Page 13«..10..12131415..2030..»

Stem Cell Therapy + PRP Therapy Helps Pelvic Pain Patient – Video

By NEVAGiles23


Stem Cell Therapy + PRP Therapy Helps Pelvic Pain Patient
Stem Cell ARTS Actual Patient Testimonial--Julie Mariano "I had some abdominal surgery a few years ago and woke up with extreme back pain. It was a complete mystery how it happened and it still...

By: StemCell ARTS

Read more from the original source:
Stem Cell Therapy + PRP Therapy Helps Pelvic Pain Patient - Video

To Read More: Stem Cell Therapy + PRP Therapy Helps Pelvic Pain Patient – Video
categoriaUncategorized commentoComments Off on Stem Cell Therapy + PRP Therapy Helps Pelvic Pain Patient – Video | dataJanuary 30th, 2015
Read All

Stem cell-grown hair could help those with hair loss

By NEVAGiles23

For the first time, researchers have been able to use pluripotent stem cells to generate cells that can grow new hair.

Hair growing on hairless mice thanks to induced pluripotent stem cells. Sanford-Burnham Medical Research Institute

It's been theorised for years, but now human stem cells have resulted in hair growth for the very first time.

"We have developed a method using human pluripotent stem cells to create new cells capable of initiating human hair growth. The method is a marked improvement over current methods that rely on transplanting existing hair follicles from one part of the head to another," said Alexey Terskikh, Ph.D., associate professor in the Development, Aging and Regeneration Program at Sanford-Burnham.

"Our stem cell method provides an unlimited source of cells from the patient for transplantation and isn't limited by the availability of existing hair follicles."

The process started with human pluripotent embryonic stem cells -- that is, stem cells that are capable of developing into any other cell -- which were then developed into neural crest cells. These are cells that can develop into a variety of cells on the head, including brain cells, cartilage, bone and muscle cells.

From the neural crest cell point, the team coaxed the cells to grow into dermal papillae cells, the cells that nourish the skin and regulate follicle growth and formation. When transplanted -- in the case of this study, into hairless mice -- these cells flourish.

Another part of the study examined whether the same result could be achieved using dermal papillae cells taken from the scalps of adult humans. Outside the body, living in culture, these cells are not suitable for hair transplants, since they lost their ability to induce follicle formation. The number of hairs their produced was insignificant.

"In adults, dermal papilla cells cannot be readily amplified outside of the body and they quickly lose their hair-inducing properties," said Terskikh. "We developed a protocol to drive human pluripotent stem cells to differentiate into dermal papilla cells and confirmed their ability to induce hair growth when transplanted into mice."

The researchers say that their research represents the first step towards a cell-based treatment for hair loss, which affects 40 million men and 21 million women in the United States.

Read more from the original source:
Stem cell-grown hair could help those with hair loss

To Read More: Stem cell-grown hair could help those with hair loss
categoriaSkin Stem Cells commentoComments Off on Stem cell-grown hair could help those with hair loss | dataJanuary 29th, 2015
Read All

Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea

By NEVAGiles23

A way to eradicate cancer stem cells, using the side-effects of commonly used antibiotics, has been discovered by a University of Manchester researcher following a conversation with his young daughter.

Professor Michael P. Lisanti, Director of the Breakthrough Breast Cancer Unit, led the research. He was inspired to look at the effects of antibiotics on the mitochondria of cancer stem cells by a conversation with his daughter Camilla about his work at the University's Institute of Cancer Sciences.

His new paper, published in Oncotarget, opens up the possibility of a treatment for cancer, which is highly effective and repurposes drugs which have been safely used for decades.

Mitochondria are the 'engine' parts of the cells and are the source of energy for the stem cells as they mutate and divide to cause tumours. Cancer stem cells are strongly associated with the growth and recurrence of all cancers and are especially difficult to eradicate with normal treatment, which also leads to tumours developing resistance to other types of therapy.

Professor Lisanti said: "I was having a conversation with Camilla about how to cure cancer and she asked why don't we just use antibiotics like we do for other illnesses. I knew that antibiotics can affect mitochondria and I've been doing a lot of work recently on how important they are to the growth of tumours, but this conversation helped me to make a direct link."

Professor Lisanti worked with colleagues from The Albert Einstein College of Medicine, New York and the Kimmel Cancer Centre, Philadelphia. The team used five types of antibiotics -- including one used to treat acne (doxycycline) -- on cell lines of eight different types of tumour and found that four of them eradicated the cancer stem cells in every test. This included glioblastoma, the most aggressive of brain tumours, as well as lung, prostate, ovarian, breast, pancreatic and skin cancer.

Mitochondria are believed to be descended from bacteria which joined with cells early on in the evolution of life. This is why some of the antibiotics which are used to destroy bacteria also affect mitochondria, though not to an extent which is dangerous to people. When they are present in stem cells, mitochondria provide energy for growth and, crucially, for division, and it is this process going wrong which leads to cancer.

In the lab, the antibiotics had no harmful effect on normal cells, and since they are already approved for use in humans, trials of new treatments should be simpler than with new drugs -- saving time and money.

Professor Lisanti said: "This research makes a strong case for opening new trials in humans for using antibiotics to fight cancer. Many of the drugs we used were extremely effective, there was little or no damage to normal cells and these antibiotics have been in use for decades and are already approved by the FDA for use in humans. However, of course, further studies are needed to validate their efficacy, especially in combination with more conventional therapies."

Dr Matthew Lam, Senior Research Officer at Breakthrough Breast Cancer, said: "The conclusions that the researchers have drawn, whilst just hypotheses at this stage, are certainly interesting. Antibiotics are cheap and readily available and if in time the link between their use and the eradication of cancer stem cells can be proved, this work may be the first step towards a new avenue for cancer treatment.

Visit link:
Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea

To Read More: Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea
categoriaSkin Stem Cells commentoComments Off on Antibiotics as new cancer treatments? Conversation with schoolgirl sparks idea | dataJanuary 29th, 2015
Read All

Researchers advance the science behind treating patients with corneal blindness

By NEVAGiles23

LOS ANGELES (Jan. 27, 2015) - Researchers in the Cedars-Sinai Board of Governors Regenerative Medicine Institute have devised a novel way to generate transplantable corneal stem cells that may eventually benefit patients suffering from life-altering forms of blindness.

Scientists used human corneal cells to generate pluripotent stem cells that have a capacity to become virtually any body cell. Then, putting these cells on natural scaffolds, researcher's facilitated differentiation of these stem cells back to corneal cells.

"Our research shows that cells derived from corneal stem cells are attractive candidates for generating corneal cells in the laboratory," said Alexander Ljubimov, PhD, director of the Eye Program at the Board of Governors Regenerative Medicine Institute and principal investigator on this research study.

This research, published in the journal Stem Cells Translational Medicine, marks an important first step toward creating a bank of corneal stem cells that may potentially benefit patients who suffer from many forms of corneal blindness. The group is now working to optimize the process with National Institutes of Health funding.

Corneal deficiencies may have genetic or inflammatory roots or be caused by injuries, like burns to the skin in occupational accidents. They result in damage or death of stem cells that renew the outermost part of the cornea. If left untreated, they often cause compromised vision or blindness.

Over 150,000 Americans and more than 3 million individuals worldwide are affected by corneal blindness.

###

Study collaborators include Clive Svendsen, PhD, director of the Board of Governors Regenerative Medicine Institute and professor of biomedical sciences and medicine; Dhruv Sareen, PhD, director of the Induced Pluripotent Stem Cell Core and assistant professor of biomedical sciences; Mehrnoosh Saghizadeh, PhD, assistant professor of biomedical sciences; Yaron Rabinowitz, MD, director of the Division of Ophthalmology Research; and Vincent A. Funari, PhD, director of the Genomics Core and assistant professor of pediatrics.

Citation: Sareen D, Saghizadeh M, Ornelas L, et al. Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med. 2014; 3(9):1002-12.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Read the rest here:
Researchers advance the science behind treating patients with corneal blindness

To Read More: Researchers advance the science behind treating patients with corneal blindness
categoriaSkin Stem Cells commentoComments Off on Researchers advance the science behind treating patients with corneal blindness | dataJanuary 27th, 2015
Read All

Stem Cell Transplantation at BLOOD – Video

By NEVAGiles23


Stem Cell Transplantation at BLOOD
24.10.1423.01.15 BLOOD: NOT FOR THE FAINT-HEARTED Twenty five provocative works that explore the scientific, symbolic and strange nature of blood. This vide...

By: Science Gallery Dublin

See the rest here:
Stem Cell Transplantation at BLOOD - Video

To Read More: Stem Cell Transplantation at BLOOD – Video
categoriaBone Marrow Stem Cells commentoComments Off on Stem Cell Transplantation at BLOOD – Video | dataJanuary 27th, 2015
Read All

BioTime Announces Issuance of 14 New Patents in the Fields of Regenerative Medicine, Stem Cell Technology, and Cancer …

By NEVAGiles23

Pluripotent stem cells are cells capable of indefinite expansion and then differentiation into any and all of the cell types of the human body. Examples of pluripotent stem cells are human embryonic stem cells (hES) and induced pluripotent stem (iPS) cells. These stem cells potentially offer a new technology platform for the manufacture of a wide array of cell types designed to be transplanted into the body to restore healthy tissue function.

BioTime and its subsidiaries are focused on developing and commercializing a broad portfolio of innovative cellular therapeutics and diagnostic products, while also continuing to build value in other ways, such as through the addition of new patents to our industry-leading intellectual property estate, said Dr. Michael D. West, Ph.D., BioTimes Chief Executive Officer. We are making significant strides in patenting our core platform of pluripotent stem cell technology and strengthening our competitive position in regenerative medicine. For the first time in history, pluripotent stem cells offer a means of manufacturing previously rare and valuable human cell types in a cost-effective manner and on an industrial scale. We plan to utilize our strengthened patent position to drive value for our shareholders as the field of regenerative medicine begins to address the large and growing markets associated with chronic and age-related degenerative disease.

New Patents Owned by BioTime or one of its subsidiaries:

European patent 1809739 This issued patent claims cell culture media for the proliferation and scale-up of hES cells. The patent issuing in Austria, France, Germany, Ireland, Switzerland and Sweden provides a propagation medium for culturing hES cells in the laboratory such that the cells proliferate without differentiating as defined in the claims. The technology allows the user to rapidly produce high-quality embryonic stem cells for use in therapy and drug discovery, in a cost-effective and controlled manner, from defined or commercially available reagents. The patent is therefore useful for manufacturing products from hES cells. Patents in the same family have previously issued in the United States, Australia, UK, Israel, Singapore and Hong Kong, with additional applications pending.

Canada patent 2559854 and China patent ZL200580008779.0 These patents claim a differentiation method for making high purity heart muscle preparations from pluripotent stem cells such as hES cells suitable for use in regenerative medicine. The issued claims cover methods wherein the pluripotent stem cells are treated with specific growth factors and differentiation conditions to manufacture beating heart muscle cells. The patents are therefore useful in the manufacture and commercialization of heart muscle cells for research, for the testing of drugs on the heart, and potentially for regenerating heart muscle following a heart attack or heart failure. Patents in the same family have previously issued in the United States, Australia, UK, Israel, Japan and Singapore, with additional applications pending.

South Korea patent1543500B The patent titled, Hematopoietic Cells from Human Embryonic Stem Cells, claims methods for using pluripotent stem cell technology for inducing immune tolerance of cells transplanted into a patient (that is, in helping to prevent the rejection of transplanted cells). As such, the patent claims may be useful in commercializing diverse types of transplantable cells. Patents in the same family have previously issued in Australia, UK, Israel, Japan and Singapore, with additional applications pending.

Canada patent 2468335 The patent describes cartilage-forming cells derived from human pluripotent stem cells such as hES cells. The claims in the patent relate to a system of making the cartilage-forming cells using factors of the transforming growth factor beta (TGF-beta) family, of immortalizing the cells with the human telomerase gene, pharmaceutical formulations of the cells for therapeutic use in arthritis, as well as other claims. The patent is therefore useful for the manufacture of such cells for use in research and potentially in therapy for a number of applications in orthopedic medicine. Patents in the same family have previously issued in the United States, Australia, Singapore, Israel and South Korea, with additional applications pending.

Israel patent208116 The patent titled, Differentiation of Primate Pluripotent Stem Cells to Hematopoietic Lineage Cells, claims methods for the manufacture of dendritic cells from primate pluripotent stem cells. Dendritic cells are cells that trigger an immune response to a particular molecule. Often their role is to stimulate the immune system to attack microorganisms such as bacteria. BioTimes subsidiary Asterias Biotherapeutics is developing hES cell-derived dendritic cells modified to trigger an immune response to specific antigens related to cancer. A patent in the same family has previously issued in the United States, with additional applications pending.

Singapore patent 188098 The patent titled, Synthetic Surfaces for Culturing Stem Cell Derived Cardiomyocytes, claims certain polymers upon which heart muscle cells derived from pluripotent stem cells may be cultured. The patent is potentially useful for the manufacture of human heart muscle cells for drug screening and toxicity testing and for use in the manufacture of such cells for transplantation into human subjects for the treatment of heart disease. A patent in the same family has previously issued in the United States, with additional applications pending.

Singapore patent 176957 The patent titled, Differentiated Pluripotent Stem Cell Progeny Depleted of Extraneous Phenotypes, claims methods for the purification of pluripotent stem cell-derived oligodendrocytes by the removal of contaminating cells that display an antigen called epithelial cell adhesion molecule (EpCAM). This method is potentially useful in the purification of such oligodendrocytes prior to their use in research or human therapy. Patents in the same family have previously issued in the United States and China, with additional applications pending.

Original post:
BioTime Announces Issuance of 14 New Patents in the Fields of Regenerative Medicine, Stem Cell Technology, and Cancer ...

To Read More: BioTime Announces Issuance of 14 New Patents in the Fields of Regenerative Medicine, Stem Cell Technology, and Cancer …
categoriaUncategorized commentoComments Off on BioTime Announces Issuance of 14 New Patents in the Fields of Regenerative Medicine, Stem Cell Technology, and Cancer … | dataJanuary 27th, 2015
Read All

The Miami Stem Cell Treatment Center Announces the Opening of a New Office in The Villages

By NEVAGiles23

The Villages, Florida (PRWEB) January 22, 2015

The Miami Stem Cell Treatment Center announces the opening of a new office in The Villages, Florida on January 28, 2015, with Dr. Thomas A. Gionis, Surgeon-in-Chief and Dr. Nia Smyrniotis, Medical Director and Surgeon.

Their new office is located at the Villages Endoscopy & Surgical Center, 10900 SE 174th PL. Rd., Summerfield, FL 34491. If you have any questions or would like further information please call us at (561) 331-2999.

The Miami Stem Cell Treatment Center (Miami; Boca Raton; Orlando; and now The Villages), along with sister affiliates, the Irvine Stem Cell Treatment Center (Irvine; Westlake Villages, Ca.) and the Manhattan Regenerative Medicine Medical Group (Manhattan, New York), abide by approved investigational protocols using adult adipose derived stem cells (ADSCs) which can be deployed to improve patients quality of life for a number of chronic, degenerative and inflammatory conditions and diseases. ADSCs are taken from the patients own adipose (fat) tissue (found within a cellular mixture called stromal vascular fraction (SVF)). ADSCs are exceptionally abundant in adipose tissue. The adipose tissue is obtained from the patient during a 15 minute mini-liposuction performed under local anesthesia in the doctors office. SVF is a protein-rich solution containing mononuclear cell lines (predominantly adult autologous mesenchymal stem cells), macrophage cells, endothelial cells, red blood cells, and important Growth Factors that facilitate the stem cell process and promote their activity.

ADSCs are the bodys natural healing cells - they are recruited by chemical signals emitted by damaged tissues to repair and regenerate the bodys injured cells. The Miami Stem Cell Treatment Center only uses Adult Autologous Stem Cells from a persons own fat no embryonic stem cells are used; and no bone marrow stem cells are used. Current areas of study include: Emphysema, COPD, Asthma, Heart Failure, Heart Attack, Parkinsons Disease, Stroke, Traumatic Brain Injury, Lou Gehrigs Disease, Multiple Sclerosis, Lupus, Rheumatoid Arthritis, Crohns Disease, Muscular Dystrophy, Inflammatory Myopathies, and degenerative orthopedic joint conditions (Knee, Shoulder, Hip, Spine). For more information, or if someone thinks they may be a candidate for one of the adult stem cell protocols offered by the Miami Stem Cell Treatment Center, they may contact Dr. Gionis or Dr. Smyrniotis directly at (561) 331-2999, or see a complete list of the Centers study areas at: http://www.MiamiStemCellsUSA.com.

About the Miami Stem Cell Treatment Center: The Miami Stem Cell Treatment Center, along with sister affiliates, the Irvine Stem Cell Treatment Center and the Manhattan Regenerative Medicine Medical Group, is an affiliate of the California Stem Cell Treatment Center / Cell Surgical Network (CSN); we are located in Boca Raton, Orlando, Miami and now The Villages, Florida. We provide care for people suffering from diseases that may be alleviated by access to adult stem cell based regenerative treatment. We utilize a fat transfer surgical technology to isolate and implant the patients own stem cells from a small quantity of fat harvested by a mini-liposuction on the same day. The investigational protocols utilized by the Miami Stem Cell Treatment Center have been reviewed and approved by an IRB (Institutional Review Board) which is registered with the U.S. Department of Health, Office of Human Research Protection (OHRP); and our studies are registered with Clinicaltrials.gov, a service of the U.S. National Institutes of Health (NIH). For more information, visit our websites: http://www.MiamiStemCellsUSA.com, http://www.IrvineStemCellsUSA.com, or http://www.NYStemCellsUSA.com.

See the article here:
The Miami Stem Cell Treatment Center Announces the Opening of a New Office in The Villages

To Read More: The Miami Stem Cell Treatment Center Announces the Opening of a New Office in The Villages
categoriaUncategorized commentoComments Off on The Miami Stem Cell Treatment Center Announces the Opening of a New Office in The Villages | dataJanuary 24th, 2015
Read All

Nutech Mediworld – Pioneering human embryonic stem cell therapy – Video

By NEVAGiles23


Nutech Mediworld - Pioneering human embryonic stem cell therapy
An audio visual that features patients suffering from conditions considered incurable or terminal. And how they experienced significant improvement with human embryonic stem cell therapy at...

By: Resonance Consulting

Go here to see the original:
Nutech Mediworld - Pioneering human embryonic stem cell therapy - Video

To Read More: Nutech Mediworld – Pioneering human embryonic stem cell therapy – Video
categoriaUncategorized commentoComments Off on Nutech Mediworld – Pioneering human embryonic stem cell therapy – Video | dataJanuary 21st, 2015
Read All

Optimism on stem cells, ahead of reality

By NEVAGiles23

Illustration: John Spooner

One of the joys for those who work in the health services area is bringing relief to patients from chronic conditions.

And as the level of desperation rises, some patients will pay over the odds for treatment, pursing unproven options in the hope of some improvement in their condition. And where there is unmet demand, supply soon steps in to fill the gap.

Last year, there was intense global media attention on stem cell treatments following a paralysed patient in Poland who walked after a cell transplant, a project involving Polish and UK researchers.

Stem cells may well offer significant potential promise for patients in a range of treatments. But to date, much of that optimism has run well ahead of the reality.

Advertisement

Clinical trials to ensure the efficacy and safety of medical treatments is slow and laborious, taking several years, at the very least, to verify the merits of a treatment before then seeking approvals to offer the treatment to patients.

But for those searching for a stem cell treatment in Australia, there is a loophole: a referral from your doctor is often all it takes to get access, even though there is scant proof that the patient benefits.

Clearly, some patients so badly want to believe the treatment is good for them that this will override the necessary caution.

Much of this activity is taking place in private clinics, although sharemarket investors, too, have stem cell groups they can invest in.

The rest is here:
Optimism on stem cells, ahead of reality

To Read More: Optimism on stem cells, ahead of reality
categoriaSpinal Cord Stem Cells commentoComments Off on Optimism on stem cells, ahead of reality | dataJanuary 19th, 2015
Read All

Complete genetic correction of ips cells from Duchenne …

By NEVAGiles23

Characterization of mdx-iPS with DYS-HAC. (a) Morphology of mdx-MEF, mdx-iPS, and mdx-iPS (DYS-HAC) cells. Phase-contrast (left panel) and GFP-fluorescence (right panel) micrographs are shown. (b) Genomic PCR analyses for detecting DYS-HAC in mdx-iPS cells. (c) FISH analyses for mdx-iPS (DYS-HAC) cells. An arrow indicates the DYS-HAC and the inset shows an enlarged image of the DYS-HAC. (d) RT-PCR analyses of ES cellmarker genes, four exogenous transcription factors, and human dystrophin. EGFP and Nat1 were used as internal controls. Primers for DYS 6L/6R, 7L/7R, and 8L/8R detected the isoform of dystrophin expressed in ES and iPS cells. (e) Immunohistochemical analyses of dystrophin in muscle-like tissues of each teratoma. Immunodetection of mouse and human dystrophin (left panel), immunodetection of human-specific dystrophin (middle panel), and GFP micrography (right panel) are shown. The insets show enlarged images of immunohistochemistry. Nanog-iPS- and mdx-iPS-derived teratomas were used as positive and negative controls, respectively. CHO, Chinese hamster ovary; EGFP, enhanced green fluorescent protein; GFP, green fluorescent protein; HAC, human artificial chromosome; iPS, induced pluripotent stem cells; MEF, mouse embryonic fibroblast.

Link:
Complete genetic correction of ips cells from Duchenne ...

To Read More: Complete genetic correction of ips cells from Duchenne …
categoriaIPS Cell Therapy commentoComments Off on Complete genetic correction of ips cells from Duchenne … | dataJanuary 18th, 2015
Read All

Overview of Stem Cell Therapy at New Jersey Pain Management Clinics – Video

By NEVAGiles23


Overview of Stem Cell Therapy at New Jersey Pain Management Clinics
http://nj-pain.com/treatments/stem-cell-procedure/ Stem Cell Therapy falls under regenerative medicine, and it is now a reality in musculoskeletal medicine. This includes stem cells being...

By: New Jersey Pain Network

Read the rest here:
Overview of Stem Cell Therapy at New Jersey Pain Management Clinics - Video

To Read More: Overview of Stem Cell Therapy at New Jersey Pain Management Clinics – Video
categoriaUncategorized commentoComments Off on Overview of Stem Cell Therapy at New Jersey Pain Management Clinics – Video | dataJanuary 18th, 2015
Read All

Bone Stem Cells Regenerate Bone, Cartilage in Mice

By NEVAGiles23

Osteoarthritis is a common condition seen in older people in which the tissue between joints becomes worn down, causing severe pain. In what could be an important development for people who suffer from it, U.S. researchers have isolated stem cells in adult mice that regenerate both worn tissue, or cartilage, and bone.

For the past decade, researchers have been trying to locate and isolate stem cells in the spongy tissue or marrow of bones of experimental animals.

x

The so-called osteochondroreticular, or OCR, cells are capable of renewing and generating important bone and cartilage cells.

Researchers at Columbia University Medical Center in New York identified these master cells in the marrow. When grown in the lab and transplanted back into a fracture site in mice, they helped repair the broken bones.

Siddhartha Mukherjee, the study's senior author, said similar stem cells exist in the human skeletal system.

The real provocative experiment or the provocative idea is being able to do this in humans being able to extract out these stem cells from humans and being able to put them back in to repair complex fracture defects or osteoarthritis defects, said Mukherjee.

He noted that children have more bone stem cells than adults, which may explain why the bones of young people repair more easily than fractures in adults.

Mukherjee said the next step is to try to identify the OCR cells in humans and attempt to use them to repair complex bone and cartilage injuries.

Once cartilage is injured or destroyed in older people, as in osteoarthritis, Mukherjee said it does not repair itself.

More:
Bone Stem Cells Regenerate Bone, Cartilage in Mice

To Read More: Bone Stem Cells Regenerate Bone, Cartilage in Mice
categoriaBone Marrow Stem Cells commentoComments Off on Bone Stem Cells Regenerate Bone, Cartilage in Mice | dataJanuary 17th, 2015
Read All

More on this story:

By NEVAGiles23

The first bone marrow donors inspired by toddler Margot Martini have donated their stem cells.

Margot, who lost her battle with leukaemia last year after a worldwide search for a donor, inspired thousands of people in the UK to join the stem cell register.

The two-year-old's father, Yaser, has just learnt the donor drive has now flagged up its first two matches with people in need of bone marrow donation.

Mr Martini said: "The response to Margots donor appeal saw more than 35,000 people joined the UK register as potential stem cell donors. As a result, statistically this means that over the next 10 years, more than 500 people will now have the option of a potentially life saving bone marrow transplant.

"Delete Blood Cancer UK inform us that the first of the Team Margot registrants has actually donated their stem cells to a patient in need, which heralds Margots legacy.

"And it gets better: the second Team Margot donor is scheduled to give bone marrow later this month.

"Thank you so much to everyone who has registered and to all those who are encouraging just one more to do the same."

Margot's mother Vicki grew up in Essington and has family across Wolverhampton.

Read the rest here:
More on this story:

To Read More: More on this story:
categoriaBone Marrow Stem Cells commentoComments Off on More on this story: | dataJanuary 10th, 2015
Read All

Circadian rhythms regulate skin stem cell metabolism and expansion, study finds

By NEVAGiles23

UC Irvine scientists studying the role of circadian rhythms in skin stem cells found that this clock plays a key role in coordinating daily metabolic cycles and cell division.

Their research, which appears Jan. 6 in Cell Reports, shows for the first time how the body's intrinsic day-night cycles protect and nurture stem cell differentiation. Furthermore, this work offers novel insights into a mechanism whereby an out of synch circadian clock can contribute to accelerated skin aging and cancers.

Bogi Andersen, professor of biological chemistry and medicine, and Enrico Gratton, professor of biomedical engineering, focused their efforts on the epidermis, the outermost protective layer of the skin that is maintained and healed by long-lived stem cells.

While the role of the circadian clock in processes such as sleep, feeding behavior and metabolism linked to feeding and fasting are well known, much less is known about whether the circadian clock also regulates stem cell function.

The researchers used novel two-photon excitation and fluorescence lifetime imaging microscopy in Laboratory of Fluorescence Dynamics in UCI's Department of Biomedical Engineering to make sensitive and quantitative measurements of the metabolic state of single cells within the native microenvironment of living tissue.

They discovered that the circadian clock regulates one form of intermediary metabolism in these stem cells, referred to as oxidative phosphorylation. This type of metabolism creates oxygen radicals that can damage DNA and other components of the cell. In fact, one theory of aging posits that aging is caused by the accumulative damage from metabolism-generated oxygen radicals in stem cells.

The Andersen-Gratton study also revealed that the circadian clock within stem cells shifts the timing of cell division such that the stages of the cell division cycle that are most sensitive to DNA damage are avoided during times of maximum oxidative phosphorylation.

Other studies in animals have linked aging to disruption of circadian rhythms, and Andersen said that accelerated aging could be caused by asynchrony in the metabolism and cell proliferation cycles in stem cells.

"Our studies were conducted in mice, but the greater implication of the work relates to the fact that circadian disruption is very common in modern society, and one consequence of such disruption could be abnormal function of stem cells and accelerated aging," he said.

Andersen adds that it is possible that future studies could advance therapeutic insights from this research.

Visit link:
Circadian rhythms regulate skin stem cell metabolism and expansion, study finds

To Read More: Circadian rhythms regulate skin stem cell metabolism and expansion, study finds
categoriaUncategorized commentoComments Off on Circadian rhythms regulate skin stem cell metabolism and expansion, study finds | dataJanuary 8th, 2015
Read All

Scientists explain how stem cells and 'bad luck' cause cancer

By NEVAGiles23

Why are some types of cancer so much more common than others? Sometimes its due to faulty genes inherited from ones parents and sometimes to behaviors like smoking a pack of cigarettes every day. But in most cases, it comes down to something else stem cells.

This is the intriguing argument made by a pair of researchers from Johns Hopkins University. In a study published Friday in the journal Science, they found a very high correlation between the differences in risk for 31 kinds of cancer and the frequency with which different types of stem cells made copies of themselves.

Just how strong was this link? On a scale that goes from 0 (absolutely no correlation) to 1 (exact correlation), biostatistician Cristian Tomasetti and cancer geneticist Bert Vogelstein calculated that it was at least a 0.8. When it comes to cancer, thats high.

No other environmental or inherited factors are known to be correlated in this way across tumor types, Tomasetti and Vogelstein wrote.

Researchers have long recognized that when cells copy themselves, they sometimes make small errors in the billions of chemical letters that make up their DNA. Many of these mistakes are inconsequential, but others can cause cells to grow out of control. That is the beginning of cancer.

The odds of making a copying mistake are believed to be the same for all cells. But some kinds of cells copy themselves much more often than others. Tomasetti and Vogelstein hypothesized that the more frequently a type of cell made copies of itself, the greater the odds that it would develop cancer.

The pair focused on stem cells because of their outsided influence in the body. Stem cells can grow into many kinds of specialized cells, so if they contain damaged DNA, those mistakes can spread quickly.

The researchers combed through the scientific literature and found studies that described the frequency of stem cell division for 31 different tissue types. Then they used data from the National Cancer Institutes Surveillance, Epidemiology and End Results database to assess the lifetime cancer risk for each of those tissue types. When they plotted the total number of stem cell divisions against the lifetime cancer risk for each tissue, the result was 31 points clustered pretty tightly along a line.

To put this notion in concrete terms, consider the skin. The outermost layer of the skin is the epidermis, and the innermost layer of the epidermis contains a few types of cells. Basal epidermal cells are the ones that copy themselves frequently, with new cells pushing older ones to the skins surface. Melanocytes are charged with making melanin, the pigment that protects the skin from the suns damaging ultraviolet rays.

When sunlight hits bare skin, both basal epidermal cells and melanocytes get the same exposure to UV. But basal cell carcinoma is far more common than melanoma about 2.8 million Americans are diagnosed with basal cell carcinoma each year, compared with roughly 76,000 new cases of melanoma, according to the Skin Cancer Foundation. A major reason for this discrepancy, Tomasetti and Vogelstein wrote, is that epidermal stem cells divide once every 48 days, while melanocytes divide only once every 147 days.

Read the original post:
Scientists explain how stem cells and 'bad luck' cause cancer

To Read More: Scientists explain how stem cells and 'bad luck' cause cancer
categoriaSkin Stem Cells commentoComments Off on Scientists explain how stem cells and 'bad luck' cause cancer | dataJanuary 2nd, 2015
Read All

Brainstorm Cell Therapeutics (BCLI) Stock Rises Ahead of ALS Treatment Trial Data Release

By NEVAGiles23

NEW YORK (TheStreet) -- Shares ofBrainstorm Cell Therapeutics (BCLI) soared 20.88% to $4.69 on higher-than-average volume in morning trading Wednesday ahead of the biotech company's data release on Monday.

Brainstorm intends to release the final results from its Phase 2a trial of its stem cell therapy NurOwn on Monday. The company describes NurOwn as an "autologous, adult stem cell therapy technology" designed to treat ALS, also known as Lou Gehrig's Disease.

The company will host a conference call on Monday to discuss the results.

Exclusive Report: Jim Cramers Best Stocks for 2015

Jim Cramer and Stephanie Link reveal their investment tactics while giving advanced notice before every trade.

Access the tool that DOMINATES the Russell 2000 and the S&P 500.

Jim Cramer's protg, David Peltier, uncovers low dollar stocks with extraordinary upside potential that are flying under Wall Street's radar.

Read more here:
Brainstorm Cell Therapeutics (BCLI) Stock Rises Ahead of ALS Treatment Trial Data Release

To Read More: Brainstorm Cell Therapeutics (BCLI) Stock Rises Ahead of ALS Treatment Trial Data Release
categoriaUncategorized commentoComments Off on Brainstorm Cell Therapeutics (BCLI) Stock Rises Ahead of ALS Treatment Trial Data Release | dataDecember 31st, 2014
Read All

More about Gordie Howe's therapy

By NEVAGiles23

Stem cells grown under low oxygen. These stem cells from Stemedica are licensed to CardioCell.

Dr. David Gorski, a prominent skeptic of therapies offered outside the scientifically controlled clinical trial system, has published an extensive and critical look at the stem cell therapy Gordie Howe received in early December to help him recover from a serious stroke.

I had email exchanges with Gorski while writing my article last week on the treatment, which uses stem cells provided by San Diego-based Stemedica. Gorski, whose previous blog post at Science-Based Medicine on Howe's treatment caught my attention, follows through with an analysis of the clinical trial setup used by Novastem, a Mexican stem cell company licensed by Stemedica to use its cells.

Dr. Murray Howe and his hockey great father, Gordie Howe, on a fishing trip in Saskatchewan in 2013. / Courtesy Murray Howe

"As sympathetic as I am to the Howe family, Im sorry. I reluctantly have to say that Murray Howe really should know better," Gorski wrote. "If Gordie Howe was treated as part of a clinical trial, then Novastem should have treated him for free! Thats because if it is running a clinical trial, it should treat everyone on the trial for free. Thats the way its done ethically."

I asked Novastem president Rafael Carrillo about the financial issue for my article. Carrillo said Novastem doesn't have deep pockets like a big pharmaceutical company, so it needs to charge for the treatment to pay its expenses. Without that money, it can't afford the trial. Patients wouldn't get the opportunity to get care that could help them, Carrillo said. Moreover, this arrangement is legal under Mexican law.

Gorksi views this as unethical, even if it's legal. He objects to the free treatment given to Gordie Howe, because it amounts to publicity for Novastem that will attract paying customers. And even if Howe is doing better, as appears to be the case, it's not possible to tell definitively whether stem cells helped.

The U.S. system has its own flaws, Gorski says, because patient expenses not related to the clinical trial are not paid for.

"Patients who dont have health insurance will often have a huge difficulty paying for their care not related to the clinical trial and thus will have difficulties accessing cutting-edge clinical trials because they cant pay for their own regular care," Gorski wrote. "Yay, USA!"

Stemedica is offering its own U.S. trial of the therapy, but people must have had the stroke at least six months ago. That's because people make the most improvement within six months after a stroke. So delaying treatment until after that point will make it easier to detect improvement caused by the stem cell treatment.

Read more here:
More about Gordie Howe's therapy

To Read More: More about Gordie Howe's therapy
categoriaUncategorized commentoComments Off on More about Gordie Howe's therapy | dataDecember 30th, 2014
Read All

Las Vegas Pain Management Clinic, Nevada Pain, Now Offering Over Ten Effective Treatments for Knee Arthritis with …

By NEVAGiles23

Las Vegas, Nevada (PRWEB) December 29, 2014

Top Las Vegas pain management clinic, Nevada Pain, is now providing over ten effective knee arthritis treatments. New treatments include regenerative medicine therapies such as PRP and stem cell therapy. Call (702) 323-0553 for more information and scheduling.

Knee arthritis affects tens of millions of Americans, often leading to significant disability. This may make it difficult to participate in recreational activities or play with one's kids or grandkids. While a total joint replacement typically has excellent outcomes, there are potential serious complications. Therefore, the procedure should be avoided or delayed until all other options have been attempted.

Nevada Pain offers the latest, cutting edge options for knee arthritis relief. This includes platelet rich plasma therapy, known as PRP therapy, along with stem cell therapy. The stem cell therapy is offered with either bone marrow derived stem cells or amniotic derived stem cells.

Additional treatments for knee arthritis include cortisone injections, which have been a gold standard for decades. They may provide months of consistent pain relief. Hyaluronic acid injections into the arthritic knee have been shown to offer six to twelve months of pain relief to most individuals.

Knee bracing is also offered along with TENS units, physical rehabilitation, pain medications and topical pain creams. Success rates are impressive for achieving pain relief and avoiding knee surgery.

Along with treating knee arthritis pain, Nevada Pain offers therapies for all types of back and neck pain, sciatica, scoliosis, neuropathy, RSD, spinal stenosis and much more. Treatment is offered by Board Certified, Award Winning providers.

Most insurance is accepted and there are multiple locations in the greater Las Vegas area. Call (702) 323-0553 for more information and scheduling.

Visit link:
Las Vegas Pain Management Clinic, Nevada Pain, Now Offering Over Ten Effective Treatments for Knee Arthritis with ...

To Read More: Las Vegas Pain Management Clinic, Nevada Pain, Now Offering Over Ten Effective Treatments for Knee Arthritis with …
categoriaUncategorized commentoComments Off on Las Vegas Pain Management Clinic, Nevada Pain, Now Offering Over Ten Effective Treatments for Knee Arthritis with … | dataDecember 29th, 2014
Read All

Scientists Use Skin Cells to Create Artificial Sperm and Eggs

By NEVAGiles23

TIME Science fertility Scientists Use Skin Cells to Create Artificial Sperm and Eggs Getty Images The feat could help patients with fertility problems

British scientists from Cambridge have succeeded in using skin cells to create primitive forms of artificial sperm and eggs.

The feat could transform fertility treatment and our understanding of age-related diseases, the Guardian reports.

Scientists created the early sex cells by culturing human embryonic stem cells for five days in controlled conditions.

They then showed that by following the same procedure they could convert adult skin tissue into early-stage sperm and eggs, raising the likelihood of using sex cells that genetically match a patient undergoing IVF treatment.

The scientists believe these cells have the potential could grow into mature sperm and eggs, something that has never been done in a lab before.

[The Guardian]

Read the original:
Scientists Use Skin Cells to Create Artificial Sperm and Eggs

To Read More: Scientists Use Skin Cells to Create Artificial Sperm and Eggs
categoriaSkin Stem Cells commentoComments Off on Scientists Use Skin Cells to Create Artificial Sperm and Eggs | dataDecember 28th, 2014
Read All

Immune system may hold key to curing baldness

By NEVAGiles23

December 26, 2014

Credit: Thinkstock

Brett Smith for redOrbit.com Your Universe Online

Somewhat by accident, researchers at Spanish National Cancer Research Centre (CNIO) have discovered a connection between the bodys immune system and hair loss a discovery that could eventually lead to a molecular treatment for baldness.

According to a new study in the journal PLOS Biology, immune system cells called macrophages, which gobble up and destroy invading pathogens, have a stimulating effect on skin stem cells and hair growth.

The restorative capability of stem cells permits skin re-growth, but various factors can cut their restorative properties or activate the uncontrolled growth seen in cancerous tissues. The new study may have further ramifications beyond potential hair loss treatment, potentially in the field of cancer research.

The connection between macrophages and hair follicles began the research on anti-inflammatory drugs. CINO scientists found that an anti-inflammatory treatment also reactivated hair growth and this accidental discovery led them to examine interactions between stem cells and cells that cause inflammation as part of an immune response.

The CINO team eventually found that when stem cells are inactive, some macrophages die as a result of process known as apoptosis. The process stimulates the release a number of factors that activate stem cells, causing hair to grow again.

The study team investigated a particular class of proteins released by macrophages called Wnt by treating macrophages with a Wnt-inhibitor substance contained within liposomes. The team saw that after they used this drug, the triggering of hair growth was delayed. Even though this study was performed in mice, the scientists believe their discovery may help in the progression of novel care treatments for hair growth in humans.

The potential for attacking one kind of cell to affect a different one might have broader uses beyond simply growing hair, the researchers said. They added that the use of liposomes for drug delivery is also a promising method of experimentation, which may have ramifications for the study of other pathologies.

Original post:
Immune system may hold key to curing baldness

To Read More: Immune system may hold key to curing baldness
categoriaSkin Stem Cells commentoComments Off on Immune system may hold key to curing baldness | dataDecember 26th, 2014
Read All

Page 13«..10..12131415..2030..»


Copyright :: 2025