Bone marrow transplant drug trial closer
By LizaAVILA
A drug that stops the body from rejecting bone marrow transplants in cancer patients could be ready for human trials in three years time.
The latest development comes after more than a decade of research unlocking the function of a protein called perforin, which kills rogue cells in the body.
Australian researchers involved in unravelling perforin's molecular structure, a discovery published in the journal Nature in 2010, are now working towards developing a safe drug to block the protein.
Perforin plays a key role in the body's immune response by punching holes in, and killing, cells which have been hijacked by viruses or cancer to rid the body of disease.
However, the protein is problematic for bone marrow transplant patients because it can cause the body to reject the treatment.
For this reason, a project led by the Peter MacCallum Cancer Centre in Melbourne is developing a drug to inhibit the protein in bone marrow stem cell transplant patients to help their recovery.
The drug works in mouse models, but a $6.8 million grant from the UK's Wellcome Trust will allow the drug to be fine-tuned for human trials.
'In the mouse models we use, we know the inhibitors are effective,' project leader Professor Joe Trapani, executive director of cancer research at Peter Mac, told AAP.
'They actually help stem cells survive when they would otherwise be rejected.'
The Peter Mac team is working with New Zealand chemist Prof Bill Denny to refine the drug, along with Monash University and Queensland Institute of Medical Research scientists.
Read the original:
Bone marrow transplant drug trial closer
Bone marrow transplant drug a step closer
By LizaAVILA
A DRUG that stops the body from rejecting bone marrow transplants in cancer patients could be ready for human trials in three years time.
The latest development comes after more than a decade of research unlocking the function of a protein called perforin, which kills rogue cells in the body.
Australian researchers involved in unravelling perforin's molecular structure, a discovery published in the journal Nature in 2010, are now working towards developing a safe drug to block the protein.
Perforin plays a key role in the body's immune response by punching holes in, and killing, cells which have been hijacked by viruses or cancer to rid the body of disease.
However, the protein is problematic for bone marrow transplant patients because it can cause the body to reject the treatment.
For this reason, a project led by the Peter MacCallum Cancer Centre in Melbourne is developing a drug to inhibit the protein in bone marrow stem cell transplant patients to help their recovery.
The drug works in mouse models, but a $6.8 million grant from the UK's Wellcome Trust will allow the drug to be fine-tuned for human trials.
"In the mouse models we use, we know the inhibitors are effective," project leader Professor Joe Trapani, executive director of cancer research at Peter Mac, told AAP.
"They actually help stem cells survive when they would otherwise be rejected."
The Peter Mac team is working with New Zealand chemist Prof Bill Denny to refine the drug, along with Monash University and Queensland Institute of Medical Research scientists.
Read more here:
Bone marrow transplant drug a step closer
Stem cells tested for heart attack repair
By LizaAVILA
Cookies are small data files which are sent to your browser (Internet Explorer, Firefox, Chrome etc) from a website you visit. They are stored on your electronic device.
This is a type of cookie which is collected by Adobe Flash media player (it is also called a Local Shared Object) - a piece of software you may already have on your electronic device to help you watch online videos and listen to podcasts.
Yes there are a number of options available, you can set your browser either to reject all cookies, to allow only "trusted" sites to set them, or to only accept them from the site you are currently on.
However, please note - if you block/delete all cookies, some features of our websites, such as remembering your login details, or the site branding for your local newspaper may not function as a result.
The types of cookies we, our ad network and technology partners use are listed below:
A tool used by some of our advertisers to target adverts to you based on pages you have visited in the past. To opt out of this type of targeting you can visit the 'Your Online Choices' website by clicking here.
Our sites contain advertising from Google; these use cookies to ensure you get adverts relevant to you. You can tailor the type of ads you receive by visiting here or to opt out of this type of targeting you can visit the 'Your Online Choices' website by clicking here.
This is used to help us identify unique visitors to our websites. This data is anonymous and we cannot use this to uniquely identify individuals and their usage of the sites.
This comes from our ad serving technology and is used to track how many times you have seen a particular ad on our sites, so that you don't just see one advert but an even spread. This information is not used by us for any other type of audience recording or monitoring.
ComScore monitor and externally verify our site traffic data for use within the advertising industry. Any data collected is anonymous statistical data and cannot be traced back to an individual.
See the original post here:
Stem cells tested for heart attack repair
Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications
By LizaAVILA
CLEARWATER, FL--(Marketwire -06/01/12)- Biostem U.S., Corporation (HAIR) (HAIR) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine science sector, has made its Scientific and Medical Board of Advisors publications available on the company website, http://www.biostemus.com.
Chief Executive Officer Dwight Brunoehler stated, "The company is very proud of the many contributions its SAMBA members have made, and continue to make, to the medical community. As their publications and credentials show, this is a very prestigious and influential group. Having worked with them in past projects and now at Biostem, I know them all to be active participants in the development and guidance of the company's objectives. Their diversified areas of expertise and backgrounds are already playing a major role in assisting the company as it moves forward into the expanding field of regenerative medicine."
About Biostem U.S., Corporation Biostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S., Corporation is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.
More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Fox Communications Group 310-974-6821.
See the article here:
Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications
Malta opposing EU financing for stem cell research on embryos
By LizaAVILA
Stem cell therapy may one day be used to cure disorders such as Fragile-X syndrome, or Cystic fibrosis and other genetic maladies.
Matthew Vella
The Maltese government wants the European Commission to abandon plans to provide funds for research activities on stem cells that involve "the destruction of human embryos".
In a declaration on the ethical principles for the Horizon 2020 programme, which is an 80 billion fund for the EU's programme for research and innovation to create new jobs, the Maltese government said it wanted more detailed guidelines on the bioethical principles that will guide research programmes.
Horizon 2020 will allow the financing of research on human stem cells - both adult and embryonic - as long as it is permitted by the national laws of member states.
The fund however will not finance human cloning, genetic modification, or the creation of human embryos intended for the purpose of research or stem cell procurement.
The European Commission does not explicitly solicit the use of human embryonic stem cells, but Horizon 2020 allows the use of human stem cells according to the objectives of the research, and only if it has the necessary approvals from the member states.
The Maltese declaration echoes previous statements by the Commission of Catholic Bishops of the EC (Comece), which said Horizon 2020 did not include greater protection of human embryos from stem cell research.
Malta says it does not want any such embryos to be used for stem cell research. The statement by the Maltese government said the Horizon 2020 programme "does not take sufficiently into account the therapeutic potential of human adult stem cells."
Malta wants Europe to commit to a reinforcement of research on human adult stem cells, and that Europe should abstain from financing matters of fundamental ethical principles, which differ among member states.
Read more:
Malta opposing EU financing for stem cell research on embryos
Paralyzed rats walk again
By LizaAVILA
LONDON Scientists in Switzerland have restored full movement to rats paralyzed by spinal cord injuries in a study that spurs hope that the techniques may hold promise for someday treating people with similar injuries.
Gregoire Courtine and his team at Ecole Polytechnique Federale de Lausanne saw rats with severe paralysis walking and running again after a couple of weeks following a combination of electrical and chemical stimulation of the spinal cord together with robotic support.
"Our rats are not only voluntarily initiating a walking gait, but they are soon sprinting, climbing up stairs and avoiding obstacles," said Courtine, whose results from the five-year study will be published in the journal Science on Friday.
Courtine is quick to point out that it remains unclear if a similar technique could help people with spinal cord damage but he adds the technique does hint at new ways of treating paralysis.
Other scientists agree.
"This is ground-breaking research and offers great hope for the future of restoring function to spinal injured patients," said Elizabeth Bradbury, a Medical Research Council senior fellow at King's College London.
But Bradbury notes that very few human spinal cord injuries are the result of a direct cut through the cord, which is what the rats had. Human injuries are most often the result of bruising or compression and it is unclear if the technique could be translated across to this type of injury.
It is also unclear if this kind of electro-chemical "kick-start" could help a spinal cord that has been damaged for a long time, with complications like scar tissue, holes and where a large number of nerve cells and fibres have died or degenerated.
Nevertheless, Courtine's work does demonstrate a way of encouraging and increasing the innate ability of the spinal cord to repair itself, a quality known as neuroplasticity.
Other attempts to repair spinal cords have focused on stem cell therapy, although Geron, the world's leading embryonic stem cell company, last year closed its pioneering work in the field.
Original post:
Paralyzed rats walk again
First treatment for Huntington's disease shows promise in rats, Van Andel Institute scientist says
By LizaAVILA
GRAND RAPIDS, MI -- A stem cell treatment investigated for Huntingtons disease holds out hope that scientists will someday be able to reverse damage caused by the degenerative brain disorder.
The technique, which uses reprogrammed skin cells from a Huntingtons patient, successfully restored motor functions in rats, said Dr. Patrik Brundin, a Van Andel Institute researcher who was involved in the study.
Its an interesting step, one weve been hoping for, he said. Its exciting.
The technique also will be tested in treatments for Parkinsons disease, said Brundin, who came to VAI from Sweden in October to lead the institutes Parkinsons research.
Scientists from Sweden, South Korea and the U.S. collaborated on the study, which was published online Monday in the journal Stem Cells.
Brundin said researchers took stem cells derived from the skin of a patient with Huntingtons disease and converted them to brain cells or nerve cells in culture dishes in the lab. The cells were transplanted into the brains of rats that had an experimental form of Huntingtons, and the rats motor functions improved.
The unique features of the (stem cell approach) means that the transplanted cells will be genetically identical to the patient, Jihwan Song, an associate professor at CHA University in Seoul and co-author of the study, said in a statement released by VAI. Therefore, no medications that dampen the immune system to prevent graft rejection will be needed.
Brundin estimated the research might lead to treatments for humans in five to 10 years, although he acknowledged a timeframe is difficult to predict. Researchers are eager to find a new treatment for Huntingtons because there is nothing really powerful to offer currently, he said.
Huntingtons is a genetic disorder affecting one in every 10,000 Americans that slowly diminishes a persons ability to walk, talk and reason. A child of a parent who has Huntingtons has a 50 percent chance of inheriting the gene that causes it.
Medications can relieve some symptoms in some cases, but there are no treatments available that can slow the disease, according to the Huntingtons Disease Society of America.
Go here to see the original:
First treatment for Huntington's disease shows promise in rats, Van Andel Institute scientist says
Researchers restore neuron function to brains damaged by Huntington's disease
By LizaAVILA
Public release date: 29-May-2012 [ | E-mail | Share ]
Contact: Tim Hawkins Tim.Hawkins@vai.org 616-234-5519 Van Andel Research Institute
Grand Rapids, Mich. (May 29, 2012) Researchers from South Korea, Sweden, and the United States have collaborated on a project to restore neuron function to parts of the brain damaged by Huntington's disease (HD) by successfully transplanting HD-induced pluripotent stem cells into animal models.
Induced pluripotent stem cells (iPSCs) can be genetically engineered from human somatic cells such as skin, and can be used to model numerous human diseases. They may also serve as sources of transplantable cells that can be used in novel cell therapies. In the latter case, the patient provides a sample of his or her own skin to the laboratory.
In the current study, experimental animals with damage to a deep brain structure called the striatum (an experimental model of HD) exhibited significant behavioral recovery after receiving transplanted iPS cells. The researchers hope that this approach eventually could be tested in patients for the treatment of HD.
"The unique features of the iPSC approach means that the transplanted cells will be genetically identical to the patient and therefore no medications that dampen the immune system to prevent graft rejection will be needed," said Jihwan Song, D.Phil. Associate Professor and Director of Laboratory of Developmental & Stem Cell Biology at CHA Stem Cell Institute, CHA University, Seoul, South Korea and co-author of the study.
The study, published online this week in Stem Cells, found that transplanted iPSCs initially formed neurons producing GABA, the chief inhibitory neurotransmitter in the mammalian central nervous system, which plays a critical role in regulating neuronal excitability and acts at inhibitory synapses in the brain. GABAergic neurons, located in the striatum, are the cell type most susceptible to degeneration in HD.
Another key point in the study involves the new disease models for HD presented by this method, allowing researchers to study the underlying disease process in detail. Being able to control disease development from such an early stage, using iPS cells, may provide important clues about the very start of disease development in HD. An animal model that closely imitates the real conditions of HD also opens up new and improved opportunities for drug screening.
"Having created a model that mimics HD progression from the initial stages of the disease provides us with a unique experimental platform to study Huntington's disease pathology" said Patrik Brundin, M.D., Ph.D., Director of the Center for Neurodegenerative Science at Van Andel Research Institute (VARI), Head of the Neuronal Survival Unit at Lund University, Sweden, and co-author of the study.
Huntington's disease (HD) is a neurodegenerative genetic disorder that affects muscle coordination and leads to cognitive decline and psychiatric problems. It typically becomes noticeable in mid-adult life, with symptoms beginning between 35 and 44 years of age. Life expectancy following onset of visual symptoms is about 20 years. The worldwide prevalence of HD is 5-10 cases per 100,000 persons. Key to the disease process is the formation of specific protein aggregates (essentially abnormal clumps) inside some neurons.
Go here to see the original:
Researchers restore neuron function to brains damaged by Huntington's disease
Heart Damage Repaired By Reprogramming Resident Fibroblasts into Functioning Heart Cells
By LizaAVILA
LAGUNA HILLS, Calif., May 29, 2012 /PRNewswire/ --LoneStar Heart Inc., today announced the advancement of a new therapeutic strategy aimed at genetic reprogramming of cardiac fibroblasts into functioning heart muscle cells to treat damage following a heart attack and other forms of heart disease. The announcement follows a study conducted by researchers at the University of Texas Southwestern Medical Center (UT Southwestern), published in the on-line May 13th issue of the journal Nature, demonstrating feasibility of the approach. The company has acquired exclusive worldwide rights to the new technology.
The adult human heart has almost no regenerative capacity. Instead of rebuilding muscle tissue after a heart attack, or myocardial infarction, the injured human heart forms fibrous, non-contractile scar tissue lacking muscle or blood vessels. Fibroblasts account for a majority of cells in the heart and are activated following injury to form this fibrotic scar tissue. Fibrosis impedes regeneration of cardiac muscle cells, and contributes to loss of contractile function, ultimately leading to heart failure and death. Therapeutic strategies to promote new muscle formation, while limiting fibrosis, represent an attractive approach for heart repair.
As reported in Nature, Eric N. Olson, Ph.D., and colleagues from UT Southwestern show that four gene-regulatory proteins GATA4, HAND2, MEF2C, and TBX5 (GHMT) can convert cardiac fibroblasts into beating cardiac-like muscle cells. Introduction of these proteins into proliferating fibroblasts in mice reprograms them into functional cardiac-like myocytes, improving cardiac function and reducing fibrosis and adverse remodeling of the heart following myocardial infarction. Using cell lineage-tracing techniques, the investigators conclude that newly formed cardiac-like muscle cells in GHMT-treated hearts arose from pre-existing cardiac fibroblasts. Cardiac imaging studies confirmed the new technique promoted a dramatic increase in cardiac function that was sustained for at least three months following myocardial infarction.
"These studies establish proof-of-concept for in vivo cellular reprogramming as a new approach for heart repair," said Dr. Olson, professor and chair of molecular biology at UT Southwestern, and a co-founder of LoneStar Heart. "However, much work remains to be done to determine if this strategy might eventually be effective in humans. We are working hard toward that goal."
The new reprogramming strategy may provide a novel means of improving cardiac function following injury, bypassing many of the obstacles associated with cellular transplantation. Prior work by Dr. Olson's group and others has shown that GHMT proteins fulfill similar roles in cardiac gene regulation in a wide range of organisms, including humans, highlighting the potential of these proteins to augment function of the injured human heart. While cellular replacement strategies via the introduction of stem cells or other cell types into injured hearts have shown promise, there have been numerous technical and biological hurdles associated with such approaches.
About LoneStar Heart, Inc.LoneStar Heart, Inc. is developing cardiac restorative therapies for patients with heart failure that stimulate the heart's ability to repair itself. Based on its integrated cardiomechanical and biomolecular technologies, the privately held company is advancing a broad portfolio of products to restore the failing heart's structure and function in collaboration with the Texas Heart Institute, UT Southwestern, and a global network of leading clinicians. These products include Algisyl-LVR,cardiac stem-cell modulators, and cellular and genetic therapies delivered as stand-alone treatments, or in combination with the company's biopolymer matrix system.
LoneStar Heart's lead product, Algisyl-LVR, is a single-use, self-gelling biopolymer implanted into the heart's left ventricle during surgery. Providing internal tissue support, Algisyl-LVR is aimed at preventing the progression of heart failure and restoring the heart's normal structure and function with a significant improvement in the patient's quality of life. Classified as a medical device, the product is undergoing a randomized controlled clinical study (AUGMENT-HF) in Europe to evaluate its safety and efficacy in patients with advanced heart failure.
About UT Southwestern Medical CenterUT Southwestern Medical Center, one of the premier medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. Its faculty has many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,600, the faculty is responsible for groundbreaking medical advances and is committed to quickly translating science-driven research to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to more than 100,000 hospitalized patients, and oversee nearly 2 million outpatient visits a year.
Physicians care for patients in the Dallas-based UT Southwestern Medical Center; in Parkland Health & Hospital System, which is staffed primarily by UT Southwestern physicians; and in its affiliated hospitals, Children's Medical Center Dallas, Texas Scottish Rite Hospital for Children and the VA North Texas Health Care System. UT Southwestern programs are offered in Waco, Wichita Falls, Plano/Frisco and Fort Worth. Three degree-granting institutions UT Southwestern Medical School, UT Southwestern Graduate School of Biomedical Sciences and UT Southwestern School of Health Professions train nearly 4,600 students, residents and fellows each year. UT Southwestern researchers undertake more than 3,500 research projects annually, totaling more than $417 million.
Dr. Olson holds the Pogue Distinguished Chair in Research on Cardiac Birth Defects, the Robert A. Welch Distinguished Chair in Science, and the Annie and Willie Nelson Professorship in Stem Cell Research at UT Southwestern.
Read this article:
Heart Damage Repaired By Reprogramming Resident Fibroblasts into Functioning Heart Cells
City of Hope Receives $5 Million Grant to Develop T Cell Treatment Targeting Brain Tumor Stem Cells
By LizaAVILA
DUARTE, Calif.--(BUSINESS WIRE)--
City of Hope was granted a $5,217,004 early translational research award by the California Institute for Regenerative Medicine (CIRM) to support the development of a T cell-based immunotherapy that re-directs a patients own immune response against glioma stem cells. City of Hope has been awarded more than $49.7 million in grant support from CIRM since awards were first announced in 2006.
City of Hope is a pioneer in T cell immunotherapy research, helping to develop genetically modified T cells as a treatment for cancer. This strategy, termed adoptive T cell therapy, focuses on redirecting a patients immune system to specifically target tumor cells, and has the potential to become a promising new approach for treatment of cancer.
In this research, we are genetically engineering a central memory T cell that targets proteins expressed by glioma stem cells, said Stephen J. Forman, M.D., Francis and Kathleen McNamara Distinguished Chair in Hematology and Hematopoietic Cell Transplantation and director of the T Cell Immunotherapy Research Laboratory. Central memory T cells have the potential to establish a persistent, lifelong immunity to help prevent brain tumors from recurring.
The American Cancer Society estimates that more than 22,000 people in the U.S. will be diagnosed with a brain tumor this year, and 13,700 will die from the disease. Glioma is a type of brain tumor that is often difficult to treat and is prone to recurrence. Currently, less than 20 percent of patients with malignant gliomas are living five years after their diagnosis. This poor prognosis is largely due to the persistence of tumor-initiating cancer stem cells, a population of malignant cells similar to normal stem cells in that they are able to reproduce themselves indefinitely. These glioma stem cells are highly resistant to chemotherapy and radiation treatments, making them capable of re-establishing new tumors.
Researchers at City of Hope previously have identified several proteins as potential prime targets for the development of cancer immunotherapies, such as interleukin 13 receptor alpha 2, a receptor found on the surface of glioma cells, and CD19, a protein that is active in lymphoma and leukemia cells. Both investigational therapies are currently in phase I clinical trials. Forman is the principal investigator for the newly granted study which will develop a T cell that targets different proteins expressed by glioma stem cells. Christine Brown, Ph.D., associate research professor, serves as co-principal investigator, and Michael Barish, Ph.D., chair of the Department of Neurosciences, and Behnam Badie, M.D., director of the Brain Tumor Program, serve as co-investigators on the project.
Because cancer stem cells are heterogeneous, our proposed therapy will target multiple antigens to cast as wide a net as possible over this malignant stem cell population, said Brown.
While in this effort, we are targeting a neurological cancer, our approach will lead to future studies targeting other cancers, including those that metastasize to the brain, added Barish.
The CIRM grant will help us to build a targeted T cell therapy against glioma that can offer lasting protection, determine the best way to deliver the treatment, establish an efficient process to manufacture these T cells for treatment, and get approval for a human clinical trial, said Badie.
City of Hope is also a collaborative partner providing process development, stem cell-derived cell products and regulatory affairs support in two other CIRM-funded projects that received early translational research grants. Larry Couture, Ph.D., senior vice president of City of Hopes Sylvia R. & Isador A. Deutch Center for Applied Technology Development and director of the Center for Biomedicine & Genetics, is working with Stanford University and Childrens Hospital of Orange County Research Institute on their respective projects.
Read the rest here:
City of Hope Receives $5 Million Grant to Develop T Cell Treatment Targeting Brain Tumor Stem Cells
How damaged hearts could be healed by growing stem cells
By LizaAVILA
By Jenny Hope
PUBLISHED: 18:09 EST, 22 May 2012 | UPDATED: 01:35 EST, 23 May 2012
Scientists claim they can rejuvenate broken hearts using skin cells that have been turned into heart muscle cells.
New research opens up the prospect of reprogramming cells taken from heart failure patients that would not be rejected by their bodies.
It is the first time that stem cells taken from the skin of elderly and diseased patients - who are most likely to need such treatment - have been transformed into heart cells.
New developments: The research opens up the prospect of reprogramming cells taken from heart failure patients that would not be rejected by their bodies
Previously skin cells taken from young and healthy people have been transformed into heart muscle cells.
But researchers from Israel warn that clinical trials could be a decade away, as more work in the laboratory and major investment are needed.
The research is the latest advance in stem cell therapy where the intention is to infused repair cells directly into the scarred heart muscle of patients suffering debilitating symptoms such as breathlessness and fatigue.
See original here:
How damaged hearts could be healed by growing stem cells
Cellectis stem cells today proudly announces the launch of the world’s very first human iPS cell-derived hepatocyte …
By LizaAVILA
GOTHENBURG, Sweden--(BUSINESS WIRE)--
Regulatory News:
Cellectis stem cells, a Business Unit of Cellectis Group (Alternext:ALCLS.PA - News), a premier provider of stem cell derived products and technologies, today announces the launch of a human iPS derived hepatocyte product, hiPS-HEPTM.
The hiPS-HEPTM demonstrate high reproducibility, homogeneity and a long life span of stable CYP activity, making them the ideal platform for various in vitro applications including drug discovery, toxicity testing and vaccine development. The hiPS-HEP are human hepatocyte-like cells derived from human induced Pluripotent Stem (iPS) cells under strict quality controlled and ethically approved procedures.
"Due to their high relevance in various industrial applications it makes the hiPS-HEP a really promising system for research and development," said Johan Hyllner, CSO of Cellectis stem cells. "The pharmaceutical industry has a great need for better and more clinically relevant models early in the drug development process to predict hepatotoxicity, find new drug targets and develop new vaccines."
"This novel product is the fruition of Cellectis strategy to become the global market leader for stem cell-based in vitro models and related technologies. It illustrates our ambitions and the momentum of our future development in this field," said Andr Choulika, Chairman and CEO of Cellectis.
About Cellectis stem cells:
Cellectis stem cells, is a business unit within the Cellectis group and is a global leader in stem cell technology. Cellectis stem cells, created in November 2011 from Cellartis AB and Ectycell SAS, possesses broad expertise in pluripotent stem cells, including iPS cell technology, genetic engineering and specialised cells. Cellectis stem cells is developing stem cell derived products and related services for drug discovery, toxicity testing and regenerative medicine applications.
For more information visit http://www.cellartis.com and http://www.cellectis.com
About Cellectis
Here is the original post:
Cellectis stem cells today proudly announces the launch of the world’s very first human iPS cell-derived hepatocyte ...
Medical success or boondoggle?
By LizaAVILA
Indian clinic's stem cell therapy real?
STORY HIGHLIGHTS
For more of CNN correspondent Drew Griffin's investigation of India's experimental embryonic stem cell therapy, watch "CNN Presents: Selling a Miracle," at 8 and 11 p.m. ET Sunday on CNN.
New Delhi (CNN) -- Cash Burnaman, a 6-year-old South Carolina boy, has traveled with his parents to India seeking treatment for a rare genetic condition that has left him developmentally disabled. You might think this was a hopeful mission until you learn that an overwhelming number of medical experts insist the treatment will have zero effect.
Cash is mute. He walks with the aid of braces. To battle his incurable condition, which is so rare it doesn't have a name, Cash has had to take an artificial growth hormone for most of his life.
His divorced parents, Josh Burnaman and Stephanie Krolick, are so driven by their hope and desperation to help Cash they've journeyed to the other side of the globe and paid tens of thousands of dollars to have Cash undergo experimental injections of human embryonic stem cells.
The family is among a growing number of Americans seeking the treatment in India -- some at a clinic in the heart of New Delhi called NuTech Mediworld run by Dr. Geeta Shroff, a retired obstetrician and self-taught embryonic stem cell practitioner.
Shroff first treated Cash -- who presents symptoms similar to Down Syndrome -- in 2010. "I am helping improve their quality of life," Shroff told CNN.
After five weeks of treatment, Cash and his parents returned home to the U.S.
That's when Cash began walking with the aid of braces for the first time.
Read the original here:
Medical success or boondoggle?
StemCells, Inc. Reports Positive Interim Safety Data From Spinal Cord Injury Trial
By LizaAVILA
NEWARK, Calif., May 17, 2012 (GLOBE NEWSWIRE) -- StemCells, Inc. (Nasdaq:STEM - News) today announced completion of the first planned interim safety review of the Company's Phase I/II spinal cord injury clinical trial, which indicated that the surgery, immunosuppression and the cell transplants have been well-tolerated. The trial, which is designed to evaluate the safety and preliminary efficacy of the Company's proprietary HuCNS-SC(R) cells (purified human neural stem cells), represents the first time that neural stem cells have been transplanted as a potential therapeutic agent for spinal cord injury. A summary of the data will be presented by Armin Curt, M.D., principal investigator for the clinical trial, at the Interdependence 2012 Global SCI Conference, which is being held in Vancouver, British Columbia, from May 15 to 17, 2012.
The interim data is from the first cohort of patients, all of whom suffered a complete spinal cord injury in which there is no neurological function below the level of the injury. All patients enrolled were transplanted with a dose of 20 million cells at the site of injury in the thoracic spinal cord. There were no abnormal clinical, electrophysiological or radiological responses to the cells, and all the patients were neurologically stable through the first four months following transplantation of the cells. Changes in sensitivity to touch were observed in two of the patients. The data from multiple evaluations of the patients during this four month period have been reviewed by an independent Data Safety Monitoring Committee, which has recommended that the study advance to enrollment of patients with incomplete neurological injury. Enrollment is now underway and is open to patients in Europe, the United States and Canada with incomplete spinal cord injury. The trial, which is being conducted at Balgrist University Hospital, Zurich, Switzerland, is the only ongoing clinical trial evaluating neural stem cell transplantation in spinal cord injury.
"We are very encouraged by the interim safety outcomes for the first cohort," said Dr. Curt, who is Professor and Chairman of the Spinal Cord Injury Center at the University of Zurich, and Medical Director of the Paraplegic Center at Balgrist University Hospital. "The patients in the trial are being closely monitored and undergo frequent clinical examinations, radiological assessments by MRI and sophisticated electrophysiology testing of spinal cord function. The comprehensive battery of tests provides important safety data and is very reassuring as we progress to the next stage of the trial."
The Interdependence 2012 Global SCI Conference is intended to bring together international healthcare and research facilities to showcase their work through presentations, workshops and exhibits and to discuss how to advance research, implement new best practices and shape the next generation of spinal cord injury research. Interdependence 2012 is jointly organized by the Rick Hansen Institute, a Canadian not-for-profit organization committed to accelerating the translation of discoveries and best practices into improved treatments for people with spinal cord injuries, and the Rick Hansen Foundation.
About the Spinal Cord Injury Clinical Trial
The Phase I/II clinical trial of StemCells, Inc.'s HuCNS-SC(R) purified human adult neural stem cells is designed to assess both safety and preliminary efficacy. Twelve patients with thoracic (chest-level) neurological injuries at the T2-T11 level are planned for enrollment. The Company has dosed the first three patients all of whom have injuries classified as AIS A, in which there is no neurological function below the injury level. The second and third cohorts will be patients classified as AIS B and AIS C, those with less severe injury, in which there is some preservation of sensory or motor function. The injuries are classified according to the American Spinal Injury Association Impairment Scale (AIS). In addition to assessing safety, the trial will assess preliminary efficacy based on defined clinical endpoints, such as changes in sensation, motor and bowel/bladder function.
All patients will receive HuCNS-SC cells through direct transplantation into the spinal cord and will be temporarily immunosuppressed. Patients will be evaluated regularly in the post-transplant period in order to monitor and assess the safety of the HuCNS-SC cells, the surgery and the immunosuppression, as well as to measure any recovery of neurological function below the injury site. The Company intends to follow the effects of this therapy long-term, and a separate four-year observational study will be initiated at the conclusion of this trial.
The trial is being conducted at Balgrist University Hospital, University of Zurich, a world leading medical center for spinal cord injury and rehabilitation, and is open for enrollment to patients in Europe, Canada and the United States. If you believe you may qualify and are interested in participating in the study, please contact the study nurse either by phone at +41 44 386 39 01 or by email at stemcells.pz@balgrist.ch.
Additional information about the Company's spinal cord injury program can be found on the StemCells, Inc. website at http://www.stemcellsinc.com/Therapeutic-Programs/Clinical-Trials.htm and at http://www.stemcellsinc.com/Therapeutic-Programs/Spinal-Cord-Injury.htm, including video interviews with Company executives and independent collaborators.
About Balgrist University Hospital
Read the original here:
StemCells, Inc. Reports Positive Interim Safety Data From Spinal Cord Injury Trial
Stem Cells for Spinal Cord Injury: Some Patients Have Long-Term Improvement
By LizaAVILA
Thirty Percent of Patients Show Improved Functioning after Stem Cell Therapy
Philadelphia, Pa. (May 17, 2012) One of the first long-term studies of stem cell treatment for spinal cord injury shows significant functional and other improvements in three out of ten patients, reports a study in the May issue of Neurosurgery, official journal of the Congress of Neurological Surgeons. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.
The results support the safety of mesenchymal stem cells (MSCs) derived from the patient's own bone marrow, showing "continuous and gradual motor improvement" in at least some patients with disability caused by spinal cord injury. The lead author of the new study was Dr. Sang Ryong Jeon of University of Ulsan College of Medicine, Seoul, South Korea.
Evidence of Improved Function after MSC Treatment for Spinal Cord Injury The researchers performed MSC transplantation in ten patients with permanent motor (movement) deficits or paralysis (paraplegia or quadriplegia) after spinal cord injury. Mesenchymal stem cells are a type of "multipotent" cell that can be cultured from adult bone marrow and induced to develop into many different types of cells.
The cultured MSCs were injected directly into the injured spinal cord and the surrounding (intradural) space. Additional cells were injected after another four and eight weeks. The results were assessed by measuring improvement in the patients' ability to move their arms and hands and to perform key activities of daily living. Imaging scans and tests of muscle activity were performed as well.
During the first six months after MSC transplantation, six of the ten patients showed improvement in motor power of the arms and hands. Of these, three patients had gradual improvement in the ability to perform daily activitiesfor example, preparing meals and typing on a keyboard.
These three patients also showed significant changes on MRI scans of the spinal cord, including evidence of healing around the injured area of the spine. They also had improvement in electrophysiologic studies of muscle electrical activity.
No Long-Term Safety Problems of MSC Transplant None of the ten patients had any permanent complications related to MSC transplantation. This helps to alleviate concerns that MSC injection could lead to later problems like the development of tumors or calcifications.
Previous studies have shown promising results with MSC transplantation in animals and humans with spinal cord injury. Mesenchymal cells have some important potential advantages for stem cell therapy, as they are a relatively easily accessible source of the patient's own cells. The ten patients treated by Dr. Jeon and colleagues represent the first attempt at direct spinal injection of MSCs for the treatment of spinal cord injury in humans.
Following up on a previous study reporting initial improvement in six patients, the new paper describes continued improvementincluding meaningful gains in the ability to perform everyday functional tasksin three patients. Dr. Jeon and colleagues note that all three patients with progressive improvement had some "residual neurological function." They write, "Therefore, MSC treatment is more likely to enhance the remaining neurological function rather than rengeneration." They call for further studies to understand the mechanism of improvement after MSC treatment and to clarify which patients with spinal cord injury are most likely to benefit.
Original post:
Stem Cells for Spinal Cord Injury: Some Patients Have Long-Term Improvement
Cardio3 BioSciences Has Been Selected to Present C3BS-CQR-1 Trial Data in Late Breaking Clinical Trial Session at …
By LizaAVILA
MONT-SAINT-GUIBERT, Belgium, May 18, 2012 /PRNewswire/ --
The Belgian biotechnology company, Cardio3 BioSciences (C3BS), a leader in the discovery and development of regenerative and protective therapies for the treatment of cardiovascular diseases, today announces that the final results of its Phase II clinical trial of C3BS-CQR-1 is will be presented at the late breaking clinical trial session at the European Society of Cardiology 2012 Heart Failure Congress in Belgrade, Serbia taking place on May 19-22.
Andr Terzic, M.D., Ph.D, Director at Center of Regenerative Medicine, Mayo Clinic, the co-lead investigator on the trial, will present new final follow up data on the Company's stem cell therapy for heart failure, C3BS-CQR-1, which is based on "Cardiopoiesis" proprietary technology. The presentation will be held on Sunday, May 20th in Belgrade, Serbia.
Dr. Christian Homsy, CEO of Cardio3 BioSciences, said: "Being selected to present the final follow-up data in the late breaking clinical trial session at this prestigious cardiology congress highlights the quality of our technology and reiterates our belief in C3BS-CQR-1 as a potential treatment for patients with heart failure, a condition with a significant unmet medical need. We look forward to advancing the product into Phase III."
About Cardio3 BioSciences
Cardio3 BioSciences is a Belgian leading biotechnology company focused on the discovery and development of regenerative and protective therapies for the treatment of cardiac diseases. The company was founded in 2007 and is based in the Walloon region of Belgium. Cardio3 BioSciences leverages research collaborations in the US and in Europe with Mayo Clinic and the Cardiovascular Center Aalst, Belgium.
The Company's lead product candidate C3BS-CQR-1 is an innovative pharmaceutical product consisting of autologous cardiac progenitor stem cells. C3BS-CQR-1 is based on ground breaking research conducted at Mayo Clinic that allowed discovery of cardiopoiesis, a process to mimic in adult stem cells the natural signals triggered in the early stages of life during the cardiac tissue development. Cardio3 BioSciences has also developed C-Cath, the next-generation injection catheter with superior efficiency of delivery of bio therapeutic agents into the myocardium.
C3BS-CQR-1, C-Cure, C-Cath, Cardio3 BioSciences and the Cardio3 BioSciences and C-Cath logos are trademarks or registered trademarks of Cardio3 BioSciences SA, in Belgium, other countries, or both. Mayo Clinic holds equity in Cardio3 BioSciences as a result of intellectual property licensed to the company. In addition to historical facts or statements of current condition, this press release contains forward-looking statements, which reflect our current expectations and projections about future events, and involve certain known and unknown risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. These forward-looking statements are further qualified by important factors, which could cause actual results to differ materially from those in the forward-looking statements, including timely submission and approval of anticipated regulatory filings; the successful initiation and completion of required Phase III studies; additional clinical results validating the use of adult autologous stem cells to treat heart failure; satisfaction of regulatory and other requirements; and actions of regulatory bodies and other governmental authorities. As a result, of these factors investors and prospective investors are cautioned not to rely on any forward-looking statements. We disclaim any intention or obligation to update or review any forward-looking statement, whether as a result of new information, future events or otherwise.
For more information contact:
Cardio3 BioSciences: http://www.c3bs.com Dr Christian Homsy, CEOTel : +32-10-39-41-00 Anne Portzenheim, Communication Manager aportzenheim@c3bs.com
Go here to read the rest:
Cardio3 BioSciences Has Been Selected to Present C3BS-CQR-1 Trial Data in Late Breaking Clinical Trial Session at ...
Advanced Cell Technology to Present at World Stem Cells & Regenerative Medicine Congress in London
By LizaAVILA
MARLBOROUGH, Mass.--(BUSINESS WIRE)--
Advanced Cell Technology, Inc. (ACT; OTCBB: ACTC), a leader in the field of regenerative medicine, announced today that chairman and CEO Gary Rabin will be presenting at the World Stem Cells and Regenerative Medicine Conference, May 21-23, in London.
Mr. Rabins presentation, titled Successes and ongoing advancements of human clinical trials for the treatment of AMD & Stargardts Disease, will be given on Monday, May 21 at 5:05 p.m. BST (London time). Mr. Rabin will provide an update on ACTs three ongoing human clinical trials in the U.S. and E.U. for Dry Age-Related Macular Degeneration (Dry AMD) and Stargardts Macular Dystrophy (SMD).
ACT recently announced Data and Safety Monitoring Board (DSMB) approval to move forward with enrollment and treatment of additional patients with SMD in its U.S. SMD trial, and to treat the final two patients to round out the initial dosing arm in its European trial. All three of the companys ongoing clinical trials use human embryonic stem cell (hESC)-derived retinal pigment epithelial (RPE) cells.
About SMD, Dry AMD and Degenerative Diseases of the Retina
Stargardts Macular Dystrophy (SMD) is one of the most common forms of macular degeneration in the world. SMD causes progressive vision loss, usually starting in children between 10 to 20 years of age. Eventually, blindness results from photoreceptor loss associated with degeneration in the pigmented layer of the retina, called the retinal pigment epithelium or RPE cell layer.
Degenerative diseases of the retina are among the most common causes of untreatable blindness in the world. As many as thirty million people in the United States and Europe suffer from macular degeneration, which represents a $25-30 billion worldwide market that has yet to be effectively addressed. Approximately 10% of people ages 66 to 74 will have symptoms of macular degeneration, the vast majority the dry form of AMD which is currently untreatable. The prevalence increases to 30% in patients 75 to 85 years of age.
About Advanced Cell Technology, Inc.
Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.
Forward-Looking Statements
View post:
Advanced Cell Technology to Present at World Stem Cells & Regenerative Medicine Congress in London
Osiris Wins Canadian Approval for First Stem-Cell Therapy
By LizaAVILA
By Meg Tirrell - 2012-05-18T20:13:19Z
Osiris Therapeutics Inc. (OSIR) rose after the company said it won the worlds first approval for a stem- cell drug, gaining clearance in Canada to sell Prochymal for a disease that can attack patients who received bone-marrow transplants.
Osiris climbed 5.5 percent to $5.55 at 4 p.m. New York time. The shares have lost 24 percent in the last 12 months.
Prochymal was approved for the treatment of acute graft versus host disease in children for whom steroids havent worked, the Columbia, Maryland-based company said yesterday in a statement. Steroids have a 30 percent to 50 percent success rate, and severe GvHD can be fatal in 80 percent of cases, according to the company.
The therapy uses mesenchymal stem cells derived from bone marrow that can take on different forms to combat the immune reaction that causes patients to literally peel out of their skin and shed their intestinal lining, Osiris Chief Executive Officer Randal Mills said in a telephone interview. The disease has no equal.
The company hasnt sought approval for this indication in the U.S., where regulators asked for more data before considering whether to allow sales of the drug, Mills said. Prochymal is used in eight countries, including the U.S., on an expanded-access program basis, which allows patients to receive experimental medicines without participating in clinical trials.
This is the first regulatory approval of a stem-cell drug -- where the active ingredient of the drug is a stem cell -- in the world, Mills said. Its a huge deal for us and a huge deal for the entire field of stem-cell therapy.
Osiris shares declined from an all-time high of $28.56 in 2007 as the biotechnology company faced clinical setbacks, including two studies in 2009 that failed to show statistical improvement of Prochymal versus placebo.
The Canadian approval was based on data showing a clinically meaningful response 28 days after starting therapy for 61 percent to 64 percent of patients treated, Osiris said in the statement.
Prochymal may draw $16.7 million in revenue next year with Canadian approval, estimated Edward Tenthoff, an analyst with Piper Jaffray & Co., before the companys announcement. He said that while Prochymal would be the first stem-cell drug to receive approval, other regenerative products used for wound- healing that employ stem cells are already on the market, such as Carticel from Sanofis Genzyme unit.
See more here:
Osiris Wins Canadian Approval for First Stem-Cell Therapy
Scientist, artist collaborate on exhibit about spinal cord injuries
By LizaAVILA
By Andrew Beam abeam@troyrecord.com Twitter.com/beam_record
Ryan Gilbert, assistant professor of biomedical engineering at Rensselaer Polytechnic Institute and G.E. Washington, visiting assistant professor of art at The College of Saint Rose, stand under an inflated sculpture of a ganglion knot created as a result of their unique collaboration inside RPIs Center for Biotechnology and Interdisciplinary Studies in Troy Friday. (J.S. Carras/The Record)
TROY A professor and scientist from Rensselaer Polytechnic Institute and a visiting professor of art from the College of Saint Rose were both taken out of their comfort zones to create artistic and educational works based on research being conducted into stem cell technologies and the repair of spinal cord injuries.
The exhibit, titled A Walk Through the Nervous System: Artists View of Nerves and Spinal Cord Injury opened Friday with the hope of making it easier for the community at large to better comprehend not only how nerves work but also how injures affect the spinal cord.
Dr. Ryan Gilbert, an assistant professor in the Department of Biomedical Engineering at RPI, received a $500,000 grant from the National Science Foundation, $10,000 to $20,000 of which is earmarked for community awareness and outreach. The remainder of the grant funds the research Gilbert and his colleagues are conducting in the departments laboratories.
Gilbert said the department is working with biomaterials on both a nano and micro scale, and in the future hopes to implant them into the spinal cord to regenerate it. Currently, Gilbert explained, when someone injures his or her spinal cord, there is not only the potential for paralysis, but also for permanent damage, as no cure exists yet.
To show exactly what materials Gilbert and his colleagues are working with, department head Deepak Vashishth reached out to Washington, a visiting assistant professor of art at the College of Saint Rose, and his colleagues to help create pieces of art to represent them.
Washington said he spoke with Gilbert about the project. After listening to Gilbert explain some of the materials he was working with and realizing the interest he had in what he was doing, Washington himself became more interested in the project.
Its very interesting and sexy work, Washington said.
Go here to see the original:
Scientist, artist collaborate on exhibit about spinal cord injuries
International Stem Cell Corporation Announces New Stem Cell Manufacturing Technologies to Support its Therapeutic …
By LizaAVILA
CARLSBAD, Calif.--(BUSINESS WIRE)--
International Stem Cell Corporation (OTCBB: ISCO.OB - News) http://www.internationalstemcell.com today announced that the Company has developed new technologies to commercialize the use of human parthenogenetic stem cells (hpSC) to treat human diseases. The methods announced today are capable of producing populations of stem cells and their therapeutically valuable derivatives not only to a higher level of purity but also at a cost that is approximately several times lower than previously reported techniques.
ISCOs research team has developed a new method to derive high-purity populations of neural stem cells (NSC) from hpSC and further differentiate them into dopaminergic neurons. This method is capable of generating sufficient quantities of neuronal cells for ISCOs pre-clinical and clinical studies and is highly efficient as it requires substantially less time and labor in addition to using fewer costly materials than traditional methods. ISCOs technologies make possible the creation of billions of neuronal cells necessary for conducting such studies from a small batch of stem cells.
ISCO has also announced today that it has developed a new high-throughput cell culture method for growing human parthenogenetic stem cells (hpSC) in large quantities. This new technique is easily scalable and can produce the quantities of cGMP grade hpSC necessary for commercial and therapeutic applications.
One of the most challenging issues in commercializing stem cell based treatments is creating high-purity populations of stem cell derivatives at a reasonable cost. I believe the new methods we have developed solve this important problem and help position us for future clinical studies, says Dr. Ruslan Semechkin, Vice President, R&D.
About International Stem Cell Corporation
International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology, and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com or follow us on Twitter @intlstemcell.
To receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.
Forward-looking Statements
Statements pertaining to anticipated developments, the potential benefits of research programs and new manufacturing technologies, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products and technologies regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.