Page 10«..9101112..2030..»

Primary Cells Overview – stemcell.com

By NEVAGiles23

Unlike cell lines, primary cells are non-transformed, non-immortalized cells that are isolated directly from tissue. Closely mimicking a living model and yielding more biologically and physiologically relevant results, human primary cells have become an essential tool in the development of therapeutic treatments. Choose from an extensive range of fresh and cryopreserved peripheral blood products, as well as cryopreserved cord blood products, to incorporate into your research workflow.

Expand Details

Collapse Details

*Certain products are only available in select territories. Please contact your local Sales representative or the Product & Scientific Support team at techsupport@stemcell.com for further information. 1 Cultured cell product.

Human peripheral blood cells are isolated from adult whole blood or from a leukapheresis preparation produced using state-of-the-art apheresis systems. These apheresis collections, known as "Leuko Paks", contain very high concentrations of mononuclear cells and are available in the following Pak sizes: full, half and quarter Pak. Specific cell subsets are purified using STEMCELL's cell isolation products. Fresh whole blood products are collected directly into blood bags using acid-citrate-dextrose solution A (ACDA) or citrate-phosphate-dextrose (CPD) as the anticoagulant.

Human cord blood is collected using citrate-phosphate-dextrose (CPD) as the anticoagulant. Mononuclear cells are obtained by density gradient centrifugation. Specific cell subsets are obtained using STEMCELLs cell isolation products.

Human adult bone marrow cells are drawn from the posterior iliac crest (25 mL/site) from a maximum of four sites per donor. Heparin is used as the anticoagulant. Mononuclear cells (MNCs) are obtained by density gradient centrifugation, and specific cell types are purified using STEMCELLs cell isolation products.

Request customized products to meet your specific research needs:

Cryopreserved Leuko Pak, Whole Blood and Bone Marrow Products

Donor Screening: Donors are screened for HIV (1 & 2), Hepatitis B, and Hepatitis C. Cryopreserved products are shipped with negative test results from donor screening that is done within 90 days of collection.

Fresh Leuko Pak, Whole Blood and Bone Marrow Products

Donor Screening: Donors are screened for HIV (1 & 2), Hepatitis B, and Hepatitis C. If the donor was screened within 90 days of donation the product will be shipped with negative test results from donor screening. If the donor was not screened within 90 days of collection, a test sample will be taken at the time of donation and the product will be shipped before the screening results are available. In the unlikely event that a test result is positive, the customer will be contacted as soon as possible (usually within 24-72 hours from the time of shipment).

Cryopreserved Cord Blood Products

Donor Screening: Cord blood is only collected from mothers that have tested negative for HIV (1 & 2) and Hepatitis B during their pregnancy. Hepatitis C is tested for at the time of collection. Cryopreserved products are shipped with negative test results from donor screening.

Fresh Cord Blood Products

Donor Screening: Cord blood is only collected from mothers that have tested negative for HIV (1 & 2) and Hepatitis B during their pregnancy. Hepatitis C is tested for at the time of collection. Fresh cord blood products are shipped with negative test results for HIV (1 & 2) and Hepatitis B donor screening. Hepatitis C test results are not available at the time of shipment. In the unlikely event that the Hepatitis C test result is positive, the customer will be contacted as soon as possible (usually within 24-72 hours from the time of shipment).

Shipment date of fresh Leuko Pak or whole blood orders is subject to change based on the ability of donors to meet procedural requirements during collection or on changes in donor availability. Collections will be rescheduled as soon as possible according to customer requirements.

STEMCELL does not test for infectious diseases other than those listed above and the testing that is done cannot completely guarantee that the donor was virus-free. Therefore THESE PRODUCTS SHOULD BE TREATED AS POTENTIALLY INFECTIOUS and only used following appropriate handling precautions such as those described in biological safety level 2. When handling these products do not use sharps such as needles and syringes.

Follow this link:
Primary Cells Overview - stemcell.com

To Read More: Primary Cells Overview – stemcell.com
categoriaBone Marrow Stem Cells commentoComments Off on Primary Cells Overview – stemcell.com | dataSeptember 29th, 2016
Read All

Bone Marrow (Hematopoietic) Stem Cells | stemcells.nih.gov

By NEVAGiles23

by Jos Domen*, Amy Wagers** and Irving L. Weissman***

Blood and the system that forms it, known as the hematopoietic system, consist of many cell types with specialized functions (see Figure 2.1). Red blood cells (erythrocytes) carry oxygen to the tissues. Platelets (derived from megakaryocytes) help prevent bleeding. Granulocytes (neutrophils, basophils and eosinophils) and macrophages (collectively known as myeloid cells) fight infections from bacteria, fungi, and other parasites such as nematodes (ubiquitous small worms). Some of these cells are also involved in tissue and bone remodeling and removal of dead cells. B-lymphocytes produce antibodies, while T-lymphocytes can directly kill or isolate by inflammation cells recognized as foreign to the body, including many virus-infected cells and cancer cells. Many blood cells are short-lived and need to be replenished continuously; the average human requires approximately one hundred billion new hematopoietic cells each day. The continued production of these cells depends directly on the presence of Hematopoietic Stem Cells (HSCs), the ultimate, and only, source of all these cells.

Figure 2.1. Hematopoietic and stromal cell differentiation.

2001 Terese Winslow (assisted by Lydia Kibiuk)

The search for stem cells began in the aftermath of the bombings in Hiroshima and Nagasaki in 1945. Those who died over a prolonged period from lower doses of radiation had compromised hematopoietic systems that could not regenerate either sufficient white blood cells to protect against otherwise nonpathogenic infections or enough platelets to clot their blood. Higher doses of radiation also killed the stem cells of the intestinal tract, resulting in more rapid death. Later, it was demonstrated that mice that were given doses of whole body X-irradiation developed the same radiation syndromes; at the minimal lethal dose, the mice died from hematopoietic failure approximately two weeks after radiation exposure.1 Significantly, however, shielding a single bone or the spleen from radiation prevented this irradiation syndrome. Soon thereafter, using inbred strains of mice, scientists showed that whole-body-irradiated mice could be rescued from otherwise fatal hematopoietic failure by injection of suspensions of cells from blood-forming organs such as the bone marrow.2 In 1956, three laboratories demonstrated that the injected bone marrow cells directly regenerated the blood-forming system, rather than releasing factors that caused the recipients' cells to repair irradiation damage.35 To date, the only known treatment for hematopoietic failure following whole body irradiation is transplantation of bone marrow cells or HSCs to regenerate the blood-forming system in the host organisms.6,7

The hematopoietic system is not only destroyed by the lowest doses of lethal X-irradiation (it is the most sensitive of the affected vital organs), but also by chemotherapeutic agents that kill dividing cells. By the 1960s, physicians who sought to treat cancer that had spread (metastasized) beyond the primary cancer site attempted to take advantage of the fact that a large fraction of cancer cells are undergoing cell division at any given point in time. They began using agents (e.g., chemical and X-irradiation) that kill dividing cells to attempt to kill the cancer cells. This required the development of a quantitative assessment of damage to the cancer cells compared that inflicted on normal cells. Till and McCulloch began to assess quantitatively the radiation sensitivity of one normal cell type, the bone marrow cells used in transplantation, as it exists in the body. They found that, at sub-radioprotective doses of bone marrow cells, mice that died 1015 days after irradiation developed colonies of myeloid and erythroid cells (see Figure 2.1 for an example) in their spleens. These colonies correlated directly in number with the number of bone marrow cells originally injected (approximately 1 colony per 7,000 bone marrow cells injected).8 To test whether these colonies of blood cells derived from single precursor cells, they pre-irradiated the bone marrow donors with low doses of irradiation that would induce unique chromosome breaks in most hematopoietic cells but allow some cells to survive. Surviving cells displayed radiation-induced and repaired chromosomal breaks that marked each clonogenic (colony-initiating) hematopoietic cell.9 The researchers discovered that all dividing cells within a single spleen colony, which contained different types of blood cells, contained the same unique chromosomal marker. Each colony displayed its own unique chromosomal marker, seen in its dividing cells.9 Furthermore, when cells from a single spleen colony were re-injected into a second set of lethally-irradiated mice, donor-derived spleen colonies that contained the same unique chromosomal marker were often observed, indicating that these colonies had been regenerated from the same, single cell that had generated the first colony. Rarely, these colonies contained sufficient numbers of regenerative cells both to radioprotect secondary recipients (e.g., to prevent their deaths from radiation-induced blood cell loss) and to give rise to lymphocytes and myeloerythroid cells that bore markers of the donor-injected cells.10,11 These genetic marking experiments established the fact that cells that can both self-renew and generate most (if not all) of the cell populations in the blood must exist in bone marrow. At the time, such cells were called pluripotent HSCs, a term later modified to multipotent HSCs.12,13 However, identifying stem cells in retrospect by analysis of randomly chromosome-marked cells is not the same as being able to isolate pure populations of HSCs for study or clinical use.

Achieving this goal requires markers that uniquely define HSCs. Interestingly, the development of these markers, discussed below, has revealed that most of the early spleen colonies visible 8 to 10 days after injection, as well as many of the later colonies, visible at least 12 days after injection, are actually derived from progenitors rather than from HSCs. Spleen colonies formed by HSCs are relatively rare and tend to be present among the later colonies.14,15 However, these findings do not detract from Till and McCulloch's seminal experiments to identify HSCs and define these unique cells by their capacities for self-renewal and multilineage differentiation.

While much of the original work was, and continues to be, performed in murine model systems, strides have been made to develop assays to study human HSCs. The development of Fluorescence Activated Cell Sorting (FACS) has been crucial for this field (see Figure 2.2). This technique enables the recognition and quantification of small numbers of cells in large mixed populations. More importantly, FACS-based cell sorting allows these rare cells (1 in 2000 to less than 1 in 10,000) to be purified, resulting in preparations of near 100% purity. This capability enables the testing of these cells in various assays.

Figure 2.2. Enrichment and purification methods for hematopoietic stem cells. Upper panels illustrate column-based magnetic enrichment. In this method, the cells of interest are labeled with very small iron particles (A). These particles are bound to antibodies that only recognize specific cells. The cell suspension is then passed over a column through a strong magnetic field which retains the cells with the iron particles (B). Other cells flow through and are collected as the depleted negative fraction. The magnet is removed, and the retained cells are collected in a separate tube as the positive or enriched fraction (C). Magnetic enrichment devices exist both as small research instruments and large closed-system clinical instruments.

Lower panels illustrate Fluorescence Activated Cell Sorting (FACS). In this setting, the cell mixture is labeled with fluorescent markers that emit light of different colors after being activated by light from a laser. Each of these fluorescent markers is attached to a different monoclonal antibody that recognizes specific sets of cells (D). The cells are then passed one by one in a very tight stream through a laser beam (blue in the figure) in front of detectors (E) that determine which colors fluoresce in response to the laser. The results can be displayed in a FACS-plot (F). FACS-plots (see figures 3 and 4 for examples) typically show fluorescence levels per cell as dots or probability fields. In the example, four groups can be distinguished: Unstained, red-only, green-only, and red-green double labeling. Each of these groups, e.g., green fluorescence-only, can be sorted to very high purity. The actual sorting happens by breaking the stream shown in (E) into tiny droplets, each containing 1 cell, that then can be sorted using electric charges to move the drops. Modern FACS machines use three different lasers (that can activate different set of fluorochromes), to distinguish up to 8 to 12 different fluorescence colors and sort 4 separate populations, all simultaneously.

Magnetic enrichment can process very large samples (billions of cells) in one run, but the resulting cell preparation is enriched for only one parameter (e.g., CD34) and is not pure. Significant levels of contaminants (such as T-cells or tumor cells) remain present. FACS results in very pure cell populations that can be selected for several parameters simultaneously (e.g., Linneg, CD34pos, CD90pos), but it is more time consuming (10,000 to 50,000 cells can be sorted per second) and requires expensive instrumentation.

2001 Terese Winslow (assisted by Lydia Kibiuk)

Assays have been developed to characterize hematopoietic stem and progenitor cells in vitro and in vivo (Figure 2.3).16,17In vivo assays that are used to study HSCs include Till and McCulloch's classical spleen colony forming (CFU-S) assay,8 which measures the ability of HSC (as well as blood-forming progenitor cells) to form large colonies in the spleens of lethally irradiated mice. Its main advantage (and limitation) is the short-term nature of the assay (now typically 12 days). However, the assays that truly define HSCs are reconstitution assays.16,18 Mice that have been quot;preconditionedquot; by lethal irradiation to accept new HSCs are injected with purified HSCs or mixed populations containing HSCs, which will repopulate the hematopoietic systems of the host mice for the life of the animal. These assays typically use different types of markers to distinguish host and donor-derived cells.

For example, allelic assays distinguish different versions of a particular gene, either by direct analysis of dna or of the proteins expressed by these alleles. These proteins may be cell-surface proteins that are recognized by specific monoclonal antibodies that can distinguish between the variants (e.g., CD45 in Figure 2.3) or cellular proteins that may be recognized through methods such as gel-based analysis. Other assays take advantage of the fact that male cells can be detected in a female host by detecting the male-cell-specific Y-chromosome by molecular assays (e.g., polymerase chain reaction, or PCR).

Figure 2.3. Assays used to detect hematopoietic stem cells. The tissue culture assays, which are used frequently to test human cells, include the ability of the cells to be tested to grow as quot;cobblestonesquot; (the dark cells in the picture) for 5 to 7 weeks in culture. The Long Term Culture-Initiating Cell assay measures whether hematopoietic progenitor cells (capable of forming colonies in secondary assays, as shown in the picture) are still present after 5 to 7 weeks of culture.

In vivo assays in mice include the CFU-S assay, the original stem cell assay discussed in the introduction. The most stringent hematopoietic stem cell assay involves looking for the long-term presence of donor-derived cells in a reconstituted host. The example shows host-donor recognition by antibodies that recognize two different mouse alleles of CD45, a marker present on nearly all blood cells. CD45 is also a good marker for distinguishing human blood cells from mouse blood cells when testing human cells in immunocompromised mice such as NOD/SCID. Other methods such as pcr-markers, chromosomal markers, and enzyme markers can also be used to distinguish host and donor cells.

Small numbers of HSCs (as few as one cell in mouse experiments) can be assayed using competitive reconstitutions, in which a small amount of host-type bone marrow cells (enough to radioprotect the host and thus ensure survival) is mixed in with the donor-HSC population. To establish long-term reconstitutions in mouse models, the mice are followed for at least 4 months after receiving the HSCs. Serial reconstitution, in which the bone marrow from a previously-irradiated and reconstituted mouse becomes the HSC source for a second irradiated mouse, extends the potential of this assay to test lifespan and expansion limits of HSCs. Unfortunately, the serial transfer assay measures both the lifespan and the transplantability of the stem cells. The transplantability may be altered under various conditions, so this assay is not the sine qua non of HSC function. Testing the in vivo activity of human cells is obviously more problematic.

Several experimental models have been developed that allow the testing of human cells in mice. These assays employ immunologically-incompetent mice (mutant mice that cannot mount an immune response against foreign cells) such as SCID1921 or NOD-SCID mice.22,23 Reconstitution can be performed in either the presence or absence of human fetal bone or thymus implants to provide a more natural environment in which the human cells can grow in the mice. Recently NOD/SCID/c-/- mice have been used as improved recipients for human HSCs, capable of complete reconstitution with human lymphocytes, even in the absence of additional human tissues.24 Even more promising has been the use of newborn mice with an impaired immune system (Rag-2-/-C-/-), which results in reproducible production of human B- and T-lymphoid and myeloerythroid cells.25 These assays are clearly more stringent, and thus more informative, but also more difficult than the in vitro HSC assays discussed below. However, they can only assay a fraction of the lifespan under which the cells would usually have to function. Information on the long-term functioning of cells can only be derived from clinical HSC transplantations.

A number of assays have been developed to recognize HSCs in vitro (e.g., in tissue culture). These are especially important when assaying human cells. Since transplantation assays for human cells are limited, cell culture assays often represent the only viable option. In vitro assays for HSCs include Long-Term Culture-Initializing Cell (LTC-IC) assays2628 and Cobble-stone Area Forming Cell (CAFC) assays.29 LTC-IC assays are based on the ability of HSCs, but not more mature progenitor cells, to maintain progenitor cells with clonogenic potential over at least a five-week culture period. CAFC assays measure the ability of HSCs to maintain a specific and easily recognizable way of growing under stromal cells for five to seven weeks after the initial plating. Progenitor cells can only grow in culture in this manner for shorter periods of time.

While initial experiments studied HSC activity in mixed populations, much progress has been made in specifically describing the cells that have HSC activity. A variety of markers have been discovered to help recognize and isolate HSCs. Initial marker efforts focused on cell size, density, and recognition by lectins (carbohydrate-binding proteins derived largely from plants),30 but more recent efforts have focused mainly on cell surface protein markers, as defined by monoclonal antibodies. For mouse HSCs, these markers include panels of 8 to 14 different monoclonal antibodies that recognize cell surface proteins present on differentiated hematopoietic lineages, such as the red blood cell and macrophage lineages (thus, these markers are collectively referred to as quot;Linquot;),13,31 as well as the proteins Sca-1,13,31 CD27,32 CD34,33 CD38,34 CD43,35 CD90.1(Thy-1.1),13,31 CD117(c-Kit),36 AA4.1,37 and MHC class I,30 and CD150.38 Human HSCs have been defined with respect to staining for Lin,39 CD34,40 CD38,41 CD43,35 CD45RO,42 CD45RA,42 CD59,43 CD90,39 CD109,44 CD117,45 CD133,46,47CD166,48 and HLA DR(human).49,50 In addition, metabolic markers/dyes such as rhodamine123 (which stains mitochondria),51 Hoechst33342 (which identifies MDR-type drug efflux activity),52 Pyronin-Y (which stains RNA),53 and BAAA (indicative of aldehyde dehydrogenase enzyme activity)54 have been described. While none of these markers recognizes functional stem cell activity, combinations (typically with 3 to 5 different markers, see examples below) allow for the purification of near-homogenous populations of HSCs. The ability to obtain pure preparations of HSCs, albeit in limited numbers, has greatly facilitated the functional and biochemical characterization of these important cells. However, to date there has been limited impact of these discoveries on clinical practice, as highly purified HSCs have only rarely been used to treat patients (discussed below). The undeniable advantages of using purified cells (e.g., the absence of contaminating tumor cells in autologous transplantations) have been offset by practical difficulties and increased purification costs.

Figure 2.4. Examples of Hematopoietic Stem Cell staining patterns in mouse bone marrow (top) and human mobilized peripheral blood (bottom). The plots on the right show only the cells present in the left blue box. The cells in the right blue box represent HSCs. Stem cells form a rare fraction of the cells present in both cases.

HSC assays, when combined with the ability to purify HSCs, have provided increasingly detailed insight into the cells and the early steps involved in the differentiation process. Several marker combinations have been developed that describe murine HSCs, including [CD117high, CD90.1low, Linneg/low, Sca-1pos],15 [CD90.1low, Linneg, Sca-1pos Rhodamine123low],55 [CD34neg/low, CD117pos, Sca-1pos, Linneg],33 [CD150 pos, CD48neg, CD244neg],38 and quot;side-populationquot; cells using Hoechst-dye.52 Each of these combinations allows purification of HSCs to near-homogeneity. Figure 2.4 shows an example of an antibody combination that can recognize mouse HSCs. Similar strategies have been developed to purify human HSCs, employing markers such as CD34, CD38, Lin, CD90, CD133 and fluorescent substrates for the enzyme, aldehyde dehydrogenase. The use of highly purified human HSCs has been mainly experimental, and clinical use typically employs enrichment for one marker, usually CD34. CD34 enrichment yields a population of cells enriched for HSC and blood progenitor cells but still contains many other cell types. However, limited trials in which highly FACS-purified CD34pos CD90pos HSCs (see Figure 2.4) were used as a source of reconstituting cells have demonstrated that rapid reconstitution of the blood system can reliably be obtained using only HSCs.5658

The purification strategies described above recognize a rare subset of cells. Exact numbers depend on the assay used as well as on the genetic background studied.16 In mouse bone marrow, 1 in 10,000 cells is a hematopoietic stem cell with the ability to support long-term hematopoiesis following transplantation into a suitable host. When short-term stem cells, which have a limited self-renewal capacity, are included in the estimation, the frequency of stem cells in bone marrow increases to 1 in 1,000 to 1 in 2,000 cells in humans and mice. The numbers present in normal blood are at least ten-fold lower than in marrow.

None of the HSC markers currently used is directly linked to an essential HSC function, and consequently, even within a species, markers can differ depending on genetic alleles,59 mouse strains,60 developmental stages,61 and cell activation stages.62,63 Despite this, there is a clear correlation in HSC markers between divergent species such as humans and mice. However, unless the ongoing attempts at defining the complete HSC gene expression patterns will yield usable markers that are linked to essential functions for maintaining the quot;stemnessquot; of the cells,64,65 functional assays will remain necessary to identify HSCs unequivocally.16

More recently, efforts at defining hematopoietic populations by cell surface or other FACS-based markers have been extended to several of the progenitor populations that are derived from HSCs (see Figure 2.5). Progenitors differ from stem cells in that they have a reduced differentiation capacity (they can generate only a subset of the possible lineages) but even more importantly, progenitors lack the ability to self-renew. Thus, they have to be constantly regenerated from the HSC population. However, progenitors do have extensive proliferative potential and can typically generate large numbers of mature cells. Among the progenitors defined in mice and humans are the Common Lymphoid Progenitor (CLP),66,67 which in adults has the potential to generate all of the lymphoid but not myeloerythroid cells, and a Common Myeloid Progenitor (CMP), which has the potential to generate all of the mature myeloerythroid, but not lymphoid, cells.68,69 While beyond the scope of this overview, hematopoietic progenitors have clinical potential and will likely see clinical use.70,71

Figure 2.5. Relationship between several of the characterized hematopoietic stem cells and early progenitor cells. Differentiation is indicated by colors; the more intense the color, the more mature the cells. Surface marker distinctions are subtle between these early cell populations, yet they have clearly distinct potentials. Stem cells can choose between self-renewal and differentiation. Progenitors can expand temporarily but always continue to differentiate (other than in certain leukemias). The mature lymphoid (T-cells, B-cells, and Natural Killer cells) and myeloerythroid cells (granulocytes, macrophages, red blood cells, and platelets) that are produced by these stem and progenitor cells are shown in more detail in Figure 2.1.

HSCs have a number of unique properties, the combination of which defines them as such.16 Among the core properties are the ability to choose between self-renewal (remain a stem cell after cell division) or differentiation (start the path towards becoming a mature hematopoietic cell). In addition, HSCs migrate in regulated fashion and are subject to regulation by apoptosis (programmed cell death). The balance between these activities determines the number of stem cells that are present in the body.

One essential feature of HSCs is the ability to self-renew, that is, to make copies with the same or very similar potential. This is an essential property because more differentiated cells, such as hematopoietic progenitors, cannot do this, even though most progenitors can expand significantly during a limited period of time after being generated. However, for continued production of the many (and often short-lived) mature blood cells, the continued presence of stem cells is essential. While it has not been established that adult HSCs can self-renew indefinitely (this would be difficult to prove experimentally), it is clear from serial transplantation experiments that they can produce enough cells to last several (at least four to five) lifetimes in mice. It is still unclear which key signals allow self-renewal. One link that has been noted is telomerase, the enzyme necessary for maintaining telomeres, the DNA regions at the end of chromosomes that protect them from accumulating damage due to DNA replication. Expression of telomerase is associated with self-renewal activity.72 However, while absence of telomerase reduces the self-renewal capacity of mouse HSCs, forced expression is not sufficient to enable HSCs to be transplanted indefinitely; other barriers must exist.73,74

It has proven surprisingly difficult to grow HSCs in culture despite their ability to self-renew. Expansion in culture is routine with many other cells, including neural stem cells and ES cells. The lack of this capacity for HSCs severely limits their application, because the number of HSCs that can be isolated from mobilized blood, umbilical cord blood, or bone marrow restricts the full application of HSC transplantation in man (whether in the treatment of nuclear radiation exposure or transplantation in the treatment of blood cell cancers or genetic diseases of the blood or blood-forming system). Engraftment periods of 50 days or more were standard when limited numbers of bone marrow or umbilical cord blood cells were used in a transplant setting, reflecting the low level of HSCs found in these native tissues. Attempts to expand HSCs in tissue culture with known stem-cell stimulators, such as the cytokines stem cell factor/steel factor (KitL), thrombopoietin (TPO), interleukins 1, 3, 6, 11, plus or minus the myeloerythroid cytokines GM-CSF, G-CSF, M-CSF, and erythropoietin have never resulted in a significant expansion of HSCs.16,75 Rather, these compounds induce many HSCs into cell divisions that are always accompanied by cellular differentiation.76 Yet many experiments demonstrate that the transplantation of a single or a few HSCs into an animal results in a 100,000-fold or greater expansion in the number of HSCs at the steady state while simultaneously generating daughter cells that permitted the regeneration of the full blood-forming system.7780 Thus, we do not know the factors necessary to regenerate HSCs by self-renewing cell divisions. By investigating genes transcribed in purified mouse LT-HSCs, investigators have found that these cells contain expressed elements of the Wnt/fzd/beta-catenin signaling pathway, which enables mouse HSCs to undergo self-renewing cell divisions.81,82 Overexpression of several other proteins, including HoxB48386 and HoxA987 has also been reported to achieve this. Other signaling pathways that are under investigation include Notch and Sonic hedgehog.75 Among the intracellular proteins thought to be essential for maintaining the quot;stem cellquot; state are Polycomb group genes, including Bmi-1.88 Other genes, such as c-Myc and JunB have also been shown to play a role in this process.89,90Much remains to be discovered, including the identity of the stimuli that govern self-renewal in vivo, as well as the composition of the environment (the stem cell quot;nichequot;) that provides these stimuli.91 The recent identification of osteoblasts, a cell type known to be involved in bone formation, as a critical component of this environment92,93 will help to focus this search. For instance, signaling by Angiopoietin-1 on osteoblasts to Tie-2 receptors on HSCs has recently been suggested to regulate stem cell quiescence (the lack of cell division).94 It is critical to discover which pathways operate in the expansion of human HSCs to take advantage of these pathways to improve hematopoietic transplantation.

Differentiation into progenitors and mature cells that fulfill the functions performed by the hematopoietic system is not a unique HSC property, but, together with the option to self-renew, defines the core function of HSCs. Differentiation is driven and guided by an intricate network of growth factors and cytokines. As discussed earlier, differentiation, rather than self-renewal, seems to be the default outcome for HSCs when stimulated by many of the factors to which they have been shown to respond. It appears that, once they commit to differentiation, HSCs cannot revert to a self-renewing state. Thus, specific signals, provided by specific factors, seem to be needed to maintain HSCs. This strict regulation may reflect the proliferative potential present in HSCs, deregulation of which could easily result in malignant diseases such as leukemia or lymphoma.

Migration of HSCs occurs at specific times during development (i.e., seeding of fetal liver, spleen and eventually, bone marrow) and under certain conditions (e.g., cytokine-induced mobilization) later in life. The latter has proven clinically useful as a strategy to enhance normal HSC proliferation and migration, and the optimal mobilization regimen for HSCs currently used in the clinic is to treat the stem cell donor with a drug such as cytoxan, which kills most of his or her dividing cells. Normally, only about 8% of LT-HSCs enter the cell cycle per day,95,96 so HSCs are not significantly affected by a short treatment with cytoxan. However, most of the downstream blood progenitors are actively dividing,66,68 and their numbers are therefore greatly depleted by this dose, creating a demand for a regenerated blood-forming system. Empirically, cytokines or growth factors such as G-CSF and KitL can increase the number of HSCs in the blood, especially if administered for several days following a cytoxan pulse. The optimized protocol of cytoxan plus G-CSF results in several self-renewing cell divisions for each resident LT-HSC in mouse bone marrow, expanding the number of HSCs 12- to 15-fold within two to three days.97 Then, up to one-half of the daughter cells of self-renewing dividing LT-HSCs (estimated to be up to 105 per mouse per day98) leave the bone marrow, enter the blood, and within minutes engraft other hematopoietic sites, including bone marrow, spleen, and liver.98 These migrating cells can and do enter empty hematopoietic niches elsewhere in the bone marrow and provide sustained hematopoietic stem cell self-renewal and hematopoiesis.98,99 It is assumed that this property of mobilization of HSCs is highly conserved in evolution (it has been shown in mouse, dog and humans) and presumably results from contact with natural cell-killing agents in the environment, after which regeneration of hematopoiesis requires restoring empty HSC niches. This means that functional, transplantable HSCs course through every tissue of the body in large numbers every day in normal individuals.

Apoptosis, or programmed cell death, is a mechanism that results in cells actively self-destructing without causing inflammation. Apoptosis is an essential feature in multicellular organisms, necessary during development and normal maintenance of tissues. Apoptosis can be triggered by specific signals, by cells failing to receive the required signals to avoid apoptosis, and by exposure to infectious agents such as viruses. HSCs are not exempt; apoptosis is one mechanism to regulate their numbers. This was demonstrated in transgenic mouse experiments in which HSC numbers doubled when the apoptosis threshold was increased.76 This study also showed that HSCs are particularly sensitive and require two signals to avoid undergoing apoptosis.

The best-known location for HSCs is bone marrow, and bone marrow transplantation has become synonymous with hematopoietic cell transplantation, even though bone marrow itself is increasingly infrequently used as a source due to an invasive harvesting procedure that requires general anesthesia. In adults, under steady-state conditions, the majority of HSCs reside in bone marrow. However, cytokine mobilization can result in the release of large numbers of HSCs into the blood. As a clinical source of HSCs, mobilized peripheral blood (MPB) is now replacing bone marrow, as harvesting peripheral blood is easier for the donors than harvesting bone marrow. As with bone marrow, mobilized peripheral blood contains a mixture of hematopoietic stem and progenitor cells. MPB is normally passed through a device that enriches cells that express CD34, a marker on both stem and progenitor cells. Consequently, the resulting cell preparation that is infused back into patients is not a pure HSC preparation, but a mixture of HSCs, hematopoietic progenitors (the major component), and various contaminants, including T cells and, in the case of autologous grafts from cancer patients, quite possibly tumor cells. It is important to distinguish these kinds of grafts, which are the grafts routinely given, from highly purified HSC preparations, which essentially lack other cell types.

In the late 1980s, umbilical cord blood (UCB) was recognized as an important clinical source of HSCs.100,101 Blood from the placenta and umbilical cord is a rich source of hematopoietic stem cells, and these cells are typically discarded with the afterbirth. Increasingly, UCB is harvested, frozen, and stored in cord blood banks, as an individual resource (donor-specific source) or as a general resource, directly available when needed. Cord blood has been used successfully to transplant children and (far less frequently) adults. Specific limitations of UCB include the limited number of cells that can be harvested and the delayed immune reconstitution observed following UCB transplant, which leaves patients vulnerable to infections for a longer period of time. Advantages of cord blood include its availability, ease of harvest, and the reduced risk of graft-versus-host-disease (GVHD). In addition, cord blood HSCs have been noted to have a greater proliferative capacity than adult HSCs. Several approaches have been tested to overcome the cell dose issue, including, with some success, pooling of cord blood samples.101,102 Ex vivo expansion in tissue culture, to which cord blood cells are more amenable than adult cells, is another approach under active investigation.103

The use of cord blood has opened a controversial treatment strategyembryo selection to create a related UCB donor.104 In this procedure, embryos are conceived by in vitro fertilization. The embryos are tested by pre-implantation genetic diagnosis, and embryos with transplantation antigens matching those of the affected sibling are implanted. Cord blood from the resulting newborn is then used to treat this sibling. This approach, successfully pioneered at the University of Minnesota, can in principle be applied to a wide variety of hematopoietic disorders. However, the ethical questions involved argue for clear regulatory guidelines.105

Embryonic stem (ES) cells form a potential future source of HSCs. Both mouse and human ES cells have yielded hematopoietic cells in tissue culture, and they do so relatively readily.106 However, recognizing the actual HSCs in these cultures has proven problematic, which may reflect the variability in HSC markers or the altered reconstitution behavior of these HSCs, which are expected to mimic fetal HSC. This, combined with the potential risks of including undifferentiated cells in an ES-cell-derived graft means that, based on the current science, clinical use of ES cell-derived HSCs remains only a theoretical possibility for now.

An ongoing set of investigations has led to claims that HSCs, as well as other stem cells, have the capacity to differentiate into a much wider range of tissues than previously thought possible. It has been claimed that, following reconstitution, bone marrow cells can differentiate not only into blood cells but also muscle cells (both skeletal myocytes and cardiomyocytes),107111 brain cells,112,113 liver cells,114,115 skin cells, lung cells, kidney cells, intestinal cells,116 and pancreatic cells.117 Bone marrow is a complex mixture that contains numerous cell types. In addition to HSCs, at least one other type of stem cell, the mesenchymal stem cell (MSC), is present in bone marrow. MSCs, which have become the subject of increasingly intense investigation, seem to retain a wide range of differentiation capabilities in vitro that is not restricted to mesodermal tissues, but includes tissues normally derived from other embryonic germ layers (e.g., neurons).118120MSCs are discussed in detail in Dr. Catherine Verfaillie's testimony to the President's Council on Bioethics at this website: refer to Appendix J (page 295) and will not be discussed further here. However, similar claims of differentiation into multiple diverse cell types, including muscle,111 liver,114 and different types of epithelium116 have been made in experiments that assayed partially- or fully-purified HSCs. These experiments have spawned the idea that HSCs may not be entirely or irreversibly committed to forming the blood, but under the proper circumstances, HSCs may also function in the regeneration or repair of non-blood tissues. This concept has in turn given rise to the hypothesis that the fate of stem cells is quot;plastic,quot; or changeable, allowing these cells to adopt alternate fates if needed in response to tissue-derived regenerative signals (a phenomenon sometimes referred to as quot;transdifferentiationquot;). This in turn seems to bolster the argument that the full clinical potential of stem cells can be realized by studying only adult stem cells, foregoing research into defining the conditions necessary for the clinical use of the extensive differentiation potential of embryonic stem cells. However, as discussed below, such quot;transdifferentiationquot; claims for specialized adult stem cells are controversial, and alternative explanations for these observations remain possible, and, in several cases, have been documented directly.

While a full discussion of this issue is beyond the scope of this overview, several investigators have formulated criteria that must be fulfilled to demonstrate stem cell plasticity.121,122 These include (i) clonal analysis, which requires the transfer and analysis of single, highly-purified cells or individually marked cells and the subsequent demonstration of both quot;normalquot; and quot;plasticquot; differentiation outcomes, (ii) robust levels of quot;plasticquot; differentiation outcome, as extremely rare events are difficult to analyze and may be induced by artefact, and (iii) demonstration of tissue-specific function of the quot;transdifferentiatedquot; cell type. Few of the current reports fulfill these criteria, and careful analysis of individually transplanted KTLS HSCs has failed to show significant levels of non-hematopoietic engraftment.123,124In addition, several reported trans-differentiation events that employed highly purified HSCs, and in some cases a very strong selection pressure for trans-differentiation, now have been shown to result from fusion of a blood cell with a non-blood cell, rather than from a change in fate of blood stem cells.125127 Finally, in the vast majority of cases, reported contributions of adult stem cells to cell types outside their tissue of origin are exceedingly rare, far too rare to be considered therapeutically useful. These findings have raised significant doubts about the biological importance and immediate clinical utility of adult hematopoietic stem cell plasticity. Instead, these results suggest that normal tissue regeneration relies predominantly on the function of cell type-specific stem or progenitor cells, and that the identification, isolation, and characterization of these cells may be more useful in designing novel approaches to regenerative medicine. Nonetheless, it is possible that a rigorous and concerted effort to identify, purify, and potentially expand the appropriate cell populations responsible for apparent quot;plasticityquot; events, characterize the tissue-specific and injury-related signals that recruit, stimulate, or regulate plasticity, and determine the mechanism(s) underlying cell fusion or transdifferentiation, may eventually enhance tissue regeneration via this mechanism to clinically useful levels.

Recent progress in genomic sequencing and genome-wide expression analysis at the RNA and protein levels has greatly increased our ability to study cells such as HSCs as quot;systems,quot; that is, as combinations of defined components with defined interactions. This goal has yet to be realized fully, as computational biology and system-wide protein biochemistry and proteomics still must catch up with the wealth of data currently generated at the genomic and transcriptional levels. Recent landmark events have included the sequencing of the human and mouse genomes and the development of techniques such as array-based analysis. Several research groups have combined cDNA cloning and sequencing with array-based analysis to begin to define the full transcriptional profile of HSCs from different species and developmental stages and compare these to other stem cells.64,65,128131 Many of the data are available in online databases, such as the NIH/NIDDK Stem Cell Genome Anatomy Projects. While transcriptional profiling is clearly a work in progress, comparisons among various types of stem cells may eventually identify sets of genes that are involved in defining the general quot;stemnessquot; of a cell, as well as sets of genes that define their exit from the stem cell pool (e.g., the beginning of their path toward becoming mature differentiated cells, also referred to as commitment). In addition, these datasets will reveal sets of genes that are associated with specific stem cell populations, such as HSCs and MSCs, and thus define their unique properties. Assembly of these datasets into pathways will greatly help to understand and to predict the responses of HSCs (and other stem cells) to various stimuli.

The clinical use of stem cells holds great promise, although the application of most classes of adult stem cells is either currently untested or is in the earliest phases of clinical testing.132,133 The only exception is HSCs, which have been used clinically since 1959 and are used increasingly routinely for transplantations, albeit almost exclusively in a non-pure form. By 1995, more than 40,000 transplants were performed annually world-wide.134,135 Currently the main indications for bone marrow transplantation are either hematopoietic cancers (leukemias and lymphomas), or the use of high-dose chemotherapy for non-hematopoietic malignancies (cancers in other organs). Other indications include diseases that involve genetic or acquired bone marrow failure, such as aplastic anemia, thalassemia sickle cell anemia, and increasingly, autoimmune diseases.

Transplantation of bone marrow and HSCs are carried out in two rather different settings, autologous and allogeneic. Autologous transplantations employ a patient's own bone marrow tissue and thus present no tissue incompatibility between the donor and the host. Allogeneic transplantations occur between two individuals who are not genetically identical (with the rare exceptions of transplantations between identical twins, often referred to as syngeneic transplantations). Non-identical individuals differ in their human leukocyte antigens (HLAs), proteins that are expressed by their white blood cells. The immune system uses these HLAs to distinguish between quot;selfquot; and quot;nonself.quot; For successful transplantation, allogeneic grafts must match most, if not all, of the six to ten major HLA antigens between host and donor. Even if they do, however, enough differences remain in mostly uncharacterized minor antigens to enable immune cells from the donor and the host to recognize the other as quot;nonself.quot; This is an important issue, as virtually all HSC transplants are carried out with either non-purified, mixed cell populations (mobilized peripheral blood, cord blood, or bone marrow) or cell populations that have been enriched for HSCs (e.g., by column selection for CD34+ cells) but have not been fully purified. These mixed population grafts contain sufficient lymphoid cells to mount an immune response against host cells if they are recognized as quot;non-self.quot; The clinical syndrome that results from this quot;non-selfquot; response is known as graft-versus-host disease (GVHD).136

In contrast, autologous grafts use cells harvested from the patient and offer the advantage of not causing GVHD. The main disadvantage of an autologous graft in the treatment of cancer is the absence of a graft-versusleukemia (GVL) or graft-versus-tumor (GVT) response, the specific immunological recognition of host tumor cells by donor-immune effector cells present in the transplant. Moreover, the possibility exists for contamination with cancerous or pre-cancerous cells.

Allogeneic grafts also have disadvantages. They are limited by the availability of immunologically-matched donors and the possibility of developing potentially lethal GVHD. The main advantage of allogeneic grafts is the potential for a GVL response, which can be an important contribution to achieving and maintaining complete remission.137,138

Today, most grafts used in the treatment of patients consist of either whole or CD34+-enriched bone marrow or, more likely, mobilized peripheral blood. The use of highly purified hematopoietic stem cells as grafts is rare.5658 However, the latter have the advantage of containing no detectable contaminating tumor cells in the case of autologous grafts, therefore not inducing GVHD, or presumably GVL,139141in allogeneic grafts. While they do so less efficiently than lymphocyte-containing cell mixtures, HSCs alone can engraft across full allogeneic barriers (i.e., when transplanted from a donor who is a complete mismatch for both major and minor transplantation antigens).139141The use of donor lymphocyte infusions (DLI) in the context of HSC transplantation allows for the controlled addition of lymphocytes, if necessary, to obtain or maintain high levels of donor cells and/or to induce a potentially curative GVL-response.142,143 The main problems associated with clinical use of highly purified HSCs are the additional labor and costs144 involved in obtaining highly purified cells in sufficient quantities.

While the possibilities of GVL and other immune responses to malignancies remain the focus of intense interest, it is also clear that in many cases, less-directed approaches such as chemotherapy or irradiation offer promise. However, while high-dose chemotherapy combined with autologous bone marrow transplantation has been reported to improve outcome (usually measured as the increase in time to progression, or increase in survival time),145154 this has not been observed by other researchers and remains controversial.155161 The tumor cells present in autologous grafts may be an important limitation in achieving long-term disease-free survival. Only further purification/ purging of the grafts, with rigorous separation of HSCs from cancer cells, can overcome this limitation. Initial small scale trials with HSCs purified by flow cytometry suggest that this is both possible and beneficial to the clinical outcome.56 In summary, purification of HSCs from cancer/lymphoma/leukemia patients offers the only possibility of using these cells post-chemotherapy to regenerate the host with cancer-free grafts. Purification of HSCs in allotransplantation allows transplantation with cells that regenerate the blood-forming system but cannot induce GVHD.

An important recent advance in the clinical use of HSCs is the development of non-myeloablative preconditioning regimens, sometimes referred to as quot;mini transplants.quot;162164 Traditionally, bone marrow or stem cell transplantation has been preceded by a preconditioning regimen consisting of chemotherapeutic agents, often combined with irradiation, that completely destroys host blood and bone marrow tissues (a process called myeloablation). This creates quot;spacequot; for the incoming cells by freeing stem cell niches and prevents an undesired immune response of the host cells against the graft cells, which could result in graft failure. However, myeloablation immunocompromises the patient severely and necessitates a prolonged hospital stay under sterile conditions. Many protocols have been developed that use a more limited and targeted approach to preconditioning. These nonmyeloablative preconditioning protocols, which combine excellent engraftment results with the ability to perform hematopoietic cell transplantation on an outpatient basis, have greatly changed the clinical practice of bone marrow transplantation.

FACS purification of HSCs in mouse and man completely eliminates contaminating T cells, and thus GVHD (which is caused by T-lymphocytes) in allogeneic transplants. Many HSC transplants have been carried out in different combinations of mouse strains. Some of these were matched at the major transplantation antigens but otherwise different (Matched Unrelated Donors or MUD); in others, no match at the major or minor transplantation antigens was expected. To achieve rapid and sustained engraftment, higher doses of HSCs were required in these mismatched allogeneic transplants than in syngeneic transplants.139141,165167 In these experiments, hosts whose immune and blood-forming systems were generated from genetically distinct donors were permanently capable of accepting organ transplants (such as the heart) from either donor or host, but not from mice unrelated to the donor or host. This phenomenon is known as transplant-induced tolerance and was observed whether the organ transplants were given the same day as the HSCs or up to one year later.139,166Hematopoietic cell transplant-related complications have limited the clinical application of such tolerance induction for solid organ grafts, but the use of non-myeloablative regimens to prepare the host, as discussed above, should significantly reduce the risk associated with combined HSC and organ transplants. Translation of these findings to human patients should enable a switch from chronic immunosuppression to prevent rejection to protocols wherein a single conditioning dose allows permanent engraftment of both the transplanted blood system and solid organ(s) or other tissue stem cells from the same donor. This should eliminate both GVHD and chronic host transplant immunosuppression, which lead to many complications, including life-threatening opportunistic infections and the development of malignant neoplasms.

We now know that several autoimmune diseasesdiseases in which immune cells attack normal body tissuesinvolve the inheritance of high risk-factor genes.168 Many of these genes are expressed only in blood cells. Researchers have recently tested whether HSCs could be used in mice with autoimmune disease (e.g., type 1 diabetes) to replace an autoimmune blood system with one that lacks the autoimmune risk genes. The HSC transplants cured mice that were in the process of disease development when nonmyeloablative conditioning was used for transplant.169 It has been observed that transplant-induced tolerance allows co-transplantation of pancreatic islet cells to replace destroyed islets.170 If these results using nonmyeloablative conditioning can be translated to humans, type 1 diabetes and several other autoimmune diseases may be treatable with pure HSC grafts. However, the reader should be cautioned that the translation of treatments from mice to humans is often complicated and time-consuming.

Banking is currently a routine procedure for UCB samples. If expansion of fully functional HSCs in tissue culture becomes a reality, HSC transplants may be possible by starting with small collections of HSCs rather than massive numbers acquired through mobilization and apheresis. With such a capability, collections of HSCs from volunteer donors or umbilical cords could be theoretically converted into storable, expandable stem cell banks useful on demand for clinical transplantation and/or for protection against radiation accidents. In mice, successful HSC transplants that regenerate fully normal immune and blood-forming systems can be accomplished when there is only a partial transplantation antigen match. Thus, the establishment of useful human HSC banks may require a match between as few as three out of six transplantation antigens (HLA). This might be accomplished with stem cell banks of as few as 4,00010,000 independent samples.

Leukemias are proliferative diseases of the hematopoietic system that fail to obey normal regulatory signals. They derive from stem cells or progenitors of the hematopoietic system and almost certainly include several stages of progression. During this progression, genetic and/or epigenetic changes occur, either in the DNA sequence itself (genetic) or other heritable modifications that affect the genome (epigenetic). These (epi)genetic changes alter cells from the normal hematopoietic system into cells capable of robust leukemic growth. There are a variety of leukemias, usually classified by the predominant pathologic cell types and/or the clinical course of the disease. It has been proposed that these are diseases in which self-renewing but poorly regulated cells, so-called "leukemia stem cells" (LSCs), are the populations that harbor all the genetic and epigenetic changes that allow leukemic progression.171176 While their progeny may be the characteristic cells observed with the leukemia, these progeny cells are not the self-renewing "malignant" cells of the disease. In this view, the events contributing to tumorigenic transformation, such as interrupted or decreased expression of "tumor suppressor" genes, loss of programmed death pathways, evasion of immune cells and macrophage surveillance mechanisms, retention of telomeres, and activation or amplification of self-renewal pathways, occur as single, rare events in the clonal progression to blast-crisis leukemia. As LT HSCs are the only selfrenewing cells in the myeloid pathway, it has been proposed that most, if not all, progression events occur at this level of differentiation, creating clonal cohorts of HSCs with increasing malignancy (see Figure 2.6). In this disease model, the final event, explosive selfrenewal, could occur at the level of HSC or at any of the known progenitors (see Figures 2.5 and 2.6). Activation of the -catenin/lef-tcf signal transduction and transcription pathway has been implicated in leukemic stem cell self-renewal in mouse AML and human CML.177 In both cases, the granulocyte-macrophage progenitors, not the HSCs or progeny blast cells, are the malignant self-renewing entities. In other models, such as the JunB-deficient tumors in mice and in chronic-phase CML in humans, the leukemic stem cell is the HSC itself.90,177 However, these HSCs still respond to regulatory signals, thus representing steps in the clonal progression toward blast crisis (see Figure 2.6).

Figure 2.6. Leukemic progression at the hematopoietic stem cell level. Self-renewing HSCs are the cells present long enough to accumulate the many activating events necessary for full transformation into tumorigenic cells. Under normal conditions, half of the offspring of HSC cell divisions would be expected to undergo differentiation, leaving the HSC pool stable in size. (A) (Pre) leukemic progression results in cohorts of HSCs with increasing malignant potential. The cells with the additional event (two events are illustrated, although more would be expected to occur) can outcompete less-transformed cells in the HSC pool if they divide faster (as suggested in the figure) or are more resistant to differentiation or apoptosis (cell death), two major exit routes from the HSC pool. (B) Normal HSCs differentiate into progenitors and mature cells; this is linked with limited proliferation (left). Partially transformed HSCs can still differentiate into progenitors and mature cells, but more cells are produced. Also, the types of mature cells that are produced may be skewed from the normal ratio. Fully transformed cells may be completely blocked in terminal differentiation, and large numbers of primitive blast cells, representing either HSCs or self-renewing, transformed progenitor cells, can be produced. While this sequence of events is true for some leukemias (e.g., AML), not all of the events occur in every leukemia. As with non-transformed cells, most leukemia cells (other than the leukemia stem cells) can retain the potential for (limited) differentiation.

Many methods have revealed contributing protooncogenes and lost tumor suppressors in myeloid leukemias. Now that LSCs can be isolated, researchers should eventually be able to assess the full sequence of events in HSC clones undergoing leukemic transformation. For example, early events, such as the AML/ETO translocation in AML or the BCR/ABL translocation in CML can remain present in normal HSCs in patients who are in remission (e.g., without detectable cancer).177,178 The isolation of LSCs should enable a much more focused attack on these cells, drawing on their known gene expression patterns, the mutant genes they possess, and the proteomic analysis of the pathways altered by the proto-oncogenic events.173,176,179 Thus, immune therapies for leukemia would become more realistic, and approaches to classify and isolate LSCs in blood could be applied to search for cancer stem cells in other tissues.180

After more than 50 years of research and clinical use, hematopoietic stem cells have become the best-studied stem cells and, more importantly, hematopoietic stem cells have seen widespread clinical use. Yet the study of HSCs remains active and continues to advance very rapidly. Fueled by new basic research and clinical discoveries, HSCs hold promise for such indications as treating autoimmunity, generating tolerance for solid organ transplants, and directing cancer therapy. However, many challenges remain. The availability of (matched) HSCs for all of the potential applications continues to be a major hurdle. Efficient expansion of HSCs in culture remains one of the major research goals. Future developments in genomics and proteomics, as well as in gene therapy, have the potential to widen the horizon for clinical application of hematopoietic stem cells even further.

Notes:

* Cellerant Therapeutics, 1531 Industrial Road, San Carlos, CA 94070. Current address: Department of Surgery, Arizona Health Sciences Center, 1501 N. Campbell Avenue, P.O. Box 245071, Tucson, AZ 857245071,e-mail: jdomen@surgery.arizona.edu.

** Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, E-mail: Amy_Wagers@harvard.edu

*** Director, Institute for Cancer/Stem Cell Biology and Medicine, Professor of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, Irv@stanford.edu.

Chapter1|Table of Contents|Chapter3

See original here:
Bone Marrow (Hematopoietic) Stem Cells | stemcells.nih.gov

To Read More: Bone Marrow (Hematopoietic) Stem Cells | stemcells.nih.gov
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow (Hematopoietic) Stem Cells | stemcells.nih.gov | dataSeptember 28th, 2016
Read All

Synergistic effects of transplanted adult neural stem …

By NEVAGiles23

The transplantation of neural stem/progenitor cells (NPCs) is a promising therapeutic strategy for spinal cord injury (SCI). However, to date NPC transplantation has exhibited only limited success in the treatment of chronic SCI. Here, we show that chondroitin sulfate proteoglycans (CSPGs) in the glial scar around the site of chronic SCI negatively influence the long-term survival and integration of transplanted NPCs and their therapeutic potential for promoting functional repair and plasticity. We targeted CSPGs in the chronically injured spinal cord by sustained infusion of chondroitinase ABC (ChABC). One week later, the same rats were treated with transplants of NPCs and transient infusion of growth factors, EGF, bFGF, and PDGF-AA. We demonstrate that perturbing CSPGs dramatically optimizes NPC transplantation in chronic SCI. Engrafted NPCs successfully integrate and extensively migrate within the host spinal cord and principally differentiate into oligodendrocytes. Furthermore, this combined strategy promoted the axonal integrity and plasticity of the corticospinal tract and enhanced the plasticity of descending serotonergic pathways. These neuroanatomical changes were also associated with significantly improved neurobehavioral recovery after chronic SCI. Importantly, this strategy did not enhance the aberrant synaptic connectivity of pain afferents, nor did it exacerbate posttraumatic neuropathic pain. For the first time, we demonstrate key biological and functional benefits for the combined use of ChABC, growth factors, and NPCs to repair the chronically injured spinal cord. These findings could potentially bring us closer to the application of NPCs for patients suffering from chronic SCI or other conditions characterized by the formation of a glial scar.

See the original post:
Synergistic effects of transplanted adult neural stem ...

To Read More: Synergistic effects of transplanted adult neural stem …
categoriaSpinal Cord Stem Cells commentoComments Off on Synergistic effects of transplanted adult neural stem … | dataSeptember 27th, 2016
Read All

Human stem cells could provide relief for spinal cord …

By NEVAGiles23

GETTY

They suffer many complications in addition to paralysis and numbness and some of these problems are caused by a lack of the neurotransmitter GABA in the injured spinal cord.

A new University of California, San Francisco study in mice found human embryonic stem cells reduced two of the most severe side effects - incontinence and pain sensitivity.

Co-first author Assistant Professor Dr Cory Nicholas said: Chronic pain and bladder dysfunction remain significant quality-of-life issues for many people with spinal cord injuries.

Inhibitory cell-based neuro-therapy is a new approach and has shown promise to date in early animal studies, warranting further development."

The stem cell treatment differentiated into medial ganglionic eminence (MGE)-like cells, which produce GABA (gamma-Aminobutyric acid), an inhibitory neurotransmitter that is found throughout the central nervous system.

Our hope is that this treatment would last a long time, or maybe even be permanent

Dr Thomas Fandel

It plays an important role in reducing the excitability of neurons by binding to receptors that act on synapses.

Neuropathic pain and bladder dysfunction are at least in part attributed to overactive spinal cord circuits.

GETTY

Senior author Professor Dr Arnold Kriegstein said: We reasoned if we could take inhibitory neurons and directly place them into the spinal cord in the regions that are overactive, they might integrate into those circuits and suppress the activity.

In the study researchers used GABAergic inhibitory neuron precursors called MGE-like cells that were derived from human embryonic stem cells.

The neural precursor cells were placed into the spinal cords of mice two weeks after injury had been induced, where they could differentiate into GABA-producing neuron subtypes and form synaptic connections.

Co-author Dr Thomas Fandel, a research specialist at UCSF added: Rather than implanting these cells into the site of injury, at the mid-thoracic level, we injected them in the lumbosacral region, where the circuits are known to be overactive.

GETTY

Six months later we could see broad dispersion of the cells in that area. They were integrated into the spinal cord.

Tests showed the mice were not incontinent and had significantly reduced pain sensitivities.

Current treatments for neuropathic pain in people with spinal cord injuries most often involve opioids and other pain medications, as well as certain antidepressants, which have many side effects and tend to have limited efficacy.

Treatments for bladder dysfunction are often anticholinergics, but these drugs have side effects like dizziness and dry mouth.

GETTY

Botox may help with bladder spasms, but the benefits tend to be transient.

Dr Fandel added: The current approaches for treatment are not very effective and clearly more options are needed.

Our hope is that this treatment would last a long time, or maybe even be permanent.

The study was published in the journal Cell Stem Cell.

Here is the original post:
Human stem cells could provide relief for spinal cord ...

To Read More: Human stem cells could provide relief for spinal cord …
categoriaSpinal Cord Stem Cells commentoComments Off on Human stem cells could provide relief for spinal cord … | dataSeptember 26th, 2016
Read All

Cell Therapy Conferences | Spain | Worldwide Events …

By NEVAGiles23

Track-1 Cell Therapy:

Cell therapyas performed by alternativemedicinepractitioners is very different from the controlled research done by conventionalstem cellmedical researchers. Alternative practitioners refer to their form of cell therapy by several other different names includingxenotransplanttherapy,glandular therapy, and fresh cell therapy. Proponents ofcell therapyclaim that it has been used successfully to rebuild damaged cartilage in joints, repair spinal cord injuries,strengthen a weakenedimmune system, treat autoimmune diseases such as AIDS, and help patients withneurological disorderssuch as Alzheimers disease,Parkinson's diseaseand epilepsy.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

6th International Conference onTissue Engineering & Regenerative Medicine, Baltimore, USA, Aug 20-22, 2017; 8th World Congress and Expo onCell & Stem Cell Research,Orlando, USA, March 20-22, 2017; 15thWorld Congress on Biotechnology and Biotech Industries Meet,Rome, Italy,March 20-21,2017; 2nd International Conference onGenetic Counselling and Genomic Medicine ,Beijing, China,July 10-12, 2017; International Conference onClinical and Molecular Genetics, Las Vegas, USA, April 24-26, 2017.

Track-2 Gene therapy:

Gene therapyand cell therapy are overlapping fields of biomedical research with the goals of repairing the direct cause of genetic diseases in the DNA orcellularpopulation, respectively. The development of suitablegene therapytreatments for manygenetic diseasesand some acquired diseases has encountered many challenges and uncovered new insights into gene interactions and regulation. Further development often involves uncovering basic scientific knowledge of the affected tissues, cells, and genes, as well as redesigning vectors, formulations, and regulatory cassettes for the genes.Cell therapyis expanding its repertoire of cell types for administration.Cell therapytreatment strategies include isolation and transfer of specific stem cell populations, administration of effector cells, and induction of mature cells to becomepluripotent cells, and reprogramming of mature cells.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

2nd International Conference onMolecular Biology , London, UK ,June 22-24, 2017; 3rd World Bio Summit & Expo, Abu Dhabi, UAE, June 19-21, 2017; 5th International Conference onIntegrative Biology, London, UK, June 19-21, 2017; 2nd World Congress on Human Genetics, Chicago, USA, July 24-26, 2017; 9th International Conference onGenomics and Pharmacogenomics, Chicago, USA, July 13-14, 2017.

Track-3 Cell and gene therapy products:

Articles containing or consisting ofhuman cellsor tissues that are intended for implantation,transplantation, infusion, or transfer to a human recipient.Gene therapiesare novel and complex products that can offer unique challenges in product development. Hence, ongoing communication between the FDA and stakeholders is essential to meet these challenges.Gene therapy productsare being developed around the world, the FDA is engaged in a number of international harmonization activities in this area.

Examples:Musculoskeletal tissue, skin, ocular tissue, human heart valves;vascular graft, dura mater, reproductive tissue/cells, Stem/progenitor cells,somatic cells, Cells transduced withgene therapyvectors , Combination products (e.g., cells or tissue + device)

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

7th International Conference onPlant Genomics, Bangkok, Thailand, July 03-05, 2017; 15th Euro Biotechnology Congress, Valencia, Spain, June 05-07, 2017; International Conference onIntegrative Medicine & Nutrition, Dubai, UAE, May11-13, 2017; 14th Asia-Pacific Biotech Congress, April 10-12, 2017; Beijing, China,15th Biotechnology Congress, Baltimore, USA, June 22-23, 2017.

Track-4 Cellular therapy:

Cellular therapy, also calledlive cell therapy, cellular suspensions, glandular therapy, fresh cell therapy, sick cell therapy,embryonic cell therapy, andorgan therapy- refers to various procedures in which processed tissue from animal embryos, foetuses or organs, is injected or taken orally. Products are obtained from specific organs or tissues said to correspond with the unhealthy organs or tissues of the recipient. Proponents claim that the recipient's body automatically transports the injected cells to thetarget organs, where they supposedly strengthen them and regenerate their structure. The organs and glands used in cell treatment include brain, pituitary,thyroid, adrenals, thymus, liver,kidney, pancreas, spleen, heart,ovary, testis, and parotid. Several different types of cell or cell extract can be given simultaneously - some practitioners routinely give up to 20 or more at once.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

3rd International Conference onSynthetic Biology, Munich, Germany, July 20-21, 2017; 5th International Conference and Exhibition onCell and Gene Therapy,Madrid, Spain,Mar 2-3, 2017;International Conference onCell Signalling and Cancer Therapy,Paris, France,Aug 20-22, 2017; 7th Annual Conference on Stem Cell and Regenerative Medicine, Paris, France,Aug 04-05, 2016;3rd International Conference & Exhibition onTissue Preservation and Bio banking, Baltimore, USA,June 29-30, 2017.

Track-5 Cancer gene therapy:

Cancer therapiesare drugs or other substances that block the growth and spread ofcancerby interfering with specific molecules ("molecular targets") that are involved in the growth, progression, and spread ofcancer. Many cancer therapies have been approved by the Food and Drug Administration (FDA) to treat specific types of cancer. The development of targetedtherapiesrequires the identification of good targets that is, targets that play a key role in cancer cell growth and survival. One approach to identify potential targets is to compare the amounts of individualproteinsin cancer cells with those in normal cells.Proteinsthat are present in cancer cells but not normal cells or that are more abundant incancercells would be potential targets, especially if they are known to be involved incell growthor survival.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

2nd Biotechnology World Convention,London, UK,May 25-27, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 9th International Conference onCancer Genomics, Chicago, USA, May 29-31, 2017; 6th International Conference onTissue Engineering & Regenerative Medicine, Baltimore, USA, Aug 20-22, 2017; 8th World Congress and Expo onCell & Stem Cell Research, Orlando, USA, March 20-22, 2017.

Track-6 Nano therapy:

Nano Therapymay be defined as the monitoring, repair, construction and control of human biological systems at themolecular level, using engineerednanodevicesand nanostructures. Basic nanostructured materials, engineeredenzymes, and the many products of biotechnology will be enormously useful in near-term medical applications. However, the full promise ofnanomedicineis unlikely to arrive until after the development of precisely controlled or programmable medical Nano machines andnanorobots.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

15thWorld Congress on Biotechnology and Biotech Industries Meet ,Rome, Italy,March 20-21, 2017 ;2nd International Conference onGenetic Counselling and Genomic Medicine ,Beijing, China,July 10-12, 2017; International Conference onClinical and Molecular Genetics, Las Vegas, USA, April 24-26, 2017; 15th Euro Biotechnology Congress, Valencia, Spain, June 05-07, 2017; International Conference onIntegrative Medicine & Nutrition, Dubai, UAE, May11-13, 2017.

Track-7 Skin cell therapy:

Stem cellshave newly become a huge catchphrase in theskincarebiosphere. Skincare specialists are not usingembryonic stem cells; it is impossible to integrate live materials into a skincare product. Instead, scientists are creating products with specialized peptides andenzymesor plantstem cellswhich, when applied topically on the surface, help to protect the human skinstem cellsfrom damage and deterioration or stimulate the skins own stem cells. Currently, the technique is mainly used to save the lives of patients who have third degree burns over very large areas of their bodies.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

5th International Conference and Exhibition onCell and Gene Therapy,Madrid,Spain,Mar 2-3, 2017;International Conference onCell Signalling and Cancer Therapy,Paris, France,Aug 20-22, 2017;2nd Biotechnology World Convention,London, UK,May 25-27, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 9th International Conference onCancer Genomics, Chicago, USA, May 29-31, 2017.

Track-8 HIV gene therapy:

Highly activeantiretroviral therapydramatically improves survival inHIV-infected patients. However, persistence of HIV in reservoirs has necessitated lifelong treatment that can be complicated bycumulative toxicities, incomplete immune restoration, and the emergence of drug-resistant escapemutants. Cell and gene therapies offer the promise of preventing progressiveHIV infectionby interfering with HIV replication in the absence of chronicantiviral therapy.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

3rd International Conference onSynthetic Biology, Munich, Germany, July 20-21, 2017; International Conference onIntegrative Medicine & Nutrition, Dubai, UAE, May11-13, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; International Conference onCell Signalling and Cancer Therapy,Paris, France,Aug 20-22, 2017;7th Annual Conference on Stem Cell and Regenerative Medicine,Paris,France,Aug 04-05, 2016.

Track-9 Diabetes for gene therapy:

Cell therapyapproaches for this disease are focused on developing the most efficient methods for the isolation ofpancreasbeta cells or appropriatestem cells, appropriate location forcell transplant, and improvement of their survival upon infusion. Alternatively, gene andcell therapyscientists are developing methods to reprogram some of the other cells of the pancreas to secreteinsulin. Currently ongoingclinical trialsusing these gene andcell therapystrategies hold promise for improved treatments of type I diabetes in the future. The firstgene therapyapproach to diabetes was put forward shortly after the cloning of theinsulingene. It was proposed that non-insulin producing cells could be made into insulin-producingcells using a suitable promoter and insulin gene construct, and that these substitute cells could restore insulin production in type 1 and some type 2 diabetics.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

15thWorld Congress on Biotechnology and Biotech Industries Meet ,Rome, Italy,March 20-21, 2017;6th International Conference onTissue Engineering & Regenerative Medicine, Baltimore, USA, Aug 20-22, 2017; 8th World Congress and Expo onCell & Stem Cell Research, Orlando, USA, March 20-22, 2017; 14th Asia-Pacific Biotech Congress,Beijing, China,April 10-12, 2017;5th International Conference onIntegrative Biology, London, UK, June 19-21, 2017.

Track-10 Viral gene therapy:

Converting avirusinto a vector Theviral life cyclecan be divided into two temporally distinct phases: infection and replication. Forgene therapyto be successful, an appropriate amount of a therapeutic gene must be delivered into the target tissue without substantial toxicity. Eachviral vectorsystem is characterized by an inherent set of properties that affect its suitability for specific gene therapy applications. For some disorders, long-term expression from a relatively small proportion of cells would be sufficient (for example, genetic disorders), whereas otherpathologiesmight require high, but transient,gene expression. For example, gene therapies designed to interfere with a viral infectious process or inhibit the growth ofcancer cellsby reconstitution of inactivated tumour suppressor genes may require gene transfer into a large fraction of theabnormal cells.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

3rd International Conference onSynthetic Biology, Munich, Germany, July 20-21, 2017;5th International Conference and Exhibition onCell and Gene Therapy,Madrid, Spain,Mar 2-3, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 9th International Conference onCancer Genomics, Chicago, USA, May 29-31, 2017; 14th Asia-Pacific Biotech Congress,Beijing, China,April 10-12, 2017.

Track-11 Stem cell therapies:

Stem cells have tremendous promise to help us understand and treat a range of diseases, injuries and other health-related conditions. Their potential is evident in the use ofblood stem cellsto treat diseases of the blood, a therapy that has saved the lives of thousands of children withleukaemia; and can be seen in the use ofstem cellsfor tissue grafts to treat diseases or injury to the bone, skin and surface of the eye. Some bone, skin andcorneal(eye) injuries and diseases can be treated bygraftingor implanting tissues, and the healing process relies on stem cells within thisimplanted tissue.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

2nd World Congress on Human Genetics, Chicago, USA, July 24-26, 2017; 2nd International Conference onGenetic Counselling and Genomic Medicine ,Beijing, China,July 10-12, 2017; International Conference onClinical and Molecular Genetics, Las Vegas, USA, April 24-26, 2017; 2nd International Conference onMolecular Biology,London, UK,June 22-24, 2017; 15th Biotechnology Congress, Baltimore, USA, June 22-23, 2017.

Track-12 Stem cell preservation:

The ability to preserve the cells is critical to theirclinicalapplication. It improves patient access to therapies by increasing the genetic diversity of cells available. In addition, the ability to preserve cells improves the "manufacturability" of acell therapyproduct by permitting the cells to be stored until the patient is ready for administration of the therapy, permitting inventory control of products, and improving management of staffing atcell therapyfacilities. Finally, the ability to preservecell therapiesimproves the safety of cell therapy products by extending the shelf life of a product and permitting completion of safety and quality control testing before release of the product for use. preservation permits coordination between the manufacture of the therapy and patient care regimes.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

7th Annual Conference on Stem Cell and Regenerative Medicine,Paris, France,Aug 04-05, 2016; 2nd Biotechnology World Convention,LONDON, UK,May 25-27, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 9th International Conference onCancer Genomics, Chicago, USA, May 29-31, 2017; 3rd International Conference onSynthetic Biology, Munich, Germany, July 20-21, 2017.

Track-13 Stem cell products:

The globalstemcell,Stem cell productsmarket will grow from about $5.6 billion in 2013 to nearly $10.6 billion in 2018, registering a compound annual growth rate (CAGR) of 13.6% from 2013 through 2018.This trackdiscusses the implications ofstemcellresearchand commercial trends in the context of the current size and growth of thepharmaceutical market, both in global terms and analysed by the most important national markets.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

6th International Conference onTissue Engineering & Regenerative Medicine, Baltimore, USA, Aug 20-22, 2017; 8th World Congress and Expo onCell & Stem Cell Research, Orlando, USA, March 20-22, 2017; 15thWorld Congress on Biotechnology and Biotech Industries Meet,Rome, Italy,March 20-21, 2017; 2nd International Conference onGenetic Counselling and Genomic Medicine ,Beijing, China,July 10-12, 2017; International Conference onClinical and Molecular Genetics, las vegas, USA, April 24-26, 2017.

Track-14 Genetically inherited diseases:

Agenetic diseaseis any disease that is caused by an abnormality in an individual'sgenome, the person's entiregeneticmakeup. The abnormality can range from minuscule to major -- from a discrete mutation in a single base in the DNA of a single gene to a grosschromosome abnormalityinvolving the addition or subtraction of an entirechromosomeor set of chromosomes.Most genetic diseases are the direct result of a mutation in one gene. However, one of the most difficult problems ahead is to find out how genes contribute to diseases that have a complex pattern ofinheritance, such as in the cases of diabetes,asthma,cancerandmental illness. In all these cases, no one gene has the yes/no power to say whether a person has a disease or not. It is likely that more than one mutation is required before the disease is manifest, and a number of genes may each make a subtle contribution to a person's susceptibility to a disease; genes may also affect how a person reacts toenvironmental factors.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

15th Biotechnology Congress, Baltimore, USA, June 22-23, 2017; 3rd International Conference onSynthetic Biology, Munich, Germany, July 20-21, 2017; 5th International Conference and Exhibition onCell and Gene Therapy,Madrid, Spain,Mar 2-3, 2017; International Conference onCell Signalling and Cancer Therapy,paris, France,Aug 20-22, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017.

Track-15 Plant stem cells:

Plantshave emerged as powerful production platforms for the expression of fully functional recombinantmammalian proteins. These expression systems have demonstrated the ability to produce complexglycoproteinsin a cost-efficient manner at large scale. The full realization of thetherapeuticpotential of stem cells has only recently come into the forefront ofregenerative medicine. Stem cells are unprogrammed cells that can differentiate into cells with specific functions.Regenerative therapiesare used to stimulate healing and might be used in the future to treat various kinds of diseases.Regenerative medicinewill result in an extended healthy life span. A fresh apple is a symbol for beautiful skin. Hair greying for example could be shown to result from the fact that themelanocyte stem cellsin the hair follicle have died off.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

9th International Conference onGenomics and Pharmacogenomics, Chicago, USA, July 13-14, 2017; 7th International Conference onPlant Genomics, Bangkok, Thailand, July 03-05, 2017; 15th Euro Biotechnology Congress, Valencia, Spain, June 05-07, 2017; 5th International Conference and Exhibition onCell and Gene Therapy,Madrid, Spain,Mar 2-3, 2017; 3rd International Conference & Exhibition onTissue Preservation and Bio banking,Baltimore, USA,June 29-30, 2017.

Track-16 Plant stem cell rejuvenation:

Asplantscannot escape from danger by running or taking flight, they need a special mechanism to withstandenvironmental stress. What empowers them to withstand harsh attacks and preserve life is the stem cell. According to Wikipedia, plantstem cellsnever undergo theagingprocess but constantly create new specialized and unspecialized cells, and they have the potential to grow into any organ, tissue, or cell in the body. The everlasting life is due to the hormones auxin andgibberellin. British scientists found that plant stem cells were much more sensitive toDNAdamage than other cells. And once they sense damage, they trigger death of these cells.

Rejuvenate with Plant Stem Cells

Detoxifyand release toxins on a cellular level. Nourishyour body with vital nutrients. Regenerateyour cells and diminish the effects of aging.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 14th Asia-Pacific Biotech Congress,Beijing, China,April 10-12, 2017; 15th Biotechnology Congress, Baltimore, USA, June 22-23, 2017; 3rd International Conference onSynthetic Biology, Munich, Germany,July 20-21, 2017; 5th International Conference and Exhibition on Cell and Gene Therapy,Madrid, Spain,Mar 2-3, 2017.

Track-17 Clinical trials in cell and gene therapy:

Aclinical trialis a research study that seeks to determine if a treatment is safe and effective. Advancing new cell andgene therapies(CGTs) from the laboratory into early-phaseclinical trialshas proven to be a complex task even for experienced investigators. Due to the wide variety ofCGTproducts and their potential applications, a case-by-case assessment is warranted for the design of each clinical trial.

Objectives:Determine thepharmacokineticsof this regimen by the persistence of modified T cells in the blood of these patients, Evaluate theimmunogenicityof murine sequences in chimeric anti-CEA Ig TCR, Assess immunologic parameters which correlate with the efficacy of this regimen in these patients, Evaluate, in a preliminary manner, the efficacy of this regimen in patients with CEA bearingtumours.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

2nd Biotechnology World Convention,London, UK,May 25-27, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 9th International Conference onCancer Genomics, Chicago, USA, May 29-31, 2017; 8th World Congress and Expo onCell & Stem Cell Research, Orlando, USA, March 20-22, 2017; 15thWorld Congress on Biotechnology and Biotech Industries Meet,Rome, Italy,March 20-21, 2017.

Track-18 Molecular epigenetics:

Epigeneticsis the study of heritable changes in thephenotypeof a cell or organism that are not caused by its genotype. The molecular basis of anepigeneticprofile arises from covalent modifications of protein andDNAcomponents ofchromatin. The epigenetic profile of a cell often dictates cell fate, as well as mammalian development,agingand disease. Epigenetics has evolved to become the science that explains how the differences in the patterns ofgene expressionin diverse cells or tissues are executed and inherited.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

5th International Conference onIntegrative Biology, London, UK, June 19-21, 2017; 2nd World Congress on Human Genetics, Chicago, USA, July 24-26, 2017; 9th International Conference onGenomics and Pharmacogenomics, Chicago, USA, July 13-14, 2017; International Conference onIntegrative Medicine & Nutrition, Dubai, UAE, May11-13, 2017; 14th Asia-Pacific Biotech Congress,Beijing, China,April 10-12, 2017.

Track-19 Bioengineering therapeutics:

The goals ofbioengineeringstrategies for targetedcancertherapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumour, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by non-malignant cells. In ESRD micro electro mechanical systems andnanotechnologyto create components such as robust silicon Nano pore filters that mimic natural kidney structure for high-efficiency toxin clearance. It also usestissue engineeringto build a miniature bioreactor in which immune-isolated human-derived renal cells perform key functions, such as reabsorption of water and salts.In drug delivery for a leading cause ofblindness, photo-etching fabrication techniques from themicrochipindustry to create thin-film and planar micro devices (dimensions in millionths of meters) with protectivemedicationreservoirs andnanopores(measured in billionths of meters) for insertion in the back of the eye to deliver sustained doses of drug across protective retinalepithelial tissuesover the course of several months.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

6th International Conference onTissue Engineering & Regenerative Medicine, Baltimore, USA, Aug 20-22, 2017; 8th World Congress and Expo onCell & Stem Cell Research, Orlando, USA, March 20-22, 2017; 15thWorld Congress on Biotechnology and Biotech Industries Meet,Rome, Italy,March 20-21, 2017; 2nd International Conference onGenetic Counselling and Genomic Medicine ,Beijing, China,July 10-12, 2017; International Conference onClinical and Molecular Genetics, Las Vegas, USA, April 24-26, 2017.

Track-20 Advanced gene therapy:

Advanced therapiesare different fromconventional medicines, which are made from chemicals or proteins.Gene-therapymedicines:these contain genes that lead to atherapeuticeffect. They work by inserting 'recombinant' genes into cells, usually to treat a variety of diseases, including genetic disorders, cancer or long-term diseases.Somatic-cell therapymedicines:these contain cells or tissues that have been manipulated to change their biological characteristics.Advanced Cell &Gene Therapyprovides guidanceinprocess development, GMP/GTP manufacturing,regulatory affairs, due diligence and strategy, specializing in cell therapy,gene therapy, and tissue-engineeredregenerative medicineproducts.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

9th International Conference onGenomics and Pharmacogenomics, Chicago, USA, July 13-14, 2017; 7th International Conference onPlant Genomics, Bangkong,Thailand, July 03-05, 2017; International Conference onIntegrative Medicine & Nutrition, Dubai, UAE, May11-13, 2017; 14th Asia-Pacific Biotech Congress, Beijing,China,April 10-12, 2017; 2nd World Congress on Human Genetics, Chicago, USA, July 24-26, 2017.

Read more:
Cell Therapy Conferences | Spain | Worldwide Events ...

To Read More: Cell Therapy Conferences | Spain | Worldwide Events …
categoriaCardiac Stem Cells commentoComments Off on Cell Therapy Conferences | Spain | Worldwide Events … | dataSeptember 23rd, 2016
Read All

Bone Marrow Stem Cell Transplant HSCT – National …

By NEVAGiles23

In June 2016 researchers in Canada published results of a long-term HSCT trial involving 24 people with aggressive relapsing-remitting MS whose disease was not controlled with available therapies. Three years after the procedure, 70% remained free of disease activity, with no relapses, no new MRI-detected inflammatory brain lesions, and no signs of progression. None of the surviving participants experienced clinical relapses or required MS disease-modifying therapies to control their disease, and 40% experienced reductions in disability. One participant died and another required intensive hospital care for liver complications. All participants developed fevers, which were frequently associated with infections, and other toxicities.Read more about this study

A multi-center, 5-year trial called theHALT MS Study tested HSCT in 25 people with MS and active disease that was not controlled by disease-modifying medications. The trial was funded by the National Institutes of Health and the Immune Tolerance Network. Results presented at the June 2016 Annual Meeting of the Consortium of MS Centers suggest that after five years, 69% of participants experienced no new disease activity after the procedure and did not need disease-modifying therapies to control their disease. Most side effects related to blood cell reductions and infections. When the complete data are published, this trial will be an important addition to research needed to determine whether this approach to stem cell transplantation is safe and effective in people with MS.

In October 2015, researchers at the University of Genoa and other institutions in Italy reported on a small trial of HSCT in seven people with very active relapsing-remitting MS that was not controlled with MS disease-modifying therapy. They underwent a low-intensity lympho-ablative regimen in which the immune system was suppressed but not completely depleted before the stem cell transplant as an approach to reducing toxicity. The investigators did MRI scans (for 3 years) and clinical evaluations (for 5 years). They found dramatic reductions of MRI-detected inflammation after the procedure, but did not achieve complete absence of inflammation. After 5 years, two participants remained stable, one significantly improved, and four had mild disease progression. One experienced a relapse after treatment. No severe side effects occurred. The authors conclude that the low-intensity regimen they used was not sufficient to treat aggressive MS.Read an abstract from the paper(Multiple Sclerosis 2015 Oct;21(11):1423-30) In January 2015, doctors at Northwestern University published their10-year experience of treating people with HSCT. The report included 123 people with relapsing-remitting MS and 28 with secondary-progressive MS. Their method is nonmyeloblative HSCT, in which the immune system is suppressed but not completely depleted before the stem cell transplant. Individuals were followed from 6 months to 5 years, or an average of 2.5 years. The EDSS disability scores improved, compared to pretreatment, by one point or more in 64% of those followed out to year 4. Relapses and MRI-detected disease activity were also reduced. In evaluating which type of individuals benefited from the therapy, the doctors suggested that people with relapsing-remitting MS who had had MS for ten years or less showed improvements in their disability scores, whereas those with secondary-progressive MS or disease duration greater than ten years did not show improvements on their disability scores. They reported no treatment-related deaths or serious infections. ITP (immune-mediated thrombocytopenia), a potentially serious bleeding disorder, developed in 7 people, and thyroid disorders developed in 7 people.Read a summary of their resultsor thepaper in JAMA (Published onlineJanuary 20, 2015).

Ongoing Research in HSCT Additional research is focusing on figuring out who might benefit from this procedure and how to reduce its risks. HSCTis being investigated in Canada, the United States, Europe and elsewhere. For example:

An internationalclinical trialof this procedure, being led by Dr. Richard Burt of Northwestern University in Chicago, is now recruiting individuals who have not responded to other disease-modifying therapies. THIS TRIAL IS CURRENTLY RECRUITING PARTICIPANTS at its sites at Northwestern University, Rush University Medical Center, University of Sao Paulo, Uppsala University and Sheffield Teaching Hospitals NHS Foundation Trust.Read moreabout who may be eligible to participate.Dr. Burt and colleaguesrecently publisheda case series exploring outcomes for individuals who underwent the procedure.

Read this article:
Bone Marrow Stem Cell Transplant HSCT - National ...

To Read More: Bone Marrow Stem Cell Transplant HSCT – National …
categoriaBone Marrow Stem Cells commentoComments Off on Bone Marrow Stem Cell Transplant HSCT – National … | dataSeptember 19th, 2016
Read All

Arthritis, Musculoskeletal and Skin Diseases Home Page

By NEVAGiles23

You are here:

For Scientific Researchers

Accelerating Medicines Partnership (AMP)

NIAMS on Twitter

National Multicultural Outreach Initiative

NIH Loan Repayment Programs

Our Research Focus

Studies Seeking Patients

NIAMS Highlights

NIH Osteoporosis and Related Bone Diseases ~ National Resource Center

Researchers employ an emerging approach used to fight cancer and turn it on pemphigus. They engineer T cells to destroy misbehaving immune cells without affecting the rest of the immune system.

Read more about engineering a T cell.

Investigators have discovered that a molecule called TRPV4 plays a role in sensing itch. The discovery may lead to new ways to treat skin conditions.

Find out more about TRPV4.

Psoriasis is a chronic skin disease that causes scaling and inflammation. It's driven by the immune system. Research is helping to find improved treatments.

Interested in learning more about psoriasis?

Using a combination of medicinal chemistry and biomaterials science, researchers have engineered a way to attract immune cells to a site of injury in mice and stimulate the formation of new blood vessels.

Find out more about the growth of new blood vessels.

Multimedia

Video

Images

Originally posted here:
Arthritis, Musculoskeletal and Skin Diseases Home Page

To Read More: Arthritis, Musculoskeletal and Skin Diseases Home Page
categoriaSkin Stem Cells commentoComments Off on Arthritis, Musculoskeletal and Skin Diseases Home Page | dataSeptember 3rd, 2016
Read All

Stem Cell Conferences | Cell and Stem Cell Congress | Stem …

By NEVAGiles23

On behalf of the organizing committee, it is my distinct pleasure to invite you to attend the Stem Cell Congress-2017. After the success of the Cell Science-2011, 2012, 2013, 2014, 2015, Conference series.LLC is proud to announce the 6th World Congress and expo on Cell & Stem Cell Research (Stem Cell Congress-2017) which is going to be held during March 20-22, 2017, Orlando, Florida, USA. The theme of Stem Cell Congress-2017 is Explore and Exploit the Novel Techniques in Cell and Stem Cell Research.

This annual Cell Science conference brings together domain experts, researchers, clinicians, industry representatives, postdoctoral fellows and students from around the world, providing them with the opportunity to report, share, and discuss scientific questions, achievements, and challenges in the field.

Examples of the diverse cell science and stem cell topics that will be covered in this comprehensive conference include Cell differentiation and development, Cell metabolism, Tissue engineering and regenerative medicine, Stem cell therapy, Cell and gene therapy, Novel stem cell technologies, Stem cell and cancer biology, Stem cell treatment, Tendency in cell biology of aging and Apoptosis and cancer disease, Drugs and clinical developments. The meeting will focus on basic cell mechanism studies, clinical research advances, and recent breakthroughs in cell and stem cell research. With the support of many emerging technologies, dramatic progress has been made in these areas. In Stem Cell Congress-2017, you will be able to share experiences and research results, discuss challenges encountered and solutions adopted and have opportunities to establish productive new academic and industry research collaborations.

In association with the Stem Cell Congress-2017 conference, we will invite those selected to present at the meeting to publish a manuscript from their talk in the journal Cell Science with a significantly discounted publication charge. Please join us in Philadelphia for an exciting all-encompassing annual Stem Cell get together with the theme of better understanding from basic cell mechanisms to latest Stem Cell breakthroughs!

Haval Shirwan, Ph.D. Executive Editor, Journal of Clinical & Cellular Immunology Dr. Michael and Joan Hamilton Endowed Chair in Autoimmune Disease Professor, Department of Microbiology and Immunology Director, Molecular Immunomodulation Program, Institute for Cellular Therapeutics, University of Louisville, Louisville, KY

Track01:Stem Cells

The most well-established and widely used stem cell treatment is thetransplantationof blood stem cells to treat diseases and conditions of the blood and immune system, or to restore the blood system after treatments for specific cancers. Since the 1970s,skin stem cellshave been used to grow skin grafts for patients with severe burns on very large areas of the body. Only a few clinical centers are able to carry out this treatment and it is usually reserved for patients with life-threatening burns. It is also not a perfect solution: the new skin has no hair follicles or sweat glands. Research aimed at improving the technique is ongoing.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

7thAnnual Conference on Stem Cell and Regenerative MedicineAug 4-5, 2016, Manchester, UK;2nd InternationalConference on AntibodiesJuly 14-15, 2016 Philadelphia, USA; 2nd InternationalConference on Innate ImmunityJuly 21-22, 2016 Berlin, Germany; 2ndInternational Congress on Neuroimmunology March 31-April 02, 2016 Atlanta, USA; InternationalConference on Cancer Immunology July 28-30, 2016 Melbourne, Australia; 5th InternationalConference on ImmunologyOctober 24-26, 2016 Chicago, USA;Cancer Vaccines: Targeting Cancer Genes for Immunotherapy, Mar 610 2016, Whistler, Canada;Systems Immunology: From Molecular Networks to Human Biology, Jan 1014 2016, Big Sky, USA;Novel Immunotherapeutics Summit, Jan 2526 2016, San Diego, USA;Stromal Cells in Immunity, Feb 711 2016, Keystone, USA; 26th European Congress ofClinical Microbiology, April 912 2016, Istanbul, Turkey

Track 02: Stem Cell Banking:

Stem Cell Banking is a facility that preserves stem cells derived from amniotic fluid for future use. Stem cell samples in private or family banks are preserved precisely for use by the individual person from whom such cells have been collected and the banking costs are paid by such person. The sample can later be retrieved only by that individual and for the use by such individual or, in many cases, by his or her first-degree blood relatives.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

8thWorld Congress on Stem Cell ResearchMarch 20-22, 2017 Orlando, USAInternationalConference on Cancer ImmunologyJuly 28-30, 2016 Melbourne, Australia; 5th InternationalConference on ImmunologyOctober 24-26, 2016 Chicago, USA;Cancer Vaccines: Targeting Cancer Genes for Immunotherapy, Mar 610 2016, Whistler, Canada;Systems Immunology: From Molecular Networks to Human Biology, Jan 1014 2016, Big Sky, USA;Novel Immunotherapeutics Summit, Jan 2526 2016, San Diego, USA;Stromal Cells in Immunity, Feb 711 2016, Keystone, USA; 26th European Congress ofClinical Microbiology, April 912 2016, Istanbul, Turkey

Track 03: Stem Cell Therapy:

Autologous cells are obtained from one's own body, just as one may bank his or her own blood for elective surgical procedures. Adult stem cells are frequently used in medical therapies, for example in bone marrow transplantation. Human embryonic stem cells may be grown in vivo and stimulated to produce pancreatic -cells and later transplanted to the patient. Its success depends on response of the patients immune system and ability of the transplanted cells to proliferate, differentiate and integrate with the target tissue.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

4th InternationalConference on Plant GenomicsJuly 14-15, 2016 Brisbane, Australia; 8thWorld Congress on Stem Cell ResearchMarch 20-22, 2017 Orlando, USA; 7thAnnual Conference on Stem Cell and Regenerative MedicineAug 4-5, 2016, Manchester, UK; 2nd InternationalConference on Tissue preservation and BiobankingSeptember 12-13, 2016 Philadelphia, USA, USA;World Congress on Human GeneticsOctober 31- November 02, 2016 Valencia, Spain; 12thEuro Biotechnology CongressNovember 7-9, 2016 Alicante, Spain; 2nd InternationalConference on Germplasm of Ornamentals, Aug 8-12, 2016, Atlanta, USA; 7th Internationalconference on Crop Science, Aug 1419 2016, Beijing, China;Plant Epigenetics: From Genotype to Phenotype, Feb 1519 2016, Taos, USA;Germline Stem Cells Conference, June 1921 2016, San Francisco, USA;Conference on Water Stressin Plants, 29 May 3 June 2016, Ormont-Dessus, Switzerland

Track 04: Novel Stem Cell Technologies:

Stem cell technology is a rapidly developing field that combines the efforts of cell biologists, geneticists, and clinicians and offers hope of effective treatment for a variety of malignant and non-malignant diseases. Stem cells are defined as totipotent progenitor cells capable of self-renewal and multilineage differentiation. Stem cells survive well and show stable division in culture, making them ideal targets for in vitro manipulation. Although early research has focused on haematopoietic stem cells, stem cells have also been recognised in other sites. Research into solid tissue stem cells has not made the same progress as that on haematopoietic stem cells.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

InternationalConference on Next Generation SequencingJuly 21-22, 2016 Berlin, Germany; 5th InternationalConference on Computational Systems BiologyAugust 22-23, 2016 Philadelphia, USA; 7th InternationalConference on BioinformaticsOctober 27-28, 2016 Chicago, USA; InternationalConference on Synthetic BiologySeptember 28-30, 2015 Houston, USA; 4th InternationalConference on Integrative BiologyJuly 18-20, 2016 Berlin, Germany; 1st InternationalConference on Pharmaceutical BioinformaticsJan 2426 2016, Pattaya, Thailand; EMBL Conference: TheEpitranscriptome, Apr 2022 2016, Heidelberg, Germany; 2016Whole-Cell ModelingSummer School, Apr 38 2016, Barcelona, Spain; 3rd InternationalMolecular Pathological Epidemiology, May 1213 2016, Boston, USA; 5thDrug FormulationSummit, Jan 2527 2016, Philadelphia, USA

Track 05: Stem Cell Treatment:

Bone marrow transplant is the most extensively used stem-cell treatment, but some treatment derived from umbilical cord blood are also in use. Research is underway to develop various sources for stem cells, and to apply stem-cell treatments for neurodegenerative diseases and conditions, diabetes, heart disease, and other conditions.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

7th InternationalConference on BioinformaticsOctober 27-28, 2016 Chicago, USA; InternationalConference on Synthetic BiologySeptember 28-30, 2015 Houston, USA; 7thAnnual Conference on Stem Cell and Regenerative MedicineAug 4-5, 2016, Manchester, UK; 4th InternationalConference on Integrative BiologyJuly 18-20, 2016 Berlin, Germany; 1st InternationalConference on Pharmaceutical BioinformaticsJan 2426 2016, Pattaya, Thailand; EMBL Conference: TheEpitranscriptome, Apr 2022 2016, Heidelberg, Germany; 2016Whole-Cell ModelingSummer School, Apr 38 2016, Barcelona, Spain; 3rd InternationalMolecular Pathological Epidemiology, May 1213 2016, Boston, USA; 5thDrug FormulationSummit, Jan 2527 2016, Philadelphia, USA

Track 06: Stem cell apoptosis and signal transduction:

Apoptosis is the process of programmed cell death (PCD) that may occur in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, chromosomal DNA fragmentation, and global mRNA decay. Most cytotoxic anticancer agents induce apoptosis, raising the intriguing possibility that defects in apoptotic programs contribute to treatment failure. Because the same mutations that suppress apoptosis during tumor development also reduce treatment sensitivity, apoptosis provides a conceptual framework to link cancer genetics with cancer therapy.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

InternationalConference on Restorative MedicineOctober 24-26, 2016 Chicago, USA;; 3rdWorld Congress onHepatitis and Liver Diseases October 17-19, 2016 Dubai, UAE; InternationalConference on Molecular BiologyOctober 13-15, 2016 Dubai, UAE; 2nd InternationalConference on Tissue preservation and Biobanking September12-13, 2016 Philadelphia USA; 26thEuropean Congress ofClinical Microbiology, April 912 2016, Istanbul, Turkey;Conference onCell Growth and Regeneration, Jan 1014 2016, Breckenridge, USA ;

Track 07: Stem Cell Biomarkers:

Molecular biomarkers serve as valuable tools to classify and isolate embryonic stem cells (ESCs) and to monitor their differentiation state by antibody-based techniques. ESCs can give rise to any adult cell type and thus offer enormous potential for regenerative medicine and drug discovery. A number of biomarkers, such as certain cell surface antigens, are used to assign pluripotent ESCs; however, accumulating evidence suggests that ESCs are heterogeneous in morphology, phenotype and function, thereby classified into subpopulations characterized by multiple sets of molecular biomarkers.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

8thWorld Congress on Stem Cell ResearchMarch 20-22, 2017 Orlando, USA; 5th International Conference onCell and Gene TherapyMay 19-21, 2016 San Antonio, USA; 7thAnnual Conference on Stem Cell and Regenerative MedicineAug 4-5, 2016, Manchester, UK; InternationalConference on Restorative MedicineOctober 24-26, 2016 Chicago, USA; InternationalConference on Molecular BiologyOctober 13-15, 2016 Dubai, UAE; 2nd InternationalConference on Tissue preservation and Biobanking September12-13, 2016 Philadelphia USA;Conference on Cardiac Development, Regeneration and RepairApril 3 7, 2016 Snowbird, Utah, USA; Stem Cell DevelopmentMay 22-26, 2016 Hillerd, Denmark; Conference onHematopoietic Stem Cells, June 3-5, 2016 Heidelberg, Germany; ISSCR Pluripotency - March 22-24, 2016 Kyoto, Japan

Track 08: Cellular therapies:

Cellular therapy also called Cell therapy is therapy in which cellular material is injected into a patient, this generally means intact, living cells. For example, T cells capable of fighting cancer cells via cell-mediated immunity may be injected in the course of immunotherapy.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

InternationalConference on Genetic Counseling and Genomic MedicineAugust 11-12, 2016 Birmingham, UK;World Congress on Human GeneticsOctober 31- November 02, 2016 Valencia, Spain; InternationalConference on Molecular BiologyOctober 13-15, 2016 Dubai, UAE; 3rd InternationalConference on Genomics & PharmacogenomicsSeptember 21-23, 2015 San Antonio, USA; EuropeanConference on Genomics and Personalized MedicineApril 25-27, 2016 Valencia, Spain;Genomics and Personalized Medicine, Feb 711 2016, Banff, Canada; Drug Discovery for Parasitic Diseases, Jan 2428 2016, Tahoe City, USA; Heart Failure: Genetics,Genomics and Epigenetics, April 37 2016, Snowbird, USA; Understanding the Function ofHuman Genome Variation, May 31 June 4 2016, Uppsala, Sweden; 5thDrug Formulation SummitJan2527,2016,Philadelphia, USA

Track 09: Stem cells and cancer:

Cancer can be defined as a disease in which a group of abnormal cells grow uncontrollably by disregarding the normal rules of cell division. Normal cells are constantly subject to signals that dictate whether the cells should divide, differentiate into another cell or die. Cancer cells develop a degree of anatomy from these signals, resulting in uncontrolled growth and proliferation. If this proliferation is allowed to continue and spread, it can be fatal.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

2ndWorld Congress on Applied MicrobiologyOctober 31-November 02, 2016 Istanbul, Turkey; InternationalConference on Infectious Diseases & Diagnostic MicrobiologyOct 3-5, 2016 Vancouver, Canada;18th International conference on Neuroscience, April 26 2016, Sweden, Austria; 6th Annual Traumatic Brain Injury Conference, May 1112 2016, Washington, D.C., USA; Common Mechanisms of Neurodegeneration, June 1216 2016, Keystone, USA; Neurology Caribbean Cruise, Aug 2128 2016, Fort Lauderdale, USA; Annual Meeting of the German Society ofNeurosurgery(DGNC), June 1215 2016, Frankfurt am Main, Germany

Track 10: Embryonic stem cells:

Embryonic stem cells have a major potential for studying early steps of development and for use in cell therapy. In many situations, however, it will be necessary to genetically engineer these cells. A novel generation of lentivectors which permit easy genetic engineering of mouse and human embryonic stem cells.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

4thCongress on Bacteriology and Infectious DiseasesMay 16-18, 2016 San Antonio, USA; 2ndWorld Congress on Applied MicrobiologyOctober 31-November 02, 2016 Istanbul, Turkey; InternationalConference on Infectious Diseases & Diagnostic MicrobiologyOct 3-5, 2016 Vancouver, Canada; InternationalConference on Water MicrobiologyJuly 18-20, 2016 Chicago, USA; 5th InternationalConference on Clinical MicrobiologyOctober 24-26, 2016 Rome, Italy; Axons: FromCell Biologyto Pathology Conference, 2427 January 2016, Santa Fe, USA; 26th EuropeanCongress of Clinical MicrobiologyApril 912 2016, Istanbul, Turkey;Conference on Gut Microbiota, Metabolic Disorders and Beyond, April 1721 2016, Newport, USA; 7th EuropeanSpores Conference, April 1820 2016, Egham, UK; New Approaches to Vaccines forHuman and Veterinary Tropical Diseases, May 2226 2016, Cape Town, South Africa

Track 11: Cell differentiation and disease modeling:

Cellular differentiation is the progression, whereas a cell changes from one cell type to another. Variation occurs numerous times during the development of a multicellular organism as it changes from a simple zygote to a complex system of tissues and cell types. Differentiation continues in adulthood as adult stem cells divide and create fully differentiated daughter cells during tissue repair and during normal cell turnover. Some differentiation occurs in response to antigen exposure. Differentiation dramatically changes a cell's size, shape, membrane potential, metabolic activity, and responsiveness to signals. These changes are largely due to highly controlled modifications in gene expression and are the study of epigenetics. With a few exceptions, cellular differentiationalmost never involves a change in the DNA sequence itself. Thus, different cells can have very different physical characteristics despite having the same genome.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

4thCongress on Bacteriology and Infectious DiseasesMay 16-18, 2016 San Antonio, USA; 2ndWorld Congress on Applied MicrobiologyOctober 31-November 02, 2016 Istanbul, Turkey; InternationalConference on Infectious Diseases & Diagnostic MicrobiologyOct 3-5, 2016 Vancouver, Canada; InternationalConference on Water MicrobiologyJuly 18-20, 2016 Chicago, USA; 5thInternationalConference on Clinical MicrobiologyOctober 24-26, 2016 Rome, Italy; Axons: FromCell Biologyto Pathology Conference, 2427 January 2016, Santa Fe, USA; 26thEuropeanCongress of Clinical MicrobiologyApril 912 2016, Istanbul, Turkey;Conference on Gut Microbiota, Metabolic Disorders and Beyond, April 1721 2016, Newport, USA; 7thEuropeanSpores Conference, April 1820 2016, Egham, UK; New Approaches toVaccines forHuman and Veterinary Tropical Diseases, May 2226 2016, Cape Town, South Africa

Track 12: Tissue engineering:

Tissue Engineering is the study of the growth of new connective tissues, or organs, from cells and a collagenous scaffold to produce a fully functional organ for implantation back into the donor host. Powerful developments in the multidisciplinary field of tissue engineering have produced a novel set of tissue replacement parts and implementation approaches. Scientific advances in biomaterials, stem cells, growth and differentiation factors, and biomimetic environments have created unique opportunities to fabricate tissues in the laboratory from combinations of engineered extracellular matrices cells, and biologically active molecules.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

4thCongress on Bacteriology and Infectious DiseasesMay 16-18, 2016 San Antonio, USA; 2ndWorld Congress on Applied MicrobiologyOctober 31-November 02, 2016 Istanbul, Turkey; InternationalConference on Infectious Diseases & Diagnostic MicrobiologyOct 3-5, 2016 Vancouver, Canada; InternationalConference on Water MicrobiologyJuly 18-20, 2016 Chicago, USA; 5thInternationalConference on Clinical MicrobiologyOctober 24-26, 2016 Rome, Italy; Axons: FromCell Biologyto Pathology Conference, 2427 January 2016, Santa Fe, USA; 26thEuropeanCongress of Clinical MicrobiologyApril 912 2016, Istanbul, Turkey;Conference on Gut Microbiota, Metabolic Disorders and Beyond, April 1721 2016, Newport, USA; 7thEuropeanSpores Conference, April 1820 2016, Egham, UK; New Approaches toVaccines forHuman and Veterinary Tropical Diseases, May 2226 2016, Cape Town, South Africa

Track 13: Stem cell plasticity and reprogramming:

Stem cell plasticity denotes to the potential of stem cells to give rise to cell types, previously considered outside their normal repertoire of differentiation for the location where they are found. Included under this umbrella title is often the process of transdifferentiation the conversion of one differentiated cell type into another, and metaplasia the conversion of one tissue type into another. From the point of view of this entry, some metaplasias have a clinical significance because they predispose individuals to the development of cancer.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

InternationalConference on Case ReportsMarch 31-April 02, 2016 Valencia, Spain; 2nd International Meeting onClinical Case ReportsApril 18-20, 2016 Dubai, UAE; 3rd Experts Meeting onMedical Case ReportsMay 09-11, 2016 New Orleans, Louisiana, USA; 12thEuro BiotechnologyCongress November 7-9, 2016 Alicante, Spain; 2nd International Conference onTissue preservation and BiobankingSeptember 12-13, 2016 Philadelphia, USA; 11thWorld Conference BioethicsOctober 20-22, 2015 Naples, Italy;Annual Conference Health Law and Bioethics, May 6-7 2016 Cambridge, MA, USA; 27th Maclean Conference on Clinical Medical Ethics, Nov 13-14, 2015, Chicago, USA; CFP: Global Forum on Bioethics in Research, Nov 3-4, 2015, Annecy, France

Track 14: Gene therapy and stem cells

Gene therapy is the therapeutic delivery of nucleic acid polymers into a patient's cells as a drug to treat disease. Gene therapy could be a way to fix a genetic problem at its source. The polymers are either expressed as proteins, interfere with protein expression, or possibly correct genetic mutations. In the future, this technique may allow doctors to treat a disorder by inserting a gene into a patient's cells instead of using drugs or surgery.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

Track 15: Tumour cell science:

An abnormal mass of tissue. Tumors are a classic sign of inflammation, and can be benign or malignant. Tomour usually reflect the kind of tissue they arise in. Treatment is also specific to the location and type of the tumor. Benign tumors can sometimes simply be ignored, cancerous tumors; options include chemotherapy, radiation, and surgery.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

Track 16: Reprogramming stem cells: computational biology

Computational Biology, sometimes referred to as bioinformatics, is the science of using biological data to develop algorithms and relations among various biological systems. Bioinformatics groups use computational methods to explore the molecular mechanisms underpinning stem cells. To accomplish this bioinformaticsdevelop and apply advanced analysis techniques that make it possible to dissect complex collections of data from a wide range of technologies and sources.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

The fields of stem cell biology and regenerative medicine research are fundamentally about understanding dynamic cellular processes such as development, reprogramming, repair, differentiation and the loss, acquisition or maintenance of pluripotency. In order to precisely decipher these processes at a molecular level, it is critical to identify and study key regulatory genes and transcriptional circuits. Modern high-throughput molecular profiling technologies provide a powerful approach to addressing these questions as they allow the profiling of tens of thousands of gene products in a single experiment. Whereas bioinformatics is used to interpret the information produced by such technologies.

Related Stem Cell Conferences|Stem Cell Congress|Cell and Stem Cell Conferences|Conference Series LLC

8th World Congress on Cell & Stem Cell Research

The success of the 7 Cell Science conferences series has given us the prospect to bring the gathering one more time for our 8thWorld Congress 2017 meet in Orlando, USA. Since its commencement in 2011 cell science series has perceived around 750 researchers of great potentials and outstanding research presentations around the globe. The awareness of stem cells and its application is increasing among the general population that also in parallel offers hope and add woes to the researchers of cell science due to the potential limitations experienced in the real-time.

Stem Cell Research-2017has the goal to fill the prevailing gaps in the transformation of this science of hope to promptly serve solutions to all in the need.World Congress 2017 will have an anticipated participation of 100-120 delegates from around the world to discuss the conference goal.

History of Stem cells Research

Stem cells have an interesting history, in the mid-1800s it was revealed that cells were basically the building blocks of life and that some cells had the ability to produce other cells. Efforts were made to fertilize mammalian eggs outside of the human body and in the early 1900s, it was discovered that some cells had the capacity to generate blood cells. In 1968, the first bone marrow transplant was achieved successfully to treat two siblings with severe combined immunodeficiency. Other significant events in stem cell research include:

1978: Stem cells were discovered in human cord blood 1981: First in vitro stem cell line developed from mice 1988: Embryonic stem cell lines created from a hamster 1995: First embryonic stem cell line derived from a primate 1997: Cloned lamb from stem cells 1997: Leukaemia origin found as haematopoietic stem cell, indicating possible proof of cancer stem cells

Funding in USA:

No federal law forever did embargo stem cell research in the United States, but only placed restrictions on funding and use, under Congress's power to spend. By executive order on March 9, 2009, President Barack Obama removed certain restrictions on federal funding for research involving new lines of humanembryonic stem cells. Prior to President Obama's executive order, federal funding was limited to non-embryonic stem cell research and embryonic stem cell research based uponembryonic stem celllines in existence prior to August 9, 2001. In 2011, a United States District Court "threw out a lawsuit that challenged the use of federal funds for embryonic stem cell research.

Members Associated with Stem Cell Research:

Discussion on Development, Regeneration, and Stem Cell Biology takes an interdisciplinary approach to understanding the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex fully patterned adult organism, as well as the intimately related question of how adult structures regenerate. Stem cells play critical roles both during embryonic development and in later renewal and repair. More than 65 faculties in Philadelphia from both basic science and clinical departments in the Division of Biological Sciences belong to Development, Regeneration, and Stem Cell Biology. Their research uses traditional model species including nematode worms, fruit-flies, Arabidopsis, zebrafish, amphibians, chick and mouse as well as non-traditional model systems such as lampreys and cephalopods. Areas of research focus include stem cell biology, regeneration, developmental genetics, and cellular basis of development, developmental neurobiology, and evo-devo (Evolutionary developmental biology).

Stem Cell Market Value:

Worldwide many companies are developing and marketing specialized cell culture media, cell separation products, instruments and other reagents for life sciences research. We are providing a unique platform for the discussions between academia and business.

Global Tissue Engineering & Cell Therapy Market, By Region, 2009 2018

$Million

Why to attend???

Stem Cell Research-2017 could be an outstanding event that brings along a novel and International mixture of researchers, doctors, leading universities and stem cell analysis establishments creating the conference an ideal platform to share knowledge, adoptive collaborations across trade and world, and assess rising technologies across the world. World-renowned speakers, the most recent techniques, tactics, and the newest updates in cell science fields are assurances of this conference.

A Unique Opportunity for Advertisers and Sponsors at this International event:

http://stemcell.omicsgroup.com/sponsors.php

UAS Major Universities which deals with Stem Cell Research

University of Washington/Hutchinson Cancer Center

Oregon Stem Cell Center

University of California Davis

University of California San Francisco

University of California Berkeley

Stanford University

Mayo Clinic

Major Stem Cell Organization Worldwide:

Norwegian Center for Stem Cell Research

See the original post:
Stem Cell Conferences | Cell and Stem Cell Congress | Stem ...

To Read More: Stem Cell Conferences | Cell and Stem Cell Congress | Stem …
categoriaSkin Stem Cells commentoComments Off on Stem Cell Conferences | Cell and Stem Cell Congress | Stem … | dataAugust 29th, 2016
Read All

research IPS Cell Therapy IPS Cell Therapy

By NEVAGiles23

Frontiers in Biotechnology

Biotechnology is an innovative science in which living systems and organisms are used to develop new and useful products, ranging from healthcare products to seeds. The field of Biotechnology is growing rapidly making tremendous impacts in Medical/Health Care, Food & Agriculture. The Global Biotechnology industry is in the growth phase of its economic life cycle. Over the five years to 2014, revenue and industry value added (IVA) growth have outpaced world GDP growth. The Frontiers in Biotechnology track will cover current technological aspects that aim at obtaining products with scientific, industrial, health and agricultural applications, from organisms with increasing levels of complexity from bacteria, yeast, plants, animal cells and virus. With the lectures and demonstrations on stem cell therapy, Embryo transfer technology, next generation sequencing, Drug discovery, biotechnology in food and dairy, etc The participants are expected to acquire knowledge in techniques and methodologies used in Biotechnology.

Pharmaceutical Biotechnology

Pharmaceutical Biotechnology is the science that covers all technologies required for producing, manufacturing and registration of biological drugs.Pharmaceutical Biotechnologyis an increasingly important area of science and technology. It contributes in design and delivery of new therapeutic drugs,diagnosticagents for medical tests, and in gene therapy for correcting the medical symptoms of hereditary diseases. The Pharmaceutical Biotechnology is widely spread, ranging from many ethical issues to changes inhealthcarepracticesand a significant contribution to the development of national economy.Biopharmaceuticalsconsists of large biological molecules which areproteins. They target the underlying mechanisms and pathways of a disease or ailment; it is a relatively young industry. They can deal with targets in humans that are not accessible withtraditional medicines.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress2016, May 11th 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Medical Biotechnology

Medicine is by means of biotechnology techniques so much in diagnosing and treating dissimilar diseases. It also gives opportunity for the population to defend themselves from hazardous diseases. The pasture of biotechnology, genetic engineering, has introduced techniques like gene therapy, recombinant DNA technologyand polymerase chain retort which employ genes and DNA molecules to make adiagnosis diseasesand put in new and strong genes in the body which put back the injured cells. There are some applications of biotechnology which are live their part in the turf of medicine and giving good results.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress2016, May 11th 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & Biotech Patent Litigation Forum, Mar 14 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Molecular Biotechnology

Molecular biotechnology is the use of laboratory techniques to study and modify nucleic acids and proteins for applications in areas such as human and animal health, agriculture, and the environment.Molecular biotechnologyresults from the convergence of many areas of research, such as molecular biology, microbiology, biochemistry, immunology, genetics, and cell biology. It is an exciting field fueled by the ability to transfer genetic information between organisms with the goal of understanding important biological processes or creating a useful product.

Related Conferences

11th World Congress onBiotechnology and Biotech IndustriesMeet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA; GlobalBiotechnology Congress2016, May 11th-14th 2016, Boston, MA, USA;BIO Investor Forum, October 20-21, 2015, San Francisco, USA;BIO Latin America Conference, October 14-16, 2015, Rio de Janeiro, Brazil;Bio Pharm America 20158th Annual International Partnering Conference, September 15-17, 2015, Boston, MA, USA.

Environmental Biotechnology

The biotechnology is applied and used to study the natural environment. Environmental biotechnology could also imply that one try to harness biological process for commercial uses and exploitation. It is the development, use and regulation of biological systems for remediation of contaminated environment and forenvironment-friendly processes(green manufacturing technologies and sustainable development). Environmental biotechnology can simply be described as the optimal use of nature, in the form of plants, animals, bacteria, fungi and algae, to producerenewable energy, food and nutrients in a synergistic integrated cycle of profit making processes where the waste of each process becomes the feedstock for another process.

Related Conferences

11th World Congress onBiotechnology and Biotech IndustriesMeet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA; GlobalBiotechnology Congress2016, May 11th 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 15, 2016, Amsterdam, Netherlands

Animal Biotechnology

It improves the food we eat meat, milk and eggs. Biotechnology can improve an animals impact on the environment. Animalbiotechnologyis the use of science and engineering to modify living organisms. The goal is to make products, to improve animals and to developmicroorganismsfor specific agricultural uses. It enhances the ability to detect, treat and prevent diseases, include creating transgenic animals (animals with one or more genes introduced by human intervention), using gene knock out technology to make animals with a specific inactivated gene and producing nearly identical animals by somatic cell nuclear transfer (or cloning).

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress2016, May 11th 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Agricultural Biotechnology

Biotechnology is being used to address problems in all areas of agricultural production and processing. This includesplant breedingto raise and stabilize yields; to improve resistance to pests, diseases and abiotic stresses such as drought and cold; and to enhance the nutritional content of foods. Modern agricultural biotechnology improves crops in more targeted ways. The best known technique is genetic modification, but the term agricultural biotechnology (or green biotechnology) also covers such techniques asMarker Assisted Breeding, which increases the effectiveness of conventional breeding.

Related Conferences

3rd GlobalFood Safety Conference, September 01-03, 2016, Atlanta USA; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 12thBiotechnology Congress, Nov 14-15, 2016, San Francisco, USA;Biologically Active Compoundsin Food, October 15-16 2015 Lodz, Poland; World Conference onInnovative Animal Nutrition and Feeding, October 15-17, 2015 Budapest, Hungary; 18th International Conference onFood Science and Biotechnology, November 28 29, 2016, Istanbul, Turkey; 18th International Conference on Agricultural Science, Biotechnology,Food and Animal Science, January 7 8, 2016, Singapore; International IndonesiaSeafood and Meat, 1517 October 2016, Jakarta, Indonesia.

Industrial Biotechnology

Industrial biotechnology is the application of biotechnology for industrial purposes, includingindustrial fermentation. The practice of using cells such as micro-organisms, or components of cells like enzymes, to generate industrially useful products in sectors such as chemicals, food and feed, detergents, paper and pulp, textiles andbiofuels. Industrial Biotechnology offers a premier forum bridging basic research and R&D with later-stage commercialization for sustainable bio based industrial and environmental applications.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA; GlobalBiotechnology Congress2016, May 11th 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Microbial Biotechnology

Microorganisms have been exploited for their specific biochemical and physiological properties from the earliest times for baking, brewing, and food preservation and more recently for producingantibiotics, solvents, amino acids, feed supplements, and chemical feedstuffs. Over time, there has been continuous selection by scientists of special strains ofmicroorganisms, based on their efficiency to perform a desired function. Progress, however, has been slow, often difficult to explain, and hard to repeat. Recent developments inmolecular biologyand genetic engineering could provide novel solutions to long-standing problems. Over the past decade, scientists have developed the techniques to move a gene from one organism to another, based on discoveries of how cells store, duplicate, and transfer genetic information.

Related conferences

3rdGlobal Food Safety Conference, September 01-03, 2016, Atlanta USA; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 12thBiotechnology Congress, Nov 14-15, 2016, San Francisco, USA;Biologically Active Compoundsin Food, October 15-16 2015 Lodz, Poland; World Conference onInnovative Animal Nutrition and Feeding, October 15-17, 2015 Budapest, Hungary; 18th International Conference onFood Science and Biotechnology, November 28 29, 2016, Istanbul, Turkey; 18th International Conference on Agricultural Science, Biotechnology,Food and Animal Science, January 7 8, 2016, Singapore; International IndonesiaSeafood and Meat, 1517 October 2016, Jakarta, Indonesia.

Food Biotechnology

Food processing is a process by which non-palatable and easily perishable raw materials are converted to edible and potable foods and beverages, which have a longer shelf life. Biotechnology helps in improving the edibility, texture, and storage of the food; in preventing the attack of the food, mainly dairy, by the virus like bacteriophage producing antimicrobial effect to destroy the unwanted microorganisms in food that cause toxicity to prevent the formation and degradation of other toxins andanti-nutritionalelements present naturally in food.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress 2016, May 11th-14th 2016, Boston, MA, USA;BIO Investor Forum, October 20-21, 2015, San Francisco, USA;BIO Latin America Conference, October 14-16, 2015, Rio de Janeiro, Brazil;Bio Pharm America 20158th Annual International Partnering Conference, September 15-17, 2015, Boston, MA, USA.

Genetic Engineering and Biotechnology

One kind of biotechnology is gene technology, sometimes called genetic engineering orgenetic modification, where the genetic material of living things is deliberately altered to enhance or remove a particular trait and allow the organism to perform new functions. Genes within a species can be modified, or genes can be moved from one species to another. Genetic engineering has applications inmedicine, research, agriculture and can be used on a wide range of plants, animals and microorganisms. It resulted in a series of medical products. The first two commercially prepared products from recombinant DNA technology were insulin andhuman growth hormone, both of which were cultured in the E. coli bacteria.

The field of molecular biology overlaps with biology and chemistry and in particular, genetics and biochemistry. A key area of molecular biology concerns understanding how various cellular systems interact in terms of the way DNA, RNA and protein synthesis function.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress2016, May 11th 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Biotechnology Investor & partnering Forum

The Biotech Investor & Partnering Forum is one of the unique conclave focused on the management and economics of biotechnology which became so important as the field is growing on a fast paced. From agriculture and environment sectors to pharmaceutical and healthcare products and services, the industries and institutions emerging from the biotech revolution Bio-Based Economy represent one of the largest and most steadily growing building blocks of the Global economy. The social impact is overwhelming, generating tremendous progress in quality of life but also difficult issues that needs responsible management based on consumer & bio-industry perspective, solid ethical principles, growing intellectual property rights complexity, long drug development times, Bio security, unusual market structures and highly unpredictable outcomes are just some of the challenges facing biotechnology management today.

Related Conferences

11th World Congress onBiotechnology and Biotech Industries Meet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 13thBiotechnology Congress, Nov 28-30, 2016, San Francisco, USA;Global Biotechnology Congress2016, May 11th 14th 2016, Boston, MA, USA;Biomarker Summit2016, March 21-23, 2016 San Diego, CA, USA; 14thVaccines Research & Development, July 7-8, Boston, USA;Pharmaceutical & BiotechPatent Litigation Forum, Mar 14 15, 2016, Amsterdam, Netherlands; 4thBiomarkers in Diagnostics, Oct 07-08, 2015 Berlin, Germany, DEU.

Nano Biotechnology

Nano biotechnology, bio nanotechnology, and Nano biology are terms that refer to the intersection of nanotechnology and biology. Bio nanotechnology and Nano biotechnology serve as blanket terms for various related technologies. The most important objectives that are frequently found inNano biologyinvolve applying Nano tools to relevantmedical/biologicalproblems and refining these applications. Developing new tools, such as peptide Nano sheets, for medical and biological purposes is another primary objective in nanotechnology.

Related Conferences

8thWorldMedicalNanotechnologyCongress& Expo during June 9-11, Dallas, USA; 6thGlobal Experts Meeting and Expo onNanomaterialsand Nanotechnology, April 21-23, 2016 ,Dubai, UAE; 12thNanotechnologyProductsExpo, Nov 10-12, 2016 at Melbourne, Australia; 5thInternationalConference onNanotekand Expo, November 16-18, 2015 at San Antonio, USA; 11thInternational Conference and Expo onNano scienceandMolecular Nanotechnology, September 26-28 2016, London, UK; 18thInternational Conference onNanotechnologyand Biotechnology, February 4 5, 2016 in Melbourne, Australia; 16thInternational Conference onNanotechnology, August 22-25, 2016 in Sendai, Japan; International Conference onNano scienceand Nanotechnology, 7-11 Feb 2016 in Canberra, Australia; 18thInternational Conference onNano scienceand Nanotechnology, February 15 16, 2016 in Istanbul, Turkey; InternationalNanotechnologyConference& Expo, April 4-6, 2016 in Baltimore, USA.

Animal biotechnology

Animal biotechnology is a branch of biotechnology in which molecular biology techniques are used to genetically engineer animals in order to improve their suitability for pharmaceutical, agricultural or industrial applications. Many animals also help by serving as models of disease. If an animal gets a disease thats similar to humans, we can use that animal to test treatments. Animals are often used to help us understand how new drugs will work and whether or not theyll be safe for humans and effective in treating disease.

Related conferences

11th World Congress onBiotechnology and Biotech IndustriesMeet, July 28-29, 2016, Berlin, Germany; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 12thBiotechnology Congress, Nov 14-15, 2016, San Francisco, USA;BIO IPCC Conference, Cary, North Carolina, USA; World Congress onIndustrial Biotechnology, April 17-20, 2016, San Diego, CA; 6thBio based Chemicals: Commercialization & Partnering, November 16-17, 2015, San Francisco, CA, USA; The European Forum forIndustrial Biotechnology and Bio economy, 27-29 October 2015, Brussels, Belgium; 4thBiotechnology World Congress, February 15th-18th, 2016, Dubai, United Arab Emirates; International Conference on Advances inBioprocess Engineering and Technology, 20th to 22nd January 2016,Kolkata, India; GlobalBiotechnology Congress2016, May 11th 14th 2016, Boston, MA, USA

Biotechnology Applications

Biotechnology has application in four major industrial areas, including health care (medical), crop production and agriculture, nonfood (industrial) uses of crops and other products (e.g. biodegradable plastics, vegetable oil, biofuels), and environmental uses. AppliedMicrobiologyand Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins, applied genetics and molecular biotechnology,genomicsand proteomics, applied microbial and cell physiology, environmental biotechnology, process and products and more.

Related conferences

3rd GlobalFood Safety Conference, September 01-03, 2016, Atlanta USA; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, Thailand; 11thEuro Biotechnology Congress, November 07-09,2016, Alicante Spain; 12thBiotechnology Congress, Nov 14-15, 2016, San Francisco, USA;Biologically Active Compoundsin Food, October 15-16 2015 Lodz, Poland; World Conference onInnovative Animal Nutrition and Feeding, October 15-17, 2015 Budapest, Hungary; 18th International Conference onFood Science and Biotechnology, November 28 29, 2016, Istanbul, Turkey; 18th International Conference on Agricultural Science, Biotechnology,Food and Animal Science, January 7 8, 2016, Singapore; International IndonesiaSeafood and Meat, 1517 October 2016, Jakarta, Indonesia.

Biotechnology Companies & Market Analysis

From agriculture to environmental science, biotechnology plays an important role in improving industry standards, services, and developing new products. Biotechnology involves the spectrum of life science-based research companies working ontransformative technologiesfor a wide range of industries. While agriculture, material science and environmental science are major areas of research, the largest impact is made in the field medicine. As a large player in the research and development of pharmaceuticals, the role ofbiotechnologyin the healthcare field is undeniable. From genetically analysis and manipulation to the formation of new drugs, many biotech firms are transforming into pharmaceutical and biopharmaceutical leaders.

Related conferences

10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok; 11thEuroBiotechnologyCongress, November 7-9, 2016 Alicante, Spain; 11th World Congress onBiotechnology and Biotech IndustriesMeet, July 28-29, 2016, Berlin, Germany; 13thBiotechnologyCongress, November 28-30, 2016 San Francisco, USA; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, UAE;BioInternational Convention, June 6-9, 2016 | San Francisco, CA;BiotechJapan, May 11-13, 2016, Tokyo, Japan;NANO BIOEXPO 2016, Jan. 27 29, 2016, Tokyo, Japan;ArabLabExpo2016, March 20-23, Dubai; 14thInternational exhibition for laboratory technology,chemical analysis, biotechnology and diagnostics, 12-14 Apr 2016, Moscow, Russia

Biotechnology Capital & Grants

Every new business needs some startup capital, for research, product development and production, permits and licensing and other overhead costs, in addition to what is needed to pay your staff, if you have any. Biotechnology products arise from successfulbiotechcompanies. These companies are built by talented individuals in possession of a scientific breakthrough that is translated into a product or service idea, which is ultimately brought into commercialization. At the heart of this effort is the biotech entrepreneur, who forms the company with a vision they believe will benefit the lives and health of countless individuals. Entrepreneurs start biotechnology companies for various reasons, but creatingrevolutionary productsand tools that impact the lives of potentially millions of people is one of the fundamental reasons why all entrepreneurs start biotechnology companies.

10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok; 11thEuroBiotechnologyCongress, November 7-9, 2016 Alicante, Spain; 11th World Congress onBiotechnology and Biotech IndustriesMeet, July 28-29, 2016, Berlin, Germany; 13thBiotechnologyCongress, November 28-30, 2016 San Francisco, USA; 10thAsia Pacific Biotech CongressJuly 25-27, 2016, Bangkok, UAE;BioInternational Convention, June 6-9, 2016 | San Francisco, CA;BiotechJapan, May 11-13, 2016, Tokyo, Japan;NANO BIOEXPO 2016, Jan. 27 29, 2016, Tokyo, Japan;ArabLabExpo2016, March 20-23, Dubai; 14thInternational exhibition for laboratory technology,chemical analysis, biotechnology and diagnostics, 12-14 Apr 2016, Moscow, Russia

Scope and Importance

From the simple facts of brewing beer and baking bread has emerged a field now known asBiotechnology. Over the ages the meaning of the word biotechnology has evolved along with our growing technical knowledge. Biotechnology began by using cultured microorganisms to create a variety of food and drinks, despite in early practitioners not even knowing the existence of microbial world. Today, biotechnology is still defined as many application of living organisms or bioprocesses to create new products. Although the underlying idea is unchanged, the use of genetic engineering and other modern scientific techniques has revolutionized the area.

The field of genetics, molecular biology, microbiology, and biochemistry are merging their respective discoveries into the expanding applied field of biotechnology, and advances are occurring at a record pace. Traditional biotechnology goes back thousands of years.

Modern biotechnology applies not only modern genetics but also advances in other sciences. However, there is a third revolution that is just emergingnanotechnology. The development of techniques to visualize and manipulate atoms individually or in small clusters is opening the way to an ever-finer analysis of living systems. Nanoscale techniques are now beginning to play significant roles in many area of biotechnology.

This raises the question of what exactly defines biotechnology. To this there is no real answer. Today, the application of modern genetics or other equivalent modern technology is usually seen as application of modern genetics or equivalent modern technology is usually seen as necessary for a process to count as biotechnology. Thus, the definition of biotechnology has become partly a matter of fashion. Therefore, to classical terms, (modern) biotechnology as resulting in a broaden manner from the merger of classical biotechnology with modern genetics, molecular biology, computer technology, and nanotechnology.

Biotech Congress 2017covers mostly all the allied areas of biotechnology which embraces both the basic sciences, technology and as well as its applications in research, industry and academia. This conference will promote global networking between researchers, institutions, investors, industries, policy makers and students. The conference varied topics in biotechnology like healthcare, environmental, animal, plant, marine, genetic engineering, industrial aspects, food science and bio process.

Through this conference we can get all the relevant information regarding how we can use the advances in the biotechnology for building a better tomorrow by reducing the environmental impacts.

Why Italy?

Rome is the capital of Italy; it is also the countrys largest and most populated comune and fourth-most populous city in the European Union. The Metropolitan City of Rome has a population of 4.3 million residents. The city is located in the central-western portion of the Italian Peninsula, within Lazio (Latium), along the shores of Tiber River. Vatican City is an independent country within the city boundaries of Rome, the only existing example of a country within a city: for this reason Rome has been often defined as capital of two states. Roman mythology dates the founding of Rome at only around 753 BC; the site has been inhabited for much longer, making it one of the oldest continuously occupied cities in Europe. It is referred to as Roma Aeterna (The Eternal City) and Caput Mundi (Capital of the World), two central notions in ancient Roman culture. One of the most important city, Rome, was founded in 753 B.C. by Romulus.

The Apennine Mountains form its backbone and stretch from north to south, with the Tiber River cutting through them in central Italy. Along the northern border, the Alps serve as a natural boundary. The three major bodies of water surrounding Italy are the Adriatic Sea, the Ionian Sea, and the Mediterranean Sea. Ancient Rome is characterized by the seven hills and the Tiber River. The Tiber River flows from the Apennine Mountain, to the Tyrrhenian Sea.

Rome is a sprawling, cosmopolitan city with nearly 3,000 years of globally influential art, architecture and culture on display. In 2005, the city received 19.5 million global visitors, up of 22.1% from 2001. Rome ranked in 2014 as the 14thmos-visited city in the world, 3rd most visited in the European Union, and the most popular tourist attraction in Italy. Its historic center is listed by UNESCO as a World Heritage Site. Monuments and museums such as the Vatican Museums and the Colosseum are among the worlds most visited tourist destinations with both locations receiving millions of tourists a year. Rome hosted the 1960 Summer Olympics and is the seat of United Nations Food and Agriculture Organization (FAO).Rome is the city with the most monuments in the world.

The weather is fantastic in Rome in June, when the average temperature starts off at around 20C and gradually climbs up to 23C-24C as the month progresses.

Congress Highlights:

Biotech Congress 2017 emphasizes on:

Target Audience

CEO, Directors, Vice Presidents, Co-directors, Biotechnologists, Academicians, Biostatistician, Biotechnologists, Clinical Laboratory Scientist, Clinical Metabolomics Data Analyst, Clinicians, Commissioner of Health, Community health workers, CROs, Directors, Environmental Scientists, Food Scientists, Genetic Engineers, Health Economist, Health officials, Healthcare Analyst, Manager of Quality Assurance and Evaluation, Market Access Manager, Marketing Intelligence Associate, Master/PhD students, Medical professionals, Microbiologists, Pharmaceutical Scientists, Physicians, Plant Scientists, Postdoctoral Fellows, Public Health Officer, Public Health Policy Analyst, Research Associates, Research Coordinator, Research Data Analyst, Research Intern, Researchers and faculty, Scientific and Medical Information Assistant, Scientists, Food, Environmental & Plant Scientists, Clinicians, Professors, Health care industrialists, Post Doctorate Fellows, Brand Manufacturers of Consumer Products/ Managers, Pharmaceutical Scientists, Students.

Focusing areas to get more participations & Exhibitions

Why to attend?

Biotech Congress is a remarkable event which brings together a unique and international mix of Biotechnology Researchers, Industrial Biotechnologists, leading Universities and Research Institutions making the congress a perfect platform to share experience, foster collaboration across Industry and Academia, and evaluate emerging technologies across the globe.

Biotechnology in Europe

Only in March a market analysis by British researchers at the University of Cambridge had calculated a market potential of three billion euros for Europe.At present, such Crowd Investing platforms only have a market share of 6.5%, however, the growth forecasts are good. The biotech industry in Europe spends nearly $7.32 billion in R&D and $23.2 billion in revenue. Around 20% of the total marketed medicines, and as much as 50% of all drugs that are in the pipeline, are all healthcare biotech products. The European biotech industry provides employment to approximately 95,000 people. Biotechnology sector makes a substantial contribution to the fundamental EU policy objectives, such as job creation, economic growth, ageing society, public health, environmental protection and sustainable development.

Biotechnology in Italy

The Italian Biotechnology Report by Ernst&Young and Assobiotec, in cooperation with Farmindustria and Italian Trade Promotion Agency, shows that the Italian biotech companies are able to compete outstandingly on the international market, managing to grow despite continuing difficulties in the economic situation. With 394 companies, of which 248 pure biotech, Italy is third in Europe after Germany and the United Kingdom, for the number of pure biotech companies, with a growth trend (+2,5%) in clear contrast with that of the countries that occupy the top ranking positions. With 206 companies operating in the health-care field, the red biotech is the prevalent sector. Looking at the other sectors, 43 green biotech, 34 white biotech, 61 GPET (Genomics, Proteomics and Enabling Technologies) and 50 multi core companies are operating in Italy. 77% of the companies are small (less than 50 employees) and micro (less than 10 employees) enterprises, mainly located in Science and Technology Parks or Incubators. Total revenues in the biotech field amount to 7 billion Euros (+4%). Investments in R&D amount to 1,8 billion Euros (+8%), equal to 25% of total revenues. Italian biotech revenues contributes to 0,7% of GDP and the sector is being considered more and more often as a meta-sector, able to create value and employment and with significant effects on various fields, ranging from textiles to detergents, cosmetics, polymers, paper and animal feed, from paints to food, from treatment of waste to leather treatment, and many others. The future trends of Italian red biotech are connected to a further specialization in oncology, neurology and infectious diseases and to new achievements in the fields of Advanced Therapies and personalized medicine. The analysis of the Italian biotech pipeline shows 319 products for therapeutic use, of which 80 in the preclinical phase, 43 in Phase I, 98 in Phase II and 98 in Phase III. Plant genomics and traceability, preservation and safety of foods, as well as bioremediation and biomasses, are the most promising applications in the green & white fields.

Visit link: Biotechnology Conferences | CPD Events| Biotechnology

.

.

.

Read more from the original source:
research IPS Cell Therapy IPS Cell Therapy

To Read More: research IPS Cell Therapy IPS Cell Therapy
categoriaIPS Cell Therapy commentoComments Off on research IPS Cell Therapy IPS Cell Therapy | dataAugust 25th, 2016
Read All

Endogenous cardiac stem cell – Wikipedia, the free …

By NEVAGiles23

Endogenous cardiac stem cells (eCSCs) are tissue-specific stem progenitor cells harboured within the adult mammalian heart.

They were first discovered in 2003 by Bernardo Nadal-Ginard, Piero Anversa and colleagues [1][2] in the adult rat heart and since then have been identified and isolated from mouse, dog, porcine and human hearts.[3][4]

The adult heart was previously thought to be a post mitotic organ without any regenerative capability. The identification of eCSCs has provided an explanation for the hitherto unexplained existence of a subpopulation of immature cycling myocytes in the adult myocardium. Indeed, recent evidence from a genetic fate-mapping study established that stem cells replenish adult mammalian cardiomyocytes lost by cardiac wear and tear and injury throughout the adult life.[5] Moreover, it is now accepted that myocyte death and myocyte renewal are the two sides of the proverbial coin of cardiac homeostasis in which the eCSCs play a central role.[6] These findings produced a paradigm shift in cardiac biology and opened new opportunities and approaches for future treatment of cardiac diseases by placing the heart squarely amongst other organs with regenerative potential such as the liver, skin, muscle, CNS. However, they have not changed the well-established fact that the working myocardium is mainly constituted of terminally differentiated contractile myocytes. This fact does not exclude, but is it fully compatible with the heart being endowed with a robust intrinsic regenerative capacity which resides in the presence of the eCSCs throughout the individual lifespan.

Briefly, eCSCs have been first identified through the expression of c-kit, the receptor of the stem cell factor and the absence of common hematopoietic markers, like CD45. Afterwards, different membrane markers (Sca-1, Abcg-2, Flk-1) and transcription factors (Isl-1, Nkx2.5, GATA4) have been employed to identify and characterize these cells in the embryonic and adult life.[7] eCSCs are clonogenic, self renewing and multipotent in vitro and in vivo,[8] capable of generating the 3 major cell types of the myocardium: myocytes, smooth muscle and endothelial vascular cells.[9] They express several markers of stemness (i.e. Oct3/4, Bmi-1, Nanog) and have significant regenerative potential in vivo.[10] When cloned in suspension they form cardiospheres,[11] which when cultured in a myogenic differentiation medium, attach and differentiate into beating cardiomyocytes.

In 2012, it was proposed that Isl-1 is not a marker for endogenous cardiac stem cells.[12] That same year, a different group demonstrated that Isl-1 is not restricted to second heart field progenitors in the developing heart, but also labels cardiac neural crest.[13] It has also been reported that Flk-1 is not a specific marker for endogenous and mouse ESC-derived Isl1+ CPCs. While some eCSC discoveries have been brought into question, there has been success with other membrane markers. For instance, it was demonstrated that the combination of Flt1+/Flt4+ membrane markers identifies an Isl1+/Nkx2.5+ cell population in the developing heart. It was also shown that endogenous Flt1+/Flt4+ cells could be expanded in vitro and displayed trilineage differentiation potential. Flt1+/Flt4+ CPCs derived from iPSCs were shown to engraft into the adult myocardium and robustly differentiate into cardiomyocytes with phenotypic and electrophysiologic characteristics of adult cardiomyocytes.[14]

With the myocardium now recognized as a tissue with limited regenerating potential,[15] harbouring eCSCs that can be isolated and amplified in vitro [16] for regenerative protocols of cell transplantation or stimulated to replicate and differentiate in situ in response to growth factors,[17] it has become reasonable to exploit this endogenous regenerative potential to replace lost/damaged cardiac muscle with autologous functional myocardium.

Continue reading here:
Endogenous cardiac stem cell - Wikipedia, the free ...

To Read More: Endogenous cardiac stem cell – Wikipedia, the free …
categoriaCardiac Stem Cells commentoComments Off on Endogenous cardiac stem cell – Wikipedia, the free … | dataOctober 23rd, 2015
Read All

Research and Markets: Global Cell Therapy Technologies …

By NEVAGiles23

DUBLIN--(BUSINESS WIRE)--Research and Markets (http://www.researchandmarkets.com/research/hrgdr7/cell_therapy) has announced the addition of Jain PharmaBiotech's new report "Cell Therapy - Technologies, Markets and Companies" to their offering.

This report describes and evaluates cell therapy technologies and methods, which have already started to play an important role in the practice of medicine. Hematopoietic stem cell transplantation is replacing the old fashioned bone marrow transplants. Role of cells in drug discovery is also described. Cell therapy is bound to become a part of medical practice.

The number of companies involved in cell therapy has increased remarkably during the past few years. More than 500 companies have been identified to be involved in cell therapy and 296 of these are profiled in part II of the report along with tabulation of 280 alliances. Of these companies, 167 are involved in stem cells. Profiles of 72 academic institutions in the US involved in cell therapy are also included in part II along with their commercial collaborations. The text is supplemented with 62 Tables and 17 Figures. The bibliography contains 1,200 selected references, which are cited in the text.

Stem cells are discussed in detail in one chapter. Some light is thrown on the current controversy of embryonic sources of stem cells and comparison with adult sources. Other sources of stem cells such as the placenta, cord blood and fat removed by liposuction are also discussed. Stem cells can also be genetically modified prior to transplantation.

Cell therapy technologies overlap with those of gene therapy, cancer vaccines, drug delivery, tissue engineering and regenerative medicine. Pharmaceutical applications of stem cells including those in drug discovery are also described. Various types of cells used, methods of preparation and culture, encapsulation and genetic engineering of cells are discussed. Sources of cells, both human and animal (xenotransplantation) are discussed. Methods of delivery of cell therapy range from injections to surgical implantation using special devices.

Cell therapy has applications in a large number of disorders. The most important are diseases of the nervous system and cancer which are the topics for separate chapters. Other applications include cardiac disorders (myocardial infarction and heart failure), diabetes mellitus, diseases of bones and joints, genetic disorders, and wounds of the skin and soft tissues.

Regulatory and ethical issues involving cell therapy are important and are discussed. Current political debate on the use of stem cells from embryonic sources (hESCs) is also presented. Safety is an essential consideration of any new therapy and regulations for cell therapy are those for biological preparations.

The cell-based markets was analyzed for 2014, and projected to 2024.The markets are analyzed according to therapeutic categories, technologies and geographical areas. The largest expansion will be in diseases of the central nervous system, cancer and cardiovascular disorders. Skin and soft tissue repair as well as diabetes mellitus will be other major markets.

Key Topics Covered:

Part I: Technologies, Ethics & Regulations

0. Executive Summary

1. Introduction to Cell Therapy

2. Cell Therapy Technologies

3. Stem Cells

4. Clinical Applications of Cell Therapy

5. Cell Therapy for Cancer

6. Cell Therapy for Neurological Disorders

7. Ethical, Legal and Political Aspects of Cell therapy

8. Safety and Regulatory Aspects of Cell Therapy

Part II: Markets, Companies & Academic Institutions

9. Markets and Future Prospects for Cell Therapy

10. Companies Involved in Cell Therapy

11. Academic Institutions

12. References

For more information visit http://www.researchandmarkets.com/research/hrgdr7/cell_therapy

Source: Jain PharmaBiotech

View original post here:
Research and Markets: Global Cell Therapy Technologies ...

To Read More: Research and Markets: Global Cell Therapy Technologies …
categoriaUncategorized commentoComments Off on Research and Markets: Global Cell Therapy Technologies … | dataOctober 5th, 2015
Read All

Stem Cell Therapy – Premier Stem Cell Institute

By NEVAGiles23

Formerly Orthopedic Stem Cell Institute We put the power of your own body to work for you.

Our team of board certified, fellowship-trained orthopedic and spine surgeons work with patients from around the world using the newest and most advanced technology to treat orthopedic injuries and bone and joint pain, as well as relieving symptoms and improving the lives of patients with a multitude of illnesses.

The Premier Stem Cell Institute is a leading research and treatment facility in Colorado providing the most innovative and proven techniques and therapies using the bodys natural healing power of stem cells.

A stem cell is a basic cell constantly produced by your body to heal injuries, build new skin, even grow your hair. However, your body wont refix a chronic injury or illness by continuing to attack it with new stem cells unless those cells are extracted and reintroduced into your body via stem cell therapies.

We are a leading research and treatment facility providing the most innovative and proven techniques and therapies using the bodys natural healing power of stem cells. Our services are performed by fellowship-trained surgeons using the most state-of-the-art equipment and technology in the field.All stem cell treatments are not alike. AtPremier Stem Cell Institute, we extract your stem cells from your bone marrow because they are higher quality and result in better outcomes than stem cells from fat (adipose). We treat each patient with the utmost respect and our concierge service makes you feel incredibly well cared for from the first phone call to follow up visits.

They're very personable, they're very helpful..nice people. Bottom line is there's no pain where there was a lot of pain before.

Jon Hoffman, Former NFL Player

I used to dread doing simple things like putting on a coat, a seat belt or reaching for things. I can now do those things without nearly as much difficulty. I want to thank everyone at the clinic for performing the procedure on me. They are making peoples' lives much more enjoyable.

Bob Hyland, Former NFL Player

It's amazing! You're awake the whole time, it's virtually painless, and within an hour you're walking out.

Don Horn, Former NFL Player

of Patients are 70% Better Within 1 Year!

Visit link:
Stem Cell Therapy - Premier Stem Cell Institute

To Read More: Stem Cell Therapy – Premier Stem Cell Institute
categoriaUncategorized commentoComments Off on Stem Cell Therapy – Premier Stem Cell Institute | dataOctober 5th, 2015
Read All

Cardiac muscle – Wikipedia, the free encyclopedia

By NEVAGiles23

An isolated cardiac muscle cell, beating

Cardiac muscle (heart muscle) is involuntary striated muscle that is found in the walls and histological foundation of the heart, specifically the myocardium. Cardiac muscle is one of three major types of muscle, the others being skeletal and smooth muscle. These three types of muscle all form in the process of myogenesis. The cells that constitute cardiac muscle, called cardiomyocytes or myocardiocytes, contain only three nuclei.[1][2][pageneeded] The myocardium is the muscle tissue of the heart, and forms a thick middle layer between the outer epicardium layer and the inner endocardium layer.

Coordinated contractions of cardiac muscle cells in the heart propel blood out of the atria and ventricles to the blood vessels of the left/body/systemic and right/lungs/pulmonary circulatory systems. This complex mechanism illustrates systole of the heart.

Cardiac muscle cells, unlike most other tissues in the body, rely on an available blood and electrical supply to deliver oxygen and nutrients and remove waste products such as carbon dioxide. The coronary arteries help fulfill this function.

Cardiac muscle has cross striations formed by rotating segments of thick and thin protein filaments. Like skeletal muscle, the primary structural proteins of cardiac muscle are myosin and actin. The actin filaments are thin, causing the lighter appearance of the I bands in striated muscle, whereas the myosin filament is thicker, lending a darker appearance to the alternating A bands as observed with electron microscopy. However, in contrast to skeletal muscle, cardiac muscle cells are typically branch-like instead of linear.

Another histological difference between cardiac muscle and skeletal muscle is that the T-tubules in the cardiac muscle are bigger and wider and track laterally to the Z-discs. There are fewer T-tubules in comparison with skeletal muscle. The diad is a structure in the cardiac myocyte located at the sarcomere Z-line. It is composed of a single T-tubule paired with a terminal cisterna of the sarcoplasmic reticulum. The diad plays an important role in excitation-contraction coupling by juxtaposing an inlet for the action potential near a source of Ca2+ ions. This way, the wave of depolarization can be coupled to calcium-mediated cardiac muscle contraction via the sliding filament mechanism. Cardiac muscle forms these instead of the triads formed between the sarcoplasmic reticulum in skeletal muscle and T-tubules. T-tubules play critical role in excitation-contraction coupling (ECC). Recently, the action potentials of T-tubules were recorded optically by Guixue Bu et al.[3]

The cardiac syncytium is a network of cardiomyocytes connected to each other by intercalated discs that enable the rapid transmission of electrical impulses through the network, enabling the syncytium to act in a coordinated contraction of the myocardium. There is an atrial syncytium and a ventricular syncytium that are connected by cardiac connection fibres.[4] Electrical resistance through intercalated discs is very low, thus allowing free diffusion of ions. The ease of ion movement along cardiac muscle fibers axes is such that action potentials are able to travel from one cardiac muscle cell to the next, facing only slight resistance. Each syncyntium obeys the all or none law.[5]

Intercalated discs are complex adhering structures that connect the single cardiomyocytes to an electrochemical syncytium (in contrast to the skeletal muscle, which becomes a multicellular syncytium during mammalian embryonic development). The discs are responsible mainly for force transmission during muscle contraction. Intercalated discs are described to consist of three different types of cell-cell junctions: the actin filament anchoring adherens junctions, the intermediate filament anchoring desmosomes , and gap junctions. They allow action potentials to spread between cardiac cells by permitting the passage of ions between cells, producing depolarization of the heart muscle. However, novel molecular biological and comprehensive studies unequivocally showed that intercalated discs consist for the most part of mixed-type adhering junctions named area composita (pl. areae compositae) representing an amalgamation of typical desmosomal and fascia adhaerens proteins (in contrast to various epithelia).[6][7][8] The authors discuss the high importance of these findings for the understanding of inherited cardiomyopathies (such as arrhythmogenic right ventricular cardiomyopathy).

Under light microscopy, intercalated discs appear as thin, typically dark-staining lines dividing adjacent cardiac muscle cells. The intercalated discs run perpendicular to the direction of muscle fibers. Under electron microscopy, an intercalated disc's path appears more complex. At low magnification, this may appear as a convoluted electron dense structure overlying the location of the obscured Z-line. At high magnification, the intercalated disc's path appears even more convoluted, with both longitudinal and transverse areas appearing in longitudinal section.[9]

In contrast to skeletal muscle, cardiac muscle requires extracellular calcium ions for contraction to occur. Like skeletal muscle, the initiation and upshoot of the action potential in ventricular cardiomyocytes is derived from the entry of sodium ions across the sarcolemma in a regenerative process. However, an inward flux of extracellular calcium ions through L-type calcium channels sustains the depolarization of cardiac muscle cells for a longer duration. The reason for the calcium dependence is due to the mechanism of calcium-induced calcium release (CICR) from the sarcoplasmic reticulum that must occur during normal excitation-contraction (EC) coupling to cause contraction. Once the intracellular concentration of calcium increases, calcium ions bind to the protein troponin, which allows myosin to bind to actin and contraction to occur.

Until recently, it was commonly believed that cardiac muscle cells could not be regenerated. However, a study reported in the April 3, 2009 issue of Science contradicts that belief.[10] Olaf Bergmann and his colleagues at the Karolinska Institute in Stockholm tested samples of heart muscle from people born before 1955 who had very little cardiac muscle around their heart, many showing with disabilities from this abnormality. By using DNA samples from many hearts, the researchers estimated that a 20-year-old renews about 1% of heart muscle cells per year, and about 45 percent of the heart muscle cells of a 50-year-old were generated after he or she was born.

One way that cardiomyocyte regeneration occurs is through the division of pre-existing cardiomyocytes during the normal aging process.[11] The division process of pre-existing cardiomyocytes has also been shown to increase in areas adjacent to sites of myocardial injury. In addition, certain growth factors promote the self-renewal of endogenous cardiomyocytes and cardiac stem cells. For example, insulin-like growth factor 1, hepatocyte growth factor, and high-mobility group protein B1 increase cardiac stem cell migration to the affected area, as well as the proliferation and survival of these cells.[12] Some members of the fibroblast growth factor family also induce cell-cycle re-entry of small cardiomyocytes. Vascular endothelial growth factor also plays an important role in the recruitment of native cardiac cells to an infarct site in addition to its angiogenic effect.

Based on the natural role of stem cells in cardiomyocyte regeneration, researchers and clinicians are increasingly interested in using these cells to induce regeneration of damaged tissue. Various stem cell lineages have been shown to be able to differentiate into cardiomyocytes, including bone marrow stem cells. For example, in one study, researchers transplanted bone marrow cells, which included a population of stem cells, adjacent to an infarct site in a mouse model. Nine days after surgery, the researchers found a new band of regenerating myocardium.[13] However, this regeneration was not observed when the injected population of cells was devoid of stem cells, which strongly suggests that it was the stem cell population that contributed to the myocardium regeneration. Other clinical trials have shown that autologous bone marrow cell transplants delivered via the infarct-related artery decreases the infarct area compared to patients not given the cell therapy.[14]

Occlusion (blockage) of the coronary arteries by atherosclerosis and/or thrombosis can lead to myocardial infarction (heart attack), where part of the myocardium is injured due to ischemia (not receiving enough oxygen). This occurs because coronary arteries are functional end arteries - i.e. there is almost no overlap in the areas supplied by different arteries (anastomoses) so that if one fails, others cannot adequately perfuse the region, unlike in other tissues.

Certain viruses lead to myocarditis (inflammation of the myocardium). Cardiomyopathies are inherent diseases of the myocardium, many of which are caused by genetic mutations.

Read more:
Cardiac muscle - Wikipedia, the free encyclopedia

To Read More: Cardiac muscle – Wikipedia, the free encyclopedia
categoriaCardiac Stem Cells commentoComments Off on Cardiac muscle – Wikipedia, the free encyclopedia | dataSeptember 25th, 2015
Read All

What are induced pluripotent stem cells? [Stem Cell …

By NEVAGiles23

Induced pluripotent stem cells (iPSCs) are adult cells that have been genetically reprogrammed to an embryonic stem celllike state by being forced to express genes and factors important for maintaining the defining properties of embryonic stem cells. Although these cells meet the defining criteria for pluripotent stem cells, it is not known if iPSCs and embryonic stem cells differ in clinically significant ways. Mouse iPSCs were first reported in 2006, and human iPSCs were first reported in late 2007. Mouse iPSCs demonstrate important characteristics of pluripotent stem cells, including expressing stem cell markers, forming tumors containing cells from all three germ layers, and being able to contribute to many different tissues when injected into mouse embryos at a very early stage in development. Human iPSCs also express stem cell markers and are capable of generating cells characteristic of all three germ layers.

Although additional research is needed, iPSCs are already useful tools for drug development and modeling of diseases, and scientists hope to use them in transplantation medicine. Viruses are currently used to introduce the reprogramming factors into adult cells, and this process must be carefully controlled and tested before the technique can lead to useful treatment for humans. In animal studies, the virus used to introduce the stem cell factors sometimes causes cancers. Researchers are currently investigating non-viral delivery strategies. In any case, this breakthrough discovery has created a powerful new way to "de-differentiate" cells whose developmental fates had been previously assumed to be determined. In addition, tissues derived from iPSCs will be a nearly identical match to the cell donor and thus probably avoid rejection by the immune system. The iPSC strategy creates pluripotent stem cells that, together with studies of other types of pluripotent stem cells, will help researchers learn how to reprogram cells to repair damaged tissues in the human body.

Previous|VI. What are induced pluripotent stem cells?|Next

Originally posted here:
What are induced pluripotent stem cells? [Stem Cell ...

To Read More: What are induced pluripotent stem cells? [Stem Cell …
categoriaIPS Cell Therapy commentoComments Off on What are induced pluripotent stem cells? [Stem Cell … | dataSeptember 18th, 2015
Read All

ETHICAL Stem Cells Grow Human Brain | National Review Online

By NEVAGiles23

This is an achievement: Scientists have used skin cells to build a rudimentary human brain. (These were induced pluripotent stem cells.) From The Guardian story:

Though not conscious the miniature brain, which resembles that of a five-week-old foetus, could potentially be useful for scientists who want to study the progression of developmental diseases. It could also be used to test drugs for conditions such as Alzheimers and Parkinsons, since the regions they affect are in place during an early stage of brain development.

The brain, which is about the size of a pencil eraser, is engineered from adult human skin cells and is the most complete human brain model yet developed, claimed Rene Anand of Ohio State University, Columbus, who presented the work today at the Military Health System Research Symposium in Fort Lauderdale, Florida.

May it be so.

Lets analyze what this breakthrough could portend:

1. No need for unethical human cloning to derive cells for use in research and drug testing.

2. No need for fetal farming for experimentation and organ transplants.

3. No need for Planned Parenthood dismemberments of fetuses killed in a less crunchy way in abortion.

Remember when embryonic stem cells were OUR ONLY HOPE?

And that those of us who said that particular meme wasnt true were anti science? Pshaw.

#applause

Continued here:
ETHICAL Stem Cells Grow Human Brain | National Review Online

To Read More: ETHICAL Stem Cells Grow Human Brain | National Review Online
categoriaSkin Stem Cells commentoComments Off on ETHICAL Stem Cells Grow Human Brain | National Review Online | dataAugust 20th, 2015
Read All

ProgeniDerm Anti-Senescence Skin Stem Cell Serum …

By NEVAGiles23

ProgeniDerm Anti-Senescence Skin Stem Cell Serum encourages new epidermal cell growth while protecting and prolonging the cell life of existing skin cells. Wrinkle depth is reduced, hyperpigmentation lightened, and collagen/elastin fibers become thicker and stronger. The ratio of older skin cells to younger skin cells is reversed. Skin looks visibly younger.

Elegantly formulated with fruit-derived Malus Domestica Fruit Stem Cell Extract, ProgeniDerm protects against chromosomal damage that signals skin cells to undergo apoptosis (cell death). Often this signal is sent prematurely due to free radical damage caused by UV light, smoke, stress, etc. With protection against this damage, existing skin cells live longer and more new cells are created.

The Malus Domestica Fruit Stem Cell Extract in ProgeniDerm restores aging skin stem cells regenerative properties. In-vitro and in-vivo testing showed that this new extract:

The ultimate result: skin that regains its ability to repair itself and regenerate new skin cells within two weeks. Substantially greater numbers of new epithelial cells are formed. Enzymes are released that protect cells from damage that shorten the skin cell life cycle. The addition of chondrus crispus (red seaweed/algae extract) and palmitoyl oligopeptide in a hyaluronic acid base combine to make our ProgeniDerm Anti-Senescence Skin Stem Cell serum a powerful new tool against premature aging.

Note: Epidermal skin stem cell DNA/chromosomal protection is the newest, most exciting direction for anti-aging products currently. Cellular Skin Rx is proud to be able to provide a serum containing this cutting-edge, naturally-derived extract to our customers. Now that peptides are firmly established as helpful to the skin for relaxing, firming, and reducing inflammation, using naturally-derived fruit stem cell extracts to prevent damage at the most basic cellular level is taking skin care to a whole new realm. You will see more and more of this approach to maintaining a younger complexion moving forward -with Cellular Skin Rx proudly providing you with products that incorporate these new Active Ingredients That Work.

After applying antioxidant serum of your choice, apply twice daily including eye area.

Combining with antioxidant serums such as C+ Firming serum or CSRx Antioxidant Complex yields best results.

Two weeks to gorgeous skin routine: Each morning use CSRx Antioxidant Defense Complex then C+ Firming serum, follow with ProgeniDerm Anti-Senescence Skin Stem Cell Serum, then any wrinkle-relaxers/firming products/moisturizers/sunscreen you regularly use. Each night use Age-Limit Advanced Refinishing serum or Ultra-Gentle Enzyme Surface Peel, then apply ProgeniDerm again. In just two weeks, you will see a visible difference in your skin tone, color, and texture.

View original post here:
ProgeniDerm Anti-Senescence Skin Stem Cell Serum ...

To Read More: ProgeniDerm Anti-Senescence Skin Stem Cell Serum …
categoriaSkin Stem Cells commentoComments Off on ProgeniDerm Anti-Senescence Skin Stem Cell Serum … | dataJuly 8th, 2015
Read All

Stem Cell vs. Bone Marrow Transplant: Whats the …

By NEVAGiles23

With Brigham and Womens Hospital and Boston Childrens Hospital, Dana-Farber has performed thousands of stem cell/bone marrow transplants for adult and pediatric patients with blood cancers and other serious illnesses.

Whats the difference between these two terms? As it turns out, the only real distinction is in the method of collecting the stem cells.

Lets start with the basics.

Stem cells are versatile cells with the ability to divide and develop into many other kinds of cells.

Hematopoietic stem cells produce red blood cells, which deliver oxygen throughout the body; white blood cells, which help ward off infections; and platelets, which allow blood to clot and wounds to heal.

While chemotherapy and/or radiation therapy are essential treatments for the majority of cancer patients, high doses can severely weakenand even wipe outhealthy stem cells. Thats where stem cell transplantation comes in.

Stem cell transplantation is a general term that describes the procedures performed by the Adult Stem Cell Transplantation Program at Dana-Farber/Brigham and Womens Cancer Center and the Pediatric Stem Cell Transplantation Program at Dana-Farber/Boston Childrens Cancer and Blood Disorders Center.

Stem cells for transplant can come from bone marrow or blood.

When stem cells are collected from bone marrow and transplanted into a patient, the procedure is known as a bone marrow transplant. If the transplanted stem cells came from the bloodstream, the procedure is called a peripheral blood stem cell transplantsometimes shortened to stem cell transplant.

Whether you hear someone talking about a stem cell transplant or a bone marrow transplant, they are still referring to stem cell transplantation. The only difference is where in the body the transplanted stem cells came from. The transplants themselves are the same.

Read the original post:
Stem Cell vs. Bone Marrow Transplant: Whats the ...

To Read More: Stem Cell vs. Bone Marrow Transplant: Whats the …
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell vs. Bone Marrow Transplant: Whats the … | dataJuly 3rd, 2015
Read All

Sickle cell disease | University of Maryland Medical Center

By NEVAGiles23

Description

An in-depth report on the causes, diagnosis, and treatment of sickle cell disease.

Sickle cell anemia

What is Sickle Cell Disease?

Sickle cell disease is an inherited blood disorder in which the body produces abnormally shaped red blood cells. In sickle cell disease, the hemoglobin in red blood cells clumps together. This causes red blood cells to become stiff and C-shaped. These sickle cells block blood and oxygen flow in blood vessels. Sickle cells break down more rapidly than normal red blood cells, which results in anemia.

What Causes Sickle Cell Disease?

Sickle cell disease is a genetic disorder. People who have sickle cell disease are born with two sickle cell genes, one from each parent. If one normal hemoglobin gene and one sickle cell gene are inherited, a person will have sickle cell trait. People who have sickle cell trait do not develop sickle cell disease, but they are carriers who can pass the abnormal gene on to their children.

Complications of Sickle Cell Disease

Sickle cell disease can block the flow of blood in arteries in many parts of the body, causing many complications. The hallmark of sickle cell disease is the sickle cell crisis, which causes sudden attacks of severe pain. Acute chest syndrome, which is triggered by an infection or by blockage of blood vessels in the lungs, is another common and serious occurrence. Additional medical complications include:

New Recommended Vaccine

More:
Sickle cell disease | University of Maryland Medical Center

To Read More: Sickle cell disease | University of Maryland Medical Center
categoriaUncategorized commentoComments Off on Sickle cell disease | University of Maryland Medical Center | dataJuly 3rd, 2015
Read All

Radiation Therapy for Cancer – National Cancer Institute

By NEVAGiles23

What is radiation therapy?

Radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells (1). X-rays, gamma rays, and charged particles are types of radiation used for cancer treatment.

The radiation may be delivered by a machine outside the body (external-beam radiation therapy), or it may come from radioactive material placed in the body near cancer cells (internal radiation therapy, also called brachytherapy).

Systemic radiation therapy uses radioactive substances, such as radioactive iodine, that travel in the blood to kill cancer cells.

About half of all cancer patients receive some type of radiation therapy sometime during the course of their treatment.

How does radiation therapy kill cancer cells?

Radiation therapy kills cancer cells by damaging their DNA (the molecules inside cells that carry genetic information and pass it from one generation to the next) (1). Radiation therapy can either damage DNA directly or create charged particles (free radicals) within the cells that can in turn damage the DNA.

Cancer cells whose DNA is damaged beyond repair stop dividing or die. When the damaged cells die, they are broken down and eliminated by the bodys natural processes.

Does radiation therapy kill only cancer cells?

No, radiation therapy can also damage normal cells, leading to side effects.

Visit link:
Radiation Therapy for Cancer - National Cancer Institute

To Read More: Radiation Therapy for Cancer – National Cancer Institute
categoriaUncategorized commentoComments Off on Radiation Therapy for Cancer – National Cancer Institute | dataJuly 3rd, 2015
Read All

Cell – Dragon Ball Wiki

By NEVAGiles23

Directory: Characters Villains DBZ villains Bio-Androids

Perfect Cell Super Perfect Cell Android 21 Artifical Human no. 21 The Ultimate Fighter Mr. Cell The Perfect Being Future Cell Super (Albanian dub) The Perfect Warrior Celula (Spanish dub) Komrczak (Polish dub) Selas (Lithuanian dub) Artificial Human Cell

Cell () is a major supervillain who comes from a future timeline in the Dragon Ball manga and the Dragon Ball Z anime, also making an appearance in Dragon Ball GT. He is the ultimate creation of Dr. Gero, designed to possess all the abilities of the greatest fighters to have ever inhabited or visited Earth; the result is a "perfect warrior", possessing numerous favorable genetic traits and special abilities. Cell is one of the few Red Ribbon Androids not directly completed by Dr. Gero; the others are Android 15, Android 14, Android 13, and possibly Android 8. Cell, Android 13, Android 14, and Android 15's completions involve Dr. Gero's Super Computer.

Cell was named after the English word for "cell" because he absorbs humans and transforms.[8]Insects served as the model for Cell's design. Besides his design, the way in which he hatches from an egg and sheds his skin as he grows was also based on insects.[8] Thus Cell very much resembles an insect in both in appearances and in the way he goes through different stages of metamorphosis.

"You fool! Don't you realize yet you're up against the perfect weapon?!" "Save the World"

Cell has as an original personality with various other characters' personalities added in; Gero's computer redesigned the weak parts of the original personality, adding in the personalities of various different characters to make him the perfect weapon.[8] Throughout the Androids Arc, Cell's personality changes drastically with each transformation. At first, Cell's desire to complete his evolution by absorbing both Android 17 and Android 18 is what fuels him in his imperfect form. Upon reaching his final form, his eagerness to test the limits of his newfound power is what defines his character. Cell is unique among most villains of the series in that he is quite sophisticated. Because of his genetic composition from other warriors, he is able to psychologically manipulate those warriors and exploit their weaknesses to his advantage. He also found the Dragon Balls' reviving ability to be a nuisance, as evidenced by his relief when he learned that the Dragon Balls were rendered inert due to Piccolo and Kami's fusion.

Some initial sketches of Cell (Daizenshuu 4)

Initially, Cell is completely single-minded in pursuit of his goals and is very cautious, sneaky, cunning and calculating in achieving his main goal of perfection. Upon reaching his first transformation, he becomes far more brash and impulsive in his actions, relying less on strategy and more on brute force, often becoming clouded and not thinking rationally when things do not go his way. Upon reaching perfection, Cell displays a number of traits shared by those whose cells he possesses; Piccolo's cunning, Vegeta's pride, Goku's laid-back disposition, Frieza's smugness, and the Saiyan lust for battle. He is also shown to be calm and genuinely polite in this Perfect form. Perhaps Cell's most distinguishable trait in this form is his uninhibited vanity, which he shamelessly puts on display by launching the Cell Games, a tournament organized for the sole purpose of showing off his newfound power. It can also be seen during Cell's confrontation with Gohan when he affirms his true purpose: the annihilation of anything he considers imperfect, a category in which he places everyone and everything but himself.

In the English manga, Cell is referred to as "it", while in the anime (and the Japanese versions of both), he is referred to as "he." He is likely described that way in the English manga to emphasize the fact that he is an artificial being.

First colored image of Cell, made for the anime staff ("Ginger Town Showdown")

Read more:
Cell - Dragon Ball Wiki

To Read More: Cell – Dragon Ball Wiki
categoriaUncategorized commentoComments Off on Cell – Dragon Ball Wiki | dataJune 14th, 2015
Read All

Page 10«..9101112..2030..»


Copyright :: 2025