Stem Cell Skin Care – anti-aging cream and hydration Serum
By NEVAGiles23
SC21 BioTech: Stem Cell Skin Care Set
SC21 nowoffers a rejuvenating stem cell skin careset that is available to help restore aging skin. At SC21, we have been able to combine human mesenchymal stem cell growth factors, polypeptide complexes, and cytokines, with our day time anti-aging cream & evening hydration serum.
Our SC21 biotechnology scientists have developed a process to isolate potent rejuvenating factors from human stem cells. By resupplying the skin with these powerful missing factors, SC21 Day & Night Stem Cell Skin Care promotes cell renewal, boosts the production of collagen and elastin, restores aging cells, and, ultimately, provides you with more youthful looking skin.
It is important to note that as we age, the stem cell population that is vital in providing healing signals to the skin dramatically diminishes. As a result of this, the rejuvenating components the skin needs to maintain its appearance lessen. By replenishing lost peptides, cytokines & growth factors with the use of a topical product on the skin, we, through the day &night skin care set, are able to effectively re-engage the skins healing process.
The SC21 day & night stem cell skin care rejuvenation set also has a complete solution for restoring aging skin. We have, through the day anti-aging cream & night hydration serum been able to use: human mesenchymal stem cell growth factors, to regenerate human tissues; polypeptide complexes, (which penetrate the epidermis, outer layer of our skin) to send signals to the skin cells and cytokines proteins to send signals between the skin cells.
Focus Ingredient of Growth Factor Skin Care:
Mesenchymal Stem Cell (MSC) Peptide Complex = 15% (cytokines, growth factors, peptide complex)
Other Key Ingredients:
Focus Ingredient of Growth Factor Skin Care:
Mesenchymal Stem Cell (MSC) Peptide Complex = 20%(cytokines, growth factors, peptide complex)
Other Key Ingredients:
Apply 2-3 pumps to clean & dry skin.
Peptides are easier explained as signaling molecules produced by cells to instruct other cells.
As cellular messengers, cytokines influence and control our biological processes from start to finish. There are hundreds of unique cytokines in the human body. Cells talk with cytokines to repair injury, repel microbes, fight infections, and develop immunity.
Growth factors, are, on the other hand, diffusible signaling proteins that stimulate the growth of specific tissues and play a crucial role in promoting cell differentiation and division.
Many modern medical advances, including stem cell breakthroughs, are made possible due to our growing understanding of cytokines & growth factors. We use modern culture techniques (the same type used to produce human insulin and other naturally occurring substances) to grow human stem cells in the laboratory to harvest their regenerative cytokines and growth factors.
Mesenchymal stem cells (MSCs), which are traditionally found in the bone marrow, are used to improve function upon integration because they are self-renewing cells that have the capacity to differentiate, and are capable of replacing and repairing damaged tissues.
MSCs can consequently during culture, produce the following:
Our skin cells are biologically designed to continuously renew themselves, but, starting from our mid 20s, the skin cell renewal process slows down and our skin becomes thinner. This thinning causes us to be more prone to skin damage from external elements.
However, there are other factors that can contribute to our aging process, and in other cases even cause premature aging. Some of these factors include:
Follow this link:
Stem Cell Skin Care - anti-aging cream and hydration Serum
iPS Cell Therapy: Is Japan the Market Leader?
By NEVAGiles23
Although there are key players in markets like the U.S., Australia, and the EU, Japan continues to accelerates its position as a hub for induced pluripotent stem cell (iPS cell) therapy with generous funding, acquisitions, and strategic partnerships.
Pluripotent stem cells are cells that are capable of developing into any type of cell or tissue in the human body. These cells have the capability to replicate and help in repairing damaged tissues within the body. In 2006, the Japanese scientist Shinya Yamanaka demonstrated that an ordinary cell can be turned into a pluripotent cell by genetic modification. These genetically reprogrammed cells are known as induced pluripotent cells, also called iPS cells or iPSCs.
An induced pluripotent stem cell (iPS cell) is a type of pluripotent stem cell that has the capacity to divide indefinitely and create any cell found within the three germ layers of an organism. These layers include the ectoderm (cells giving rise to the skin and nervous system), endoderm (cells forming gastrointestinal and respiratory tracts, endocrine gland, liver, and pancreas), and mesoderm (cells forming bones, cartilage, most of the circulatory system, muscles, connective tissues, and other related tissues.).
iPS cells have significant potential for therapeutic applications. For autologous applications, the cells are extracted from the patients own body, making them genetically identical to the patient and eliminating the issues associated with tissue matching and tissue rejection.
iPS cells have the potential to be used to treat a wide range of diseases, including diabetes, heart diseases, autoimmune diseases, and neural complications, such as Parkinsons disease, Alzheimers disease.
Over the past few years, Japan has accelerated its position as a hub for regenerative medicine research, largely driven by support from Prime Minister Shinzo Abe who has identified regenerative medicine and cellular therapy as key to the Japans strategy to drive economic growth.
The Prime Minister has encouraged a growing range of collaborations between private industry and academic partners through an innovative legal framework approved last fall.
He has also initiated campaigns to drive technological advances in drugs and devices by connecting private companies with public funding sources. The result has been to drive progress in both basic and applied research involving induced pluripotent stem cells (iPS cells) and related stem cell technologies.
2013 was a landmark year in Japan, because it saw the first cellular therapy involving transplant of iPS cells into humans initiated at the RIKEN Center in Kobe, Japan.[1]Led by Masayo Takahashi of theRIKEN Center for Developmental Biology (CDB).Dr. Takahashi and her team wereinvestigating the safety of iPSC-derived cell sheets in patients with wet-type age-related macular degeneration.
To speed things along, RIKEN did not seek permission for a clinical trial involving iPS cells, but instead applied for a type of pretrial clinical research allowed under Japanese regulations.The RIKEN Center is Japans largest, most comprehensive research institution, backed by both Japans Health Ministry and government.
This pretrial clinical research allowed the RIKEN research team to test the use of iPS cells for the treatment of wet-type age-related macular degeneration (AMD) on a very small scale, in only a handful of patients.Unfortunately, the study was suspended in 2015 due to safety concerns. As the lab prepared to treat the second trial participant, Yamanakas team identified two small genetic changes in the patients iPSCs and the retinal pigment epithelium (RPE) cells derived from them.
However, in June 2016 RIKEN Institute announced that it would be resuming the clinical study involving the use of iPSC-derived cellsin humans.According to theJapan Times, this second attempt at the clinical studyis using allogeneic rather than autologous iPSC-derived cells, because of the greater cost and time efficiencies.
Specifically,the researchers will be developing retinal tissues from iPS cells supplied by Kyoto Universitys Center for iPS Cell Research and Application, an institution headed by Nobel prize winner Shinya Yamanaka.
Japan has a unique affection for iPS cells, as the cells were originally discovered by the Japanese scientist, Shinya Yamanaka of Kyoto University. Mr. Yamanaka was awarded the Nobel Prize in Physiology or Medicine for 2012, an honor shared jointly with John Gurdon, for the discovery that mature cells can be reprogrammed to become pluripotent.
In addition, Japans Education Ministry said its planning to spend 110 billion yen ($1.13 billion) on induced pluripotent stem cell research during the next 10 years, and the Japanese parliament has been discussing bills that would speed the approval process and ensure the safety of such treatments.[3]
In April, Japanese parliament even passed a law calling for Japan to make regenerative medical treatments like iPSC technology available for its citizens ahead of the rest of the world.[4] If those forces were not enough, Masayo Takahashi of the RIKEN Center for Developmental Biology in Kobe, Japan, who is heading the worlds first clinical research using iPSCs in humans, was also chosen by the journal Natureas one of five scientists to watch in 2014.[5]
Clearly, Japan is the global leader in iPS cell technologies and therapies. However, progress with stem cells has not been without setbacks within Japan, including a recent scandal at the RIKEN Institute that involved falsely manipulated research findings and a hold on the first clinical trial involving transplant of an iPS cell product into humans.
Nonetheless, Japan has emerged from these troubles to become the most liberalized nation pursuing the development of iPS cell products and services.
iPS cells represent one of the most promising advances within the field of stem cell research, because of their diverse ability to differentiate into any of the approximately 200 cell types that compose the human body.
Even though there is growing evidence to support the safety of iPS cells within cell therapy applications,some people remain concerned that patients who receive implants of iPS derived cells might be at risk of cancer, as genetic manipulation is required to create the cell type.
In a world-first, Cynata Therapeutics (ASX:CYP) received approval in September 2016 to launch a clinical trial in the UK with the worlds first first formal clinical trial of an allogeneic iPSC-derived cell product, which it calls CYP-001.The study involves centers in both the UK and Australia.
In this landmark trial, the Australian regenerative medicine company is testing an iPS cell-derived mesenchymal stem cell (MSC) product for the treatment of Graft-vs-Host-Disease (GvHD).Not surprisingly, the Japanese conglomerate Fujifilm is also involved with this historic trial.
Headquartered in Tokyo, Fujifilm is one of the largest players in regenerative medicine field and has invested significantly into stem cells through their acquisition of Cellular Dynamics International (CDI). Additionally, Fujifilm has invested in Japan Tissue Engineering Co. Ltd. (J-Tec), giving it a broad base in regenerative medicine across multiple therapeutic areas.
For a young company like Cynata, having validation from an industry giant like Fujifilm is a huge boost. As stated by Cynata CEO, Dr. Ross Macdonald, The decision by Fujifilm confirms that our technology is very exciting in their eyes. It is a useful yardstick for other investors as well. Of course, the effect of the relationship with Fujifilm on our balance sheet is also important.
If Fujifilm exercises their option to license Cynatas GvHD product, then the costs of the product and commercialization will become the responsibility of Fujifilm. Cynata would also receive milestone payments from Fujifilm of approximately $60M AUS and a double-digit royalty payment.
Cynata was also the first to scale-up manufacture of an allogeneic cGMP iPS celll line. It sourced the cell line from Cellular Dynamics International (CDI) when CDI was still an independent company listed on NASDAQ. In April 2015, CDI was subsequently acquired by Fujifilm, who as mentioned, is a major shareholder in Cynata and its strategic partner for GvHD.
Although Cynata is showing promising early-stage data from its GvHD trial, methods for commercializing iPS cells are still being explored and clinical studies investigating iPS cells remain extremely low in number.
Footnotes[1] Dvorak, K. (2014).Japan Makes Advance on Stem-Cell Therapy [Online]. Available at: http://online.wsj.com/news/articles/SB10001424127887323689204578571363010820642. Web. 14 Apr. 2015.[2] Note: In the United States, some patients have been treated with retina cells derived from embryonic stem cells (ESCs) to treat macular degeneration. There was a successful patient safety test for this stem cell treatment last year that was conducted at the Jules Stein Eye Institute in Los Angeles. The ESC-derived cells used for this study were developed by Advanced Cell Technology, Inc, a company located in Marlborough, Massachusetts.[3] Dvorak, K. (2014).Japan Makes Advance on Stem-Cell Therapy [Online]. Available at: http://online.wsj.com/news/articles/SB10001424127887323689204578571363010820642. Web. 8 Apr. 2015.[4] Ibid.[5] Riken.jp. (2014).RIKEN researcher chosen as one of five scientists to watch in 2014 | RIKEN [Online]. Available at: http://www.riken.jp/en/pr/topics/2014/20140107_1/. Web. 14 Apr. 2015.
View original post here:
iPS Cell Therapy: Is Japan the Market Leader?
Levels of Spinal Cord Injury – Brain and Spinal Cord
By NEVAGiles23
Basic Spinal Cord Anatomy
To understand this confusion and what you are actually being told when your injury is described as being at a certain level, it is necessary to understand basic spinal anatomy. The spine and the spinal cord are two different structures. The spinal cord is a long series of nerve cells and fibers running from the base of the brain to shortly above the tailbone. It is encased in the bony vertebrae of the spine, which offers it some protection.
The spinal cord relays nerve signals from the brain to all parts of the body and from all points of the body back to the brain. Part of the confusion regarding spinal cord injury levels comes from the fact that the spine and the spinal cord each are divided into named segments which do not always correspond to each other. The spine itself is divided into vertebral segments corresponding to each of the vertebrae.
The spinal cord is divided into neurological segmental levels, meaning that the focus is on what part of the body the nerves from each section control. The spine is divided into seven neck (cervical) vertebrae, twelve chest (thoracic) vertebra, five back (lumbar) vertebrae, and five tail (sacral) vertebrae. The segments of the spine and spinal cord are designated by letters and numbers; the letters used in the designation correspond to the location on the spine or the spinal cord. For example:
The spinal cord segments are named in the same fashion, but their location does not necessarily correspond to the spinal segments location. For example:
The spinal cord is responsible for relaying the nerve messages that control voluntary and involuntary movement of the muscles, including those of the diaphragm, bowels, and bladder. It relays these messages to the rest of the body via spinal roots which branch out from the cord.
The spinal roots are nerves that go through the spines bone canal and come out at the vertebral segments of the spinal cord. Bodily functions can be disrupted by injury to the spinal cord. The amount of the impairment depends on the degree of damage and the location of the injury.
The head is held by the first and second cervical segments. The cervical cord supplies the nerves for the deltoids, biceps, triceps, wrist extensors, and hands. The phrenic nucleus (a group of cell bodies with nerve links to the diaphragm) is located in the C3 cord.
The thoracic vertebral segments compose the rear wall of the ribs and pulmonary cavity. In this area, the spinal roots compose the between the ribs nerves (intercostal nerves) which control the intercostal muscles.
The spinal cord does not travel the entire length of the spine. It ends at the second lumbar segment (L2). Spinal roots exit below the spinal cords tip (conus) in a spray; this is called the cauda equine (horses tail). Damage below the L2 generally does not interfere with leg movement, although it can contribute to weakness.
In addition to motor function, the spinal cord segments each innervate different sections of skin called dermatomes. This provides the sense of touch and pain. The area of a dermatome may expand or contract after a spinal cord injury.
The differences between some of the spinal vertebral and spinal cord levels have added to the confusion in developing a standardized rating scale for spinal cord injuries. In the 1990s, the American Spinal Cord Association devised a new scale to help eliminate ambiguities in rating scales. The ASIA scale is more accurate than previous rating systems, but there are still differences in the ways various medical specialists evaluate an SCI injury.
Dr. Wise Young, founding director of Rutgers W. M. Keck Center for Collaborative Neuroscience explains that usually neurologists (nerve specialists) will rate the level of injury at the first spinal segment level which exhibits loss of normal function; however, rehabilitation doctors (physiatrists) usually rate the level of injury at the lowest spinal segment level which remains normal.
For example, a neurologist might say that an individual with normal sensations in the C3 spinal segment who lacks sensation at the C4 spinal segment should be classified as a sensory level C4, but a physiatrist might call it a C3 injury level. Obviously, these differences are confusing to the patient and to the patients family. People with a spinal cord injury simply want to know what level of disability they will have and how much function they are likely to regain. Adding to the confusion is the debate over how to define complete versus incomplete injuries.
For many years, a complete spinal cord injury was thought of as meaning no conscious sensations or voluntary muscle use below the site of the injury; however, this does not take in to account that partial preservation of function below the injury site is rather common. This definition of a complete injury also failed to take into account the fact that may people have lateral preservation (function on one side).
In addition, a person may later recover a degree of function, after being labeled in the first few days after the injury as having a complete injury. In 1992, the American Spinal Cord Association sought to remedy this dilemma by coming up with a simple definition of complete injury.
According to the ASIA scale, a person has a complete injury if they have no sensory or motor function in the perineal and anal region; this area corresponds to the lowest part of the sacral cord (S4-S5). A rectal examination is used to help determine function in this area. The ASIA Scale is classified as follows:
At this point, if you are a patient with a spinal cord injury or the family member of a spinal cord injury patient you may be more confused than ever. How do these ratings apply to the daily life of someone with a spinal cord injury? A brief overview of the basic definitions may help.
This is the greatest level of paralysis. Complete C1-C4 tetraplegia means that the person has no motor function of the arms or legs. He or she generally can move the neck and possibly shrug the shoulders. When the injury is at the C1-C3 level, the person will usually need to be on a ventilator for the long-term; fortunately, new techniques may be able to reduce the need for a ventilator.
A person whose injury is at the C4 level usually will not need to use the ventilator for the long-term, but will likely need ventilation in the first days after the injury. People with complete C1-C4 quadriplegia may be able to use a power wheelchair that can be controlled with the chin or the breath. They may be able control a computer with adaptive devices in a similar fashion and some can work in this way. They can also control light switches, bed controls, televisions and so with the help of adaptive devices. They will require a caregivers assistance for most or all of their daily needs.
People with C5 tetraplegia can flex their elbows and with the help of assistive devices to help them hold objects, they can learn to feed and groom themselves. With some help they can dress their upper body and change positions in bed. They can use a power wheelchair equipped with hand controls and some may be able use a manual wheelchair with grip attachments for a short distance on level ground.
People with C5 will need to rely on caregivers for transfers from bed to chair and so forth, and for assistance with bladder and bowel management, as well as with bathing and dressing the lower body. Adaptive technology can help these people be independent in many areas, including driving. People with C5 tetraplegia can drive a vehicle equipped with hand controls.
People with C6 tetraplegia have the use both of the elbow and the wrist and with assistive support can grasp objects. Some people with C6 learn to transfer independently with the help of a slide board. Some can also handle bladder and bowel management with assistive devices, although this can be difficult.
People with C6 can learn to feed, groom, and bath themselves with the help of assistance devices. They can operate a manual wheelchair with grip attachments and they can drive specially adapted vehicles. Most people with C6 will need some assistance from a caregiver at times.
People with C7 tetraplegia can extend the elbow, which allows them greater freedom of movement. People with C7 can live independently. They can learn to feed and bath themselves and to dress the upper body. They can move in bed by themselves and transfer by themselves. They can operate a manual wheelchair, but will need help negotiating curbs. They can drive specially-equipped vehicles. They can write, type, answer phones, and use computers; some may need assistive devices to do so, while others will not.
People with C8 tetraplegia can flex their fingers, allowing them a better grip on objects. They can learn to feed, groom, dress, and bath themselves without help. They can manage bladder and bowel care and transfer by themselves. They can use a manual wheelchair and type, write, answer the phone and use the computer. They can drive vehicles adapted with hand controls.
People with T1-T12 paraplegia have nerve sensation and function of all their upper extremities. They can become functionally independent, feeding and grooming themselves and cooking and doing light housework. They can transfer independently and manage bladder and bowel function. They can handle a wheelchair quite well and can learn to negotiate over uneven surfaces and handle curbs. They can drive specially adaptive vehicles.
People with a T2-T9 injury may have enough torso control to be able to stand with the help of braces and a walker or crutches. People with a T10-T12 injury have better torso control than those with a T2-T9 injury, and they may be able to walk short distances with the aid of a walker or crutches.
Some can even go up and down stairs; however, walking with such an injury requires a great deal of effort and can quickly exhaust the patient. Many people with thoracic paraplegia prefer to use a wheelchair so that they will not tire so quickly.
People with sacral or lumbar paraplegia can be functionally independent in all of their self-care and mobility needs. They can learn to skillfully handle a manual wheelchair and can drive specially equipped vehicles. People with a lumbar injury can usually learn to walk for distances of 150 feet or longer, using assistive devices. Some can walk this distance without assistance devices. Most rely on a manual wheelchair when longer distances must be covered.
There are many other functional scales besides the ASIA scale, but it is the most frequently used. Neurologists find the NLOI (the Neurological level of injury) scale helpful; it is a simply administered test of motor function and range of motion. The Function Independence Measure (FIM) evaluates function in mobility, locomotion, self-care, continence, communication, and social cognition on a 7-point scale.
The Quadriplegic Index of Function (QIF) detects small, clinically significant changes in people with tetraplegia. Other scales include the Modified Barthel Index, the Spinal Cord Independence Measure (SCIM), the Capabilities of Upper Extremity Instrument (CUE), the Walking Index for SCI (WISCI), and the Canadian Occupational Performance Measure (COPM).
View post:
Levels of Spinal Cord Injury - Brain and Spinal Cord
Allogeneic Cardiac-Derived Stem Cells for Patients …
By NEVAGiles23
This project aims to demonstrate both safety and efficacy of a heart-derived cell product in patients who have experienced a heart attack either recently or in the past by conducting a mid-stage (Phase II) clinical trial. The cell product is manufactured using heart tissue obtained from a healthy donor and can be used in most other individuals. Its effect is thought to be long-lasting (months-years) although it is expected to be cleared from the body relatively quickly (weeks-months). Treatment is administered during a single brief procedure, requiring a local anesthetic and insertion of a tube (or catheter) into the heart. The overriding goal for the product is to prevent patients who have had a heart attack from deteriorating over time and developing heart failure, a condition which is defined by the hearts inability to pump blood efficiently and one which affects millions of Americans. At the outset of the project, a Phase I trial was underway. The Phase II trial was initiated at the beginning of the current reporting period, and all subjects enrolled in Phase I completed follow up during the current reporting period. Fourteen patients were treated with the heart-derived cell product as part of Phase I. The safety endpoint for the trial was pre-defined and took into consideration the following: inflammation in the heart accompanied by an immune response, death due to abnormal heart rhythms, sudden death, repeat heart attack, treatment for symptoms of heart failure, need for a heart assist device, and need for a heart transplant. Both an independent Data and Safety Monitoring Board (DSMB) and CIRM agreed that Phase I met its safety endpoint. Preliminary efficacy data from Phase I collected during the current reporting period showed evidence of improvements in scar size, a measure of damage in the heart, and ejection fraction, a measure of the hearts ability to pump blood. At the end of the current reporting period, Phase II is still enrolling subjects and clinical trial sites are still being brought on for participation in the trial. Meanwhile, the manufacturing processes established continue to be employed to create cell products for use in Phase II. Manufacturing data and trial status updates were also provided to the Food and Drug Administration (FDA) as part of standard annual reporting.
More:
Allogeneic Cardiac-Derived Stem Cells for Patients ...
Blood and Bone Marrow Transplant – NHLBI, NIH
By NEVAGiles23
When the healthy stem cells come from you, the procedure is called an autologous transplant. When the stem cells come from another person, called a donor, it is an allogeneic transplant. Blood or bone marrow transplants most commonly are used to treat blood cancers or other kinds of blood diseases that decrease the number of healthy blood cells in the body. These transplants also may be used to treat other disorders.
For allogeneic transplants, your doctor will try to find a donor whose blood cells are the best match for you. Your doctor will consider using cells from your close family members, from people who are not related to you and who have registered with the National Marrow Donor Program, or from publicly stored umbilical cord blood. Although it is best to find a donor who is an exact match to you, new transplant procedures are making it possible to use donors who are not an exact match.
Blood or bone marrow transplants are usually performed in a hospital. Often, you must stay in the hospital for one to two weeks before the transplant to prepare. During this time, you will have a narrow tube placed in one of your large veins. You may be given medicine to make you sleepy for this procedure. You also will receive special medicines and possibly radiation to destroy your abnormal stem cells and to weaken your immune system so that it wont reject the donor cells after the transplant.
On the day of the transplant, you will be awake and may get medicine to relax you during the procedure. The stem cells will be given to you through the narrow tube in your vein. The stem cells will travel through your blood to your bone marrow, where they will begin making new healthy blood cells.
After the transplant, your doctor will check your blood counts every day to see if new blood cells have started to grow in your bone marrow. Depending on the type of transplant, you may be able to leave, but stay near the hospital, or you may need to remain in the hospital for weeks or months. The length of time will depend on how your immune system is recovering and whether or not the transplanted cells stay in your body. Before you leave the hospital, the doctors will give you detailed instructions that you must follow to prevent infection and other complications. Your doctor will keep monitoring your recovery, possibly for up to oneyear.
Although blood or bone marrow transplant is an effective treatment for some conditions, the procedure can cause early or late complications. The required medicines and radiation can cause nausea, vomiting, diarrhea, tiredness, mouth sores, skin rashes, hair loss, or liver damage. These treatments also can weaken your immune system and increase your risk for infection. Some people may experience a serious complication called graft-versus-host disease if the donated stem cells attack the body. Other people may reject the donor stem cells after the transplant, which can be an extremely serious complication.
VisitBlood-Forming Stem Cell Transplantsfor more information about this topic.
The rest is here:
Blood and Bone Marrow Transplant - NHLBI, NIH
"Latest Stem Cells News" – news from the world about stem …
By NEVAGiles23
To meet the industry needs and to benefit students and research scholars, Nitte University has set up the a centre for stem cell research at K S Hedge Medical Academy (Kshema).
The Nitte University Centre for Stem Cell Research and Regenerative Medicine (NUCSReM), has been established to further advance the understanding of stem cell biology and to facilitate clinical application of stem cells to treat patients with various ailments, says N Vinaya Hegde, chancellor, Nitte University.
Gianvito Martino, the head of the Neurosciences division at the Institute of San Raffaele in Milan in a speech at Multiple Sclerosis Week, which took place from May 23-31, warned against trips of hope to clinics that promise effective treatments using stem cells.
According to Martino, who coordinated a Consensus Conference on last Tuesday in London on the neurodegenerative disease, where the guidelines for pre-clinical studies and clinical treatments with stem cells were defined, hundreds of Italian patients each year go on these trips due to cures that are promised. In the best-case scenario, these patients return in the Read More
Scientists have claimed they would serve the worlds first test tube hamburger this October.
A team, led by Prof Mark Post of Maastricht University in the Netherlands, says it has already grown artificial meat in the laboratory, and now aims to create a hamburger, identical to a real stuff, by generating strips of meat from stem cells.
The finished product is expected to cost nearly 220,000 pounds, The Daily Telegraph reported.
Prof Post said his team has successfully replicated the process with cow cells and calf serum, bringing the first artificial burger a step closer.
In October we are going to provide a Read More
Studies begun by Harvard Stem Cell Institute (HSCI) scientists eight years ago have led to a report published today that may be amount to a major step in developing treatments for amyotrophic lateral sclerosis (ALS), also known as Lou Gehrigs disease.
The findings by Kevin Eggan, a professor in Harvards Department of Stem Cell and Regenerative Biology (HSCRB), and colleagues also has produced functionally identical results in human motor neurons in a laboratory dish and in a mouse model of the disease, demonstrating that modeling the human disease with customized stem cells in the laboratory could relatively soon eliminate some Read More
Frank LaFerla, left, Mathew Blurton-Jones and colleagues found that neural stem cells could be a potential treatment for advanced Alzheimer's disease
UC Irvine scientists have shown for the first time that neural stem cells can rescue memory in mice with advanced Alzheimers disease, raising hopes of a potential treatment for the leading cause of elderly dementia that afflicts 5.3 million people in the U.S.
Mice genetically engineered to have Alzheimers performed markedly better on memory tests a month after mouse neural stem cells were injected into their brains. The stem cells secreted a protein that created more neural connections, improving Read More
More here:
"Latest Stem Cells News" - news from the world about stem ...
Genetically modified skin grown from stem cells saved a 7 …
By NEVAGiles23
Scientists reported Wednesday that they genetically modified stem cells to grow skin that they successfully grafted over nearly all of a child's body - a remarkable achievement that could revolutionize treatment of burn victims and people with skin diseases.
The research, published in the journal Nature, involved a 7-year-old boy who suffers from a genetic disease known as junctional epidermolysis bullosa (JEB) that makes skin so fragile that minor friction such as rubbing causes the skin to blister or come apart.
By the time the boy arrived at Children's Hospital of Ruhr-University in Germany in 2015, he was gravely ill. Doctors noted that he had "complete epidural loss" on about 60 percent of his body surface area, was in so much pain that he was on morphine, and fighting off a systemic staph infection. The doctors tried everything they could think of: Antibiotics, changing dressings, grafting skin donated by his father. But nothing worked, and they told his parents to prepare for the worst.
"We had a lot of problems in the first days keeping this kid alive," Tobias Hirsch, one of the treating physicians, recalled in a conference call with reporters this week.
Hirsch and his colleague Tobias Rothoeft began to scour the medical literature for anything that might help and came across an article describing a highly experimental procedure to genetically engineer skin cells. They contacted the author, Michele De Luca, of the Center for Regenerative Medicine University of Modena and Reggio Emilia in Italy. De Luca flew out right away.
Using a technique he had used only twice before and even then only on small parts of the body, De Luca harvested cells from a four-square-centimeter patch of skin on an unaffected part of the boy's body and brought them into the lab. There, he genetically modified them so that they no longer contained the mutated form of a gene known to cause the disease and grew the cells into patches of genetically modified epidermis. They discovered, the researchers reported, that "the human epidermis is sustained by a limited number of long-lived stem cells which are able to extensively self-renew."
In three surgeries, the child's doctors took that lab-grown skin and used it to cover nearly 80 percent of the boy's body - mostly on the limbs and on his back, which had suffered the most damage. The procedure was permitted under a "compassionate use" exception that allows researchers under certain dire circumstances to make a treatment available even though it is not approved by regulators for general use. Then, over the course of the next eight months while the child was in the intensive care unit, they watched and waited.
The boy's recovery was stunning.
The regenerated epidermis "firmly adhered to the underlying dermis," the researchers reported. Hair follicles grew out of some areas. And even bumps and bruises healed normally. Unlike traditional skin grafts that require ointment once or twice a day to remain functional, the boy's new skin was fine with the normal amount of washing and moisturizing.
"The epidermis looks basically normal. There is no big difference," De Luca said. He said he expects the skin to last "basically the life of the patient."
In an analysis accompanying the main article in Nature, Mariacelest Aragona and Cedric Blanpain wrote that this therapy appears to be one of the few examples of truly effective stem-cell therapies. The study "demonstrates the feasibility and safety of replacing the entire epidermis using combined stem-cell and gene therapy," and also provides important insights into how different types of cells work together to help our skin renews itself.
They said there are still many other lingering questions, including whether such procedures might work better in children than adults and whether there would be longer-term adverse consequences, such as the development of cancer.
There are also many challenges to translating this research to treating wounds sustained in fires or other violent ways. In the skin disease that was treated in the boy, the epidermis is damaged but the layer beneath it, the dermis, is intact. The dermis is what the researchers called an ideal receiving bed for the lab-grown skin. But if deeper layers of the skin are burned or torn off, it's possible that the artificial skin would not adhere as well.
"No matter how you prepare, it's a bad situation," De Luca said. For the time being, he says he's continuing to study the procedure in two clinical trials that involve genetic diseases.
Meanwhile, Hirsch and Rothoeft report that the boy is continuing to do well and is not on any medication for the first time in many years. Doctors are carefully monitoring the child for any signs that there may be some cells that were not corrected and that the disease may re-emerge, but right now that does not appear to be happening in the transplanted areas. However, the child does have some blistering in about 2 to 3 percent of his body in non-grafted areas and they are considering whether to replace that skin as well.
But for now, they are giving the boy time to be a boy, Rothoeft said: "The kid is now back to school and plays soccer and spends other days with the children."
Read more:
Genetically modified skin grown from stem cells saved a 7 ...
How to choose the right night cream for your skin – VOGUE India
By NEVAGiles23
In simpler times, skincare choices were slotted by agetwenties, thirties, fortiesor skin type, that is, oily, dry or combination. Night creams signalled a milestone, an anti-ageing ritual you transited to once you turned forty. Not anymore. A new generation of night creams and hybrids in a jar are challenging the norm. And millennials, more concerned than ever before about the state of their skin, are discovering a range of choices on offer. Retinols, ferulic acid, hyaluronic acid, ceramides, phospholipids, stem cells, biomimetic peptides, arbutin are just some of the ingredients you find in night creams, and you have to choose keeping a combination of factors in mind, says Dr Malavika Kohli, a Mumbai-based celebrity dermatologist.
Your skin could be older than your age, at any ageAs experts repeatedly tell us, there are two kinds of ageingintrinsic and extrinsic. The first is caused by the ticking of the clock and cant be reversed, though perhaps, can be slowed down. The second is caused by factors we all face dailyharsh sun, pollutants and air conditioning, which can cause skin to age faster on the surface. We have lifestyle habits we find hard to kick like smoking and drinking. I wont even begin to talk of 4pm sugar cravings. Over-exercising and yo-yo dieting are an easy way to get sagging skinyou dont have to wait till you reach forty.
The rhythm of the nightThe day is for protection and coverage, and sunscreens, BB creams, CC creams work hard to battle environmental factors. But the night is for more intensive repair, undisturbed. The night signals a time of rest and restoration as your cells tend to be more relaxed and receptive. If you have problem skin, the night is the time to let a good anti-blemish cream go to work. If your skin is dehydrated, then a moisturising cream will deliver the benefits best at night. Many star ingredients like retinol and vitamin C, in potent form, work best out of the sun.
Cream versus serum versus lotionDo creams score over lotions? New generation night creams are often oil-free, light and easily absorbedall the things you looked for in a lotion. Thanks to their creamy nature, they texturise skin better leaving it silky and soft. Mousse, cream-gels and moisture-whipped creams are blurring the definition of traditional creams and lotions. Serums are specifically targeted to work at the cellular level and dont deliver overall surface moisture, so use a combination of that and a cream as you get older.
Understand your skinKnowing your skin type is important, but so is understanding your skin condition. Dry skin for example, says Dr Kohli, lacks sebum or oil, while dehydrated skin lacks water, but both indicate poor barrier function.
If your skin is very dehydrated on the surface, Este Edit by Este Lauders Pink Peony Overnight Water Pack targets all skin types. It gives skin an antioxidant boost with extracts of goji berry, blueberry and cranberry in a water-based gel. Garnier SkinActive Moisture Bomb, with amla and plant serums, is targeted at dry and sensitive skin. For more intense deep moisturisation try, a cream with hyaluronic acid like Revitalift Laser X3 Night Cream Mask from LOral Paris.
For skin that is irritated and sun-damaged, a cocktail of antioxidants, peptides and vitamins will help. Olay Regenerist Advanced Anti-Ageing Revitalizing Night Skin Cream has an amino-peptide complex that gets the skin into healing mode while you snooze.
Just Herbs Blemfree Anti Blemish Night Cream is SLS, petrochemical and paraben-free and will not irritate damaged skin further. It targets sun spots, uneven and patchy skin with organic sunflower oil.
Dull skin with pigmentation indicates pore-clogging debris accumulation and slow cell turnover. A cream with salicylic acid will provide much-needed but gentle exfoliation at night. Clinique Turnaround Overnight Revitalising Moisturizer is non-acnegenic and has both salicylic acid and beta hydroxy acid to speed up exfoliation.
Kama Ayurvedas Rejuvenating And Brightening Ayurvedic Night Cream has saffron, aloe vera, liquorice and manjistha (a blood purifier), which work to soothe skin and improve cell turnover.
Early crows feet and fine lines will benefit from retinoid-based creams for long-lasting results. Neutrogena Rapid Wrinkle Repair Night Moisturizer with retinol is non-greasy yet promises deep action. For a targeted solution, Yves Rocher Serum Vegetal Wrinkles & Firmness Targeted Filler Eyes And Lips works specifically on crows feet and fine lines around the eye. It can also be used under make-up in the day but use it at night for best results.
The Body Shops Pomegranate Firming Night Cream has organic oil of pomegranate and pomegranate peel, which aresupposed to deliver retinol-like resultspomegranates are a rich source of antioxidants as well.
Natural, organic, ayurvedic or chemicalfor all night creams to deliver results, wait four to six weeks. But most importantly choosing right, investing in the right skin care routine and maintaining it will be the best thing you can do, says Dr Kohli. Make the commitment. You skin will thank you for this.
Take your pick from our edit below:
Este Edit by Este Lauders Pink Peony Overnight Water Pack, Rs 3,202
Garnier SkinActive Moisture Bomb, Rs 1,088
LOral Paris Revitalift Volume Filler Night Cream, Rs 1,450
Olay Regenerist Advanced Anti-Ageing Revitalizing Night Skin Cream, Rs 1,399
Just Herbs Blemfree Anti Blemish Night Cream, Rs 895
Clinique Turnaround Overnight Revitalising Moisturizer, Rs 2,626
Kama Ayurveda Rejuvenating And Brightening Ayurvedic Night Cream, Rs 1,950
Neutrogena Rapid Wrinkle Repair Night Moisturizer, Rs 1,199
Yves Rocher Serum Vegetal Wrinkles & Firmness Targeted Filler Eyes And Lips, Rs 1,400
The Body Shops Pomegranate Firming Night Cream, Rs 1,696
Read more:
How to choose the right night cream for your skin - VOGUE India
Longeveron Initiates Phase 2b Stem Cell Therapy Trial to Treat Aging Frailty – Markets Insider
By NEVAGiles23
MIAMI, Sept. 6, 2017 /PRNewswire/ --Longeveron LLC, a regenerative medicine company developing cellular therapies, announced today that it treated its first patient in the Company's Phase 2b clinical trial evaluating the safety and efficacy of Longeveron human Allogeneic Mesenchymal Stem Cells (LMSCs) in patients with Aging Frailty Syndrome. This trial is being conducted pursuant to an Investigational New Drug Application (IND) in conformance with U.S. Food & Drug Administration (FDA) regulations. Aging Frailty is a common geriatric medical condition that is serious and life-threatening, and for which there are currently no U.S. Food and Drug Administration-approved therapeutics available.
The clinical trial is designed to enroll 120 subjects from approximately 10 medical centers around the U.S. The primary objective of the study is to evaluate the effect that LMSCs have on functional mobility and exercise tolerance in elderly Aging Frailty subjects. Three different LMSC dose groups will be compared to placebo over 12 months in a randomized, double-blinded, parallel arm design.Specifically, the trial will evaluate changes to the following:
"Frailty Syndrome is a very common and difficult situation to manage from a clinician's and caregiver's standpoint," stated Marco Pahor, M.D., Director of the Institute on Aging at the University of Florida. "The goal of intervention is to stop or slow the progression towards dependence and adverse health outcomes common to the syndrome, and to restore the patient to a state of healthy aging and functional independence. Longeveron's regenerative medicine trial is an important step towards the development of an effective therapeutic."
Allogeneic mesenchymal stem cells (MSCs) were previously tested in a Phase I/2 proof-of-concept study conducted by investigators at the University of Miami'sMiller School of Medicine. In that study, MSCs were shown to be safe and well-tolerated in frail, elderly subjects in a Phase 1 open label single ascending dose trial (publication link here) with a similar safety profile observed in the randomized, placebo-controlled Phase 2 study (publication link here) Subjects treated with a dose of 100 million MSCs showed significant improvements in six minute walking distance, and significant decreases in systemic inflammation, both relative to baseline.
"As individuals age, stem cell production and proliferation decreases, systemic inflammation increases, and a person's ability to repair and regenerate worn out or damaged tissue diminishes," remarked Suzanne Liv Page, Longeveron Chief Operating Officer. "In frail individuals this is particularly problematic. Our hypothesis is that exogenously infused allogeneic mesenchymal stem cells that are derived from the bone marrow of a healthy young donor, and culture expanded in our lab, will have potent regenerative and restorative effects."
Participants in this study must be between the ages of 70 and 85, be diagnosed as mildly to moderately frail due primarily to aging, and be able to walk between 200 and 400 meters over six minutes. Detailed information about the trial, subject eligibility and participating centers can be found by clicking here or by visiting the website http://www.clinicaltrials.gov and entering trial ID: NCT03169231.
About LMSCs
LMSCs is an allogeneic product, which means it is produced from stem cells derived from human donor bone marrow, and not from the patient's own stem cells, (referred to as autologous). LMSCs are manufactured at Longeveron's Cell Processing Facility in Miami, Fl. using a proprietary ex vivo culture expansion process.
About Longeveron
Longeveron is a regenerative medicine therapy company founded in 2014. Longeveron's goal is to provide the first of its kind biological solution for aging-related diseases, and is dedicated to developing safe cell-based therapeutics to revolutionize the aging process and improve quality of life. The company's research focus areas include Alzheimer's disease, Aging Frailty and the Metabolic Syndrome. Longeveron produces LMSCs in its own state-of-the-art cGMP cell processing facility. http://www.longeveron.com
Contact:Suzanne Liv Pagerel="nofollow">spage@longeveron.com305.909.0850
View original content with multimedia:http://www.prnewswire.com/news-releases/longeveron-initiates-phase-2b-stem-cell-therapy-trial-to-treat-aging-frailty-300514668.html
SOURCE Longeveron LLC
Go here to see the original:
Longeveron Initiates Phase 2b Stem Cell Therapy Trial to Treat Aging Frailty - Markets Insider
A Napa family struggles to give their child a normal life – Napa Valley Register
By NEVAGiles23
Every mom anticipates her childs first day at kindergarten.
For Jessica Pequeno, that kind of milestone is something this mom is only now ready to imagine.
The last time the Napa Valley Register wrote about the Pequeno family, it was October 2015. Their then 22month-old toddler Xavier was about to begin the fight of his life against an immune deficiency disorder so rare it had no name.
Today, there is good news about Xavier and his family.
The now 4-year-old completed a grueling, yet successful stem cell transplant, just started his second year of preschool and is making progress with his health, said his mother. Come this time next year, shell be enrolling him in kindergarten.
Every day is different. We still deal with so many unknowns, she said. But, Hes doing so much better than anybody would have ever expected.
Just getting to this point was a long road.
Two years ago, the Pequenos told their story in hopes of finding a bone marrow transplant match for their son. Doctors originally told them there was no match within the family. Fortunately, after a second set of tests, the Pequenos middle son, Higinio Pequeno IV, was identified as a partial match.
That news was awesome, said Jessica Pequeno.
The family prepared for the transplant to take place in June 2015, but a stubborn infection put those plans on hold. By December, his health care team at the University of California at San Francisco wouldnt even give us odds as his percentage of survival because they didnt know, she said.
They finally had a name for his disease IKBa gain of function mutation with ectodermal dysplasia but there were too many unknowns.
Pequeno said she realized the stem cell transplant was a kind of a now-or-never situation.
We just kept saying, We just have to keep doing this. Giving up wasnt an option.
On Dec. 1, 2015, Xavier was admitted to the hospital for the transplant. The process began with eight days of chemotherapy followed by the stem cell transplant.
Putting a line in his femoral artery, blood was collected from Higinio, then 10. Then a machine separated the stem cells from the blood. Higinios stem cells were then given to Xavier. The stem cells were put into a vein, much like a blood transfusion. The stem cells are then meant to travel to the bone marrow, engraft, and hopefully begin making new, normal blood cells.
On the day of the transplant, the whole Pequeno family, including her husband Higinio, son Higinio and daughter Maya and Jessica Pequenos mom were there. Seeing those potentially life-saving cells go into her son was very emotional, said Jessica Pequeno.
We all cried, she said. It was really scary, but you cant stop. You have to keep going.
During the procedure, Xavier was awake, she said. But the side-effects of the chemotherapy were starting to set in. His hair was falling out, and he had stopped eating and drinking because his mouth sores were so bad and painful, she said. He was on morphine for the pain.
The waiting began. Would the stem cell transplant be a success?
The family was told that Xavier would likely spend many months in the hospital. We planned to be separated as a family for at least six months, said Pequeno. We just expected it to be really hard.
She spent her nights in the room with her son, sleeping on a blow-up twin mattress. The rest of her family went back to Napa. Because Jessica was unable to work and her husband couldnt work because he needed to have knee surgery, the family had moved in with Jessicas mother.
Meanwhile, doctors continued to check Xaviers blood to see if his body was responding to the stem cell transplant.
Every day Id ask, Where are we at? his mother said.
And then, one day in early January, the doctors came to see Xavier, and they said, We have good news.
The transplant was starting to work and the new cells were starting to grow, she said.
I cried, said Pequeno. It happened so much faster than what they had expected.
By the end of January, Xavier was well enough to go home to Napa.
It was scary to come home and super exciting, she said.
Back at home, a new routine was created. Xavier was still taking 25 different medications, some multiple times per day. He had a gastrostomy or G tube for feeding the nutritional liquid he eats and a central line a thin, flexible tube used to give medicines, fluids, nutrients, or blood products over a long period of time.
Honestly I dont remember a lot of it. It becomes a big blur, said Pequeno.
The family continued to visit UCSF at least once a week for blood counts and other checks. There were more ups and downs. Infections and illnesses caused him to be hospitalized for days at a time in February, May and June. His central line got infected. He got shingles.
His immune system was still really weak, said Pequeno.
But he kept bouncing back.
Just two weeks ago, doctors finally removed his central line.
It was a huge step, she said.
Challenges remain. Before the stem cell transplant, Xavier had about 5 to 10 percent of a normal immune system. Now he has about 60 to 70 percent, doctors said.
Were starting to learn hes really prone to sinus and respiratory infections, and viruses, said Pequeno. His body just doesnt fight like everyone elses.
Other habits are harder to change.
Before Xavier went to preschool, Pequeno and her family were able to carefully control his exposure to germs.
When he was able to go to preschool, I wasnt in control of those environments anymore. Its really hard. It gets easier, but it takes a while to learn how to kind of let go, she said.
Get news headlines sent daily to your inbox
Today, Xavier takes only six medications a day and can receive infusions of antibodies at home. Visits to UCSF have been cut back to once every four to five weeks.
Developmentally, Xavier is doing well, she said.
He has some hearing loss, which we continue to monitor. Its hard to say if its a side effect of chemo or other drugs. Right now it doesnt affect his speech. He also has skin, hair and teeth health issues to manage.
Xavier doesnt complain at lot, said Pequeno.
Hes always handled everything so well. When he suffered, He would get quiet. Even now when hes not feeling good, instead of crying like many small children would, Xavier is quiet.
Financially, its hard because Im still not able to work, she said.
Xaviers medical care is provided by Partnership HealthPlan/Medi-Cal and California Childrens Services. Her husband went back to work. Pequeno is taking classes at Napa Valley College while her son is in preschool.
I want to be a nurse but I want to go into pediatrics I want to teach parents how to advocate for their kids.
One of the most significant changes for Pequeno was becoming more confident in working with health care providers regarding her sons care.
Nobody could hand me a book when this started (that said) these are the things you need to know and questions to ask. No one told me I was the captain of his team. Her confidence grew. You have to get comfortable in that role.
The past several years have left a lasting imprint on the whole family, she said. Signs of post-traumatic stress have been seen in all family members. Learning coping skills and how to manage stress is important.
Especially for their son Higinio, said his mother. Its not easy for young boy to come to terms with what his brother went through and his own unique contribution.
I dont think any 10-year-old is capable of understanding the weight that carries, she said.
The struggles havent ended, said Pequeno.
Weve just learned to manage them and adjust and deal with the financial part. We juggle. You learn how to change your priorities.
Its easy to say her son looks healthy, said Pequeno, but thats also frustrating because it takes so much work to get him to continue to look like that.
It definitely takes a toll and lot of work and sacrifice to keep him where hes at, she said.
And Xaviers condition isnt going away, she noted. This is something we will manage for the rest of his life one way or the other.
People say, Oh youre so strong. But I think that as a mom, you just do it, said Pequeno. You pull the strength from somewhere. Because you dont give up on your kids.
Read more from the original source:
A Napa family struggles to give their child a normal life - Napa Valley Register
Stem cell transplant to be launched – Himalayan Times
By NEVAGiles23
Kathmandu, September 4
Civil Hospital is launching haploidentical stem cell transplant within a few months.
Its a treatment process for patients with blood-related cancers and certain blood disorders.
Patients who need a stem cell transplant and cant find a donor who matches their tissue type will benefit from the transplant. Haploidentical transplant is a modified form of stem cell transplant in which a healthy first degree relative a parent, or sibling can often serve as a donor.
When no matched donor is available, half-matched related (haploidentical) donors are safely used in stem cell transplantation, informed Dr Bishesh Poudyal, associate professor and chief of Clinical Hematology and Bone Marrow Transplant Unit at the hospital.
The cost of the transplant will be around 12 to 15 lakh rupees. People suffering from blood cancer, aplastic anaemia, sickle cell anaemia and thalassemia will benefit from the transplant.
The hospital has been performing allogeneic and autotransplant stem cell transplant where only siblings can be donors.
Nine patients had undergone autotransplant and one had undergone allogeneic stem cell transplant in the hospital after it started bone marrow transplant in the hospital in 2016.
A version of this article appears in print on September 05, 2017 of The Himalayan Times.
Follow The Himalayan Times onTwitterandFacebook
U of R hosts stem cell swabbing initiative to help save lives through national database – Globalnews.ca
By NEVAGiles23
At just four-years-old, Erica Honoways son has gone through more than most people will experience in a lifetime.
In February 2016, the family received devastating news, her son Lincoln had been diagnosed with bone marrow failure. He was just three years old at the time.
Lincoln needed a bone marrow transplant, and doctors were only able to find two matches in the entire world. The first donor fell through, so Lincoln was left with only one option.
It was terrifying. We didnt know what we were dealing with, Honoway said. We didnt know what the chances were they would find a match for him. Even if they did, we didnt know if he would make it through the transplant, so it was the scariest experience of our lives.
After the blood transfusions, chemotherapy, radiation and bone marrow transplant, Lincoln is now a happy and active four year old, all thanks to an unknown hero.
This person has just been our angel, Honoway said. We love her and we dont even know her. We say her We have a feeling its a woman but we dont know anything about this person. We dont know where in the world they live, we dont know if its a man or a woman, we dont know anything. But all we know is that they are our hero.
Honoway added that they must wait a minimum of two years before they can meet the donor.
Lincolns successful transplant was the reason Honoway and her family were supporting the University of Reginas Get Swabbed event on Monday, to encourage students between the ages of 17 and 35 to get their cheeks swabbed and enter a national stem call database.
I heard about Erica and Lincoln and I just thought it was amazing how someone just saved his life, and she doesnt even know who he is or who she is, I just think its amazing, U of R Stem Cell Club president Sylvia Okonofua said. I felt like if I take up this initiative and actually run drives where people [can get] on the stem cell registry, [it can] help save a life someday.
Getting students involved and realizing their impact of their involvement through something like this was one of the main goals, U of R student engagement co-ordinator Doug OBrien said. Another goal of having todays Get Swabbed initiative was obviously to support the stem cell database for Canada and through the One Match program.
Approximately 80 students took part in Mondays Get Swabbed event, and organizers are hoping to increase that number for the next event on Sept. 14.
Its a simple way to help save a life.
I hope people realize that they have the opportunity to save someones life, imagine what that would feel like, Honoway said. Youd get to know forever that you saved another humans life. Its pretty special.
2017Global News, a division of Corus Entertainment Inc.
Read the rest here:
U of R hosts stem cell swabbing initiative to help save lives through national database - Globalnews.ca
Gene study sheds light on middle-age sight loss – Medical Xpress
By NEVAGiles23
Chemical changes in the eye that can lead to blindness have been identified by scientists, a conference will hear tomorrow (Tuesday 5 September).
Their findings aid understanding of a genetic condition that causes sight loss for one in 3,000 people in the UK.
They will be presented at the Eye Development and Degeneration 2017 conference in Edinburgh.
Eye condition
Scientists examined how changes in a gene known as RPGR damage eye cells to cause a disorder known as X-linked retinitis pigmentosa.
The condition is incurable and affects night and peripheral vision before gradually causing blindness in middle age.
Skin samples
A team led by Edinburgh researchers took skin samples from two patients and transformed stem cells which can change into any cell type into light-sensing eye cells known as photoreceptors.
They compared these with cells from healthy relatives of the patients.
Photoreceptors which decay in retinitis pigmentosa patients differed in their fundamental structure when compared with those from family members.
Key molecules
Follow-up studies in mice identified key molecules that interact with RPGR to maintain the structure of photoreceptors.
When RPGR is flawed, the structure is compromised and photoreceptors cannot function correctly, leading to sight loss.
The study is published in the journal Nature Communications and was carried out at the University of Edinburgh's Medical Research Council Centre for Regenerative Medicine.
It was funded by the Wellcome Trust and the charity Retinitis Pigmentosa Fighting Blindness.
"By furthering our understanding of the RPGR gene and its effects on photoreceptor cells, we hope our findings bring us closer to developing a possible treatment for this devastating disease," says Dr Roly Megaw of the Medical Research Council Institute for Genetics and Molecular Medicine.
Explore further: New trial for blindness rewrites the genetic code
See the article here:
Gene study sheds light on middle-age sight loss - Medical Xpress
Chemo-Boosting Drug Discovered for Leukemia – Futurism
By NEVAGiles23
In BriefResearchers have discovered that acute myeloid leukemia causes leaking from the bone marrow that interferes with chemotherapy delivery. If chemotherapy for AML can be used together with drugs to treat this problem, outcomes may improve dramatically.
Researchers have discovered that the most common form of acute leukemia which strikes adults, acute myeloid leukemia (AML), prevents chemotherapy from being delivered properly by causing bone marrow to leak blood. This means that, by using drugs developed to treat blood vessel and heart problems in concert with chemotherapy, AML might be much more treatable. In this study, these drugs reversed bone marrow leaks in tissue from mice and humans, and also boosted chemotherapy effects. Since these drugs are already in clinical trials for other applications, the team hopes that they may be approved for use in the treatment of AML patients soon.
We found that the cancer was damaging the walls of blood vessels responsible for delivering oxygen, nutrients, and chemotherapy. When we used drugs to stop the leaks in mice, we were able to kill the cancer using conventional chemotherapy, Diana Passaro, Francis Crick Institute researcher and first author of the paper,said in a press release.
The team studied the ways in which AML affects bone marrow by injecting healthy mice with bone marrow from AML patients to create AML mice. They then used intravital microscopy to compare the bone marrow of AML mice with healthy mice and observed pre-loaded fluorescent dyes leaking from the bone marrow blood vessels into the AML mice. Next, they discovered that the cells lining the blood vessels in AML mice were oxygen-starved, which led to increases in nitric oxide (NO), a muscle relaxant. They realized this was probably causing the leaking, and provided NO blockers to the AML mice which slowed leukemia progress and extended remission.
The team not only helped chemotherapy drugs to reach their targets more effectively, but they also found that NO blockers increased stem cells in the bone marrow. This might help healthy cells out-compete cancerous cells, and improve treatment outcomes. Finally, the researchers found that an inability to reduce NO levels and chemotherapy failure were related.
With an average lifetime risk of less than half of one percent among the general population, AML is relatively rare. This is in addition to the fact that AML is a disease that primarily affects older people; the average age of AML patients in the US is 67, and the disease is even rarer before the age of 45. Despite this rarity, however, TheAmerican Cancer Society estimates that there will be around 21,380 new cases of AML in the US in 2017, and about 10,590 deaths, almost all in adults.
This high death rate is linked to the character of this form of cancer, which is particularly aggressive. This is in large part due to chemotherapy resistance and relapse, fewer than 25 percent of patients survive longer than five years after diagnosis. However, if this research leads to a new regimen of combined drug therapy, these numbers may change.
The team is optimistic about their findings and hopes to start clinical trials soon. Weve uncovered a biological marker for this type of leukemia as well as a possible drug target, Francis Crick Institute Group Leader and paper senior author Dominique Bonnet said in the press release. The next step will be clinical trials to see if NO blockers can help AML patients as much as our pre-clinical experiments suggest.
Excerpt from:
Chemo-Boosting Drug Discovered for Leukemia - Futurism
Xeno-free Cell Culture Medium for Regenerative Medicine Research – Technology Networks
By NEVAGiles23
Stem cells and genome editing offer exciting opportunities within regenerative medicine. However, any clinical application of stem cells requires strict regulation to ensure that the cells are not exposed to animal derived products.
StemFit Basic02 is a xeno-free, defined medium for human pluripotent stem cell (hiPSC) culture that offers an effective solution for regenerative medicine research. This medium has been proven to effectively maintain Induced Pluripotent Stem (iPS) and Embryonic Stem (ES) cells under feeder-free conditions, during the reprogramming, expansion and differentiation phases of stem cell culture.
Specially formulated to enhance single cell expansion in the cloning step of stem cell genome editing, StemFit Basic02 offers superior and stable growth performance, high colony forming efficiency and robust scalable cell expansion. This ensures high karyotype stability over long periods and hence reproducible culture conditions.
StemFit cell culture media has been independently evaluated by CGT Catapult, an independent centre of excellence helping advance the UK cell and gene therapy industry. In these tests, StemFit not only delivered higher cell proliferation, but also showed characteristics such as homogeneity of gene expression compared with iPS cells cultured with 4 other media without any chromosomal abnormalities.
More:
Xeno-free Cell Culture Medium for Regenerative Medicine Research - Technology Networks
Bone Marrow Protein May Be Target for Improving Stem Cell Transplants – Penn: Office of University Communications
By NEVAGiles23
Bone marrow contains hematopoetic stem cells, the precursors to every blood cell type. These cells spring into action following bone marrow transplants, bone marrow injury and during systemic infection, creating new blood cells, including immune cells, in a process known as hematopoiesis.
A new study led by University of Pennsylvania and Technical University of Dresden scientists has identified an important regulator of this process, a protein called Del-1. Targeting it, the researchers noted, could be an effective way to improve stem cell transplants for both donors and recipients. There may also be ways to modulate levels of Del-1 in patients with certain blood cancers to enhance immune cell production. The findings are reported this week in The Journal of Clinical Investigation.
Because the hematopoetic stem cell niche is so important for the creation of bone marrow and blood cells and because Del-1 is a soluble protein and is easily manipulated, one can see that it could be a target in many potential applications, said George Hajishengallis, the Thomas W. Evans Centennial Professor in the Department of Microbiology in Penns School of Dental Medicine and a senior author on the work.
I think that Del-1 represents a major regulator of the hematopoetic stem cell niche, said Triantafyllos Chavakis, co-senior author on the study and a professor at the Technical University of Dresden. It will be worthwhile to study its expression in the context of hematopoetic malignancy.
For Hajishengallis, the route to studying Del-1 in the bone marrow began in his field of dental medicine. Working with Chavakis, he had identified Del-1 as a potential drug target for gum disease after finding that it prevents inflammatory cells from moving into the gums.
Both scientists and their labs had discovered that Del-1 was also expressed in the bone marrow and began following up to see what its function was there.
In the beginning, I thought it would have a simple function, like regulating the exit of mature leukocytes [white blood cells] from the marrow into the periphery, Hajishengallis said, something analogous to what it was doing in the gingiva. But it turned out it had a much more important and global role than what I had imagined.
The researchers investigations revealed that Del-1 was expressed by at least three cell types in the bone marrow that support hematopoetic stem cells: endothelial cells, CAR cells and osteoblasts. Using mice deficient in Del-1, they found that the protein promotes proliferation and differentiation of hematopoetic stem cells, sending more of these progenitor cells down a path toward becoming myeloid cells, such as macrophages and neutrophils, rather than lymphocytes, such as T cells and B cells.
In bone marrow transplant experiments, the team discovered that the presence of Del-1 in recipient bone marrow is required for the transplanted stem cells to engraft in the recipient and to facilitate the process of myelopoesis, the production of myeloid cells.
When the researchers mimicked a systemic infection in mice, animals deficient in Del-1 were slower to begin making myeloid cells again compared to those with normal Del-1 levels.
We saw roles for Del-1 in both steady state and emergency conditions, Hajishengallis said.
Hajishengallis, Chavakis and their colleagues identified the protein on hematopoetic stem cells with which Del-1 interacts, the 3 integrin, perhaps pointing to a target for therapeutic interventions down the line.
The scientists see potential applications in bone marrow and stem cell transplants, for both donors and recipients. In donors, blocking the interaction between Del-1 and hematopoetic stem cells could enhance the mobilization of those progenitors into the bloodstream. This could be helpful for increasing donor cell numbers for transplantation. Transplant recipients, on the other hand, may need enhanced Del-1 interaction to ensure the transplanted cells engraft and begin making new blood cells more rapidly.
In addition, people undergoing chemotherapy who develop febrile neutropenia, associated with low levels of white blood cells, might benefit from the role of Del-1 in supporting the production of immune-related blood cells such as neutrophils.
Its easy to think of practical applications for these findings, said Hajishengallis. Now we need to find out whether it works in practice, so our studies continue.
Ioannis Mitroulis, Lan-Sun Chen and Rashim Pal Singh of TU-Dresden were co-lead authors on the study, and Ben Wielockx of TU-Dresden was a co-senior author along with Hajishengallis and Chavakis. They were joined by coauthors Tetsuhiro Kajikawa, Kavita Hosur, Tomoki Maekawa and Baomei Wang of Penn Dental Medicine; Ioannis Kourtzelis, Matina Economopoulou, Maria Troullinaki, Athanasios Ziogas, Klara Ruppova, Pallavi Subramanian, Panayotis Verginis, Malte Wobus, Martin Bornhuser and Tatyana Grinenko of TU-Dresden; Torsten Tonn of the German Red Cross Blood Donation Service in Dresden; and Marianna Di Scala and Andrs Hidalgo of the Spanish National Center for Cardiovascular Research.
The study was supported by the Deutsche Forschungsgemeinschaft, European Commission, European Research Council and National Institutes of Health (grants AI068730, DE024153, DE024716, DE0152 54 and DE026152).
Follow this link:
Bone Marrow Protein May Be Target for Improving Stem Cell Transplants - Penn: Office of University Communications
Wasteful spending on medical public works – The Japan Times
By NEVAGiles23
Social security expenditures keep rising endlessly as the aging of Japans population accelerates with the low birthrate. Yet, little is known about the way huge sums of taxpayer money are being poured into wasteful projects tied to vested interests in the name of saving human lives.
The Japan Agency for Medical Research and Development (AMED), which Prime Minister Shinzo Abe created with much fanfare in 2015 as a counterpart to the U.S. National Institute of Health, has an annual budget in excess of 140 billion. But the National Cancer Center (NCC), which is supposed to be a major recipient of the AMED fund, is in trouble because excessive sums have been spent on construction of buildings and facilities in the name of life science research.
A glance at the NCCs financial statements shows that its retained earnings plummeted from 5.6 billion in fiscal 2010 to 762 million in 2015. The steep fall in the retained earnings is not due to cuts in grants from the Health, Labor and Welfare Ministry, as a high-ranking NCC official claims. The NCC earned 31.4 billion from medical services and 4.3 billion from research projects in fiscal 2010, and these earnings rose by 41 percent to 44.4 billion and 14 percent to 9.2 billion, respectively, unequivocally showing that the rise in earnings far exceeded the cut in government grants.
Then why have its retained earnings fallen so rapidly? The answer is that excessive investments in construction of new facilities have eaten into its funds. For example, it cost 5.4 billion to build a new research center on next-generation surgery and endoscopy, which was completed in May, and another 16.7 billion to build a new research laboratory that began operating in July. The question here is not the sheer sum spent on these projects, but their balance with the institutes earnings. During the 2010-16 period, money spent on such construction projects exceeded the NCCs operating income by 44.3 billion. It seems clear that the NCC is investing beyond its means even as construction costs surge ahead of the 2020 Tokyo Olympic Games.
Cases of advanced medicine becoming an arena for big spending like public works projects are also found in the field of heavy particle therapy. Japan has five institutions specializing in this field, the pioneer among them being the National Institute of Radiological Sciences in Chiba Prefecture. The number in Japan represents nearly half of the 11 such facilities now operating worldwide.
The five heavy particle therapy facilities are located in Chiba, Hyogo, Gunma, Saga and Kanagawa prefectures, with one more being planned in Yamagata. And oddly enough, though, the NCC supposedly the control tower of cancer therapy in Japan has no such institute. That is said to be because those institutes were located in facilities with close links to the Education, Culture, Sports, Science and Technology Ministry which took the lead in the development of heavy particle therapy instead of the health ministry.
One reason why Gunma University has one of those institutes is not because the university excelled in cancer treatment but, according to a source familiar with the decision, because of the influence of former education minister Hirofumi Nakasone, an Upper House member elected from the Gunma constituency and a powerful member of the Liberal Democratic Partys education lobby. Gunma Prefecture was eager to have the facility established there because that involved heavy initial investments about 7 billion each for the buildings and radiation equipment providing huge economic benefits to local construction and other related industries.
Haphazard ways in which money is being spent on advanced medical research are also found in the projects for biobanks, institutions that collect and preserve biospecimens of people such as blood, urine and DNA samples. Through followup research on the registered people and linking with their clinical information, their activities are expected to contribute to identifying the causes of illnesses and developing new medicines.
Of a number of biobanks set up in Japan, the Tohoku Medical Megabank Organization at Tohoku University is by far the largest. It started operating in fiscal 2011 as part of a series of government projects for recontruction from the Great East Japan Earthquake and tsunami that hit the regions Pacific coast. In its initial year of operation, more than 10 billion from the government budget was poured into the Tohoku Medical Megabank. A total of 5.1 billion was spent on the construction and design of a seven-story complex and another 7.5 billion on its facilities and equipment in the years through fiscal 2013. While spending was scaled back in subsequent years, 4.5 billion has been set aside for the project in fiscal 2017 a sum equivalent to the funding allocated to Kyoto University for its research on iPS (induced pluripotent stem) cells.
Tohoku Medical Megabank is staffed with 32 professors, 10 associate professors and 25 instructors. However, some of the staff are deemed not necessarily fit for the types of work assigned to the institute, leading some students to comment sarcastically that those who have failed to be promoted to full professorship at Tohoku University have been given new jobs at the biobank. Moreover, the quality of some of the work performed by the institute has been called into question.
The value of biobank is determined by the quality of the data obtained by its research. If the quality is poor, such an institute would not be trusted by researchers in pharmaceutical companies or other institutes. Six years after its creation, Tohoku Medical Megabanks achievement remains poor in terms of significant research that would have lured pharmaceutical firms and others to collaborate with the institute. The head of the biobank is not deterred, however, as he says his institutes research projects take time before tangible results can be produced, and the institute keeps asking for more funding from the AMED.
As funding for Tohoku Medical Megabank gets prioritized, budgetary allocations for the more prestigious BioBank Japan, which has been jointly established by the government-affiliated Riken research institute and the University of Tokyos Institute of Medical Science, has been significantly reduced. The budget cut by AMED is about to deal a fatal blow to the institute that has played a leading role in genome research in Japan.
Given Japans dire fiscal conditions, government funding on scientific research cannot be an exception to budget cuts. Time will come sooner or later for the generous funding for Tohoku Medical Megabank to be curtailed. Today, however, huge sums of taxpayer money are being poured on the institute despite its poor records of significant achievements in the name of the reconstruction of the areas ravaged by the 2011 disasters. Along with the spending of taxpayer money, new positions are being created for post-retirement jobs for government bureaucrats.
The circumstances surrounding those advanced medical research institutes look similar to those involving the governments public works projects: Securing funding from taxpayer money becomes more important than the outcome of projects. Unless the structure is fixed, there will be no hope of medical science becoming a core of the governments growth strategy.
This is an abridged translation of an article from the August issue of Sentaku, a monthly magazine covering political, social and economic scenes. More English articles can be read at http://www.sentaku-en.com
View post:
Wasteful spending on medical public works - The Japan Times
Brain Dead Patients Could Be Brought ‘Back to Life’ in Groundbreaking Stem Cell Therapy – Wall Street Pit
By NEVAGiles23
This is not about creating zombies-those so-called living (or walking) dead that are very popular and make a really great theme for TV shows and movies.
Even the Game of Thrones has its version of the living dead with them nasty creatures called White Walkers and Wights.
But then again, thats only science fiction, isnt it? Well, maybe not. In fact, this science-fiction plot could soon play out in real life. Read on.
Researchers from U.S.-based biotech company Bioquark are aimimg to resurrect patients who have been declared brain dead. Yep, you read it right. Resurrect, just like those stories in the Bible. Really bringing back people to life.
It goes without saying that this is really a serious matter. More importantly, Bioquarks small pilot study has been approved and gotten ethical permission by none other than the National Institutes of Health. The study would be an attempt to reawaken the clinically-dead brains of patients who have suffered serious brain injuries.
How will Bioquark do it?
Through stem cell therapy, which has been proven successful already in treating various diseases such as acquired ataxia, Alzheimers disease, Bells Palsy, cerebral atrophy, cirrhosis, optic nerve damage, osteoarthritis, and leukemia.
But, with brain-dead people, its going to be a real challenge since this condition according to medical experts is irreversible.
Brain death is different from a heart thats already stopped beating. A heart can still be revived and sustained by a ventilator or life-support system.
However, in the case of brain death, you cannot revive dead neurons with the help of a life-support machine even though it continues to pump oxygen to the body. The oxygen will get into the other organs like the heart, but it can no longer be utilized by the brain when the neurons are dead.
Neurons are the working units of the brain, specialized cells which are responsible for transmitting information to other nerve cells, gland cells, and muscles.They form networks or connections in the brain which number up to trillions.
A traumatic brain injury, sudden cardiac arrest, or a stroke caused by a ruptured blood vessel in the brain can cause brain tissues to start dying due to oxygen deprivation.
Oxygen-Deprived Brains Timeline:
However, Bioquark is hopeful that stem cell treatment may spur the growth of new neurons to replace the dead ones and pave the way to revive a clinically dead brain. After all, the brain is a fighter and scientists have found out that our gray matter has a small reservoir of stem cells which can produce new neurons.
Researchers are thinking of the possibility of urging these stem cells to generate new neurons which can remedy injured brain tissues. One other option is to inject neural stem cells into the brain of a person who has just died, and these may generate the necessary new neurons to help revive the brain.
Soon, Bioquark will find out the answer or learn some more information from their pilot study which is the first stage of the companys broaderReanima project. The project is exploring the potential of cutting edge biomedical technology for human neuro-regeneration and neuro-reanimation as a way to hopefully give patients and their loved ones a second chance in life.
Bioquark is set to conduct this very first human trial in partnership with the Indian biotech company Revita Life Sciences which specializes in stem cell treatment.
Follow this link:
Brain Dead Patients Could Be Brought 'Back to Life' in Groundbreaking Stem Cell Therapy - Wall Street Pit
NNMC Welcomes Fall Semester; New Faculty & Staff – Los Alamos Daily Post
By NEVAGiles23
Northern New Mexico College started its fall semester last Monday by welcoming several new faculty and staff members to the Northern family, in addition to the incoming freshmen students.
Northern believes that its biggest assets are its people, which is why the College invites the campus and wider community to give a very warm welcome to the Colleges new faculty and staff.
Sushmita Nandy, PhD
Assistant Professor, Biology
Dr. Sushmita Nandy is a stem cell and cancer biologist by training. She earned her PhD from All India Institute of Medical Sciences, New Delhi, India. She then pursued her post-doctoral research work, first at The Jackson Laboratory, in Bar Harbor, Maine, and later at the Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, in El Paso, Texas. Her PhD research work involved investigating the regenerative potential of human mesenchymal stem cells and developing approaches to coax them towards cardiac and dopaminergic neuronal lineages.
Rhiannon West, PhD
Assistant Professor, Biology
Dr. Rhiannon West received her PhD from the University of New Mexico where she focused on the behavior and ecology of pupfishes. Dr. West then had a post-doctoral position at the University of Lincoln-Nebraska which focused on the behavioral ecology of green swordtails.She studies the behavioral ecology of pupfish (Cyprinodon spp.) where she examines the interaction between behavioral mechanisms, mate choice, morphology, and phenotypic plasticity.
Martina J. Granado, MSN, RN, CNM
Martina joins the associate degree nursing program as an adjunct faculty member. She is a graduate of Northern's associate and baccalaureate degree nursing programs, and recently received her Masters degree in nursing from the University ofNewMexico as a Certified Nurse Midwife. Her area of clinical expertise is maternal/newborn, labor and delivery, and obstetrical care. Martina is employed as a Certified Nurse Midwife at Bridge Care for Women in Los Alamos.
Sarah Graham Edwards, BA, BSN, RN
Sarah joins the associate degree nursing program as an adjunct faculty member. She received her Bachelor of Science in Nursing from State University ofNewYork. Her area of clinical expertise is labor and delivery and she maintains a clinical practice as astaffnurse at Christus St. Vincent Regional Medical Center.
Deborah Kitchen, BSN, RN
Debbie brings over 40 years of experience in nursing to her position as an adjunct faculty member. She will be teaching the nurse aide training program in the College of Nursing and Health Sciences. She is an experienced nurse aide instructor and has worked in a variety long-term care facilities and community health settings.
Gabriel Martinez
Gabriel is thenewAssistant Athletic Director/Associate Head Mens Basketball Coach. Gabriel graduated from NNMC with his Bachelor in Business Administration. He also played on the mens basketball team for four years.
Miquella Espinoza
Miquella is the new Transition Specialist for the High School Equivalency Program. She joined the College as a student and is expected to graduate this fall with a BA in Integrative Studies with an emphasis in Psychology. She received an AAS in Human Services in May 2015 from NNMC. Miquella has tutored and coached kindergarten and elementary students for seven years. She is excited for the opportunity to work with students who are in search of bettering their lives and continuing their education.
JoRonda Abeyta
JoRonda recently joined Northern as an academic advisor after graduating from NNMC with herBachelor's degree in Psychology in May of 2017. She is a Licensed Substance Abuse Associate through the State of New Mexico and is working to become a Licensed Alcohol and Drug Abuse Counselor. JoRonda also plans to pursue her master's degree in August of 2018.
Patrick K. Bendegue
Patrick is a math instructor for the High School Equivalency Program and the College. Born in Cameroon, Patrick graduated from Covenant Ministries Academy in Atlanta, Georgia. He attended Morehouse College for a year under a basketball scholarship while pursuing a degree in computer engineering. He then transferred to Northern as part of the mens basketball team, during which time he received several awards. Patrick graduated with a Bachelor in Engineering Information Technology from Northern.
Joanna Martinez
Joanna is the new Business Office Receptionist. She was previously employed with CNM where she worked as an Assessment Technician for over 2 years. She is married to Gabriel Martinez and has a 9-year-old son, Elijah. Next spring, Joanna will be graduating with her third Associates in Business Administration.
Excerpt from:
NNMC Welcomes Fall Semester; New Faculty & Staff - Los Alamos Daily Post
FDA steps up scrutiny of stem cell therapies – Reuters
By NEVAGiles23
(Reuters) - The U.S. Food and Drug Administration (FDA) is stepping up efforts to better regulate an emerging field of medicine that holds significant promise for curing some of the most troubling diseases by using the body's own cells.
A small number of "unscrupulous actors" have seized on the promise of regenerative medicine and stem cell therapies to mislead patients based on unproven, and in some cases, dangerously dubious products, the FDA said on Monday. (bit.ly/2iB4Xls)
Regenerative medicine makes use of human cells or tissues that are engineered or taken from donors. Health regulators have approved some types of stem cell transplants that mainly use blood and skin stem cells after clinical trials found they could treat certain types of cancer and grow skin grafts for burn victims.
But many potential therapies are still in the earliest stages of development. These therapies are sometimes advertised with the promise of a cure, but they often have scant evidence backing their efficacy or safety.
The FDA said it had taken steps to tackle the problem of some "troubling products" being marketed in Florida and California.
Federal officials on Friday seized from San Diego-based StemImmune Inc vials containing hundreds of doses of a vaccine reserved only for people at high risk for smallpox, the FDA said. (bit.ly/2wC1DMU)
The seizure followed recent FDA inspections that confirmed the vaccine was used to create an unapproved stem cell product, which was then given to cancer patients, the agency added.
The FDA also sent a warning letter to a Sunrise, Florida-based clinic for marketing stem cell products without regulatory approval and for major deviations from current good manufacturing practices. (bit.ly/2giGlx9)
The health regulator will present a new policy framework this fall that will more clearly detail the "rules of the road" for regenerative medicine, FDA Commissioner Scott Gottlieb, a cancer survivor, said in a statement.
Reporting by Natalie Grover in Bengaluru; Additional reporting by Tamara Mathias; Editing by Sai Sachin Ravikumar
Continue reading here:
FDA steps up scrutiny of stem cell therapies - Reuters