending upon signals from other human cells, said Kurzrock. In future research, Kurzrock and his colleagues plan to modify the laboratory cultures so that they will not need animal and human products, which will allow use of the cells in patients.

See the article here:
UC Davis Stem-Cell Researchers Findings May Offer Answers for Some Bladder Defects and Disease

To Read More: UC Davis Stem-Cell Researchers Findings May Offer Answers for Some Bladder Defects and Disease
categoriaSkin Stem Cells commentoComments Off on UC Davis Stem-Cell Researchers Findings May Offer Answers for Some Bladder Defects and Disease | dataMarch 21st, 2014
Read All

Stem Cell Therapy for Pets in Summit County Colorado Proves to Be a Success for Local Dog Suffering from Pain

By LizaAVILA

Poway, California (PRWEB) March 21, 2014

Ruby, a 10 year old Border Collie mix from Breckenridge, Colorado, has found relief from the pain of arthritis with stem cell therapy by Vet-Stem, Inc. Rubys owners came to Jamie Gaynor, DVM at Frisco Animal Hospital for a second opinion after being told Ruby would need a total hip replacement to relieve her constant pain and discomfort. Her quality of life had diminished so rapidly they feared losing her.

Dr. Gaynor began performing stem cell therapy by Vet-Stem for pets in 2006, in Colorado Springs. Paralleling his specialties in pain management, he has now helped well over one hundred pets in the state of Colorado, and ones that traveled just to have his expertise. His credentials and experience made Dr. Gaynor the perfect fit for helping Rubys worsening bilateral hip arthritis despite aggressive drug therapy. Ruby would become Dr. Gaynors first stem cell therapy case at Frisco Animal Hospital; Summit Countys first and oldest animal hospital.

Ruby was in constant pain and discomfort. She had to be carried up stairs and could not go on car rides; her second favorite thing to do. Her quality of life was diminishing rapidly, and we thought we were losing her, explained Rubys owners.

Rubys stem cell procedure consisted of a small fatty tissue collection, which was sent overnight to Vet-Stems lab in California for processing. Once Rubys fat was processed, and stem cells were extracted, fresh doses of her stem cells were sent overnight back to Dr. Gaynor in injectable doses. Within 48hrs of collecting a fat sample from Ruby, Dr. Gaynor was able to inject stem cells into each of her arthritic, painful hips, making Ruby his first stem cell therapy case in Summit County.

Dr. Gaynor and Rubys owners were both pleased with the successful outcome of the procedure, and had the opportunity to share during her 30 day recheck. Ruby is back! She has regained her playfulness, sassy, bossy, collie attitude. She has resumed going for car rides and can stand up and stabilize herself. She jumps out of the car without hesitation. She ascends and descends the stairs like she used to, her owners remarked about Rubys physical performance.

Her entire disposition and expressions are so animated and relaxed. I forgot how she used to smile, hold her ears up, and have endless energy. She is definitely out of pain, and her mobility is at 80%! The best part is, that she continues to heal and get stronger each week. This procedure is hands down the most effective, least traumatic therapy available, especially for the older dog, Rubys owners expressed.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

Read more here:
Stem Cell Therapy for Pets in Summit County Colorado Proves to Be a Success for Local Dog Suffering from Pain

To Read More: Stem Cell Therapy for Pets in Summit County Colorado Proves to Be a Success for Local Dog Suffering from Pain
categoriaUncategorized commentoComments Off on Stem Cell Therapy for Pets in Summit County Colorado Proves to Be a Success for Local Dog Suffering from Pain | dataMarch 21st, 2014
Read All

Joseph Purita, M.D. and Maritza Novas, R.N., M.S.N. of Global Stem Cells Group, Inc. and Bioheart CSO Kristin Comella …

By LizaAVILA

Miami (PRWEB) March 20, 2014

Joseph Purita, M.D. and Maritza Novas, R.N., M.S.N. of Global Stem Cells Group Inc., and Bioheart, Inc. Chief Scientific Officer Kristin Comella will be featured speakers at the 31st American Association of Orthopedic Medicine Annual Conference (AAOM) Conference and Scientific Seminar in Clearwater Beach, Florida April 9-12, 2014. Co-sponsored by the American Board of Quality Assurance and Utilization Review Physicians, Inc. (ABQAURP), the conference, titled Sports, Spine and Beyond: Latest Advances in Regenerative Orthopedic Medicine, will focus on the newest breakthroughs in the field of orthopedic medicine.

Purita, Novas and Comella will present the latest advances in stem cell therapies in sports medicine, regenerative orthopedic medicine and interventional pain medicine, including techniques for extracting stem cells from adipose tissue to use in patient treatments. Purita is a pioneer in the use of stem cells in orthopedics and founder of the Institute of Regenerative and Molecular Orthopedics in Boca Raton, Florida. Novas is a lead trainer and part of the research and development team for Stem Cell Training, a Global Stem Cells Group subsidiary.

Comella has more than 15 years experience in cell culturing and developing stem cell therapies for degenerative diseases and experience in corporate entities, with expertise in regenerative medicine, training and education, research, product development and senior management.

The conference will explore advances in other non-traditional treatments in sports and regenerative orthopedic medicine including manual medicine, nutrition, bioidentical hormone replacement therapy, musculoskeletal ultrasound and more. The goal of the AAOM Conference is to bring sports medicine physicians, PM&R specialists (physiatrists), family medicine physicians, orthopedic surgeons, neurologists and interventional pain physiciansincluding anesthesiologists and osteopathic pain physiciansthe latest state-of-the-art techniques and technologies to help treat their patients performance-related pain and injuries, overuse syndromes and chronic pain.

For more information on the 31st AAOM Annual Conference and Scientific Seminar, visit the AAOM website.

About the Global Stem Cells Group:

Global Stem Cells Group, Inc. is the parent company of six wholly owned operating companies dedicated entirely to stem cell research, training, products and solutions. Founded in 2012, the company combines dedicated researchers, physician and patient educators and solution providers with the shared goal of meeting the growing worldwide need for leading edge stem cell treatments and solutions. With a singular focus on this exciting new area of medical research, Global Stem Cells Group and its subsidiaries are uniquely positioned to become global leaders in cellular medicine.

Global Stem Cells Groups corporate mission is to make the promise of stem cell medicine a reality for patients around the world. With each of GSCGs six operating companies focused on a separate research-based mission, the result is a global network of state-of-the-art stem cell treatments.

To learn more about Global Stem Cells Group, Inc.s companies and for investor information, visit the Global Stem Cells Group website, email bnovas(at)regenestem(dot)com, or call 305-224-1858.

View post:
Joseph Purita, M.D. and Maritza Novas, R.N., M.S.N. of Global Stem Cells Group, Inc. and Bioheart CSO Kristin Comella ...

To Read More: Joseph Purita, M.D. and Maritza Novas, R.N., M.S.N. of Global Stem Cells Group, Inc. and Bioheart CSO Kristin Comella …
categoriaCardiac Stem Cells commentoComments Off on Joseph Purita, M.D. and Maritza Novas, R.N., M.S.N. of Global Stem Cells Group, Inc. and Bioheart CSO Kristin Comella … | dataMarch 21st, 2014
Read All

A*STAR scientists create stem cells from drop of blood

By LizaAVILA

SINGAPORE: Scientists at A*STAR's Institute of Molecular and Cell Biology (IMCB) have developed a method to generate human induced pluripotent stem cells (hiPSCs) from a single drop of finger-pricked blood.

The new technique could potentially boost the number and diversity of donors, and facilitate the setting up of large-scale hiPSC banks, said the Agency for Science, Technology and Research (A*STAR) in a news release on Thursday.

Current sample collection for reprogramming into human induced pluripotent stem cells include invasive methods, such as collecting cells from the bone marrow or skin, which may put off potential donors.

Although the stem cells may also be generated from blood cells, a large amount of blood is usually required.

But scientists at IMCB showed for the first time that single-drop volumes of blood are sufficient for reprogramming into human induced pluripotent stem cells.

As those cells show properties remarkably similar to human embryonic stem cells, they are invaluable for basic research, drug discovery and cell therapy.

The finger-prick technique is the world's first to use only a drop of finger-pricked blood to yield hiPSCs with high efficiency.

The work is published online in the Stem Cell Translational Medicine journal.

Lead scientist for the finger-prick hiPSC technique Dr Jonathan Loh Yuin Han said, "Our finger-prick technique, in fact, utilised less than a drop of finger-pricked blood. The remaining blood could even be used for DNA sequencing and other blood tests."

Senior consultant at the National Heart Centre Singapore and co-author of the paper, Dr Stuart Alexander Cook, said, "We were able to differentiate the hiPSCs reprogrammed from Jonathan's finger-prick technique, into functional heart cells."

See original here:
A*STAR scientists create stem cells from drop of blood

To Read More: A*STAR scientists create stem cells from drop of blood
categoriaSkin Stem Cells commentoComments Off on A*STAR scientists create stem cells from drop of blood | dataMarch 21st, 2014
Read All

USF study finds stem cell combination therapy improves traumatic brain injury outcomes

By LizaAVILA

PUBLIC RELEASE DATE:

20-Mar-2014

Contact: Anne DeLotto Baier abaier@health.usf.edu 813-974-3303 University of South Florida (USF Innovation)

Tampa, FL (Mar. 20, 2014) Traumatic brain injuries (TBI), sustained by close to 2 million Americans annually, including military personnel, are debilitating and devastating for patients and their families. Regardless of severity, those with TBI can suffer a range of motor, behavioral, intellectual and cognitive disabilities over the short or long term. Sadly, clinical treatments for TBI are few and largely ineffective.

In an effort to find an effective therapy, neuroscientists at the Center of Excellence for Aging and Brain Repair, Department of Neurosurgery in the USF Health Morsani College of Medicine, University of South Florida, have conducted several preclinical studies aimed at finding combination therapies to improve TBI outcomes.

In their study of several different therapiesalone and in combinationapplied to laboratory rats modeled with TBI, USF researchers found that a combination of human umbilical cord blood cells (hUBCs) and granulocyte colony stimulating factor (G-CSF), a growth factor, was more therapeutic than either administered alone, or each with saline, or saline alone.

The study appeared in a recent issue of PLoS ONE.

"Chronic TBI is typically associated with major secondary molecular injuries, including chronic neuroinflammation, which not only contribute to the death of neuronal cells in the central nervous system, but also impede any natural repair mechanism," said study lead author Cesar V. Borlongan, PhD, professor of neurosurgery and director of USF's Center of Excellence for Aging and Brain Repair. "In our study, we used hUBCs and G-CSF alone and in combination. In previous studies, hUBCs have been shown to suppress inflammation, and G-CSF is currently being investigated as a potential therapeutic agent for patients with stroke or Alzheimer's disease."

Their stand-alone effects have a therapeutic potential for TBI, based on results from previous studies. For example, G-CSF has shown an ability to mobilize stem cells from bone marrow and then infiltrate injured tissues, promoting self-repair of neural cells, while hUBCs have been shown to suppress inflammation and promote cell growth.

The involvement of the immune system in the central nervous system to either stimulate repair or enhance molecular damage has been recognized as key to the progression of many neurological disorders, including TBI, as well as in neurodegenerative diseases such as Parkinson's disease, multiple sclerosis and some autoimmune diseases, the researchers report. Increased expression of MHCII positive cellscell members that secrete a family of molecules mediating interactions between the immune system's white blood cellshas been directly linked to neurodegeneration and cognitive decline in TBI.

View original post here:
USF study finds stem cell combination therapy improves traumatic brain injury outcomes

To Read More: USF study finds stem cell combination therapy improves traumatic brain injury outcomes
categoriaUncategorized commentoComments Off on USF study finds stem cell combination therapy improves traumatic brain injury outcomes | dataMarch 21st, 2014
Read All

Stem cell therapy — beyond the headlines: Timothy Henry at TEDxGrandForks – Video

By LizaAVILA


Stem cell therapy -- beyond the headlines: Timothy Henry at TEDxGrandForks
There is considerable excitement about the use of stem cells for cardiovascular disease. Stem cells are unspecialized cells with the unique property to self-...

By: TEDx Talks

Continue reading here:
Stem cell therapy -- beyond the headlines: Timothy Henry at TEDxGrandForks - Video

To Read More: Stem cell therapy — beyond the headlines: Timothy Henry at TEDxGrandForks – Video
categoriaUncategorized commentoComments Off on Stem cell therapy — beyond the headlines: Timothy Henry at TEDxGrandForks – Video | dataMarch 19th, 2014
Read All

Okyanos Heart Institute Announces Completion of Investment Funding

By LizaAVILA

Freeport, Bahamas (PRWEB) March 18, 2014

Okyanos Heart Institute, whose mission it is to bring a new standard of care and a better quality of life to patients with coronary artery disease (CAD) using adult stem cell therapy, announced today it has raised $8.9 million in its Series B offering. Passion Group founder Ali Shawkat led the round and is a visionary entrepreneur-investor with success in a diverse set of industries including cellular services, telecom, media and healthcare.

Okyanos has the vision, medical leadership, adult stem cell technology and business model to better the lives of millions of patients, their families and society, said Shawkat. Cell therapy promises to be a new pillar of medicine as it is based on the natural biology of the body.

"This funding brings Okyanos' total funding to $14.2 million. Financial strength is integral to our commitment to treat patients with cardiac cell therapy at the highest standards of safety and care, stated Matthew Feshbach, co-founder and CEO of Okyanos.

Okyanos' cardiac cell therapy utilizes cells known as adipose-derived stem and regenerative cells (ADRCs), processed by Cytori Therapeutics (NASDAQ: CYTX) Celution system, a technology which has been approved and is commercially available in Europe, Australia, New Zealand, Singapore and other international jurisdictions for various indications of use.

The company has procured a state-of-the-art Philips cath lab and is building out a center of excellence capable of treating over 1000 patients per year in Freeport, The Bahamas. Based on the recommendations of the Bahamas Stem Cell Task Force, which thoroughly studied the safety and efficacy of adult stem cell therapy, the Bahamas passed stem cell legislation in August, 2013.

Feshbach further stated, We have a sophisticated, entrepreneurial group of investors who are like-minded in our purpose to safely improve the quality of life of patients suffering from illnesses such as CAD, using adult stem cells derived from adipose (fat) tissue, added Feshbach. We appreciate the significant leadership and support of Mr. Shawkat who shares the Okyanos commitment.

The company will begin treating patients with coronary artery disease using their own stem cells in the summer of 2014.

About Okyanos Heart Institute: (Oh key AH nos) Based in Freeport, The Bahamas, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.S.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive procedure, can stimulate the growth of new blood vessels, a process known as angiogenesis. Angiogenesis facilitates blood flow in the heart, which supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos, the Greek god of rivers, symbolizes restoration of blood flow. For more information, go to http://www.okyanos.com.

More here:
Okyanos Heart Institute Announces Completion of Investment Funding

To Read More: Okyanos Heart Institute Announces Completion of Investment Funding
categoriaCardiac Stem Cells commentoComments Off on Okyanos Heart Institute Announces Completion of Investment Funding | dataMarch 18th, 2014
Read All

Effect of receptor activity-modifying protein-1 on vascular smooth muscle cells

By LizaAVILA

PUBLIC RELEASE DATE:

18-Mar-2014

Contact: Bei Shi shi_bei2147@126.com Society for Experimental Biology and Medicine

Bei Shi, Xianping Long, Ranzun Zhao, Zhijiang Liu, Dongmei Wang and Guanxue Xu, researchers at the First Affiliated Hospital of Zunyi Medical College within the Guizhou Province of China, have reported an approach for improving the use of stem cells for improvement of infarcted heart function and damage to the arteries in the March 2013 issue of Experimental Biology and Medicine. They have discovered that mesenchymal stem cells (MSCs) transfected with a recombinant adenovirus containing the human receptor activity-modifying protein 1 (hRAMP1) gene (EGFP-hRAMP1-MSCs) when transplanted into rabbit models for both Myocardial infarction (MI) and carotid artery injury inhibit vascular smooth muscle cell (VSMC) proliferation within the neointima, and greatly improved both infarcted heart function and endothelial recovery from artery injury more efficiently than the control EGFP-MSCs.

MSCs have good applicability for cell transplantation because they possess self-renewal and multiple differentiation potential. With addition of either environmental or chemical substances, MSCs can differentiate into a variety of cell types. Numerous animal experiments and small clinical trials have shown that MSC transplantation can promote the formation of new blood vessels and reduce myocardial infarct size, and diminish the formation of scar tissue and ventricular remodeling, and improve cardiac functions. Nevertheless, MSCs have the potential to differentiate into VSMCs and may be the source of proliferating VSMCs during neointima formation after vascular injury. Recently, genetically modified MSCs, such as heme oxygenase-1(HO-1), granulocyte colony-stimulating factor (G-CSF) over-expressing MSCs, have proven to be more efficient at ameliorating infarcted myocardium than administering MSCs alone.

Calcitonin gene related protein (CGRP) is one of the most well-known potent vasodilators and can regulate vascular tone and other aspects of vascular function. The receptors for CGRP include the calcitonin receptor-like receptor (CRLR), RAMP1, and the receptor component protein. RAMP1 confers ligand specificity for CGRP. The relaxation of the artery in response to CGRP is dependent on RAMP1 expression. The response to CGRP is augmented after the increased expression of RAMP1 in VSMCs in culture.

RAMP1 over-expression increased CGRP-induced vasodilation and protected against angiotensin II-induced endothelial dysfunction as well as prevented VSMCs proliferation. In this study, we tested the effects of human RAMP1-over-expressing MSCs on infarcted heart function and intimal hyperplasia by means of cell transplantation in rabbit models for MI reperfusion and carotid artery injury. Bei Shi said "Our data has shown that hRAMP1 over-expression in MSCs through genetic modification significantly inhibits neointimal proliferation and improves infarcted heart function."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine said "The effect of stem cell therapy with the RAMP1 expressing MSCs has been shown, by Bei Shi and colleagues, to reduce neointimal proliferation in the carotid angioplasty and myocardial infarction animal models. This approach could be important for the treatment of damaged vessels and the infracted heart".

###

Read the original post:
Effect of receptor activity-modifying protein-1 on vascular smooth muscle cells

To Read More: Effect of receptor activity-modifying protein-1 on vascular smooth muscle cells
categoriaCardiac Stem Cells commentoComments Off on Effect of receptor activity-modifying protein-1 on vascular smooth muscle cells | dataMarch 18th, 2014
Read All

Final Results Of Neuralstem Phase I Stem Cell Trial In Amyotrophic Lateral Sclerosis Published In Annals of Neurology

By LizaAVILA

Neuralstem Logo. (PRNewsFoto/NEURALSTEM, INC.)

ROCKVILLE, Md., March 17, 2014 /Emag.co.uk/ Neuralstem, Inc. (NYSE MKT: CUR) announced that the final results from the Phase I safety trial using NSI-566 spinal cord stem cells in the treatment of amyotrophic lateral sclerosis (ALS or Lou Gehrigs disease) were published in the peer-reviewed journal, Annals of Neurology http://onlinelibrary.wiley.com/doi/10.1002/ana.24113/full. In Intraspinal Neural Stem Cell Transplantation in Amyotrophic Lateral Sclerosis: Phase I Trial Outcomes, results were updated from Phase I interim data, reported earlier, to include data from the last six patients in the trial. These six patients were the first to receive cervical stem cell transplants. Three of them were also the first to be transplanted along the length of their spines, in both the lumbar and the cervical regions. The results showed that NSI-566 human spinal cord stem cells can be safely transplanted in both the lumbar and cervical spinal cord segments, did not accelerate disease progression, and warrant further study on dosing and therapeutic efficacy. Furthermore, the researchers were able to identify potential therapeutic windows, suggesting that more injections, as well as multiple injections, are better and may increase both the length and the magnitude of the potential benefits. This is consistent with the hypothesized neuroprotective mechanism-of-action for this cell therapy.

Photo Since concluding Phase I, the trial has progressed to Phase II at three centers, Emory University Hospital in Atlanta, Georgia, the ALS Clinic at the University of Michigan Health System, in Ann Arbor, Michigan, and Massachusetts General Hospital in Boston, Massachusetts, which treated its first patient in February. Treatment of three of the five Phase II cohorts has been completed.

Although this was a Phase I trial, and functional outcome data were collected for the purpose of assessing safety, we performed secondary analyses of these data as a means to gain insight into how cellular transplantation affected disease progression rates and to inform outcome assessment approaches in future trial phases, said Eva Feldman, MD, PhD, Director of the A. Alfred Taubman Medical Research Institute, Director of Research of the ALS Clinic at the University of Michigan Health System, principle investigator for the NSI-566/ALS trial and lead author. Dr. Feldman is also an unpaid consultant to Neuralstem.

Pre-surgical disease progression rates for the various functional outcome measures were calculated to create slopes for each patient, so that we could determine if post-surgical data points, at 6, 9, 12 and 15 months, improved relative to predicted points. We also did analyses to determine which, if any, functional outcome assessment most closely correlated with the overall ALSFRS-R scores, said Dr. Feldman. Comparison of the outcome data to predicted outcome points in group E (patients who received both lumbar and cervical injections) revealed improvements in a significant number of measures at 6, 9, 12 and 15 months post-surgery. Overall, 50% of the patients in the trial showed improvement across multiple clinical measures at the same time points. We also found that a measure of grip strength correlated most closely with the overall ALSFRS-R scores.

Dr. Feldman added, Finally, we conducted an analysis to identify the most biologically active period of the injected cells for the patients receiving both lumbar and cervical injections. This analysis reveals that the maximal periods of benefit correlate with the two surgical interventions. Importantly, as the bell-shaped curve associated with each intervention is likely due to disease progression, increasing the total cell dose, and applying multiple applications of these stem cells, may increase both the length and magnitude of the potential benefit. We are of course exploring this very dosing regimen in our ongoing Phase II trial.

The completion of this Phase I study is a major milestone for the testing of intraspinal stem cell therapy for ALS, said Jonathan Glass, MD, Professor of Neurology and Pathology, Emory University School of Medicine and Director of the Emory ALS Center, site principal investigator and a senior study author. We have now shown that the procedure is safe for both lumbar and cervical injections, allowing us to move forward with an aggressive program to test whether this treatment will improve the course of disease for patients with ALS.

This peer-reviewed article is the first such report of cervical and dual-targeted intraspinal transplantation of neural stem cells in ALS subjects, said Karl Johe, PhD, Neuralstems Chairman of the Board and Chief Scientific Officer. We believe our cells offer a means to replace lost cells, provide neurotrophic support, and improve the diseased microenvironment. This study demonstrates these factors, and that the cells and the novel surgical route of administration are safe and well-tolerated. Our ability to directly inject cells into the cervical regions of the spinal cord represents a significant advance in the field of cell therapy.

We would like to thank the incredible teams at both Michigan and Emory who made this study possible, and who continue working with us today in our ongoing Phase II trial. Wed like to give special thanks to Dr. Jonathan Glass, Director of the Emory ALS Center, the Emory site principle investigator, and Dr. Nick Boulis, Associate Professor of Neurosurgery at Emory School of Medicine, the surgeon for all of the Phase I surgeries, and the inventor of the spinal-mounted stabilization and injection platform and floating cannula surgical devices used to deliver the cells, concluded Dr. Johe.

About Neuralstem

Read more:
Final Results Of Neuralstem Phase I Stem Cell Trial In Amyotrophic Lateral Sclerosis Published In Annals of Neurology

To Read More: Final Results Of Neuralstem Phase I Stem Cell Trial In Amyotrophic Lateral Sclerosis Published In Annals of Neurology
categoriaSpinal Cord Stem Cells commentoComments Off on Final Results Of Neuralstem Phase I Stem Cell Trial In Amyotrophic Lateral Sclerosis Published In Annals of Neurology | dataMarch 18th, 2014
Read All

DINUKTOR | 5 stem cell society doctors face raps for submitting falsified document to SEC

By LizaAVILA

By: Jet Villa, InterAksyon.com March 17, 2014 7:45 AM

FILE PHOTO

InterAksyon.com The online news portal of TV5

MANILA - Five doctor-incorporators of the Philippine Society for Stem Cell Medicine (PSSCM) face charges and may have their medical licenses revoked for submitting a fabricated endorsement from the Professional Regulation Commission (PRC) to the Securities and Exchange Commission (SEC).

Among them are chairman of the Philippine Medical Association Leo Olarte, PSSCM treasurer and legal counsel; Bu Castro, secretary; Rey Melchor Santos, president; Oscar Tinio, vice president; and Jose Asa Sabili, chairman.

In a statement, PRC Chairperson Teresita Manzala on Sunday said she directed the Professional Regulatory Board of Medicine (PRBOM) to initiate, investigate, and file charges against the five doctors before the PRCs legal division for unprofessional, dishonorable, and unethical conduct.

Earlier on 10 January 2014, the SEC cancelled the registration of the PSSCM for submitting a fabricated document. In an order signed by SEC Acting Director Ferdinand Sales, the commission said the PSSCM had committed fraud in procuring its Certificate of Incorporation for its application for corporate registration.

Wherefore, premises considered, the Certificate of Registration of Philippine Society for Stem Cell Medicine with SEC Registration No. CN201303986, approved on March 6, 2013 is hereby revoked, the order reads.

Falsified endorsement

SEC said PSSCM submitted a 2ndPRC Indorsement, dated 20 February 2013, supposedly from Manzala. But on14 August 2014, SEC received a letter-complaint from Manzala informing the commission that the signature appearing in the alleged favorable indorsement from PRC was not hers and, thus, falsified.

Continue reading here:
DINUKTOR | 5 stem cell society doctors face raps for submitting falsified document to SEC

To Read More: DINUKTOR | 5 stem cell society doctors face raps for submitting falsified document to SEC
categoriaUncategorized commentoComments Off on DINUKTOR | 5 stem cell society doctors face raps for submitting falsified document to SEC | dataMarch 17th, 2014
Read All

Stem Cell Researcher Suggests Recalling His Own Study

By LizaAVILA

By Maggie Fox

One of the worlds leading stem cell experts has suggested withdrawing a study that made global headlines last January, saying he has questions about some of the images and data in it.

The Japanese team, led by Teruhiko Wakayama, reported that they had created powerful stem cells by doing little more than soaking ordinary cells in an acid solution.

The report, published in the journal Nature, impressed other stem cell researchers and opened the possibility of an easy approach to regenerative medicine. But Japanese television quotes Wakayama as saying he wants to take a closer look.

"When conducting the experiment, I believed it was absolutely right, Reuters news agency quotes Wakayama as telling the television station NHK.

"But now that many mistakes have emerged, I think it is best to withdraw the research paper once and, using correct data and correct pictures, to prove once again the paper is right," he said.

"If it turns out to be wrong, we would need to make it clear why a thing like this happened."

But Charles Vacanti of Harvard Medical School and Brigham and Women's Hospital in Boston, who helped work on the study, said he disagreed. "Some mistakes were made, but they don't affect the conclusions," the Wall Street Journal quoted him as saying.

"Based on the information I have, I see no reason why these papers should be retracted."

Stem cell researchers may be more sensitive than other scientists. In 2006, Seoul National University fired Hwang Woo-Suk after the journal Science retracted two papers he wrote claiming to have cloned human embryos and extracted stem cells from them.

See the article here:
Stem Cell Researcher Suggests Recalling His Own Study

To Read More: Stem Cell Researcher Suggests Recalling His Own Study
categoriaUncategorized commentoComments Off on Stem Cell Researcher Suggests Recalling His Own Study | dataMarch 11th, 2014
Read All

Stem Cell Center advancing treatments, officials say

By LizaAVILA

Topeka Eight months after the establishment of the Midwest Stem Cell Therapy Center at Kansas University Medical Center, the center is conducting clinical trails and advancing treatments for numerous diseases, KU officials said Monday.

"We are very excited about the work that is going on," said Dr. Doug Girod, executive vice chancellor of the KU Medical Center.

Dr. Buddhadeb Dawn, the center's director, detailed clinical trials that are under way and several in the planning stages to the Senate Ways and Means Committee.

"These trials will help local patients to get access to stem cell therapy," Dawn said. "Kansas can be a leader in providing stem cell treatments."

Created last year by the Legislature and Gov. Sam Brownback, the center will work on adult stem cell, cord blood and related stem cell research, providing therapies to patients and serving as a clearinghouse for physicians on cutting-edge treatments.

The center is prohibited from using embryonic stem cells or cells taken from aborted fetal tissue. Abortion opponents oppose human embryonic stem cell research because it involves the destruction of the embryo.

David Prentice, senior fellow for life sciences of the Family Research Council, said the center was unique in the country.

Prentice, who was involved in the development of the center and is on the center's advisory board as a representative of the scientific community, said, "I do want to reemphasize the focus on the center is patient-centered," while also working on education, clinical trials and research.

The FRC describes itself as a Christian organization promoting the traditional family unit and the Judeo-Christian value system. Its critics say it spreads anti-gay propaganda.

State Sen. Jeff Melcher, R-Overland Park, said the research sounded exciting but that he was concerned that the advisory board had no business people on it to secure private and business funding.

Original post:
Stem Cell Center advancing treatments, officials say

To Read More: Stem Cell Center advancing treatments, officials say
categoriaUncategorized commentoComments Off on Stem Cell Center advancing treatments, officials say | dataMarch 10th, 2014
Read All

CellHealth Institutes Dr. Vincent Giampapa Unveils MyStemBank: A Revolutionary Type of Adult Stem Cell Bio …

By LizaAVILA

(PRWEB) March 07, 2014

Dr. Vincent Giampapa, Co-founder and Chief Medical Offer of CellHealthTM Institute (CHI), will appear as a guest on A Healthy You and Carol Alt March 8th and 9th at 4pm EST on FOX. Dr. Giampapa and the former supermodel, healthy living expert and show host Carol Alt will explore the new technology of banking ones own adult stem cells for future use through CHIs new program, MyStemBank, http://www.MyStemBank.com. The show will dive deep into the real life needs for this new type of bio-insurance and will explain the ins and outs of the adult stem cell collection and storage process.

The human body is comprised of trillions of cells, which make up the skin, bones, muscles, tissues, and organs. They perform various, critical functions including transmitting signals, producing energy, and defending the body against illness. The mother of all of those cells is our adult stem cells.

Adult stem cells are the reservoir from which cells can be used now and in the future for both preventive health and disease treatment. The implications of this on our human health are tremendous, says Dr. Giampapa.

Tune in to learn about how this fascinating new preventive health practice is becoming as popular as cord blood storage and how MyStemBanks gold standard of adult stem cell collection differs from other types of collection.

Dr. Vincent Giampapa will also be a featured expert on Stem Cell Universe with Stephen Hawking, airing on Science Channel on March 13th, 9am PST/EST that will discuss in greater detail the importance of adult stem cell collection.

CellHealthTM Institute, a research based biotech company committed to developing and delivering the highest quality products and services that will enable and empower people to live healthier lives, longer. CHI is committed to developing and delivering high quality and high efficacy products to empower people to take control of their health at its most basic, cellular level. CHI collaborates with top-tier research universities and biotech companies to offer breakthrough nutritional supplements, lifestyle education, and fully integrated personalized health programs. CHI is also committed to pushing the limits of current medical practice to unlock the secrets of chronic illness, disease and aging by exploring the possibilities of advanced stem cell therapies.

For more information or press inquires please go to http://www.mystembank.com or call 844-709-7836.

View original post here:
CellHealth Institutes Dr. Vincent Giampapa Unveils MyStemBank: A Revolutionary Type of Adult Stem Cell Bio ...

To Read More: CellHealth Institutes Dr. Vincent Giampapa Unveils MyStemBank: A Revolutionary Type of Adult Stem Cell Bio …
categoriaSkin Stem Cells commentoComments Off on CellHealth Institutes Dr. Vincent Giampapa Unveils MyStemBank: A Revolutionary Type of Adult Stem Cell Bio … | dataMarch 8th, 2014
Read All

Guidelines on use of stem cell therapy

By LizaAVILA

Google stem cell therapy and a whole host of results show up. Stem cell therapy for hair loss, diabetes, cancer and practically everything else. It is touted as the medicine of hope, the panacea for all ills.

But to ensure that this potentially-powerful technology is not misused in the country, the Indian Council of Medical Research has come up with a set of guidelines to regulate their use.

Under the new guidelines, any use of stem cells in patients will be considered research, not therapy.

This means stem cells can now only be used on patients within the purview of an approved, and monitored clinical trial anything outside of this would be considered malpractice. Ananthram Shetty, professor of minimally-invasive surgery at Canterbury Christ Church University, UK, said the guidelines are much-needed, welcome move in the right direction.

Prof. Shetty, who has been working with stem-cell technology for 27 years, and is often in India to demonstrate their use in research surgeries, said this would prevent anybody and everybody from claiming unproven benefits. Lots of people dont really understand what stem cells are. And those who have a terminal illness are willing to try anything. There are some people who use this to raise false hopes. And this is what the guidelines seek to stop, he said.

J.S. Rajkumar, chairman, Lifeline Hospital, however, said the guidelines could have been clearer about the use of adult stem cells over embryonic stem cells, he said. Now, the procedures involved and the time it would take could dissuade many, he said, while there is a real need for funds to be pumped in for research into this technology.

Another International Ear Care Day passed by on March 3.

It spelled out a clear message ear care can avoid hearing loss.

But the question is how many people know how to take care of their ears. What is interesting is the ear is a self-cleaning organ and does not require any kind of cleaning. But many clean their ears using safety pins, hair pins and even matchsticks.

While doctors advise against the use of such objects, they discourage the use of cotton buds too. Some heat coconut oil and pour into the ears. This could cause fungal infections. The ear drum is very thin and can be damaged, leading to loss of hearing, said M. Ramaniraj, professor of ENT, Government Stanley Medical College Hospital.

Read more:
Guidelines on use of stem cell therapy

To Read More: Guidelines on use of stem cell therapy
categoriaUncategorized commentoComments Off on Guidelines on use of stem cell therapy | dataMarch 8th, 2014
Read All

Establishing standards where none exist; Harvard researchers define 'good' stem cells

By LizaAVILA

PUBLIC RELEASE DATE:

6-Mar-2014

Contact: B.D. Colen bd_colen@harvard.edu 617-413-1224 Harvard University

After more than a decade of incremental and paradigm shifting, advances in stem cell biology, almost anyone with a basic understanding of life sciences knows that stem cells are the basic form of cell from which all specialized cells, and eventually organs and body parts, derive.

But what makes a "good" stem cell, one that can reliably be used in drug development, and for disease study? Researchers have made enormous strides in understanding the process of cellular reprogramming, and how and why stem cells commit to becoming various types of adult cells. But until now, there have been no standards, no criteria, by which to test these ubiquitous cells for their ability to faithfully adopt characteristics that make them suitable substitutes for patients for drug testing. And the need for such quality control standards becomes ever more critical as industry looks toward manufacturing products and treatments using stem cells.

Now a research team lead by Kevin Kit Parker, a Harvard Stem Cell Institute (HSCI) Principal Faculty member has identified a set of 64 crucial parameters from more than 1,000 by which to judge stem cell-derived cardiac myocytes, making it possible for perhaps the first time for scientists and pharmaceutical companies to quantitatively judge and compare the value of the countless commercially available lines of stem cells.

"We have an entire industry without a single quality control standard," said Parker, the Tarr Family Professor of Bioengineering and Applied Physics in Harvard's School of Engineering and Applied Sciences, and a Core Member of the Wyss Institute for Biologically Inspired Engineering.

HSCI Co-director Doug Melton, who also is co-chair of Harvard's Department of Stem Cell and Regenerative Biology, called the standard-setting study "very important. This addresses a critical issue," Melton said. "It provides a standardized method to test whether differentiated cells, produced from stem cells, have the properties needed to function. This approach provides a standard for the field to move toward reproducible tests for cell function, an important precursor to getting cells into patients or using them for drug screening."

Parker said that starting in 2009, he and Sean P. Sheehy, a graduate student in Parker's lab and the first author on a paper just given early on-line release by the journal Stem Cell Reports, "visited a lot of these companies (commercially producing stem cells), and I'd never seen a dedicated quality control department, never saw a separate effort for quality control." Parker explained many companies seemed to assume that it was sufficient simply to produce beating cardiac cells from stem cells, without asking any deeper questions about their functions and quality.

"We put out a call to different companies in 2010 asking for cells to start testing," Parker says, "some we got were so bad we couldn't even get a baseline curve on them; we couldn't even do a calibration on them."

Read more from the original source:
Establishing standards where none exist; Harvard researchers define 'good' stem cells

To Read More: Establishing standards where none exist; Harvard researchers define 'good' stem cells
categoriaCardiac Stem Cells commentoComments Off on Establishing standards where none exist; Harvard researchers define 'good' stem cells | dataMarch 7th, 2014
Read All

New findings on neurogenesis in spinal cord

By LizaAVILA

Research from Karolinska Institutet in Sweden suggests that the expression of the so called MYC gene is important and necessary for neurogenesis in the spinal cord. The findings are being published in the journal EMBO Reports.

The MYC gene encodes the protein with the same name, and has an important role in many cellular processes such as proliferation, metabolism, cell death and the potential of differentiation from immature stem cells to different types of specialized cells. Importantly it is also one of the most frequently activated genes in human cancer.

Previously MYC has been shown to promote proliferation and inhibit differentiation in dissociated cells in culture. However, in the current study researchers demonstrate that in the intact neural tissue from chickens, MYC promotes differentiation of neural cells rather than their proliferation.

"We hope that this news knowledge can be important for developing future strategies to promote nerve cell development, for example in patients with spinal cord injuries," says principal investigator Marie Arsenian Henriksson, professor at the Department of Microbiology, Tumor and Cell Biology at Karolinska Institutet.

Story Source:

The above story is based on materials provided by Karolinska Institutet. Note: Materials may be edited for content and length.

See the article here:
New findings on neurogenesis in spinal cord

To Read More: New findings on neurogenesis in spinal cord
categoriaSpinal Cord Stem Cells commentoComments Off on New findings on neurogenesis in spinal cord | dataMarch 5th, 2014
Read All

Can Gene Therapy Cure HIV?

By LizaAVILA

Engineering a patients own immune cells to resist HIV could eliminate the need for lifelong antiretroviral therapies.

The immune cells of HIV patients can be genetically engineered to resist infection, say researchers. In a small study in humans, scientists report that by creating a beneficial mutation in T cells, they may be able to nearly cure patients of HIV.

In a study published in the New England Journal of Medicine on Wednesday, researchers report that they can use genome editing to re-create the rare mutations responsible for protecting about 1 percent of the population from the virus in infected patients. They report that some of the patients receiving the genome-modifying treatment showed decreased viral loads during a temporary halt of their antiretroviral drugs. In one patient, the virus could no longer be detected in his blood.

Zinc-finger nucleases are one of a few genome-editing tools that researchers use to create specific changes to the genomes of living organisms and cells (see Genome Surgery). Scientists have previously used genome-editing techniques to modify DNA in human cells and nonhuman animals, including monkeys (see Monkeys Modified with Genome Editing). Now, the NEJM study suggests the method can also be safely used in humans.

From each participating patient, the team harvested bone marrow stem cells, which give rise to T cells in the body. They then used a zinc finger nuclease to break copies of the CCR5 gene that encodes for proteins on the surface of immune cells that are a critical entry point of HIV. The stem cells were then infused back into each patients bloodstream. The modification process isnt perfect, so only some of the cells end up carrying the modification. About 25 percent of the cells have at least one of the CCR5 genes interrupted, says Edward Lanphier, CEO of Sangamo Biosciences, the Richmond, California, biotech company that manufactures zinc finger nucleases.

Because the cells are a patients own, there is no risk of tissue rejection. The modified stem cells then give rise to modified T cells that are more resistant to infection by HIV, say the researchers.

One week after the infusion, researchers were able to find modified T cells in the patients blood. Four weeks after the infusion, six of the 12 patients in the study temporarily stopped taking their antiretroviral drugs so the researchers could assess the effect of the genome-editing treatment on the amount of the virus in the patients bodies. In four of these patients, the amount of HIV in the blood dropped. In one patient, the virus could no longer be detected at all. The team later discovered that this best responder had naturally already had one mutated copy of the CCR5 gene.

Patients who carry one broken copy of the CCR5 progress to AIDS more slowly than those who dont, says Bruce Levine, a cell and gene therapy researcher at the University of Pennsylvania School of Medicine and coauthor on the study. Because all of the cells in that best-responder patient already carried one disrupted copy of CCR5, the modification by the zinc finger nuclease led to T cells with no functional copies of the gene. That means the cells are fully resistant to HIV infection. The team is now working to increase the number of immune cells that end up carrying two broken copies of CCR5.

Go here to read the rest:
Can Gene Therapy Cure HIV?

To Read More: Can Gene Therapy Cure HIV?
categoriaBone Marrow Stem Cells commentoComments Off on Can Gene Therapy Cure HIV? | dataMarch 5th, 2014
Read All

stem cell therapy treatment for Spastic Diplegic cerebral palsy by dr alok sharma, mumbai, india – Video

By LizaAVILA


stem cell therapy treatment for Spastic Diplegic cerebral palsy by dr alok sharma, mumbai, india
improvement seen in just 5 days after stem cell therapy treatment for Spastic Diplegic cerebral palsy by dr alok sharma, mumbai, india. Stem Cell Therapy don...

By: Neurogen Brain and Spine Institute

Here is the original post:
stem cell therapy treatment for Spastic Diplegic cerebral palsy by dr alok sharma, mumbai, india - Video

To Read More: stem cell therapy treatment for Spastic Diplegic cerebral palsy by dr alok sharma, mumbai, india – Video
categoriaUncategorized commentoComments Off on stem cell therapy treatment for Spastic Diplegic cerebral palsy by dr alok sharma, mumbai, india – Video | dataMarch 5th, 2014
Read All

Chennai TOSH hospital treats knee arthritis with stem cells

By LizaAVILA

An advanced surgery was performed at TOSH hospital on Saturday to treat a patient with knee arthritis, with the damaged cartilage in the knee regenerated using stem cells.

Prof. A.A. Shetty, director of minimally invasive surgery and stem cell research at Canterbury Christchurch University, UK, who performed the surgery, said all the Indian Council of Medical Researchs guidelines were adhered to while performing the procedure. He was speaking at a press meet on Saturday.

Under an earlier version of this technique, stem cells harvested in the bone marrow had to be cultured in the lab and then injected into the knee after six weeks. There were several disadvantages with this technique longer hospital stay, increased chances of infection, lower success rates and increased costs, he said.

However, under the new technique, the stem cells are harvested and centrifuged within the operation theatre. The stem cell concentrate is then mixed with a special fibrin gel and inserted directly at the site of the damaged cartilage through a keyhole procedure.

This surgery is less expensive, at around Rs. 75,000, and the patient can go home the next day. Its failure rate is only 10 to 15 per cent and it can also be performed on patients with advanced osteoarthritis, Prof. Shetty said.

A 49-year-old woman, on whom the surgery has been performed, is currently recovering at the hospital.

Prof. Seok Jung Kim, director of the regenerative medical system, South Korea, and S.H. Jaheer Hussain, orthopaedic and trauma surgeon, TOSH hospital, also participated in the meet.

Here is the original post:
Chennai TOSH hospital treats knee arthritis with stem cells

To Read More: Chennai TOSH hospital treats knee arthritis with stem cells
categoriaBone Marrow Stem Cells commentoComments Off on Chennai TOSH hospital treats knee arthritis with stem cells | dataMarch 3rd, 2014
Read All

Local Weather

By LizaAVILA

Jesse Freeman, 71, had stem cells from his bone marrow injected into his heart after he had a cardiac arrest. With his wife Christine, 67

Mike Brooke, Reporter Sunday, March 2, 2014 6:00 PM

A 71-year-old man has become one of the first heart attack victims to receive pioneering stem cell surgery to see if it will help his recovery.

To send a link to this page to a friend, you must be logged in.

On March 12, I will be 72, so the stem cell surgery for me is an early birthday present just to be alive, admits Jesse Freeman.

I was never ill in my life, then one day I was indoors and didnt feel great. I thought it was an infection that started in my jaw, then spread to my chest. I had a shower and drove down to Harold Wood walk-in centre.

I had extremely high blood pressure and they told me I had had a heart attack.

They took me to The London Chest Hospital and I was being operated on within 10 minutes.

The hospital saved my life they removed the blockage and put in a wire mesh stent to keep the artery open.

The doctors asked me while I was in recovery if I would take part in the stem cell trial.

Originally posted here:
Local Weather

To Read More: Local Weather
categoriaBone Marrow Stem Cells commentoComments Off on Local Weather | dataMarch 3rd, 2014
Read All

Page 25«..1020..24252627..3040..»


Copyright :: 2024